## Supporting information

# Knoevenagel-IMHDA and -IMSDA sequences for the synthesis of chiral condensed *O*,*N*-, *S*,*N*- and *N*-heterocycles

Mihály Kajtár,<sup>a,b</sup> Sándor Balázs Király,<sup>a\*</sup> Attila Bényei,<sup>c</sup> Attila Kiss-Szikszai,<sup>a</sup> Anita Kónya-Ábrahám,<sup>a</sup> Lilla Borbála Horváth,<sup>d</sup> Szilvia Bősze,<sup>d</sup> Andras Kotschy,<sup>e</sup> Attila Paczal,<sup>e</sup> Tibor Kurtán<sup>a\*</sup>

<sup>a</sup>Department of Organic Chemistry, University of Debrecen, Debrecen 4032, Egyetem square 1, Hungary. <sup>b</sup>Doctoral School of Chemistry, University of Debrecen, 4032 Debrecen, Egyetem square 1, Hungary <sup>c</sup>Department of Physical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem square 1, Hungary <sup>d</sup>Hungarian Research Network (HUN-REN), Research Group of Peptide Chemistry, Eötvös Loránd University, H1117 Budapest, Hungary.

<sup>e</sup>Servier Research Institute of Medicinal Chemistry, Budapest 1031, Hungary.

### Table of contents

| Table of contents                                                                           |
|---------------------------------------------------------------------------------------------|
| Table of schemes                                                                            |
| Table of figures                                                                            |
| 1.1 Preparation of the starting materials of the domino Knoevenagel-cyclization sequences9  |
| 1.2 NMR spectra for the starting materials of domino-Knoevenagel-cyclization reactions11    |
| 2. Mechanisms of the multi-step domino Knoevenagel-IMHDA reactions with Meldrum's           |
| acid13                                                                                      |
| 3. Spectral data used for the determintion of relative configuration 115                    |
| 4. NMR spectra of the products17                                                            |
| 5. X-Ray diffraction data                                                                   |
| 6. In vitro antiproliferative activity of the products of the domino reactions against U87, |
| A2780 and HT-29 human cancer cell lines134                                                  |
| 7. References:                                                                              |

# Table of schemes

| Scheme S1. Preparation of compound S4 with reductive amination of cynnamaldehyde | : <b>(S1)</b> .9 |
|----------------------------------------------------------------------------------|------------------|
| Scheme S2. Acetylation of the secondary amine S4                                 | 9                |
| Scheme S3. Acetal cleavage of <b>S5</b> resulting in <b>1d</b> .                 | 10               |
| Scheme S4. Mechanism for the multistep domino Knoevenagel-IMHDA reaction of su   | ıbstrate         |
| 1a with Meldrum's acid in presence of different amines                           | 13               |
| Scheme S5. Reaction mechanism of the multistep domino Knoevenagel-cyclization se | quence           |
| of <b>1a</b> and Meldrum's acid in presence of Et <sub>3</sub> N                 | 14               |

# Table of figures

| Figure S1. <sup>1</sup> H-NMR spectrum of the ( <i>E</i> )- <i>N</i> -cinnamyl- <i>N</i> -(3-oxopropyl)acetamide (1d) in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| at 400 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S2. <sup>13</sup> C-NMR spectrum of the ( <i>E</i> )- <i>N</i> -cinnamyl- <i>N</i> -(3-oxopropyl)acetamide (1d) in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| at 100 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table S1. Coupling constant data of the methine protons attached to the chirality centers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| characteristic NOE effects observed for compounds 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table S2. Coupling constant data of the methine protons attached to the chirality centers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| characteristic NOE effects observed for compounds <b>5</b> 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure S3. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3aa</b> in DMSO-d <sub>6</sub> at 500 MHz. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure S4. <sup>13</sup> C-NMR spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3aa</b> in CDCl <sub>3</sub> at 100 MHz18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure S5. ROESY spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3aa</b> in CDCl <sub>3</sub> at 500 MHz19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure S6. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3ab</b> in CDCl <sub>3</sub> at 500 MHz20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S7. <sup>13</sup> C-NMR spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3ab</b> in CDCl <sub>3</sub> at 100 MHz21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure S8. ROESY spectrum of the <i>rac-</i> (6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3ab</b> in CDCl <sub>3</sub> at 500 MHz22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure S9. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure S10. <sup>13</sup> C-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 125 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure S11. ROESY spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure S11. ROESY spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 25 Figure S12. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and <i>rac</i> -( $6aR^*$ , $12R^*$ , $12aS^*$ )-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S11. ROESY spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 25<br>Figure S12. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and <i>rac</i> -( $6aR^*$ , $12R^*$ , $12aS^*$ )-<br><i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S11. ROESY spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 25<br>Figure S12. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and <i>rac</i> -( $6aR^*$ , $12R^*$ , $12aS^*$ )-<br><i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S11. ROESY spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz.25Figure S12. <sup>1</sup> H-NMR spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ad</b> and $rac$ -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )-epi-3ad in DMSO-d <sub>6</sub> at 500 MHz.26Figure S13. <sup>13</sup> C-NMR spectrum of $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ag</b> and $rac$ -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )-epi-3ag in CDCl <sub>3</sub> at 100 MHz.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure S11. ROESY spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz.25<br>Figure S12. <sup>1</sup> H-NMR spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ad</b> and $rac$ -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )-<br><i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S11. ROESY spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz.25    Figure S12. <sup>1</sup> H-NMR spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ad</b> and $rac$ -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )-    epi- <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure S11. ROESY spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 25<br>Figure S12. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and <i>rac</i> -( $6aR^*$ , $12R^*$ , $12aS^*$ )-<br><i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S11. ROESY spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz.25    Figure S12. <sup>1</sup> H-NMR spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ad</b> and $rac$ -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )- <i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz.  26    Figure S13. <sup>13</sup> C-NMR spectrum of $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ag</b> and $rac$ -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )- <i>epi</i> - <b>3ag</b> in CDCl <sub>3</sub> at 100 MHz.  27    Figure S14. ROESY spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ad</b> and $rac$ -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )- <i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz.  28    Figure S15. <sup>1</sup> H-NMR spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ae</b> in acetone-d <sub>6</sub> at 500 MHz.    29    Figure S16. <sup>13</sup> C-NMR spectrum of the $rac$ -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ae</b> in acetone-d <sub>6</sub> at 125 MHz. |
| Figure S11. ROESY spectrum of the <i>rac</i> -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz.25<br>Figure S12. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -(6a $R^*$ ,12 $S^*$ ,12a $S^*$ )- <b>3ad</b> and <i>rac</i> -(6a $R^*$ ,12 $R^*$ ,12a $S^*$ )-<br><i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure S11. ROESY spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 25<br>Figure S12. <sup>1</sup> H-NMR spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and $rac$ -( $6aR^*$ , $12R^*$ , $12aS^*$ )-<br><i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure S11. ROESY spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 25    Figure S12. <sup>1</sup> H-NMR spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and $rac$ -( $6aR^*$ , $12R^*$ , $12aS^*$ )-    epi- <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S11. ROESY spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ac</b> in DMSO-d <sub>6</sub> at 500 MHz. 25    Figure S12. <sup>1</sup> H-NMR spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and $rac$ -( $6aR^*$ , $12R^*$ , $12aS^*$ )- <i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz.  26    Figure S13. <sup>13</sup> C-NMR spectrum of $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ag</b> and $rac$ -( $6aR^*$ , $12R^*$ , $12aS^*$ )- <i>epi</i> - <b>3ag</b> in CDCl <sub>3</sub> at 100 MHz.  27    Figure S14. ROESY spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ad</b> and $rac$ -( $6aR^*$ , $12R^*$ , $12aS^*$ )- <i>epi</i> - <b>3ad</b> in DMSO-d <sub>6</sub> at 500 MHz.  28    Figure S15. <sup>1</sup> H-NMR spectrum of the $rac$ -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ae</b> in acetone-d <sub>6</sub> at 500 MHz.                                                                                                                                                   |

| Figure S20. NOESY spectrum of the rac-(4R*,4aS*,10bS*)-2af and rac-(4R*,4aS*,10bR*)-epi-                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2af in DMSO-d <sub>6</sub> at 400 MHz                                                                                                                                                     |
| Figure S21. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2ag</b> and <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)-           |
| <i>epi-</i> <b>2ag</b> in DMSO-d <sub>6</sub> at 500 MHz35                                                                                                                                |
| Figure S22. <sup>13</sup> C-NMR spectrum of the <i>rac</i> - $(4R^*, 4aS^*, 10bS^*)$ - <b>2ag</b> and <i>rac</i> - $(4R^*, 4aS^*, 10bR^*)$ -                                              |
| epi- <b>2ag</b> in DMSO-d <sub>6</sub> at 125 MHz                                                                                                                                         |
| Figure S23. ROESY spectrum of the rac-(4R*,4aS*,10bS*)-2ag and rac-(4R*,4aS*,10bR*)-                                                                                                      |
| <i>epi</i> - <b>2ag</b> in DMSO-d <sub>6</sub> at 500 MHz37                                                                                                                               |
| Figure S24. <sup>1</sup> H-NMR spectrum of the <i>rac-</i> (6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3ag</b> in DMSO-d <sub>6</sub> at 500 MHz.                                    |
| Figure S25. <sup>13</sup> C-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ag</b> in DMSO-d <sub>6</sub> at 90 MHz.39                                              |
| Figure S26. HSQC spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3ag</b> in DMSO-d <sub>6</sub> at 500 MHz40                                                 |
| Figure S27. ROESY spectrum of the <i>rac</i> -(6a <i>R</i> *,12 <i>S</i> *,12a <i>S</i> *)- <b>3ag</b> in DMSO-d <sub>6</sub> at 500 MHz.41                                               |
| Figure S28. <sup>1</sup> H-NMR spectrum of the <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2ah</b> and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)-           |
| <i>epi-</i> <b>2ah</b> in CDCl <sub>3</sub> at 400 MHz42                                                                                                                                  |
| Figure S29. <sup>1</sup> H-NMR spectrum of the $rac-(4R^*,4aS^*,10bS^*)-2ah$ and $rac-(4R^*,4aS^*,10bR^*)-2ah$                                                                            |
| <i>epi-</i> <b>2ah</b> in CDCl <sub>3</sub> at 100 MHz43                                                                                                                                  |
| Figure S30. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ah</b> in DMSO-d <sub>6</sub> at 500 MHz.                                                |
| Figure S31. <sup>13</sup> C-NMR spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ah</b> in DMSO-d <sub>6</sub> at 125 MHz.                                               |
| Figure S32. ROESY spectrum of the <i>rac</i> -( $6aR^*$ , $12S^*$ , $12aS^*$ )- <b>3ah</b> in DMSO-d <sub>6</sub> at 500 MHz.46                                                           |
| Figure S33. <sup>1</sup> H-NMR spectrum of rac-(4R*,4aS*,10bS*)-2ai and rac-(4R*,4aS*,10bR*)-epi-                                                                                         |
| <b>2ai</b> in DMSO-d <sub>6</sub> at 500 MHz47                                                                                                                                            |
| Figure S34. <sup>13</sup> C-NMR spectrum of rac-(4R*,4aS*,10bS*)-2ai and rac-(4R*,4aS*,10bR*)-epi-                                                                                        |
| <b>2ai</b> in DMSO-d <sub>6</sub> at 125 MHz48                                                                                                                                            |
| Figure S35. HSQC spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)-2ai and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)-epi-2ai                              |
| in DMSO-d <sub>6</sub> at 500 MHz49                                                                                                                                                       |
| Figure S36. ROESY spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)-2ai and <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi</i> -2ai                    |
| in DMSO-d <sub>6</sub> at 500 MHz50                                                                                                                                                       |
| Figure S37. <sup>1</sup> H-NMR spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bi</b> and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi-</i>   |
| <b>2bi</b> in DMSO-d <sub>6</sub> at 500 MHz51                                                                                                                                            |
| Figure S38. <sup>13</sup> C-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bi</b> and <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi</i> - |
| <b>2bi</b> in DMSO-d <sub>6</sub> at 125 MHz                                                                                                                                              |

