Supplementary information

Efficient adsorptive removal of potassium from potassium perrhenate solution by cationic ion exchange resin

Kunkun Chen^{1,2}, Linbo Li^{1,*}, Kai Yang¹, Qigao Cao², Yunfei Chen²

- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Electronic Material Research Center, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China

*Corresponding author

E-mail addresses: yj-lilinbo@xauat.edu.cn (L. Li)

Table of contents

Text S1. Adsorption isotherm models

Text S2. Adsorption kinetic models

Fig. S1. The potassium adsorption efficiency of C160 and C160H

Fig. S2. Adsorption of potassium by resin according to various isotherm models: (a)-Langmuir; (b)-Freundlich; (c)-Temkin; (d)-Dubinin-Radushkevich

Fig. S3. SEM-EDS scanning results of C160H resin loaded with potassium: (a) SEM images, (b-f) EDS maps for elemental distribution, and (g) elemental composition spectrum

Fig. S4. SEM-EDS scanning results of C160H resin before adsorption: (a)SEM images,(b-f) EDS maps

for elemental distribution, and (g) elemental composition spectrum

Fig. S5. Binding energy between $\rm H^{+}/\rm K^{+}$ and ligand

Table S1. Physical and chemical properties of Purolite C160 ion exchange resin

Text S1. Adsorption isotherm models

Adsorption isotherm is used to describe the relationship between adsorption capacity and concentration of solution after adsorption equilibrium at a certain temperature. Adsorption isotherm is usually fitted by adsorption isotherm models. At present, there are four commonly used models include Langmuir model, Freundlich model, Temkin model and Dubinin–Radushkevich model ¹⁻³, as follows:

Langmuir model:

$$q_e = \frac{q_{\max}K_L C_e}{1 + K_L C_e} \tag{S-1}$$

$$R_{L} = \frac{1}{1 + K_{L}C_{0}}$$
(S-2)

Freundlich model:

$$q_e = K_F C_e^{1/n} \tag{S-3}$$

Temkin model:

$$q_e = B_T \ln K_T + B_T \ln C_e \tag{S-4}$$

$$B_T = RT / b \tag{S-5}$$

Dubinin-Radushkevich model:

$$\ln q_e = \ln q_m - K_{DR}\varepsilon^2 \tag{S-6}$$

$$\varepsilon = RT \ln(1 + \frac{1}{C_e}) \tag{S-7}$$

$$E = \frac{1}{\sqrt{2K_{DR}}}$$
(S-8)

Where C_e , C_0 are the equilibrum and initial concentration of the adsorbate in the solution (mg·L⁻¹), respectively, q_e is the adsorption capacity of adsorbent to adsorbate after adsorption equilibrium, (mg·g⁻¹), q_{max} is maximum adsorption capacity of single molecular layer of adsorbent related to adsorption sites (mg·g⁻¹), n is Freundlich constant indicating the adsorption intensity, b represent the Temkin constant, q_m refers to theoretical isotherm saturation capacity (mg·g⁻¹), K_L , K_F , K_T and K_{DR} are the equilibrium constants of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, respectively, ε refers to the Polanyi potential constant (J/mol), and E refers to energy per molecule of adsorbate (kJ/mol)

Text S2. Adsorption kinetic models

Adsorption kinetics mainly describes the change of adsorption rate and the influence of external factors on the adsorption process. The models of Pseudo-first-order, Pseudo-second-order and Weber-Morris^{4, 5} are commonly used adsorption kinetic models, as follows:

Pseudo-first-order equation:
$$q_t = q_e(1 - e^{-K_1 t})$$
 (S-9)

Pseudo-second-order equation:
$$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}$$
 (S-10)

Weber-Morris equation:
$$q_t = K_p t^{1/2} + C$$
 (S-11)

where K_1 is the adsorption rate constant of the Pseudo-first-order model, min⁻¹; K_2 is the adsorption rate constant of the Pseudo-second-order model, g·mg⁻¹·min⁻¹; K_p is the intra-particle diffusion rate constant, mg·g⁻¹·min^{-0.5}; *C* is a constant, which is related to the thickness of boundary layer.

Fig. S1 The potassium adsorption efficiency of C160 and C160H $(KReO_4 \text{ solution concentration of } 2 \text{ g} \cdot \text{L}^{-1}, \text{ solid-to- liquid ratio of } 1:20, \text{ rotating speed of } 180 \text{ rpm},$ temperature of 25°C, contact time of 6h)

Fig. S2 Adsorption of potassium by resin according to various isotherm models: (a)-Langmuir; (b)-Freundlich; (c)-Temkin; (d)-Dubinin-Radushkevich

Fig. S3 SEM-EDS scanning results of C160H resin loaded with potassium: (a) SEM images, (b-f) EDS maps for elemental distribution, and (g) elemental composition spectrum

Fig. S4 SEM-EDS scanning results of C160H resin before adsorption: (a)SEM images, (b-f) EDS maps for elemental distribution, and (g) elemental composition spectrum

 $\label{eq:Ebinding} \begin{array}{ll} \Delta E_{binding} & 321.24\,kcal\cdot mol^{-1} & 5.43\,kcal\cdot mol^{-1} \end{array}$ Fig. S5 Binding energy between $H^+/\,K^+$ and ligand

Preperty	Description
Structure	Macroporous
Matrix	Polystyrene / divinylbenzene
Functional group	Sulfonic Acid
Ionic form	Na^+
Bead size	0.3-1.2 mm
Specific gravity	1.3 g/mL (in Na ⁺ form)
Moisture retention	35%-40% (in Na ⁺ form)
Total capacity	2.3 meq/mL (in Na ⁺ form)

Table S1 Physical and chemical properties of Purolite C160 ion exchange resin

References

- 1. G. J. Millar, S. J. Couperthwaite and C. W. Leung, *Separation and Purification Technology*, 2015, 141, 366-377.
- 2. F. Moghimi, A. H. Jafari, H. Yoozbashizadeh and M. Askari, *Transactions of Nonferrous Metals Society of China*, 2020, **30**, 236-248.
- 3. K. Wang, K. Chen, L. Xiang, M. Zeng, Y. Liu and Y. Liu, *Separation and Purification Technology*, 2022, **292**, 121044.
- 4. J. H. Vinco, A. B. Botelho Junior, H. A. Duarte, D. C. R. Espinosa and J. A. S. TenÓRio, *Transactions of Nonferrous Metals Society of China*, 2022, **32**, 2438-2450.
- 5. Z.X. Xuan, T.T. Yan, Z.J. Zhang and F. Luo, *Journal of Molecular Science*, 2020, **36**, 145-152.