Electronic Supplementary Information for

Discovery of lanthanide metal oxide catalyst for transesterification reaction by fluorescence-based highthroughput screening method and application to biodiesel production

Jeong Yup Ryoo^a, Mingyeong Jang^a, Taeho Lim^a, and Min Su Han*^a

^aDepartment of Chemistry, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea

*E-mail: happyhan@gist.ac.kr

List of contents

1.	General information3
2.	Synthesis and characterization of pyrene excimer probe, Bis(4-(1-pyrenyl)butyl) maleate (BPBM)
3.	Characterization of selected metal oxide catalyst5
4.	Substrate scope (characterization of ester products)6
5.	Yield calculation of biodiesel production with soybean oil by ¹ H NMR9
6.	NMR spectra10

1. General information

All chemical reagents were purchased from commercial sources (Sigma-Aldrich, Alfa Aesar, Tokyo Chemical Industry, Duksan Pure Chemicals, Daejung Chemicals & Metals, and Samchun Pure Chemical) and used as received without further purification. Nuclear magnetic resonance (NMR) spectra were obtained using a JEOL 400 MHz NMR spectrometer (JEOL, Tokyo, Japan). The highresolution mass spectrum was recorded on an Agilent 6200 quadrupole time-of-flight mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). Fluorescence spectra were obtained using an Agilent Cary Eclipse fluorescence spectrophotometer (Agilent Technologies).

2. Synthesis and characterization of pyrene excimer probe, Bis(4-(1-pyrenyl)butyl) maleate (BPBM)

Figure S1. Synthesis of pyrene excimer fluorescent probe, bis(4-(1-pyrenyl)butyl) maleate (BPBM).

Figure S2. HRMS of bis(4-(1-pyrenyl)butyl) maleate (BPBM)

3. Characterization of selected metal oxide catalyst

Figure S3. STEM and elemental mapping images of PrO₂ catalyst. Yellow and white dots represent praseodymium and oxygen, respectively. Red dots represent carbon and are observed due to the carbon grid.

4. Substrate scope (characterization of ester products)

Benzyl benzoate (3aa)

Dichloromethane as an eluent. Colorless oil (323.9 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.10 (m, 2H), 7.54–7.59 (m, 1H), 7.32–7.47 (m, 7H), 5.37 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.58, 136.17, 133.17, 130.25, 129.83, 128.73, 128.51, 128.37, 128.30, 66.83.

4-Bromobenzyl benzoate (3ab)

Dichloromethane as an eluent. Colorless oil (432.4 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.05–8.08 (m, 2H), 7.55–7.59 (m, 1H), 7.50–7.53 (m, 2H), 7.42–7.47 (m, 2H), 7.31–7.34 (m, 2H), 5.31 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.45, 135.19, 133.32, 131.89, 129.99, 129.82, 128.57, 122.42, 66.03.

4-Methoxybenzyl benzoate (3ac)

Ethyl acetate/hexane (1/20, v/v) as an eluent. White solid (155.1 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 8.05–8.08 (m, 2H), 7.53–7.57 (m, 1H), 7.38–7.45 (m, 4H), 6.90–6.94 (m, 2H), 5.30 (s, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.66, 159.77, 133.08, 130.38, 130.21, 129.80, 128.46, 128.29, 114.10, 66.68, 55.43.

4-Nitrobenzyl benzoate (3ad)

Dichloromethane/hexane (1/1, v/v) as an eluent. Yellow solid (371.9 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.23–8.26 (m, 2H), 8.08–8.11 (m, 2H), 7.58–7.62 (m, 3H), 7.45–7.49 (m, 2H), 5.46 (s, 2H).

Hexyl benzoate (3ae)

Dichloromethane as an eluent. Colorless oil (300.2 mg, 91%)). ¹H NMR (400 MHz, CDCl₃) δ 8.03–8.06 (m, 2H), 7.53–7.58 (m, 1H), 7.42–7.46 (m, 2H), 4.32 (t, J = 6.7 Hz, 2H), 1.73–1.80 (m, 2H), 1.57 (s, 2H), 1.41–1.49 (m, 2H), 1.32–1.38 (m, 4H), 0.89–0.92 (m, 3H).