| Figure S39. HSQC spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bi</b> and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi-</i> <b>2bi</b>    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in DMSO-d <sub>6</sub> at 500 MHz53                                                                                                                                                     |
| Figure S40. <sup>1</sup> H-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)-2ci and <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)-epi-                 |
| <b>2ci</b> in DMSO-d <sub>6</sub> at 500 MHz54                                                                                                                                          |
| Figure S41. <sup>13</sup> C-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)-2ci and <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi</i> -       |
| <b>2ci</b> in DMSO-d <sub>6</sub> at 125 MHz55                                                                                                                                          |
| Figure S42. HSQC spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)-2ci and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi-</i> 2ci                   |
| in DMSO-d <sub>6</sub> at 500 MHz56                                                                                                                                                     |
| Figure S43. <sup>1</sup> H-NMR spectrum of the <i>rac</i> - $(4R^*, 4aS^*, 10bS^*)$ - <b>4aj</b> in DMSO-d <sub>6</sub> at 400 MHz57                                                    |
| Figure S44. <sup>13</sup> C-NMR spectrum of the <i>rac</i> -( $4R^*$ , $4aS^*$ , $10bS^*$ )- <b>4aj</b> in DMSO-d <sub>6</sub> at 100 MHz.58                                            |
| Figure S45. NOESY spectrum of the $rac$ -(4 $R$ *,4 $aS$ *,10 $bS$ *)-4 $aj$ in DMSO-d <sub>6</sub> at 400 MHz59                                                                        |
| Figure S46. <sup>1</sup> H-NMR spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2ak</b> in DMSO-d <sub>6</sub> at 500 MHz60                                      |
| Figure S47. <sup>13</sup> C-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2ak</b> in CDCl <sub>3</sub> at 100 MHz61                                       |
| Figure S48. HSQC spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2ak</b> in CDCl <sub>3</sub> at 400 MHz62                                                      |
| Figure S49. <sup>1</sup> H-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bk</b> in CDCl <sub>3</sub> at 500 MHz63                                        |
| Figure S50. <sup>13</sup> C-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bk</b> in CDCl <sub>3</sub> at 125 MHz64                                       |
| Figure S51. NOESY spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bk</b> in CDCl <sub>3</sub> at 500 MHz65                                                     |
| Figure S52. <sup>1</sup> H-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bl</b> in CDCl <sub>3</sub> at 400 MHz66                                        |
| Figure S53. <sup>13</sup> C-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bl</b> in CDCl <sub>3</sub> at 100 MHz67                                       |
| Figure S54. NOESY spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bl</b> in CDCl <sub>3</sub> at 400 MHz68                                                     |
| Figure S55. <sup>1</sup> H-NMR spectrum of $rac$ -(4 $R$ *,4 $aS$ *,10 $bR$ *)- $epi$ - <b>2am</b> in DMSO-d <sub>6</sub> at 500 MHz.                                                   |
|                                                                                                                                                                                         |
| Figure S56. <sup>13</sup> C-NMR spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi</i> - <b>2am</b> in DMSO-d <sub>6</sub> at 90 MHz.                          |
|                                                                                                                                                                                         |
| Figure S57. HSQC spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi</i> - <b>2am</b> in DMSO-d <sub>6</sub> at 400 MHz71                                       |
| Figure S58. ROESY spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi</i> - <b>2am</b> in DMSO-d <sub>6</sub> at 500 MHz.72                                     |
| Figure S59. <sup>1</sup> H-NMR spectrum of $rac$ -(4 $R^*$ ,4 $aS^*$ ,10 $bR^*$ )- $epi$ - <b>2bm</b> in DMSO-d <sub>6</sub> at 500 MHz.                                                |
|                                                                                                                                                                                         |
| Figure S60. <sup>13</sup> C-NMR spectrum of $rac$ -(4 $R$ *,4 $aS$ *,10 $bR$ *)- $epi$ - <b>2bm</b> in DMSO-d <sup>6</sup> at 100 MHz.                                                  |
|                                                                                                                                                                                         |
| Figure S61. HSQC spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>epi</i> - <b>2bm</b> in DMSO-d <sub>6</sub> at 500 MHz75                                       |
| Figure S62. <sup>1</sup> H-NMR spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2an</b> and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>reg-</i> |
| <b>2an</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                            |

| Figure S63. <sup>13</sup> C-NMR spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2an</b> and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>reg-</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2an</b> in DMSO-d <sub>6</sub> at 125 MHz77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure S64. HSQC spectrum of <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2an</b> and <i>rac</i> -(4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>reg</i> - <b>2an</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| in DMSO-d <sub>6</sub> at 500 MHz78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S65. ROESY spectrum of rac-(4R*,4aS*,10bS*)-2an and rac-(4R*,4aS*,10bR*)-reg-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>2an</b> in DMSO-d <sub>6</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure S66. <sup>1</sup> H-NMR spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bn</b> and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>reg-</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>2bn</b> in DMSO-d <sub>6</sub> at 500 MHz80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure S67. <sup>13</sup> C-NMR spectrum of <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <b>2bn</b> and <i>rac-</i> (4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>reg-</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>2bn</b> in DMSO-d <sub>6</sub> at 125 MHz81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure S68. <sup>1</sup> H-NMR spectrum of the ~5:4 mixture of <i>rac-</i> (1 <i>R</i> *,4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>dia1-</i> <b>5a</b> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>rac</i> -(1 <i>S</i> *,4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <i>dia2</i> - <b>5a</b> in CDCl <sub>3</sub> at 500 MHz82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Figure S69. <sup>13</sup> C-NMR spectrum of the ~5:4 mixture of <i>rac-</i> (1 <i>R</i> *,4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>dia1-</i> <b>5a</b> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <i>rac</i> -(1 <i>S</i> *,4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <i>dia2</i> - <b>5a</b> in CDCl <sub>3</sub> at 125 MHz83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Figure S70. ROESY spectrum of the ~5:4 mixture of $rac-(1R^*, 4R^*, 4aS^*, 10bR^*)$ -dial-5a and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <i>rac</i> -(1 <i>S</i> *,4 <i>R</i> *,4a <i>S</i> *,10b <i>S</i> *)- <i>dia2</i> - <b>5a</b> in CDCl <sub>3</sub> at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S71. <sup>1</sup> H-NMR spectrum of the <i>rac-</i> (1 <i>R</i> *,4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>dia1-</i> 5b in CDCl <sub>3</sub> at 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MHz.  85    Figure S72. <sup>13</sup> C-NMR spectrum of the $rac-(1R^*,4R^*,4aS^*,10bR^*)$ - $dia1$ - <b>5b</b> in CDCl <sub>3</sub> at 100  86    Figure S73. NOESY spectrum of the $rac-(1R^*,4R^*,4aS^*,10bR^*)$ - $dia1$ - <b>5b</b> in CDCl <sub>3</sub> at 400  87    Figure S74. <sup>1</sup> H-NMR spectrum of the $rac-(1S^*,4R^*,4aS^*,10bS^*)$ - $dia2$ - <b>5b</b> in CDCl <sub>3</sub> at 400  88    Figure S75. <sup>13</sup> C-NMR spectrum of the $rac-(1S^*,4R^*,4aS^*,10bS^*)$ - $dia2$ - <b>5b</b> in CDCl <sub>3</sub> at 100  88    Figure S75. <sup>13</sup> C-NMR spectrum of the $rac-(1S^*,4R^*,4aS^*,10bS^*)$ - $dia2$ - <b>5b</b> in CDCl <sub>3</sub> at 100  89    Figure S76. NOESY spectrum of the $rac-(1S^*,4R^*,4aS^*,10bS^*)$ - $dia2$ - <b>5b</b> in CDCl <sub>3</sub> at 400 MHz.  89    Figure S76. NOESY spectrum of the $rac-(1S^*,4R^*,4aS^*,10bS^*)$ - $dia2$ - <b>5b</b> in CDCl <sub>3</sub> at 400 MHz.  90    Figure S76. NOESY spectrum of the $rac-(1S^*,4R^*,4aS^*,10bS^*)$ - $dia2$ - <b>5b</b> in CDCl <sub>3</sub> at 400 MHz.  90 |
| MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Figure S80. <sup>1</sup> H-NMR spectrum of the $rac-(1S^*, 4R^*, 4aS^*, 10bS^*)$ -dia2-5c in CDCl <sub>3</sub> at 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S81. <sup>13</sup> C-NMR spectrum of the $rac$ -(1S*,4R*,4aS*,10bS*)-dia2-5c in CDCl <sub>3</sub> at 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MHz95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure S82. ROESY spectrum of the <i>rac</i> - $(1S^*, 4R^*, 4aS^*, 10bS^*)$ - <i>dia2</i> -5c in CDCl <sub>3</sub> at 500 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S83. <sup>1</sup> H-NMR spectrum of the $rac$ -(1S*,4R*,4aS*,10bS*)- $dia2$ -5d in CDCl <sub>3</sub> at 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure S84. <sup>13</sup> C-NMR spectrum of the $rac$ -(1 $S$ *,4 $R$ *,4 $aS$ *,10 $bS$ *)- $dia2$ -5d in CDCl <sub>3</sub> at 125 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure S85 ROFSV spectrum of the $rac$ (15* $AB$ * $A_2$ S* 10bS*) $dia2$ 5d in CDC1, at 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S86 <sup>1</sup> H-NMR spectrum of the rac- $(1S*4R*4aS*10bS*)$ -dia2-5e in CDCl <sub>2</sub> at 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MH <sub>7</sub> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Gamma_{1112}^{*} = \Omega_{22} \frac{13}{12} \Omega_{11} \Omega_{22} + \Omega_{12} \Omega_{12} + \Omega_{12} \Omega_{12$ |
| Figure S87. <sup>13</sup> C-NMR spectrum of the $rac$ -(15*,4 $k$ *,4 $a$ 5*,10 $b$ 5*)- $ala2$ -5e in CDCl <sub>3</sub> at 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S88. HMBC spectrum of the <i>rac</i> -( $1S^*$ , $4R^*$ , $4aS^*$ , $10bS^*$ )- <i>dia2</i> -5e in CDCl <sub>3</sub> at 500 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S89. ROESY spectrum of the <i>rac</i> - $(1S^*, 4R^*, 4aS^*, 10bS^*)$ - <i>dia2</i> -5e in CDCl <sub>3</sub> at 500 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S90. <sup>1</sup> H-NMR spectrum of the <i>rac</i> -(1 <i>R</i> *,4 <i>R</i> *,4a <i>S</i> *,10b <i>R</i> *)- <i>dia1</i> -5e in CDCl <sub>3</sub> at 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MHz104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure S91. <sup>13</sup> C-NMR spectrum of the <i>rac</i> - $(1R^*, 4R^*, 4aS^*, 10bR^*)$ - <i>dia1</i> -5e in DMSO-d <sub>6</sub> at 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MHz105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure S92. ROESY spectrum of the <i>rac</i> - $(1R^*, 4R^*, 4aS^*, 10bR^*)$ - <i>dia1</i> - <b>5e</b> in CDCl <sub>3</sub> at 500 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S93 <sup>1</sup> H-NMR spectrum of the <i>rac</i> -(1S* 4R* 4aS* 10bS*)- <i>dia</i> 2-5f in CDC1 at 400 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Eigure S04 [3C NIMP expectation of the use $(1 \times 4P \times 4e^{1} \times 10h^{1})$ dig 2 <b>st</b> in DMSO d at 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 394. $^{\circ}\text{C-MMC}$ spectrum of the <i>ruc</i> -(13, 4 <i>A</i> , 4as, 1003, <i>j</i> - <i>uuz</i> -51 m DMSO- <i>u</i> <sub>6</sub> at 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Gamma_{1112}^{(1)} = \Omega_{12}^{(1)} + \Omega_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 595. 'H-INVIK spectrum of the $rac$ -(15",4 $k$ ",4a5",10b5")- $aia2$ -5g in CDCl <sub>3</sub> at 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure S96. <sup>13</sup> C-NMR spectrum of the $rac-(1S^*, 4R^*, 4aS^*, 10bS^*)$ -dia2-5g in CDCl <sub>3</sub> at 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Figure S97. <sup>1</sup>H-NMR spectrum of the *rac*-( $4aS^*$ ,  $5R^*$ ,  $10bR^*$ )-**6p** in CDCl<sub>3</sub> at 400 MHz.....111 Figure S98. <sup>13</sup>C-NMR spectrum of the *rac*-(4a*S*\*,5*R*\*,10b*R*\*)-**6p** in CDCl<sub>3</sub> at 100 MHz.....112 Figure S99. <sup>1</sup>H-NMR spectrum of the *rac*-( $4aS^*, 5R^*, 9bR^*$ )-**6q** in CDCl<sub>3</sub> at 400 MHz......113 Figure S100. <sup>13</sup>C-NMR spectrum of the *rac*-( $4aS^*, 5R^*, 9bR^*$ )-**6q** in CDCl<sub>3</sub> at 100 MHz.....114 Figure S101. NOESY spectrum of the *rac*-(4a*S*\*,5*R*\*,9b*R*\*)-6q in CDCl<sub>3</sub> at 400 MHz. .....115 Figure S102. <sup>1</sup>H-NMR spectrum of the *rac*-(6*R*\*,6a*S*\*,10a*R*\*)-6**r** in CDCl<sub>3</sub> at 400 MHz.....116 Figure S103. <sup>13</sup>C-NMR spectrum of the *rac*-(6*R*\*,6a*S*\*,10a*R*\*)-6*r* in CDCl<sub>3</sub> at 100 MHz. ..117 Figure S104. <sup>1</sup>H-NMR spectrum of the *rac*-(6*R*\*,6a*S*\*,10a*R*\*)-6s in CDCl<sub>3</sub> at 400 MHz.....118 Figure S105. <sup>13</sup>C-NMR spectrum of the *rac*-( $6R^*$ ,  $6aS^*$ ,  $10aR^*$ )-**6s** in CDCl<sub>3</sub> at 100 MHz....119 Figure S106. <sup>1</sup>H-NMR spectrum of the *rac*- $(1R^*, 4aR^*, 8aS^*)$ -**6k** in acetone-d<sub>6</sub> at 500 MHz. Figure S107. <sup>13</sup>C-NMR spectrum of the *rac*-( $1R^*$ ,  $4aR^*$ ,  $8aS^*$ )-**6k** in acetone-d<sub>6</sub> at 125 MHz. Figure S108. ROESY spectrum of the *rac*- $(1R^*, 4aR^*, 8aS^*)$ -**6k** in acetone-d<sub>6</sub> at 500 MHz. 122 Figure S109. <sup>1</sup>H-NMR spectrum of the rac- $(1R^*, 4aR^*, 8aS^*)$ -6i in CDCl<sub>3</sub> at 400 MHz. .....123 Figure S110. <sup>13</sup>C-NMR spectrum of the *rac*-(1*R*\*,4a*R*\*,8a*S*\*)-6i in CDCl<sub>3</sub> at 100 MHz. .....124

