Supporting Information

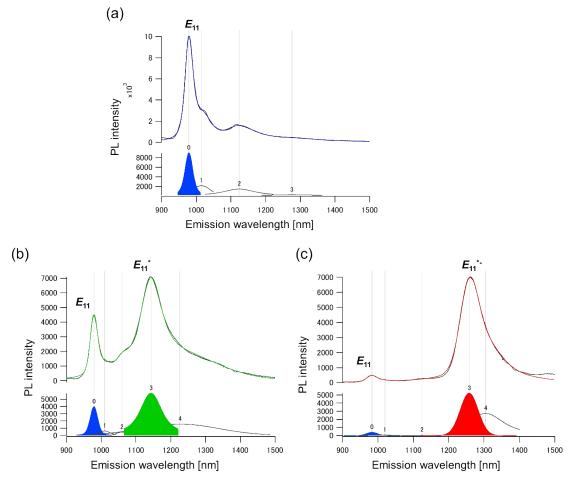
Temperature and Length-Dependent Defect Photoluminescence in Biocompatible Cross-Linked Polymer-Coated Locally Functionalized Single-Walled Carbon Nanotubes

Ryo Hamano¹, Yoshiaki Niidome¹, Naoki Tanaka^{1,2}, Tomohiro Shiraki^{1,2}, Tsuyohiko Fujigaya^{*,1, 2, 3}

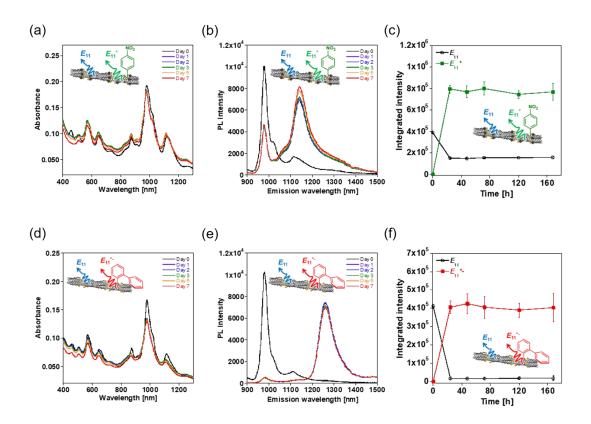
¹ Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan

² International Institute for Carbon Neutral Energy Research (WPI I²CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan

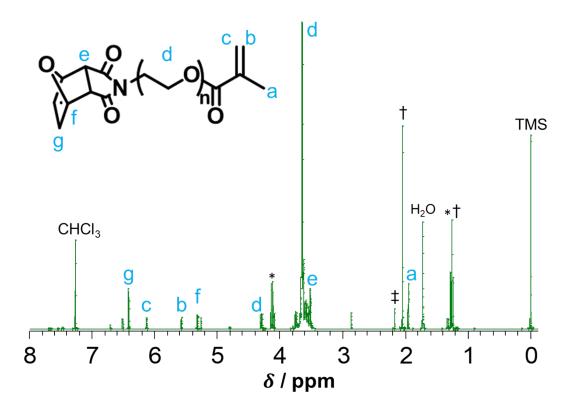
³ Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan

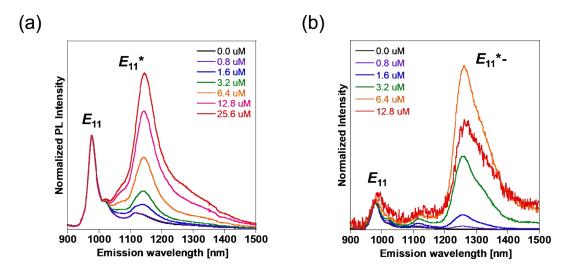

Table S1. The estimated SWCNT concentration of length sorted gel-coated lf-SWCNTs-*p*NO₂ and gel-coated lf-SWCNTs-*o*P

	SWCNT concentration [nM]					
Sample	Unsorted (injection)	fr1	fr2	fr3	fr4	
Gel-coated lf-SWCNTs-pNO ₂	5.65	0.048	0.096	0.637	0.397	
Gel-coated lf-SWCNTs-oP	6.82	0.086	0.193	0.133	0.071	


Table S2. Calculated $\Delta E_{\text{optical}}$, $\Delta E_{\text{thermal}}$, and λ values of E_{11}^* PL of unsorted and length sorted gelcoated lf-SWCNT-*o*P in H₂O.

