Electronic Supplementary Information (ESI)

Selective synthesis of α , β -unsaturated aldehydes from allylic alcohols using oxidatively supplied hydrogen peroxide from electrochemical two-electron water oxidation

Yoshihiro Kon,*a,b Yuka Kimishima,a Kazuhisa Murata,b and Kazuhiro Sayamab

^aInterdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.

^bGlobal Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569 Japan.

Contents

1.	Oxidation of geraniol using aqueous H ₂ O ₂ solution	S2
2.	XRD spectra of (111) plane in Pt black	S3
3.	Time dependence of potential about oxidative H ₂ O ₂ production on FTO anode	S4
4.	NMR Spectra of α,β-unsaturated aldehydes	S5

1. Oxidation of geraniol using aqueous H₂O₂ solution

Aqueous H_2O_2 solution was made by adding K_2CO_3 (3.5 mol/L) and KHCO₃ (0.5 mol/L) to an industrially purchased H_2O_2 and it was diluted to aqueous H_2O_2 solution (68 mmol/L) by an ion-exchange water.

	H ₂ O ₂ K ₂ CC	e aq. (68 mmol/L, 2.2 r D ₃ (3.5 mol/L) / KHCO time: 15 min	nl) ₃ (0.5 mol/L)	
1	tolue Pt bla 60 °C	ne (0.5 ml) ack (15 mg) C, 2 h	- /	2 2
Entry	Time(h)	conv. of 1 $(\%)^{b}$	Yield of 2 $(\%)^b$	selectivity(%) ^c
1		65	62	95
2	0.3	62	60	97
3		58	58	>99
4		81	81	>99
5	1	79	79	>99
6		76	76	>99
7		90	88	98
8	2	86	86	>99
9		94	93	>99
10	10	87	87	>99
11	3	87	87	>99
12		88	88	>99

 Table S1. Screening of reaction time.^a

^{*a*}Reaction conditions are as follows: **1** (0.15 mmol), Pt black (15 mg), toluene (0.50 mL), H₂O₂ aq. by 2e-WOR (68 mmol/L, 2.2 ml, 0.15 mmol), 60 °C, 2.0 h. ^{*b*}Determined by GC analysis based on **1**. ^{*c*}Selectivity = (Yield of **2**) / (Conversion of **1**) x 100 (%).

Fig. S1. Screening of reaction time (plots of yields of 2 and selectivity).

2. XRD spectra of (111) plane in Pt black

(Coupled TwoTheta/Theta)

Fig. S2. XRD spectra of (111) plane in Pt black (upper: before the reaction, lower: after the reaction).

3. Time dependence of potential about oxidative H_2O_2 production on FTO anode

Fig. S3. Time dependence of potential about oxidative H_2O_2 production on FTO anode at constant current (50 mA). Aqueous solution (3.5 mol/L) of K₂CO₃/0.5mol/L KHCO₃ (pH 10.8) with an ice bath (3-5 °C).

4. NMR Spectra of α , β -unsaturated aldehydes

The NMR spectroscopic data of the synthesized compounds 2, 10-15 agreed well with the NMR data reported by the production through another methods.^{a-c}

Geranial (2)^a

¹H NMR (400MHz, CDCl₃, 25 °C)

(E)-2-octen-1-al (10)^b

¹H NMR (400MHz, CDCl₃, 25 °C)

(E)-2-nonen-1-al (11)^b

¹H NMR (400 MHz, CDCl₃, 25 °C)

(*E*)-2-dodecen-1-al (12)^c

¹H NMR (400 MHz, CDCl₃, 25 °C)

(E)-cinnamaldehyde (13)^b

¹H NMR (400 MHz, CDCl₃, 25 °C)

Perillaldehyde (14)^b ¹H NMR (400MHz, CDCl₃, 25 °C)

Myrtenal (15)^b

¹H NMR (400MHz, CDCl₃, 25 °C)

Ref. (a) J. Holz, S. Doerfelt and A. Börner, *Adv. Synth. Catal.*, 2017, **359**, 4379; (b) SDBSWeb: https://sdbs.db.aist.go.jp
(National Institute of Advanced Industrial Science and Technology(AIST), Nov. 15, 2024); (c) T. Yoshida, M. Murai,
M. Abe, N. Ichimaru, T. Harada, T. Nishioka and H. Miyoshi, *Biochem.*, 2007, **46**, 10365.