Cyclohexyl benzoate (3af)

Dichloromethane as an eluent. Colorless oil (321.0 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 8.04–8.07 (m, 2H), 7.52–7.57 (m, 1H), 7.41–7.46 (m, 2H), 5.00–5.07 (m, 1H), 1.92–1.98 (m, 2H), 1.75–1.83 (m, 2H), 1.30–1.64 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.14, 132.80, 131.16, 129.66, 128.40, 73.16, 31.78, 25.62, 23.80.

Hexadecyl benzoate (3ag)

Dichloromethane as an eluent. White solid (506.4 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.03–8.07 (m, 2H), 7.50–7.56 (m, 1H), 7.39–7.44 (m, 2H), 4.32 (t, J = 6.7 Hz, 2H), 1.72–1.81 (m, 2H), 1.26–1.47 (m, 26H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.65, 132.79, 130.65, 129.61, 128.34, 65.17, 32.04, 29.81, 29.78, 29.70, 29.65, 29.48, 29.40, 28.84, 26.15, 22.79, 14.19

1-Phenylethyl benzoate (3ah)

Ethyl acetate/hexane (1/50, v/v) as an eluent. Pale yellow oil (175.5 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.10 (m, 2H), 7.54–7.58 (m, 1H), 7.42–7.46 (m, 4H), 7.35–7.39 (m, 2H), 7.28–7.32 (m, 1H), 6.14 (q, J = 6.6 Hz, 1H), 1.68 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.94, 141.92, 133.05, 130.66, 129.77, 128.68, 128.46, 128.02, 126.18, 73.05, 22.55.

Benzyl 4-bromobenzoate (3ba)

Dichloromethane as an eluent. Colorless oil (441.7 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.96 (m, 2H), 7.56–7.60 (m, 2H), 7.34–7.47 (m, 5H), 5.37 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 135.86, 131.80, 131.31, 129.12, 128.73, 128.46, 128.33, 128.25, 67.03.

Benzyl 4-nitrobenzoate (3ca)

Ethyl acetate/hexane (1/100, v/v) as an eluent. White solid (369.5 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.21–8.28 (m, 4H), 7.34–7.47 (m, 5H), 5.40 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.63, 150.68, 135.59, 135.34, 130.92, 128.84, 128.75, 128.54, 123.65, 67.74

Benzyl 4-aminobenzoate (3da)

5. Yield calculation of biodiesel production with soybean oil by ¹H NMR

Figure S4. NMR spectrum of the aliquot after solvothermal reaction of soybean oil and yield calculation.

6. NMR spectra

Figure S5. ¹H NMR of benzyl benzoate (3aa)

Figure S6. ¹³C NMR of benzyl benzoate (3aa)

Figure S7. ¹H NMR of 4-bromobenzyl benzoate (3ab)

Figure S8. ¹³C NMR of 4-bromobenzyl benzoate (3ab)

Figure S9. ¹H NMR of 4-methoxybenzyl benzoate (3ac)

Figure S10. ¹³C NMR of 4-methoxybenzyl benzoate (3ac)

Figure S11. ¹H NMR of 4-nitrobenzyl benzoate (3ad)

Figure S12. ¹H NMR of hexyl benzoate (3ae)

Figure S13. ¹H NMR of cyclohexyl benzoate (3af)

Figure S14. ¹³C NMR of cyclohexyl benzoate (3af)

Figure S15. ¹H NMR of hexadecyl benzoate (3ag)

Figure S16. ¹³C NMR of hexadecyl benzoate (3ag)

Figure S17. ¹H NMR of 1-phenylethyl benzoate (3ah)

Figure S18. ¹³C NMR of 1-phenylethyl benzoate (3ah)

Figure S19. ¹H NMR of benzyl 4-bromobenzoate (3ba)

Figure S20. ¹³C NMR of benzyl 4-bromobenzoate (3ba)

Figure S21. ¹H NMR of benzyl 4-nitrobenzoate (3ca)

Figure S22. ¹³C NMR of benzyl 4-nitrobenzoate (3ca)

Figure S23. ¹H NMR of benzyl 4-aminobenzoate (3da)

Figure S24. ¹³C NMR of benzyl 4-aminobenzoate (3da)