# 1.1 Preparation of the starting materials of the domino Knoevenagelcyclization sequences

Substrates **1a-c** of the domino Knoevenagel-cyclization sequences were prepared on the basis of our publication.<sup>1</sup>

(*E*)-*N*-(3,3-diethoxypropyl)-3-phenylprop-2-en-1-amine (1d):



Scheme S1. Preparation of compound S4 with reductive amination of cynnamaldehyde (S1).

In a flame-dried three-necked round-bottom flask equipped with a reflux condenser and a CaCl<sub>2</sub> drying tube, cinnamaldehyde (**S1**, 20 mmol) was dissolved in 20 ml MeOH and 3,3-diethoxypropane-1-amine (**S2**, 20 mmol, 1.0 equivalent) was added to the mixture, and it was stirred overnight at room temperature. The mixture was then cooled to 0 °C in an ice bath, and sodium tetrahydroborate (25 mmol, 1.25 equivalent) was added in two portions. The mixture was allowed to warm up to room temperature and stirred for two hours. The reaction mixture was then filtered through a celite plug and it was washed with methanol. The methanol was removed *in vacuo* and the resulting crude oil was dissolved in dichloromethane and extracted three times with water (30 ml). The organic phase was dried over MgSO<sub>4</sub>, filtered, washed and concentrated *in vacuo*, affording the secondary amine **S4**, which was used for further transformations without purification and characterization.

(*E*)-*N*-cinnamyl-*N*-(3,3-diethoxypropyl)acetamide (S5):



Scheme S2. Acetylation of the secondary amine S4.

500 mg **S4** amine derivative (2.17 mmol), DMAP (0.1 eq. 0.217 mmol) and triethyl amine (3 eq. 6.51 mmol) were dissolved in 10 ml dry dichloromethane and a solution of acetyl chloride (1.05 eq. 1 M in dichloromethane) was added to the mixture. The reaction was stirred at room

temperature for 2 hours, then the mixture was poured on 30 ml of water. It was extracted three times with 30 ml of dichloromethane. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, washed and concentrated *in vacuo*, affording the amide derivative **S5**, which was used without further purification or characterisation.

(*E*)-*N*-cinnamyl-*N*-(3-oxopropyl)acetamide (1d):



Scheme S3. Acetal cleavage of S5 resulting in 1d.

150 mg amide derivative **S5** (0.49 mmol) was dissolved in 4 ml water/THF 1:1 and 87  $\mu$ l of trifluoromethanesulfonic acid (TFMSA) was added to the mixture. The reaction was stirred for 2 hours and then it was poured on 50 ml of cc. NaHCO<sub>3</sub> solution, and it was extracted three times with 30 ml of dichloromethane. The organic phase was dried over MgSO<sub>4</sub>, filtered, washed and concentrated *in vacuo*. The crude product was purified with column chromatography (hexane/acetone 3:1) affording **1d** as yellow oil (91 % for three steps) R<sub>f</sub> = 0.19 (hexane/acetone 3:1).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 2.10 (s, 3 H, 2"-H), 2.70 - 2.84 (m, 2 H, 2'-H), 3.59 - 3.72 (m, 2 H, 1'-H), 3.95 - 4.21 (m, 2 H, 1-H), 5.99 - 6.23 (m, 1 H, 2-H), 6.37 - 6.55 (m, 1 H, 3-H), 7.14 - 7.45 (m, 5 H, Ph-H), 9.76 (s, 1 H, C*H*O).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 21.6 (C-2"), 40.3 (C-2'), 42.9 (C-1'), 51.5 (C-1), 124.0 and 126.4 (C-3" and C-5"), 128.0 (C-4"), 128.6 and 128.7 (C-2" and C-6"), 132.0 (C-4"), 136.0 (C-1"), 171.1 (C-1"), 200.9 (CHO).

IR: (KBr) v: 2932, 2348, 2309, 1716, 1622, 1475, 1418, 1361, 1231, 1170, 1131, 1063, 1030. HRMS: calcd. for C<sub>14</sub>H<sub>18</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 232.1337, found 232.1338.

#### 1.2NMR spectra for the starting materials of domino-Knoevenagel-cyclization reactions



Figure S1. <sup>1</sup>H-NMR spectrum of the (*E*)-*N*-cinnamyl-*N*-(3-oxopropyl)acetamide (1d) in CDCl<sub>3</sub> at 400 MHz.



Figure S2. <sup>13</sup>C-NMR spectrum of the (*E*)-*N*-cinnamyl-*N*-(3-oxopropyl)acetamide (1d) in CDCl<sub>3</sub> at 100 MHz.



2. Mechanisms of the multi-step domino Knoevenagel-IMHDA reactions with Meldrum's acid.

Scheme S4. Mechanism for the multistep domino Knoevenagel-IMHDA reaction of substrate **1a** with Meldrum's acid in presence of different amines.



Scheme S5. Reaction mechanism of the multistep domino Knoevenagel-cyclization sequence of 1a and Meldrum's acid in presence of  $Et_3N$ .

