Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

The influence of dicationic surfactant on the aggregation process of the IVAGVN peptide from human cystatin C sequence (56-61)

Julia Ludwiczak^a, Emilia Iłowska^b*, Michalina Wilkowska^a, Aneta Szymańska^c, Marek Kempka^a, Maria Dobies^a, Kosma Szutkowski^d, Maciej Kozak^a

^a Department of Biomedical Physics, Adam Mickiewicz University, Poznan, Poland.

^b Department of Organic Chemistry, University of Gdansk, Gdansk, Poland. <u>emilia.ilowska@ug.edu.pl</u>

^c Department of Biomedical Chemistry, University of Gdansk, Gdansk, Poland. ^d NanoBiomedical Centre,, Adam Mickiewicz University, Poznan, Poland.

* NanoBiomedical Centre,, Adam Micklewicz University, Po. * Corresponding author: <u>emilia.ilowska@ug.edu.pl</u>

Table S1 . Contribution [%] of secondary structure elements determined from CD spectra for different peptide concentrations [mM]. 2
Table S2 . Contribution [%] of secondary structure elements determined from CD spectra for different peptideconcentrations: 0.52 and 5.25 mM and with C6IMIC12 surfactant with various concentrations (0.25, 1.00 and 4.00mM).
Figure S1 . A) The mean-square displacement (MSD) analysis for the 0-80 ns interval and B) the decomposition of MSD into its matrix components (MSD _{xx} , MSD _{yy} , MSD _{zz} , MSD _{xy} , MSD _{xz} , MSD _{yz}), diffusion tensor, diffusion tensor eigenvalues (l ₁ , l ₂ , l ₃) and resulting mean diffusion coefficients
Figure S2. DOSY ¹ H NMR spectra for diffusion coefficient measurements of the peptide IVAGVN at various concentrations: 0.52 mM; 1.05 mM, 1.75 mM. 3.50 mM and 5.25 mM.
Figure S3. DOSY ¹ H NMR spectra for diffusion coefficient measurements of the peptide IVAGVN (0.52 mM) with the presence of different surfactant concentrations: 0 mM, 0.25 mM, 1.00 mM, 2.00 mM and 4.00 mM

Table S1. Contribution [%] of secondary structure elements determined from CD spectra for different peptide concentrations [mM].

CIVAGVN [mM]	a-helix [%]	b-sheets [%]	Turns [%]	Unordered [%]
0.52	7.8	23.5	16.6	52.1
1.05	9.3	17.9	17.8	55
2.60	16.4	22.8	16.4	44.5
3.50	14.9	23.2	16	45.9
5.25	9.4	24.3	18.3	48.1

Table S2. Contribution [%] of secondary structure elements determined from CD spectra for different peptide concentrations: 0.52 and 5.25mM and with C6IMIC12 surfactant with various concentrations (0.25, 1.00 and 4.00 mM).

CIVAGVN [mM]	Csurfactanct [mM]	a-helix [%]	β-sheets [%]	Turns [%]	Unordered [%]
0.52	0	7.8	23.5	16.6	52.1
	0.25	4.5	29.3	19.0	47.2
	1.00	7.9	27.4	16.1	48.9
	4.00	0	47.2	23.2	29.3
5.25	0	9.4	24.3	18.3	48.1
	0.25	15.2	25.8	14.6	44.4
	1.00	7.5	32.8	15.3	44.4
	4.00	7.1	31.0	20.7	41.2

Figure S1. A) The mean-square displacement (MSD) analysis for the 0-80 ns interval and B) the decomposition of MSD into its matrix components (MSD_{xx}, MSD_{yy}, MSD_{zz}, MSD_{xz}, MSD_{yz}), diffusion tensor, diffusion tensor eigenvalues (l_1 , l_2 , l_3) and resulting mean diffusion coefficients.

Figure S2. DOSY ¹H NMR spectra for diffusion coefficient measurements of the peptide IVAGVN at various concentrations: 0.52 mM; 1.05 mM, 1.75 mM. 3.50 mM and 5.25 mM.

Figure S3. DOSY ¹H NMR spectra for diffusion coefficient measurements of the peptide IVAGVN (0.52 mM) with the presence of different surfactant concentrations: 0 mM, 0.25 mM, 1.00 mM, 2.00 mM and 4.00 mM.