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Text S1. Adsorption isotherm models

Adsorption isotherm is used to describe the relationship between adsorption capacity and 

concentration of solution after adsorption equilibrium at a certain temperature. Adsorption isotherm is 

usually fitted by adsorption isotherm models. At present, there are four commonly used models include 

Langmuir model, Freundlich model, Temkin model and Dubinin–Radushkevich model 1-3, as follows:
Langmuir model: 
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Freundlich model: 
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Temkin model: 
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Dubinin-Radushkevich model: 
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Where Ce, C0 are the equlilibrum and initial concentration of the adsorbate in the solution (mg·L-1), 

respectively, qe is the adsorption capacity of adsorbent to adsorbate after adsorption equilibrium, (mg·g-

1), qmax is maximum adsorption capacity of single molecular layer of adsorbent related to adsorption 

sites (mg·g-1), n is Freundlich constant indicating the adsorption intensity, b represent the Temkin 

constant, qm refers to theoretical isotherm saturation capacity (mg·g-1), KL, KF, KT and KDR are the 

equilibrium constants of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, 

respectively, ε refers to the Polanyi potential constant (J/mol), and E refers to energy per molecule of 

adsorbate (kJ/mol)



Text S2. Adsorption kinetic models

Adsorption kinetics mainly describes the change of adsorption rate and the influence of external 

factors on the adsorption process. The models of Pseudo-first-order, Pseudo-second-order and Weber-

Morris 4, 5 are commonly used adsorption kinetic models, as follows:

Pseudo-first-order equation： (S-9)1(1 )K t
t eq q e 

Pseudo-second-order equation: (S-10)
2

2

1

t e e

t t
q K q q
 

Weber-Morris equation： (S-11)1/2
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where K1 is the adsorption rate constant of the Pseudo-first-order model, min-1; K2 is the adsorption rate 

constant of the Pseudo-second-order model, g·mg-1·min-1; Kp is the intra-particle diffusion rate constant, 

mg·g-1·min-0.5; C is a constant, which is related to the thickness of boundary layer.



Fig. S1 The potassium adsorption efficiency of C160 and C160H 

(KReO4 solution concentration of 2 g·L-1, solid-to- liquid ratio of 1:20, rotating speed of 180 rpm, 

temperature of 25℃, contact time of 6h)



Fig. S2 Adsorption of potassium by resin according to various isotherm models: (a)-Langmuir; (b)-

Freundlich; (c)-Temkin; (d)-Dubinin-Radushkevich



Fig. S3 SEM-EDS scanning results of C160H resin loaded with potassium: (a) SEM images, 

(b-f) EDS maps for elemental distribution, and (g) elemental composition spectrum



Fig. S4 SEM-EDS scanning results of C160H resin before adsorption: (a)SEM images,

(b-f) EDS maps for elemental distribution, and (g) elemental composition spectrum



Fig. S5 Binding energy between H+ / K+ and ligand



Table S1 Physical and chemical properties of Purolite C160 ion exchange resin

Preperty Description

Structure Macroporous

Matrix Polystyrene / divinylbenzene

Functional group Sulfonic Acid

Ionic form Na+

Bead size 0.3-1.2 mm

Specific gravity 1.3 g/mL (in Na+ form)

Moisture retention 35%-40% (in Na+ form)

Total capacity 2.3 meq/mL (in Na+ form)
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