#### 3. Spectral data used for the determination of the relative configuration

| Compound          | J(4-H)                 | J(4a-H)         | J(10b-H)   | Characteristic NOE |
|-------------------|------------------------|-----------------|------------|--------------------|
| 2af               | broad singlet          | broad multiplet | overlap    | 10b-H/4-H          |
| epi- <b>2af</b>   | d, 6.6 Hz              | multiplet       | d, 4.7 Hz  | 10b-H/4a-H         |
| 2ag               | broad singlet          | broad multiplet | overlap    | 10b-H/4-H          |
| epi- <b>2ag</b>   | d, 6.7 Hz              | multiplet       | overlap    | 10b-H/4a-H         |
| 2ah <sup>a</sup>  | overlap                | multiplet       | d, 6.6 Hz  | N/A                |
| epi- <b>2ah</b> ª | d, 4.6 Hz              | multiplet       | d, 4.6 Hz  | N/A                |
| 2ai               | broad singlet          | overlap         | d, 9.0 Hz  | 10b-H/4-H          |
| epi- <b>2ai</b>   | d, 6.2 Hz              | multiplet       | d, 5.2 Hz  | 10b-H/4a-H         |
| 2bi               | d, 10.0 Hz             | multiplet       | d, 11.0 Hz | N/A                |
| epi- <b>2bi</b>   | d, 5.3 Hz              | multiplet       | d, 4.2 Hz  | N/A                |
| 2ci               | d, 10.0 Hz             | multiplet       | d, 10.9 Hz | N/A                |
| epi- <b>2ci</b>   | broad dublet, 3.2 Hz   | broad multiplet | d, 4.1 Hz  | N/A                |
| 4aj               | d, 10.6 Hz             | multiplet       | d, 11.0 Hz | 10b-H/4-H          |
| 2ak               | broad singlet          | broad multiplet | d, 12.0 Hz | N/A                |
| 2bk               | d, 10.2 Hz             | overlap         | d, 11.2 Hz | 10b-H/4-H          |
| 2bl               | d, 10.1 Hz             | multiplet       | d, 11.2 Hz | 10b-H/4-H          |
| epi- <b>2am</b>   | broad singlet          | broad multiplet | d, 3.4 Hz  | 10b-H/4a-H         |
| epi- <b>2bm</b>   | d, 11 Hz               | overlap         | d, 3.5 Hz  | N/A                |
| 2an               | broad singlet, overlap | broad multiplet | d, 9.5 Hz  | none visible       |
| reg-2an           | d, 10.9 Hz             | multiplet       | d, 3.1 Hz  | 10b-H/4a-H         |
| 2bn               | d, 10.1 Hz             | overlap         | d, 11.0 Hz | N/A                |
| reg- <b>2bn</b>   | d, 11.4 Hz             | overlap         | d, 3.4 Hz  | N/A                |

TABLE **S1**. Coupling constant data of the methine protons attached to the chirality centers and characteristic NOE effects observed for compounds **2**.

a) relative configuration was assigned based on analogy, using the chemical shift and splitting of the 4-H signals.

| Compound          | J(4-H)     | J(4a-H)   | J(10b-H)          | J(1-H)                 | Characteristic NOE  |
|-------------------|------------|-----------|-------------------|------------------------|---------------------|
| dia1- <b>5a</b>   | d, 10.4 Hz | multiplet | dd, 11.5, 10.5 Hz | d, 10.5 Hz             | 4-H/10b-H; 4a-H/1-H |
| dia2- <b>5a</b>   | d, 2.9 Hz  | multiplet | dd, 9.8, 5.2 Hz   | d, 9.8 Hz              | 4a-H/10b-H          |
| dia1- <b>5b</b>   | d, 10.5 Hz | multiplet | dd, 11.8, 10.2 Hz | d, 10.2 Hz             | 4-H/10b-H; 4a-H/1-H |
| dia2- <b>5b</b>   | d, 3.0 Hz  | overlap   | dd, 10.0, 4.5 Hz  | d, 10.0 Hz             | 4a-H/10b-H          |
| dia1- <b>5c</b>   | d, 10.3 Hz | multiplet | 11.5, 10.0 Hz     | d, 10.0 Hz             | 4-H/10b-H; 4a-H/1-H |
| dia2- <b>5c</b>   | d, 3.0 Hz  | multiplet | dd, 9.8, 4.7 Hz   | d, 9.8 Hz              | 4-H/1-H; 4a-H/10b-H |
| <i>dia2-</i> 5dª  | d, 2.5 Hz  | multiplet | overlap           | overlap                | overlapping signals |
| dia1- <b>5e</b>   | d, 4.0 Hz  | multiplet | overlap           | d, 9.3 Hz <sup>b</sup> | 4a-H/1-H            |
| dia2- <b>5e</b>   | d, 5.9 Hz  | overlap   | broad multiplet   | d, 6.7 Hz⁵             | 4-H/1-H; 4a-H/10b-H |
| dia2- <b>5f</b>   | d, 4.9 Hz  | multiplet | dd, 8.4, 4.6 Hz   | overlap                | N/A                 |
| dia2- <b>5g</b> ° | d, 3.9 Hz  | multiplet | overlap           | overlap                | N/A                 |

TABLE S2. Coupling constant data of the protons attached to the chirality centers and characteristic NOEeffects observed for compounds 5.

a) 10b-H and 1-H signals overlap, configuration was assigned based on analogy using the coupling constant of 4-H. b) coupling constants are inconclusive, configuration was assigned using NOE correlations. c) due to the overlap of the 10b-H signal, configuration was assigned based on analogy using the chemical shift of 4-H.



#### 4. NMR spectra of the products

Figure S3. <sup>1</sup>H-NMR spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3aa** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S4. <sup>13</sup>C-NMR spectrum of the *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3aa** in CDCl<sub>3</sub> at 100 MHz.



Figure S5. ROESY spectrum of the *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3aa** in CDCl<sub>3</sub> at 500 MHz.



Figure S6. <sup>1</sup>H-NMR spectrum of the *rac-*(6a*R*\*,12*S*\*,12a*S*\*)-**3ab** in CDCl<sub>3</sub> at 500 MHz.



Figure S7. <sup>13</sup>C-NMR spectrum of the *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3ab** in CDCl<sub>3</sub> at 100 MHz.



Figure S8. ROESY spectrum of the *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3ab** in CDCl<sub>3</sub> at 500 MHz.



Figure S9. <sup>1</sup>H-NMR spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ac** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S10. <sup>13</sup>C-NMR spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ac** in DMSO-d<sub>6</sub> at 125 MHz.



Figure S11. ROESY spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ac** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S12. <sup>1</sup>H-NMR spectrum of the rac-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ad** and rac-( $6aR^*$ ,  $12R^*$ ,  $12aS^*$ )-epi-**3ad** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S13. <sup>13</sup>C-NMR spectrum of *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3ag** and *rac*-(6a*R*\*,12*R*\*,12a*S*\*)-*epi*-**3ag** in CDCl<sub>3</sub> at 100 MHz.



Figure S14. ROESY spectrum of the rac-(6aR\*,12S\*,12aS\*)-3ad and rac-(6aR\*,12R\*,12aS\*)-epi-3ad in DMSO-d<sub>6</sub> at 500 MHz.



Figure S15. <sup>1</sup>H-NMR spectrum of the *rac*-(6a*R*\*,12*S*,\*12a*S*\*)-**3ae** in acetone-d<sub>6</sub> at 500 MHz.



Figure S16. <sup>13</sup>C-NMR spectrum of the *rac*-(6a*R*\*,12S\*,12a*S*\*)-**3ae** in acetone-d<sub>6</sub> at 125 MHz.



Figure S17. ROESY spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ae** in acetone-d<sub>6</sub> at 500 MHz.



Figure S18. <sup>1</sup>H-NMR spectrum of the *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )-**2af** and *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bR^*$ )-*epi*-**2af** in DMSO-d<sub>6</sub> at 400 MHz.



Figure S19. <sup>13</sup>C-NMR spectrum of the *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )-**2af** and *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bR^*$ )-*epi*-**2af** in DMSO-d<sub>6</sub> at 100 MHz.



Figure S20. NOESY spectrum of the  $rac-(4R^*, 4aS^*, 10bS^*)$ -**2af** and  $rac-(4R^*, 4aS^*, 10bR^*)$ -epi-**2af** in DMSO-d<sub>6</sub> at 400 MHz



Figure S21. <sup>1</sup>H-NMR spectrum of the *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )-**2ag** and *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bR^*$ )-*epi*-**2ag** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S22. <sup>13</sup>C-NMR spectrum of the *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )-**2ag** and *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bR^*$ )-*epi*-**2ag** in DMSO-d<sub>6</sub> at 125 MHz.


Figure S23. ROESY spectrum of the rac-(4R\*,4aS\*,10bS\*)-2ag and rac-(4R\*,4aS\*,10bR\*)-epi-2ag in DMSO-d<sub>6</sub> at 500 MHz.



Figure S24. <sup>1</sup>H-NMR spectrum of the *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3ag** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S25. <sup>13</sup>C-NMR spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ag** in DMSO-d<sub>6</sub> at 90 MHz.



Figure S26. HSQC spectrum of the *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3ag** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S27. ROESY spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ag** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S28. <sup>1</sup>H-NMR spectrum of the *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )-**2ah** and *rac*-( $4R^*$ ,  $4aS^*$ ,  $10bR^*$ )-*epi*-**2ah** in CDCl<sub>3</sub> at 400 MHz.



Figure S29. <sup>1</sup>H-NMR spectrum of the *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-**2ah** and *rac*-(4*R*\*,4a*S*\*,10b*R*\*)-*epi*-**2ah** in CDCl<sub>3</sub> at 100 MHz.



Figure S30. <sup>1</sup>H-NMR spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ah** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S31. <sup>13</sup>C-NMR spectrum of the *rac*-( $6aR^*$ ,  $12S^*$ ,  $12aS^*$ )-**3ah** in DMSO-d<sub>6</sub> at 125 MHz.



Figure S32. ROESY spectrum of the *rac*-(6a*R*\*,12*S*\*,12a*S*\*)-**3ah** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S33. <sup>1</sup>H-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-2ai and rac-(4R\*,4aS\*,10bR\*)-epi-2ai in DMSO-d<sub>6</sub> at 500 MHz.



Figure S34. <sup>13</sup>C-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-**2ai** and rac-(4R\*,4aS\*,10bR\*)-*epi*-**2ai** in DMSO-d<sub>6</sub> at 125 MHz.



Figure S35. HSQC spectrum of *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-**2ai** and *rac*-(4*R*\*,4a*S*\*,10b*R*\*)-*epi*-**2ai** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S36. ROESY spectrum of rac-(4R\*,4aS\*,10bS\*)-2ai and rac-(4R\*,4aS\*,10bR\*)-epi-2ai in DMSO-d<sub>6</sub> at 500 MHz.



Figure S37. <sup>1</sup>H-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-**2bi** and rac-(4R\*,4aS\*,10bR\*)-*epi*-**2bi** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S38. <sup>13</sup>C-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-**2bi** and rac-(4R\*,4aS\*,10bR\*)-epi-**2bi** in DMSO-d<sub>6</sub> at 125 MHz.



Figure S39. HSQC spectrum of *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-**2bi** and *rac*-(4*R*\*,4a*S*\*,10b*R*\*)-*epi*-**2bi** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S40. <sup>1</sup>H-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-2ci and rac-(4R\*,4aS\*,10bR\*)-epi-2ci in DMSO-d<sub>6</sub> at 500 MHz.



Figure S41. <sup>13</sup>C-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-2ci and rac-(4R\*,4aS\*,10bR\*)-epi-2ci in DMSO-d<sub>6</sub> at 125 MHz.