Sample	Average SWCNT length [nm]	$\Delta E_{\text{optical}}$ [meV]	$\Delta E_{\text{thermal}}$ [meV]	λ [meV]
Unsorted	231.9	143	51	92
Fr1	367.1	139	51	88
Fr2	245.1	140	50	90
Fr3	164.3	143	53	90
Fr4	117.6	145	20	126


To calculated the integrated intensity, PL peaks were deconvoluted based on the Voigt function and the peak area was estimated using package Multi peak fitting in Igor Pro (ver. 6.36J).


Fig. S1 Deconvoluted PL spectra of (a) SDBS-dispersed SWCNTs, (b)SDBS-dispersed lf-SWCNTs*p*NO₂, and (c) SDS-dispersed lf-SWCNTs-*o*P in D₂O.

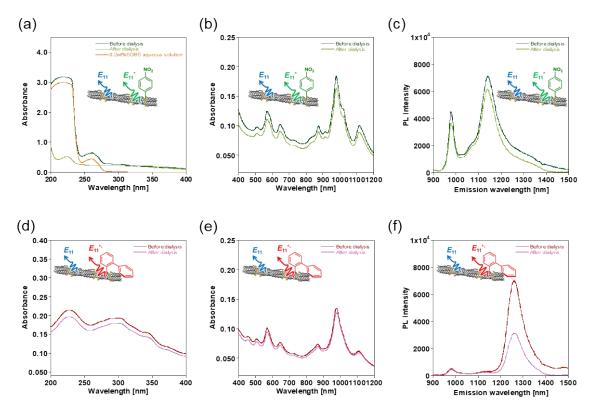
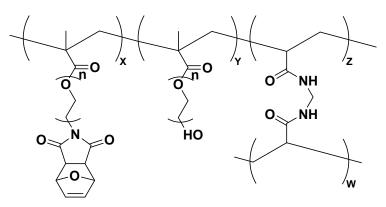
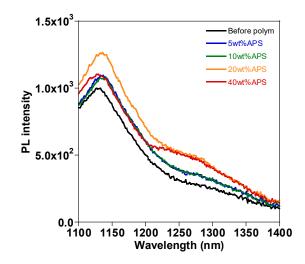
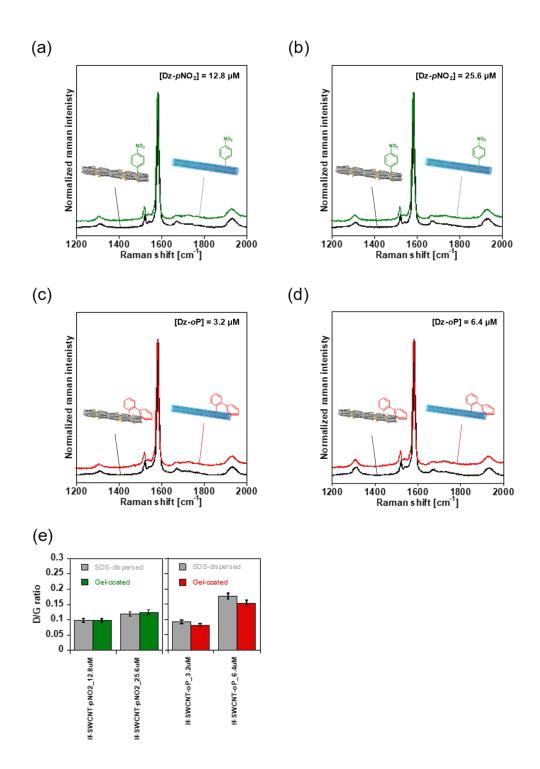
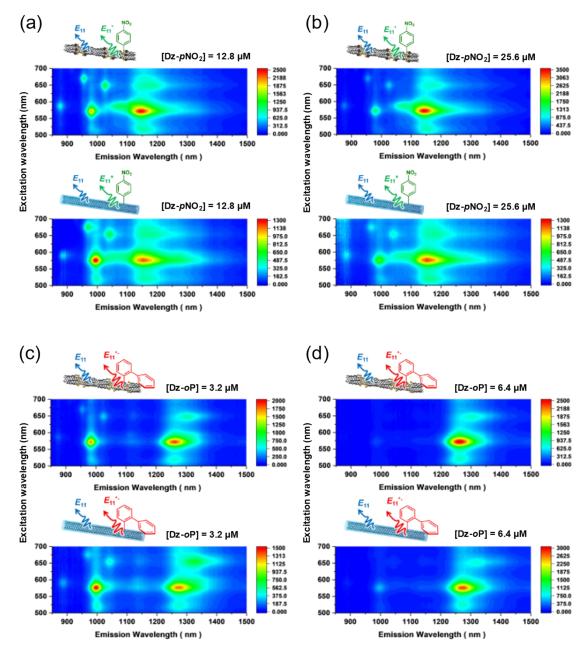

