## **Supporting Information**

## Water-in-Bisalt Electrolytes with Mixed Hydrophilic and Hydrophobic Anions

## for Enhanced Transport and Stability for Potassium-ion Batteries

Mukhilan Dhasarathaboopathy, Palani Sabhapathy<sup>a</sup>, Burcu Gurkan<sup>\*</sup>

Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106

\* Corresponding: beg23@case.edu

**Table S1**. Physicochemical properties of the KAc/H<sub>2</sub>O, KOTf/H<sub>2</sub>O and the KAc/KOTf binary mixtures

| Solution                                                       | Molarity       | Salt molar | Density       | Viscosity | Conductivity   |
|----------------------------------------------------------------|----------------|------------|---------------|-----------|----------------|
|                                                                | $(mol L^{-1})$ | fraction   | $(g.cm^{-3})$ | (mPa.s)   | $(mS.cm^{-1})$ |
|                                                                |                | (%)        |               |           |                |
| 1 m KAc                                                        | 0.9            | 1.7        | 1.03          | 1.45      | 68.7           |
| 10 m KAc                                                       | 6.4            | 15.2       | 1.28          | 5.78      | 127.4          |
| 20 m KAc                                                       | 9.1            | 26.4       | 1.36          | 17.13     | 62.8           |
| 30 m KAc                                                       | 10.8           | 35         | 1.42          | 44.69     | 27.5           |
| 1 m KOTf                                                       | 0.8            | 1.7        | 1.02          | 1.24      | 72.4           |
| 10 m KOTf                                                      | 5.1            | 15.2       | 1.47          | 3.82      | 123.3          |
| 18 m KOTf                                                      | 6.7            | 24.5       | 1.64          | 8.33      | 78             |
| K(Ac) <sub>0.3</sub> (OTf) <sub>0.7</sub> .3.2H <sub>2</sub> O | 7.3            | 23.5       | 1.62          | 10.61     | 79.7           |
| K(Ac)0.5(OTf)0.5.2.9H2O                                        | 8              | 25.6       | 1.57          | 14.04     | 67.1           |
| K(Ac)0.7(OTf)0.3.2.78H2O                                       | 8.5            | 26.4       | 1.5           | 18.28     | 61.7           |
| K(Ac)0.9(OTf)0.1.1.5H2O                                        | 10.9           | 39.4       | 1.48          | 87.1      | 18.07          |



Figure S1. TGA curves of aqueous KAc (a), KOTf (b), and KAc/KOTf binary (c) electrolytes

|                                                                 | Salt weight percentage (%)  |                    |  |
|-----------------------------------------------------------------|-----------------------------|--------------------|--|
| Sample Solution                                                 | Calculated (stoichiometric) | Experimental (TGA) |  |
| 1 m KAc                                                         | 9.6                         | 9                  |  |
| 10 m KAc                                                        | 48.3                        | 49.5               |  |
| 20 m KAc                                                        | 65.6                        | 66.2               |  |
| 30 m KAc                                                        | 72.8                        | 74.6               |  |
| 1 m KOTf                                                        | 15.8                        | 16.1               |  |
| 10 m KOTf                                                       | 65.2                        | 67.7               |  |
| 18 m KOTf                                                       | 77.2                        | 77.9               |  |
| K(Ac)0.3(OTf)0.7.3.2H2O                                         | 73.3                        | 74                 |  |
| K(Ac)0.5(OTf)0.5.2.9H2O                                         | 73.2                        | 73.5               |  |
| K(Ac) <sub>0.7</sub> (OTf) <sub>0.3</sub> .2.78H <sub>2</sub> O | 71.4                        | 71.3               |  |
| K(Ac)0.9(OTf)0.1.1.5H2O                                         | 79.4                        | 77.2               |  |

**Table S2**. Salt weight percentages of the prepared aqueous samples calculated stoichiometrically and measured experimentally from TGA curves shown in Figure S1.



**Figure S2**. Raman spectra of 1 m KAc (a), 10 m KAc (b), 20 m KAc (c) and 30 m KAc (d) with fitted peaks corresponding to the OH symmetric stretching vibrations of water molecules.



**Figure S3**. Raman spectra of 1 m KOTf (a), 10 m KOTf (b) and 18 m KOTf (c) with fitted peaks corresponding to the OH symmetric stretching vibrations of water molecules



**Figure S4**. Raman spectra of WiS binary solutions  $K(Ac)_{0.3}(OTf)_{0.7} \cdot 3.2H_2O$  (a),  $K(Ac)_{0.5}(OTf)_{0.5} \cdot 2.9H_2O$  (b),  $K(Ac)_{0.7}(OTf)_{0.3} \cdot 2.78H_2O$  (c), and  $K(Ac)_{0.9}(OTf)_{0.1} \cdot 1.5H_2O$  (d) with fitted peaks corresponding to the OH symmetric stretching vibrations of water molecules



**Figure S5**. Raman shifts (a) and intensities (b) of DAA, DDAA, DA, DDA, free OH symmetric stretching vibration peaks for KAc electrolytes



**Figure S6.** a) Raman shifts of DAA, DDAA, DA, DDA, and free OH symmetric stretching vibrations in WIBS electrolyte as a functional of KAc mole fraction ranging from  $K(Ac)_{0.3}(OTf)_{0.7} \cdot 3.2H_2O$ ,  $K(Ac)_{0.5}(OTf)_{0.5} \cdot 2.9H_2O$  to  $K(Ac)_{0.7}(OTf)_{0.3} \cdot 2.78H_2O$  to  $K(Ac)_{0.9}(OTf)_{0.1} \cdot 1.5H_2O$  (32Ac:4OTf); b) Normalized Raman intensity of vibrations due to water



Figure S7. <sup>13</sup>C NMR spectra for KAc electrolytes at increasing concentrations



**Figure S8**. a) Raman peaks of SO<sub>3</sub> symmetric stretching in KOTf with increasing concentrations of OTf; b) Raman peaks of SO<sub>3</sub> symmetric stretching in KOTf for mixtures with increasing concentrations of OTf.



**Figure S9**. Linear sweep voltammograms of the  $1^{st}$ ,  $2^{nd}$  and 3rd cycles for 30m KAc (a and c), and K(Ac)<sub>0.9</sub>(OTf)<sub>0.1</sub>·1.5H<sub>2</sub>O (b and d). Panels a and b are with glassy carbon electrode; c and d with aluminum for negative sweep and titanium for positive sweep as marked.