Figure S42. HSQC spectrum of  $rac-(4R^*, 4aS^*, 10bS^*)$ -**2ci** and  $rac-(4R^*, 4aS^*, 10bR^*)$ -epi-**2ci** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S43. <sup>1</sup>H-NMR spectrum of the *rac*- $(4R^*, 4aS^*, 10bS^*)$ -**4aj** in DMSO-d<sub>6</sub> at 400 MHz.



Figure S44. <sup>13</sup>C-NMR spectrum of the rac-(4R\*,4aS\*,10bS\*)-4aj in DMSO-d<sub>6</sub> at 100 MHz.



Figure S45. NOESY spectrum of the *rac*- $(4R^*, 4aS^*, 10bS^*)$ -**4aj** in DMSO-d<sub>6</sub> at 400 MHz.



Figure S46. <sup>1</sup>H-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-**2ak** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S47. <sup>13</sup>C-NMR spectrum of *rac-*(4*R*\*,4a*S*\*,10b*S*\*)-**2ak** in CDCl<sub>3</sub> at 100 MHz.



Figure S48. HSQC spectrum of *rac-*(4*R*\*,4a*S*\*,10b*S*\*)-**2ak** in CDCl<sub>3</sub> at 400 MHz.



Figure S49. <sup>1</sup>H-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-**2bk** in CDCl<sub>3</sub> at 500 MHz.



Figure S50. <sup>13</sup>C-NMR spectrum of *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-**2bk** in CDCl<sub>3</sub> at 125 MHz.



Figure S51. NOESY spectrum of *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-**2bk** in CDCl<sub>3</sub> at 500 MHz.



Figure S52. <sup>1</sup>H-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-**2bl** in CDCl<sub>3</sub> at 400 MHz.



Figure S53. <sup>13</sup>C-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-2**bl** in CDCl<sub>3</sub> at 100 MHz.



Figure S54. NOESY spectrum of rac-(4R\*,4aS\*,10bS\*)-**2bl** in CDCl<sub>3</sub> at 400 MHz.



Figure S55. <sup>1</sup>H-NMR spectrum of *rac*-(4*R*\*,4a*S*\*,10b*R*\*)-*epi*-**2am** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S56. <sup>13</sup>C-NMR spectrum of rac-(4R\*,4aS\*,10bR\*)-epi-2am in DMSO-d<sub>6</sub> at 90 MHz.



Figure S57. HSQC spectrum of rac-(4R\*,4aS\*,10bR\*)-epi-**2am** in DMSO-d<sub>6</sub> at 400 MHz.



Figure S58. ROESY spectrum of *rac-*(4*R*\*,4a*S*\*,10b*R*\*)-*epi-***2am** in DMSO-d<sub>6</sub> at 500 MHz.


Figure S59. <sup>1</sup>H-NMR spectrum of *rac*-(4*R*\*,4a*S*\*,10b*R*\*)-*epi*-**2bm** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S60. <sup>13</sup>C-NMR spectrum of *rac-*(4*R*\*,4a*S*\*,10b*R*\*)-*epi-***2bm** in DMSO-d<sup>6</sup> at 100 MHz.



Figure S61. HSQC spectrum of rac-(4R\*,4aS\*,10bR\*)-epi-2bm in DMSO-d<sub>6</sub> at 500 MHz.



Figure S62. <sup>1</sup>H-NMR spectrum of rac-(4R\*,4aS\*,10bS\*)-2an and rac-(4R\*,4aS\*,10bR\*)-reg-2an in DMSO-d<sub>6</sub> at 500 MHz.



Figure S63. <sup>13</sup>C-NMR spectrum of *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-2an and *rac*-(4*R*\*,4a*S*\*,10b*R*\*)-*reg*-2an in DMSO-d<sub>6</sub> at 125 MHz.



Figure S64. HSQC spectrum of *rac-*(4*R*\*,4a*S*\*,10b*S*\*)-**2an** and *rac-*(4*R*\*,4a*S*\*,10b*R*\*)-*reg-***2an** in DMSO-d<sub>6</sub> at 500 MHz



Figure S65. ROESY spectrum of rac-(4R\*,4aS\*,10bS\*)-**2an** and rac-(4R\*,4aS\*,10bR\*)-reg-**2an** in DMSO-d<sub>6</sub> at 500 MHz



Figure S66. <sup>1</sup>H-NMR spectrum of *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-**2bn** and *rac*-(4*R*\*,4a*S*\*,10b*R*\*)-*reg*-**2bn** in DMSO-d<sub>6</sub> at 500 MHz.



Figure S67. <sup>13</sup>C-NMR spectrum of *rac-*(4*R*\*,4a*S*\*,10b*S*\*)-**2bn** and *rac-*(4*R*\*,4a*S*\*,10b*R*\*)-*reg-***2bn** in DMSO-d<sub>6</sub> at 125 MHz.



Figure S68. <sup>1</sup>H-NMR spectrum of the ~5:4 mixture of *rac-*( $1R^*$ , $4R^*$ , $4aS^*$ , $10bR^*$ )-*dia1-***5a** and *rac-*( $1S^*$ , $4R^*$ , $4aS^*$ , $10bS^*$ )- *dia2-***5a** in CDCl<sub>3</sub> at 500 MHz.



Figure S69. <sup>13</sup>C-NMR spectrum of the ~5:4 mixture of *rac*-( $1R^*$ ,  $4R^*$ ,  $4aS^*$ ,  $10bR^*$ )-*dia1*-**5a** and *rac*-( $1S^*$ ,  $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )- *dia2*-**5a** in CDCl<sub>3</sub> at 125 MHz.



Figure S70. ROESY spectrum of the ~5:4 mixture of rac-(1R\*,4R\*,4aS\*,10bR\*)-dia1-5a and rac-(1S\*,4R\*,4aS\*,10bS\*)-dia2-5a in CDCl<sub>3</sub> at 500 MHz.



Figure S71. <sup>1</sup>H-NMR spectrum of the *rac-*(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1-***5b** in CDCl<sub>3</sub> at 400 MHz.



Figure S72. <sup>13</sup>C-NMR spectrum of the *rac-*(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1-***5b** in CDCl<sub>3</sub> at 100 MHz.



Figure S73. NOESY spectrum of the *rac*-(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1*-**5b** in CDCl<sub>3</sub> at 400 MHz.



Figure S74. <sup>1</sup>H-NMR spectrum of the *rac-*( $1S^*$ ,  $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )-*dia2-***5b** in CDCl<sub>3</sub> at 400 MHz.



Figure S75. <sup>13</sup>C-NMR spectrum of the *rac*- $(1S^*, 4R^*, 4aS^*, 10bS^*)$ -*dia2*-**5b** in CDCl<sub>3</sub> at 100 MHz.



Figure S76. NOESY spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia*2-**5b** in CDCl<sub>3</sub> at 400 MHz.



Figure S77. <sup>1</sup>H-NMR spectrum of the *rac-*(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1-*5c in CDCl<sub>3</sub> at 500 MHz.



Figure S78. <sup>13</sup>C-NMR spectrum of the *rac*-(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1*-5c in CDCl<sub>3</sub> at 125 MHz.



Figure S79. ROESY spectrum of the *rac-*(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1-*5c in CDCl<sub>3</sub> at 500 MHz.



Figure S80. <sup>1</sup>H-NMR spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2*-5c in CDCl<sub>3</sub> at 500 MHz.



Figure S81. <sup>13</sup>C-NMR spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2*-5c in CDCl<sub>3</sub> at 125 MHz.



Figure S82. ROESY spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia*2-**5**c in CDCl<sub>3</sub> at 500 MHz.



Figure S83. <sup>1</sup>H-NMR spectrum of the *rac*- $(1S^*, 4R^*, 4aS^*, 10bS^*)$ - *dia2*-5d in CDCl<sub>3</sub> at 500 MHz.



Figure S84. <sup>13</sup>C-NMR spectrum of the *rac*- $(1S^*, 4R^*, 4aS^*, 10bS^*)$ -*dia2*-**5d** in CDCl<sub>3</sub> at 125 MHz.



Figure S85. ROESY spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2*-**5d** in CDCl<sub>3</sub> at 500 MHz.



Figure S86. <sup>1</sup>H-NMR spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2*-5e in CDCl<sub>3</sub> at 500 MHz.



Figure S87. <sup>13</sup>C-NMR spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2*-**5**e in CDCl<sub>3</sub> at 125 MHz.



Figure S88. HMBC spectrum of the *rac-*(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2-***5**e in CDCl<sub>3</sub> at 500 MHz.



Figure S89. ROESY spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2*-**5**e in CDCl<sub>3</sub> at 500 MHz.



Figure S90. <sup>1</sup>H-NMR spectrum of the *rac-*(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1-***5**e in CDCl<sub>3</sub> at 500 MHz.



Figure S91. <sup>13</sup>C-NMR spectrum of the *rac*- $(1R^*, 4R^*, 4aS^*, 10bR^*)$ -*dia1*-5e in DMSO-d<sub>6</sub> at 125 MHz.



Figure S92. ROESY spectrum of the *rac*-(1*R*\*,4*R*\*,4a*S*\*,10b*R*\*)-*dia1*-5e in CDCl<sub>3</sub> at 500 MHz.



Figure S93. <sup>1</sup>H-NMR spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2*-**5f** in CDCl<sub>3</sub> at 400 MHz.



Figure S94. <sup>13</sup>C-NMR spectrum of the *rac*-( $1S^*$ ,  $4R^*$ ,  $4aS^*$ ,  $10bS^*$ )-*dia2*-**5f** in DMSO-*d*<sub>6</sub> at 100 MHz.


Figure S95. <sup>1</sup>H-NMR spectrum of the *rac-*(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia2-***5g** in CDCl<sub>3</sub> at 400 MHz.



Figure S96. <sup>13</sup>C-NMR spectrum of the *rac*-(1*S*\*,4*R*\*,4a*S*\*,10b*S*\*)-*dia*2-**5**g in CDCl<sub>3</sub> at 100 MHz.



Figure S97. <sup>1</sup>H-NMR spectrum of the *rac*-(4a*S*\*,5*R*\*,10b*R*\*)-**6p** in CDCl<sub>3</sub> at 400 MHz.



Figure S98. <sup>13</sup>C-NMR spectrum of the *rac*-(4a*S*\*,5*R*\*,10b*R*\*)-**6p** in CDCl<sub>3</sub> at 100 MHz.



Figure S99. <sup>1</sup>H-NMR spectrum of the *rac*-( $4aS^*$ ,  $5R^*$ ,  $9bR^*$ )-**6q** in CDCl<sub>3</sub> at 400 MHz.



Figure S100. <sup>13</sup>C-NMR spectrum of the *rac-*(4a*S*\*,5*R*\*,9b*R*\*)-**6q** in CDCl<sub>3</sub> at 100 MHz.



Figure S101. NOESY spectrum of the *rac*-(4a*S*\*,5*R*\*,9b*R*\*)-6q in CDCl<sub>3</sub> at 400 MHz.