Fig. S2 Time course (a) absorption spectra, (b) PL spectra (excitation: 570 nm) and (c) integrated E_{11} and E_{11}^* PL intensity of SDBS-dispersed lf-SWCNTs-*p*NO₂ in D₂O monitoring for 7 days. The final concentration of Dz-*p*NO₂ [Dz-*p*NO₂] was 25.6 μ M. Time course (d) absorption spectra, (e) PL spectra (excitation: 570 nm) and (f) integrated E_{11} and E_{11}^{*-} PL intensity of SDS-dispersed lf-SWCNTs-*o*P in D₂O. The final concentration of Dz-*o*P [Dz-*o*P] was 6.4 μ M. The spectra before the addition of the diazonium salts were also displayed as Day 0 (black line). Error bars mean the error estimated during peak deconvolution.

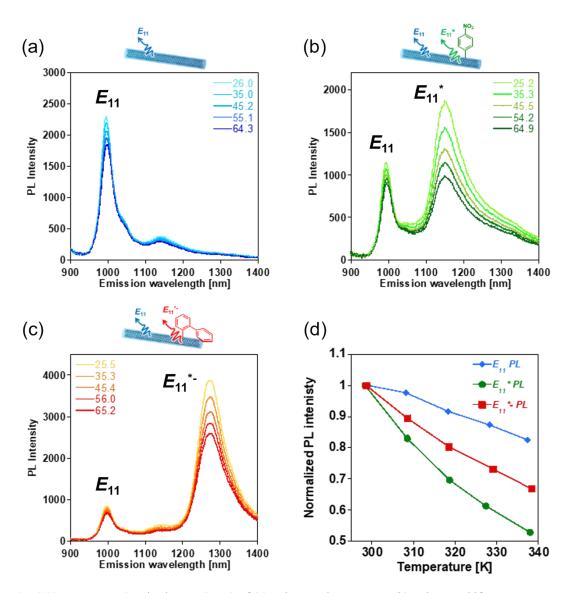
Fig. S3 ¹H NMR spectra of *endo*-FpMMA. Peaks indicated as *, †and ‡ can be assigned to the peaks of solvents (diethyl acetate, ethyl acetate and toluene, respectively) used for starting material and column purification.