Figure S102. <sup>1</sup>H-NMR spectrum of the *rac*-( $6R^*$ ,  $6aS^*$ ,  $10aR^*$ )-**6r** in CDCl<sub>3</sub> at 400 MHz.



Figure S103. <sup>13</sup>C-NMR spectrum of the *rac*-( $6R^*$ ,  $6aS^*$ ,  $10aR^*$ )-**6r** in CDCl<sub>3</sub> at 100 MHz.



Figure S104. <sup>1</sup>H-NMR spectrum of the *rac*-(6*R*\*,6a*S*\*,10a*R*\*)-6s in CDCl<sub>3</sub> at 400 MHz.



Figure S105. <sup>13</sup>C-NMR spectrum of the *rac*-( $6R^*$ ,  $6aS^*$ ,  $10aR^*$ )-**6s** in CDCl<sub>3</sub> at 100 MHz.



Figure S106. <sup>1</sup>H-NMR spectrum of the *rac*- $(1R^*, 4aR^*, 8aS^*)$ -**6k** in acetone-d<sub>6</sub> at 500 MHz.



Figure S107. <sup>13</sup>C-NMR spectrum of the *rac*- $(1R^*, 4aR^*, 8aS^*)$ -**6k** in acetone-d<sub>6</sub> at 125 MHz.



Figure S108. ROESY spectrum of the *rac*- $(1R^*, 4aR^*, 8aS^*)$ -**6k** in acetone-d<sub>6</sub> at 500 MHz.



Figure S109. <sup>1</sup>H-NMR spectrum of the rac-(1R\*,4aR\*,8aS\*)-6i in CDCl<sub>3</sub> at 400 MHz.



Figure S110. <sup>13</sup>C-NMR spectrum of the *rac*- $(1R^*, 4aR^*, 8aS^*)$ -**6i** in CDCl<sub>3</sub> at 100 MHz.

## 5. X-Ray diffraction data

## Computing details

For both structures, data collection: Bruker Instrument Service vV6.2.6; cell refinement: *APEX3* v2017.3-0 (Bruker AXS); data reduction: *SAINT* V8.38A (Bruker AXS Inc., 2017); program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014); program(s) used to refine structure: *SHELXL2019*/1 (Sheldrick, 2019); molecular graphics: shelXle (C.B. Huebschle, rev 1503); software used to prepare material for publication: *WinGX*, *publCIF*.

Table S3. Experimental details of *rac-*(4*R*\*,4*aS*\*,10b*S*\*)-2ai (CCDC No. 2283893) and b) *rac-*(4*aS*\*,5*R*\*,9b*R*\*)-6p (CCDC No. 2401371).

|                             | <i>rac-</i> (4 <i>R</i> *,4 <i>aS</i> *,10b <i>S</i> *)- <b>2ai</b>                                                                                                                                                                                                         | <i>rac</i> -(4a <i>S</i> *,5 <i>R</i> *,9b <i>R</i> *)- <b>6</b> p                            |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Crystal data                |                                                                                                                                                                                                                                                                             |                                                                                               |
| Chemical formula            | $C_{27}H_{23}N_3O_4$ · $C_3H_6O$                                                                                                                                                                                                                                            | C <sub>20</sub> H <sub>23</sub> NO <sub>3</sub>                                               |
| M <sub>r</sub>              | 511.56                                                                                                                                                                                                                                                                      | 325.39                                                                                        |
| Crystal system, space group | Triclinic, P <sup>-1</sup>                                                                                                                                                                                                                                                  | Triclinic, P <sup>-1</sup>                                                                    |
| Temperature (K)             | 299                                                                                                                                                                                                                                                                         | 295                                                                                           |
| a, b, c (Å)                 | 9.9366 (4), 10.1419 (4),<br>14.5001 (6)                                                                                                                                                                                                                                     | 5.8551 (7), 10.1414 (12),<br>15.2595 (17)                                                     |
| α, β, γ (°)                 | 96.998 (2), 94.577 (2), 111.265<br>(2)                                                                                                                                                                                                                                      | 106.479 (5), 96.585 (5), 95.737<br>(5)                                                        |
| $V(Å^3)$                    | 1339.43 (10)                                                                                                                                                                                                                                                                | 854.75 (17)                                                                                   |
| Ζ                           | 2                                                                                                                                                                                                                                                                           | 2                                                                                             |
| Radiation type              | Μο Κα                                                                                                                                                                                                                                                                       | Μο Κα                                                                                         |
| $\mu$ (mm <sup>-1</sup> )   | 0.09                                                                                                                                                                                                                                                                        | 0.09                                                                                          |
| Crystal size (mm)           | $0.44 \times 0.23 \times 0.17$                                                                                                                                                                                                                                              | $0.33 \times 0.09 \times 0.07$                                                                |
|                             |                                                                                                                                                                                                                                                                             |                                                                                               |
| Data collection             |                                                                                                                                                                                                                                                                             |                                                                                               |
| Diffractometer              | Bruker D8 VENTURE                                                                                                                                                                                                                                                           | Bruker D8 VENTURE                                                                             |
| Absorption correction       | Multi-scan<br>Krause, L., Herbst-Irmer, R.,<br>Sheldrick, G. M., Stalke, D.<br>(2015). "Comparison of silver<br>and molybdenum microfocus<br>X-ray sources for single-crystal<br>structure determination" J.<br>Appl. Cryst. 48, 3-10.<br>doi:10.1107/S16005767140229<br>85 | Multi-scan<br>SADABS2016/2 - Bruker AXS<br>area detector scaling and<br>absorption correction |
| $T_{\min}, T_{\max}$        | 0.69, 0.98                                                                                                                                                                                                                                                                  | 0.97, 0.99                                                                                    |

| No. of measured, independent<br>and<br>observed $[I > 2\sigma(I)]$ reflections | 33353, 5081, 3804             | 21749, 3124, 2356             |
|--------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| R <sub>int</sub>                                                               | 0.084                         | 0.059                         |
| $(\sin \theta / \lambda)_{max} (\text{Å}^{-1})$                                | 0.610                         | 0.605                         |
|                                                                                |                               |                               |
| Refinement                                                                     |                               |                               |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                            | 0.052, 0.157, 1.02            | 0.096, 0.320, 1.07            |
| No. of reflections                                                             | 5081                          | 3124                          |
| No. of parameters                                                              | 348                           | 219                           |
| H-atom treatment                                                               | H-atom parameters constrained | H-atom parameters constrained |
| $\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ { m \AA}^{-3})$     | 0.24, -0.26                   | 0.31, -0.26                   |

Computer programs: Bruker Instrument Service vV6.2.6, *APEX3* v2017.3-0 (Bruker AXS), *SAINT* V8.38A (Bruker AXS Inc., 2017), SHELXT 2014/5 (Sheldrick, 2014), *SHELXL2019*/1 (Sheldrick, 2019), shelXle (C.B. Huebschle, rev 1503), *WinGX*, *publCIF*.

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

| C1—C2   | 1.354 (2) | C15—C16 | 1.367 (4) |
|---------|-----------|---------|-----------|
| C1—C11  | 1.426 (2) | С15—Н15 | 0.9300    |
| C1—C10B | 1.507 (2) | C16—C17 | 1.383 (3) |
| C2—O3   | 1.348 (2) | С16—Н16 | 0.9300    |
| C2—C12  | 1.479 (2) | С17—Н17 | 0.9300    |
|         |           |         |           |

Table S4. Geometric parameters (Å, °) for *rac*-(4*R*\*,4a*S*\*,10b*S*\*)-2ai.

| C4—O3    | 1.455 (2) | C18—C23  | 1.387 (3) |
|----------|-----------|----------|-----------|
| C4—C18   | 1.509 (2) | C18—C19  | 1.392 (3) |
| C4—C4A   | 1.517 (2) | C19—O24  | 1.367 (2) |
| С4—Н4    | 0.9800    | C19—C20  | 1.386 (3) |
| C5—N6    | 1.456 (3) | C20—C21  | 1.385 (3) |
| C5—C4A   | 1.517 (2) | C20—H20  | 0.9300    |
| C5—H5A   | 0.9700    | C21—C22  | 1.366 (4) |
| С5—Н5В   | 0.9700    | C21—H21  | 0.9300    |
| C4A—C10B | 1.532 (2) | C22—C23  | 1.382 (3) |
| С4А—Н4А  | 0.9800    | C22—H22  | 0.9300    |
| С7—С8    | 1.367 (3) | С23—Н23  | 0.9300    |
| C7—C6A   | 1.404 (3) | C25—O24  | 1.418 (3) |
| С7—Н7    | 0.9300    | C25—H25A | 0.9600    |
| C6A—N6   | 1.361 (3) | C25—H25B | 0.9600    |
| C6A—C10A | 1.429 (3) | С25—Н25С | 0.9600    |
| С8—С9    | 1.383 (3) | C26—N6   | 1.460 (2) |

| С8—Н8        | 0.9300      | С26—Н26А    | 0.9600      |
|--------------|-------------|-------------|-------------|
| C9—C10       | 1.397 (3)   | С26—Н26В    | 0.9600      |
| C9—N27       | 1.432 (3)   | С26—Н26С    | 0.9600      |
| C10—C10A     | 1.368 (3)   | C51—C52     | 1.468 (6)   |
| С10—Н10      | 0.9300      | C51—H51A    | 0.9600      |
| C11—N29      | 1.144 (2)   | C51—H51B    | 0.9600      |
| C10A—C10B    | 1.513 (3)   | С51—Н51С    | 0.9600      |
| C10B—H10B    | 0.9800      | C52—O51     | 1.194 (4)   |
| C12—C17      | 1.381 (3)   | С52—С53     | 1.440 (5)   |
| C12—C13      | 1.384 (3)   | С53—Н53А    | 0.9600      |
| C13—C14      | 1.387 (3)   | С53—Н53В    | 0.9600      |
| С13—Н13      | 0.9300      | С53—Н53С    | 0.9600      |
| C14—C15      | 1.376 (4)   | N27—O28     | 1.226 (3)   |
| C14—H14      | 0.9300      | N27—O29     | 1.236 (2)   |
|              |             |             |             |
| C2—C1—C11    | 119.41 (15) | C14—C15—H15 | 120.1000    |
| C2—C1—C10B   | 122.34 (15) | C15—C16—C17 | 120.1 (2)   |
| C11—C1—C10B  | 117.65 (15) | С15—С16—Н16 | 120.0000    |
| O3—C2—C1     | 122.92 (15) | С17—С16—Н16 | 120.0000    |
| O3—C2—C12    | 112.08 (14) | C12—C17—C16 | 120.8 (2)   |
| C1—C2—C12    | 125.00 (16) | С12—С17—Н17 | 119.6000    |
| O3—C4—C18    | 106.42 (14) | С16—С17—Н17 | 119.6000    |
| O3—C4—C4A    | 108.71 (14) | C23—C18—C19 | 118.77 (17) |
| C18—C4—C4A   | 112.48 (14) | C23—C18—C4  | 121.05 (17) |
| O3—C4—H4     | 109.7000    | C19—C18—C4  | 120.12 (17) |
| C18—C4—H4    | 109.7000    | O24—C19—C20 | 124.51 (19) |
| C4A—C4—H4    | 109.7000    | O24—C19—C18 | 115.20 (16) |
| N6—C5—C4A    | 111.05 (17) | C20—C19—C18 | 120.3 (2)   |
| N6—C5—H5A    | 109.4000    | C21—C20—C19 | 119.6 (2)   |
| С4А—С5—Н5А   | 109.4000    | С21—С20—Н20 | 120.2000    |
| N6—C5—H5B    | 109.4000    | С19—С20—Н20 | 120.2000    |
| С4А—С5—Н5В   | 109.4000    | C22—C21—C20 | 120.6 (2)   |
| H5A—C5—H5B   | 108.0000    | C22—C21—H21 | 119.7000    |
| C5—C4A—C4    | 113.62 (16) | C20—C21—H21 | 119.7000    |
| C5—C4A—C10B  | 106.85 (14) | C21—C22—C23 | 119.8 (2)   |
| C4—C4A—C10B  | 111.16 (14) | C21—C22—H22 | 120.1000    |
| С5—С4А—Н4А   | 108.4000    | С23—С22—Н22 | 120.1000    |
| C4—C4A—H4A   | 108.4000    | C22—C23—C18 | 120.9 (2)   |
| C10B—C4A—H4A | 108.4000    | C22—C23—H23 | 119.6000    |
| C8—C7—C6A    | 121.5 (2)   | C18—C23—H23 | 119.6000    |