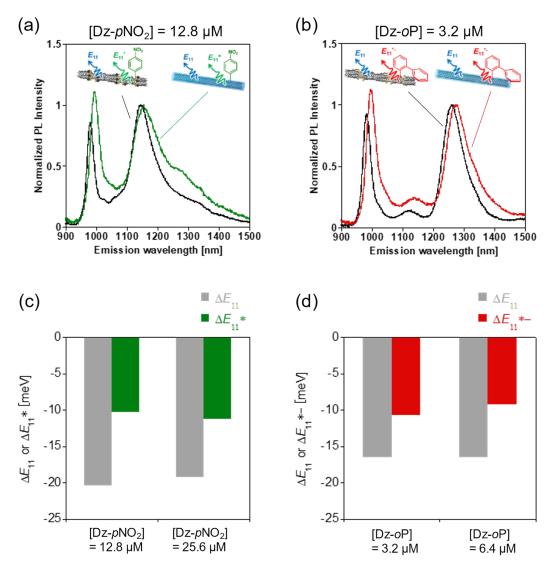
Fig. S4 Normalized PL spectra (excitation: 570 nm) of (a) lf-SWCNTs-*p*NO₂ in SDBS solution and (b) lf-SWCNTs-*o*P in SDS solution react with different [Dz-*p*NO₂] and [Dz-*o*P], respectively.

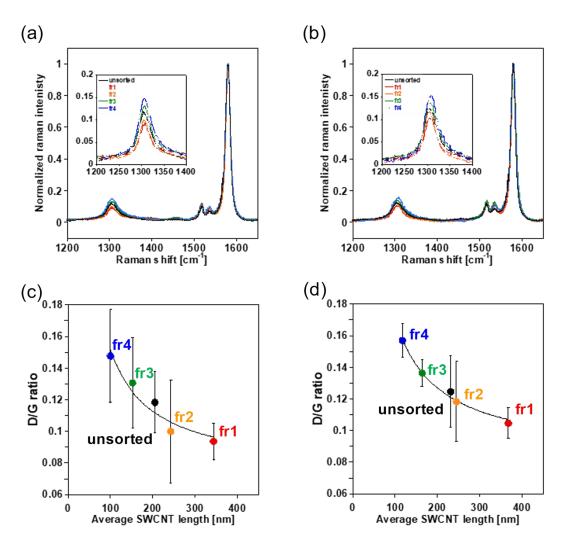
Fig. S5 (a, b) The absorption and (c) PL spectra (excitation: 570 nm) of lf-SWCNTs-*p*NO₂ before (green) and after (light green) dialysis. The absorption spectrum of the aqueous SDBS solution was also displayed as reference (orange). (d, e) The absorption and (f) PL spectra (excitation: 570 nm) of lf-SWCNTs-*o*P before (red) and after (pink) dialysis.

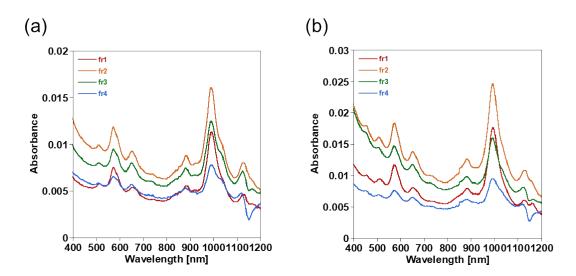




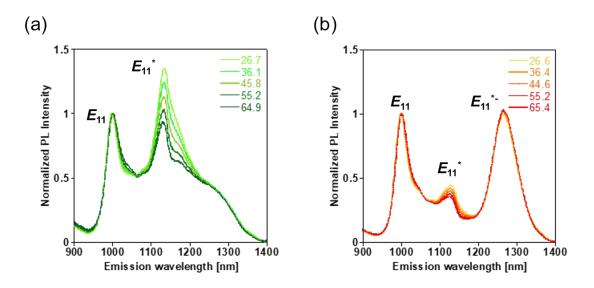

Fig S6. Chemical structure of the gel in endo-FpM/PEG.


Fig. S7 PL spectra (excitation: 570 nm) of SDS-dispersed SWCNT after CNT micelle polymerization using different concentration of APS, where PEGAM and *endo*-FpMMA were used as monomer.


Fig. S8 Normalized Raman spectra of (a, b) lf-SWCNTs-*p*NO₂ and (c, d) lf-SWCNTs-*o*P before (black) and after CNT micelle polymerization. (e) D/G ratio of lf-SWCNTs-*p*NO₂ (left panel) and lf-SWCNTs-*o*P (right panel) before and after the polymerization. Error bars mean the error estimated during peak deconvolution.


Fig. S9 PL contour plot of (a) lf-SWCNTs- pNO_2 prepared with $[Dz-pNO_2] = 12.8 \ \mu M$, (b) lf-SWCNTs- pNO_2 prepared with $[Dz-pNO_2] = 25.6 \ \mu M$, (c) lf-SWCNTs-oP prepared with $[Dz-oP] = 3.2 \ \mu M$ and (d) lf-SWCNTs-oP prepared with $[Dz-oP] = 6.4 \ \mu M$ before (upper panels) and after (lower panels) CNT micelle polymerization. Measurements were performed in D₂O.


Fig. S10 PL spectra (excitation: 570 nm) of (a) gel-coated SWCNTs, (b) gel-coated lf-SWCNTs-pNO₂ and (c) gel-coated lf-SWCNTs-oP measured at different temperature. (d) Plots of normalized PL intensity at different temperature of E_{11} PL of gel-coated SWCNTs (blue), E_{11}^* PL of gel-coated lf-SWCNTs-pNO₂ (green) and E_{11}^* PL of gel-coated lf-SWCNTs-oP (red).


Fig. S11 (a) PL spectra (excitation: 570 nm) of SDBS-dispersed lf-SWCNT-*p*NO₂ in (black) and gelcoated lf-SWCNT-*p*NO₂ (green), both of which were prepared with $[Dz-pNO_2] = 12.8 \ \mu\text{M}$ in D₂O. (b) PL spectra (excitation: 570 nm) of SDS-dispersed lf-SWCNT-*o*P (black) and gel-coated lf-SWCNT-*o*P, both of which were prepared with $[Dz-oP] = 3.2 \ \mu\text{M}$ in D₂O. (c) Energy shift values of E_{11} and E_{11}^* PL after gel coating of lf-SWCNTs-*p*NO₂ synthesized at different $[Dz-pNO_2]$. (d) Energy shift values of E_{11} and E_{11}^{*-} PL due to gel coating of lf-SWCNTs-*o*P synthesized at different [Dz-oP].

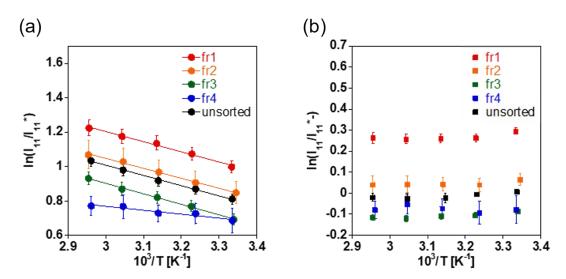

Fig. S12 (a, b) Raman spectra and (c, d) D/G ratio of unsorted and length sorted gel-coated lf-SWCNTs- pNO_2 (a, c) and gel-coated lf-SWCNTs-oP (b, d). The D/G ratio was fitted as a function of the inverse of the average SWCNT length (~1/L). Error bars mean standard deviation calculated from five different measurement points.

Fig. S13 Absorption spectra of fr1 (red), fr2 (orange), fr3 (green) and fr4 (blue) of (a) gel-coated lf-SWCNTs-*p*NO₂ and (b) gel-coated lf-SWCNTs-*o*P.

Fig. S14 PL spectra (excitation: 570 nm) of unsorted (a) gel-coated lf-SWCNTs-pNO₂ and (b) gel-coated lf-SWCNTs-oP in H₂O measured at different temperature.

Fig. S15 The Van't Hoff plot of unsorted and length sorted gel-coated lf-SWCNTs- $oP E_{11}^* PL$ (a) and $E_{11}^* PL$ (b) in H₂O. Error bars mean the error estimated during peak deconvolution.