| С8—С7—Н7       | 119.3000     | O24—C25—H25A        | 109.5000    |
|----------------|--------------|---------------------|-------------|
| С6А—С7—Н7      | 119.3000     | O24—C25—H25B        | 109.5000    |
| N6—C6A—C7      | 121.62 (18)  | H25A—C25—H25B       | 109.5000    |
| N6—C6A—C10A    | 120.19 (18)  | O24—C25—H25C        | 109.5000    |
| C7—C6A—C10A    | 118.2 (2)    | H25A—C25—H25C       | 109.5000    |
| С7—С8—С9       | 119.6 (2)    | H25B—C25—H25C       | 109.5000    |
| С7—С8—Н8       | 120.2000     | N6—C26—H26A         | 109.5000    |
| С9—С8—Н8       | 120.2000     | N6—C26—H26B         | 109.5000    |
| C8—C9—C10      | 120.5 (2)    | H26A—C26—H26B       | 109.5000    |
| C8—C9—N27      | 119.74 (19)  | N6—C26—H26C         | 109.5000    |
| C10—C9—N27     | 119.76 (19)  | H26A—C26—H26C       | 109.5000    |
| C10A—C10—C9    | 120.63 (19)  | H26B—C26—H26C       | 109.5000    |
| C10A—C10—H10   | 119.7000     | C52—C51—H51A        | 109.5000    |
| С9—С10—Н10     | 119.7000     | C52—C51—H51B        | 109.5000    |
| N29—C11—C1     | 175.4 (2)    | H51A—C51—H51B       | 109.5000    |
| C10—C10A—C6A   | 119.45 (18)  | С52—С51—Н51С        | 109.5000    |
| C10—C10A—C10B  | 125.43 (16)  | H51A—C51—H51C       | 109.5000    |
| C6A—C10A—C10B  | 115.11 (17)  | H51B—C51—H51C       | 109.5000    |
| C1-C10B-C10A   | 117.02 (16)  | O51—C52—C53         | 122.4 (5)   |
| C1—C10B—C4A    | 110.46 (14)  | O51—C52—C51         | 118.8 (4)   |
| C10A—C10B—C4A  | 105.46 (14)  | C53—C52—C51         | 118.8 (4)   |
| C1-C10B-H10B   | 107.9000     | С52—С53—Н53А        | 109.5000    |
| C10A—C10B—H10B | 107.9000     | С52—С53—Н53В        | 109.5000    |
| C4A—C10B—H10B  | 107.9000     | H53A—C53—H53B       | 109.5000    |
| C17—C12—C13    | 118.87 (17)  | С52—С53—Н53С        | 109.5000    |
| C17—C12—C2     | 120.69 (17)  | H53A—C53—H53C       | 109.5000    |
| C13—C12—C2     | 120.43 (17)  | H53B—C53—H53C       | 109.5000    |
| C12—C13—C14    | 120.1 (2)    | C6A—N6—C5           | 122.80 (15) |
| С12—С13—Н13    | 119.9000     | C6A—N6—C26          | 120.72 (19) |
| C14—C13—H13    | 119.9000     | C5—N6—C26           | 115.13 (18) |
| C15—C14—C13    | 120.3 (2)    | O28—N27—O29         | 121.6 (2)   |
| C15—C14—H14    | 119.9000     | O28—N27—C9          | 119.22 (19) |
| C13—C14—H14    | 119.9000     | O29—N27—C9          | 119.2 (2)   |
| C16—C15—C14    | 119.9 (2)    | C2—O3—C4            | 116.88 (13) |
| C16—C15—H15    | 120.1000     | C19—O24—C25         | 118.54 (16) |
|                |              |                     |             |
| C11—C1—C2—O3   | -165.15 (17) | C17—C12—C13—<br>C14 | -1.0 (3)    |
| C10B—C1—C2—O3  | 5.7 (3)      | C2—C12—C13—C14      | 179.77 (19) |
| C11—C1—C2—C12  | 15.2 (3)     | C12—C13—C14—<br>C15 | 0.1 (3)     |

| C10B—C1—C2—C12       | -173.94 (17) | C13—C14—C15—<br>C16 | 0.8 (4)      |
|----------------------|--------------|---------------------|--------------|
| N6—C5—C4A—C4         | -173.46 (15) | C14—C15—C16—<br>C17 | -0.8 (4)     |
| N6—C5—C4A—<br>C10B   | -50.5 (2)    | C13—C12—C17—<br>C16 | 1.0 (3)      |
| O3—C4—C4A—C5         | -179.46 (14) | C2—C12—C17—C16      | -179.78 (19) |
| C18—C4—C4A—C5        | -61.9 (2)    | C15—C16—C17—<br>C12 | -0.1 (3)     |
| O3—C4—C4A—<br>C10B   | 59.98 (19)   | O3—C4—C18—C23       | 36.8 (2)     |
| C18—C4—C4A—<br>C10B  | 177.57 (15)  | C4A—C4—C18—C23      | -82.1 (2)    |
| C8—C7—C6A—N6         | 177.0 (2)    | O3—C4—C18—C19       | -146.08 (17) |
| C8—C7—C6A—<br>C10A   | -4.4 (3)     | C4A—C4—C18—C19      | 95.0 (2)     |
| C6A—C7—C8—C9         | 0.6 (3)      | C23—C18—C19—<br>O24 | 178.16 (17)  |
| C7—C8—C9—C10         | 2.2 (3)      | C4—C18—C19—O24      | 1.0 (3)      |
| C7—C8—C9—N27         | -179.01 (19) | C23—C18—C19—<br>C20 | -0.8 (3)     |
| C8—C9—C10—C10A       | -1.2 (3)     | C4—C18—C19—C20      | -177.95 (18) |
| N27—C9—C10—<br>C10A  | -179.93 (17) | O24—C19—C20—<br>C21 | -179.2 (2)   |
| C9—C10—C10A—<br>C6A  | -2.7 (3)     | C18—C19—C20—<br>C21 | -0.3 (3)     |
| C9—C10—C10A—<br>C10B | 178.39 (17)  | C19—C20—C21—<br>C22 | 1.1 (4)      |
| N6—C6A—C10A—<br>C10  | -176.00 (17) | C20—C21—C22—<br>C23 | -0.7 (4)     |
| C7—C6A—C10A—<br>C10  | 5.3 (3)      | C21—C22—C23—<br>C18 | -0.5 (4)     |
| N6—C6A—C10A—<br>C10B | 3.0 (3)      | C19—C18—C23—<br>C22 | 1.2 (3)      |
| C7—C6A—C10A—<br>C10B | -175.61 (17) | C4—C18—C23—C22      | 178.33 (19)  |
| C2—C1—C10B—<br>C10A  | 127.21 (19)  | C7—C6A—N6—C5        | -162.51 (19) |
| C11—C1—C10B—<br>C10A | -61.8 (2)    | C10A—C6A—N6—<br>C5  | 18.9 (3)     |
| C2—C1—C10B—<br>C4A   | 6.6 (3)      | C7—C6A—N6—C26       | 3.6 (3)      |
| C11—C1—C10B—<br>C4A  | 177.59 (17)  | C10A—C6A—N6—<br>C26 | -175.01 (18) |
| C10—C10A—C10B—<br>C1 | 9.6 (3)      | C4A—C5—N6—C6A       | 6.7 (3)      |
| C6A—C10A—            | -169.36 (16) | C4A—C5—N6—C26       | -160.11 (18) |

| C10B—C1               |              |                     |              |
|-----------------------|--------------|---------------------|--------------|
| C10—C10A—C10B—<br>C4A | 132.86 (18)  | C8—C9—N27—O28       | 177.0 (2)    |
| C6A—C10A—<br>C10B—C4A | -46.1 (2)    | C10—C9—N27—O28      | -4.2 (3)     |
| C5—C4A—C10B—<br>C1    | -163.22 (16) | C8—C9—N27—O29       | -3.0 (3)     |
| C4—C4A—C10B—<br>C1    | -38.7 (2)    | C10—C9—N27—O29      | 175.74 (19)  |
| C5—C4A—C10B—<br>C10A  | 69.46 (19)   | C1—C2—O3—C4         | 17.0 (3)     |
| C4—C4A—C10B—<br>C10A  | -166.06 (15) | C12—C2—O3—C4        | -163.31 (15) |
| O3—C2—C12—C17         | -133.82 (18) | C18—C4—O3—C2        | -170.65 (15) |
| C1—C2—C12—C17         | 45.9 (3)     | C4A—C4—O3—C2        | -49.27 (19)  |
| O3—C2—C12—C13         | 45.4 (2)     | C20—C19—O24—<br>C25 | 4.7 (3)      |
| C1—C2—C12—C13         | -134.9 (2)   | C18—C19—O24—<br>C25 | -174.22 (18) |

Table S5. Geometric parameters (Å, °) for rac-(4a*S*\*,5*R*\*,9b*R*\*)-6p.

| C1—C2    | 1.512 (7) | C8—H8AB  | 0.9700    |
|----------|-----------|----------|-----------|
| С1—С9В   | 1.525 (7) | C9—C10   | 1.504 (8) |
| C1—H1A   | 0.9700    | С9—Н9А   | 0.9700    |
| C1—H1AB  | 0.9700    | С9—Н9АВ  | 0.9700    |
| C2—N3    | 1.465 (6) | C9B—C10A | 1.513 (7) |
| C2—H2A   | 0.9700    | С9В—Н9В  | 0.9800    |
| C2—H2AB  | 0.9700    | C10—O11  | 1.224 (7) |
| C4—N3    | 1.455 (6) | C10—C10A | 1.462 (7) |
| C4—C4A   | 1.528 (7) | C12—O14  | 1.216 (6) |
| C4—H4A   | 0.9700    | C12—N3   | 1.338 (7) |
| C4—H4AB  | 0.9700    | C12—C13  | 1.513 (8) |
| C5—O6    | 1.444 (6) | С13—Н13А | 0.9600    |
| C5—C15   | 1.499 (7) | C13—H13B | 0.9600    |
| C5—C4A   | 1.515 (7) | С13—Н13С | 0.9600    |
| С5—Н5    | 0.9800    | C15—C20  | 1.380 (7) |
| C4A—C9B  | 1.537 (6) | C15—C16  | 1.389 (7) |
| С4А—Н4АА | 0.9800    | C16—C17  | 1.393 (7) |
| C6—C10A  | 1.338 (7) | С16—Н16  | 0.9300    |
| C6—O6    | 1.354 (6) | C17—C18  | 1.371 (8) |
| C6—C7    | 1.500 (7) | С17—Н17  | 0.9300    |

| С7—С8        | 1.495 (9)  | C18—C19       | 1.351 (9) |
|--------------|------------|---------------|-----------|
| С7—Н7А       | 0.9700     | C18—H18       | 0.9300    |
| С7—Н7АВ      | 0.9700     | C19—C20       | 1.376 (8) |
| C8—C9        | 1.501 (10) | С19—Н19       | 0.9300    |
| C8—H8A       | 0.9700     | С20—Н20       | 0.9300    |
|              |            |               |           |
| C2—C1—C9B    | 110.2 (4)  | С10—С9—Н9А    | 108.9000  |
| C2—C1—H1A    | 109.6000   | С8—С9—Н9АВ    | 108.9000  |
| C9B—C1—H1A   | 109.6000   | С10—С9—Н9АВ   | 108.9000  |
| C2—C1—H1AB   | 109.6000   | Н9А—С9—Н9АВ   | 107.7000  |
| C9B—C1—H1AB  | 109.6000   | C10A—C9B—C1   | 115.5 (4) |
| H1A—C1—H1AB  | 108.1000   | C10A—C9B—C4A  | 109.3 (4) |
| N3—C2—C1     | 111.6 (4)  | C1—C9B—C4A    | 107.4 (4) |
| N3—C2—H2A    | 109.3000   | С10А—С9В—Н9В  | 108.1000  |
| C1—C2—H2A    | 109.3000   | С1—С9В—Н9В    | 108.1000  |
| N3—C2—H2AB   | 109.3000   | С4А—С9В—Н9В   | 108.1000  |
| C1—C2—H2AB   | 109.3000   | O11—C10—C10A  | 121.6 (5) |
| Н2А—С2—Н2АВ  | 108.0000   | O11—C10—C9    | 120.7 (5) |
| N3—C4—C4A    | 110.3 (4)  | C10A—C10—C9   | 117.6 (5) |
| N3—C4—H4A    | 109.6000   | C6—C10A—C10   | 118.3 (5) |
| C4A—C4—H4A   | 109.6000   | C6—C10A—C9B   | 120.6 (4) |
| N3—C4—H4AB   | 109.6000   | C10—C10A—C9B  | 120.6 (4) |
| C4A—C4—H4AB  | 109.6000   | O14—C12—N3    | 122.7 (5) |
| Н4А—С4—Н4АВ  | 108.1000   | O14—C12—C13   | 119.3 (5) |
| O6—C5—C15    | 107.1 (4)  | N3—C12—C13    | 118.0 (5) |
| O6—C5—C4A    | 107.8 (4)  | C12—C13—H13A  | 109.5000  |
| C15—C5—C4A   | 115.7 (4)  | C12—C13—H13B  | 109.5000  |
| O6—C5—H5     | 108.7000   | H13A—C13—H13B | 109.5000  |
| С15—С5—Н5    | 108.7000   | C12—C13—H13C  | 109.5000  |
| С4А—С5—Н5    | 108.7000   | H13A—C13—H13C | 109.5000  |
| C5—C4A—C4    | 114.2 (4)  | H13B—C13—H13C | 109.5000  |
| C5—C4A—C9B   | 108.6 (4)  | C20—C15—C16   | 118.5 (5) |
| C4—C4A—C9B   | 109.1 (4)  | C20—C15—C5    | 119.2 (5) |
| С5—С4А—Н4АА  | 108.3000   | C16—C15—C5    | 122.3 (5) |
| С4—С4А—Н4АА  | 108.3000   | C15—C16—C17   | 119.6 (5) |
| С9В—С4А—Н4АА | 108.3000   | C15—C16—H16   | 120.2000  |
| C10A—C6—O6   | 124.6 (4)  | C17—C16—H16   | 120.2000  |
| C10A—C6—C7   | 124.9 (5)  | C18—C17—C16   | 120.5 (5) |
| O6—C6—C7     | 110.4 (4)  | C18—C17—H17   | 119.8000  |
| C8—C7—C6     | 111.2 (5)  | С16—С17—Н17   | 119.8000  |

| С8—С7—Н7А           | 109.4000   | C19—C18—C17          | 119.7 (5)  |
|---------------------|------------|----------------------|------------|
| С6—С7—Н7А           | 109.4000   | С19—С18—Н18          | 120.1000   |
| С8—С7—Н7АВ          | 109.4000   | C17—C18—H18          | 120.1000   |
| С6—С7—Н7АВ          | 109.4000   | C18—C19—C20          | 120.8 (6)  |
| Н7А—С7—Н7АВ         | 108.0000   | С18—С19—Н19          | 119.6000   |
| С7—С8—С9            | 110.0 (6)  | С20—С19—Н19          | 119.6000   |
| С7—С8—Н8А           | 109.7000   | C19—C20—C15          | 120.9 (5)  |
| С9—С8—Н8А           | 109.7000   | С19—С20—Н20          | 119.6000   |
| С7—С8—Н8АВ          | 109.7000   | С15—С20—Н20          | 119.6000   |
| С9—С8—Н8АВ          | 109.7000   | C12—N3—C4            | 118.8 (4)  |
| Н8А—С8—Н8АВ         | 108.2000   | C12—N3—C2            | 124.9 (4)  |
| C8—C9—C10           | 113.4 (5)  | C4—N3—C2             | 115.7 (4)  |
| С8—С9—Н9А           | 108.9000   | C6—O6—C5             | 116.1 (4)  |
|                     |            |                      |            |
| C9B—C1—C2—N3        | 54.3 (7)   | C4A—C9B—C10A—<br>C6  | 12.2 (7)   |
| O6—C5—C4A—C4        | -172.5 (4) | C1—C9B—C10A—<br>C10  | -54.0 (7)  |
| C15—C5—C4A—C4       | -52.7 (6)  | C4A—C9B—C10A—<br>C10 | -175.3 (5) |
| O6—C5—C4A—C9B       | 65.6 (5)   | O6—C5—C15—C20        | -140.3 (5) |
| C15—C5—C4A—<br>C9B  | -174.6 (4) | C4A—C5—C15—C20       | 99.4 (6)   |
| N3—C4—C4A—C5        | -179.3 (4) | O6—C5—C15—C16        | 37.7 (6)   |
| N3—C4—C4A—C9B       | -57.7 (6)  | C4A—C5—C15—C16       | -82.6 (6)  |
| C10A—C6—C7—C8       | 16.7 (9)   | C20—C15—C16—<br>C17  | -1.4 (8)   |
| O6—C6—C7—C8         | -164.7 (6) | C5-C15-C16-C17       | -179.5 (5) |
| C6—C7—C8—C9         | -49.2 (8)  | C15—C16—C17—<br>C18  | -0.9 (8)   |
| C7—C8—C9—C10        | 54.5 (9)   | C16—C17—C18—<br>C19  | 1.6 (9)    |
| C2—C1—C9B—<br>C10A  | 177.5 (5)  | C17—C18—C19—<br>C20  | 0.0 (9)    |
| C2—C1—C9B—C4A       | -60.2 (6)  | C18—C19—C20—<br>C15  | -2.4 (9)   |
| C5—C4A—C9B—<br>C10A | -47.2 (5)  | C16—C15—C20—<br>C19  | 3.1 (8)    |
| C4—C4A—C9B—<br>C10A | -172.1 (4) | C5—C15—C20—C19       | -178.8 (5) |
| C5—C4A—C9B—C1       | -173.2 (4) | O14—C12—N3—C4        | 3.2 (8)    |
| C4—C4A—C9B—C1       | 61.8 (5)   | C13—C12—N3—C4        | -177.8 (5) |
| C8—C9—C10—O11       | 158.0 (6)  | O14—C12—N3—C2        | 173.9 (6)  |
| C8-C9-C10-C10A      | -25.8 (9)  | C13—C12—N3—C2        | -7.1 (8)   |

| O6—C6—C10A—C10       | -165.2 (5) | C4A—C4—N3—C12 | -135.4 (5) |
|----------------------|------------|---------------|------------|
| C7—C6—C10A—C10       | 13.2 (9)   | C4A—C4—N3—C2  | 53.0 (6)   |
| O6—C6—C10A—<br>C9B   | 7.5 (8)    | C1—C2—N3—C12  | 137.6 (6)  |
| C7—C6—C10A—<br>C9B   | -174.0 (6) | C1—C2—N3—C4   | -51.4 (7)  |
| O11—C10—C10A—<br>C6  | 167.8 (6)  | C10A—C6—O6—C5 | 11.3 (8)   |
| C9—C10—C10A—C6       | -8.3 (8)   | C7—C6—O6—C5   | -167.3 (5) |
| O11—C10—C10A—<br>C9B | -4.9 (8)   | C15—C5—O6—C6  | -172.8 (4) |
| C9—C10—C10A—<br>C9B  | 178.9 (5)  | C4A—C5—O6—C6  | -47.7 (6)  |
| C1—C9B—C10A—<br>C6   | 133.4 (5)  |               |            |

**6.** *In vitro* antiproliferative activity of the products of the domino reactions against U87, A2780 and HT-29 human cancer cell lines



Figure S110. Concentration-dependent effect of  $rac-(4R^*, 4aS^*, 10bR^*)$ -epi-2am on the viability of U87 cells.



Figure S111. Concentration-dependent effect of  $rac-(4R^*, 4aS^*, 10bR^*)$ -epi-2am on the viability of A2780 cells.



Figure S112. Concentration-dependent effect of  $rac-(4R^*, 4aS^*, 10bR^*)$ -epi-**2am** on the viability of HT-29 cells.

## 7. References:

M. Kajtár; S. B. Király; A. Bényei; A. Kiss-Szikszai; A. Kónya-Ábrahám; N. Zhang; L. B. Horváth; S. Bősze; D. Li; A. Kotschy; A. Paczal and T. Kurtán, *J. Org. Chem.* 2024, 89, (10), 6937-6950.