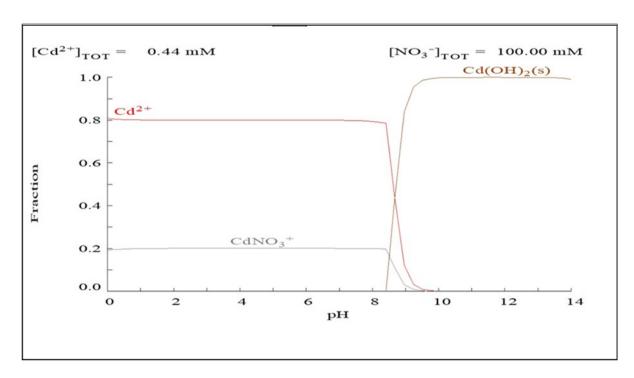
Supplementary Information

Amino-Alcohol functionalized porous polymer coupled with nanoparticles of metal hydroxide for efficient adsorption of Cd(II) from wastewater

Hamida Y. Mostafa ¹, Ahmed M. Masoud ², Adel A. El-Zahhar ³, Majed M. Alghamdi ³, Entsar H. Taha ⁴, Ahmed M.A. El Naggar ^{1*}, Mohamed H. Taha ²


¹ Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo- Egypt

² Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo-Egypt

³ Department of Chemistry, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia

⁴ Department of Plant Protection, Faculty of Agriculture, Ain Shams University

^{*} Corresponding author: drmeto1979@yahoo.com

Figure S1: Expected aqueous speciation of metal ion concentration (50 mg L⁻¹) for cadmium as a function of pH using Medusa/Hydra program.

Table S1: *Kinetic, isotherm, and fitting equations for Cd(II) adsorption process* [1-8].

Kinetics	Equations		
Pseudo-first-order	$q_t = q_1 (1 - e^{-k1t})$		
Pseudo-second-order	$q_t = \frac{1}{\left(1 \mid k_2 q_2^2\right) + \left(t \mid q_2\right)}$		
Intra-particle diffusion model (IPD)	$q_t = K_{id} t^{0.5} + C_i$		
Isotherms	Equations		
Langmuir model	$q_e = \frac{q_m k_L C_e}{1 + k_L C_e}$		
Freundlich model	$q_e = K_F C_e^{1/n_F}$		
Dubinin-Radushkevich (D_R) model	$\ln q_e = \ln q_S + K_{ad} \varepsilon^2$		
Sips model	$q_e = \frac{q_S (k_S C_e)^{mS}}{1 + (k_S C_e)^{mS}}$		
Fitting	Equations		
Average relative error (ARE)	$ARE = \frac{100}{n} \sum_{1}^{n} \frac{ q_{exp} - q_{pred} }{q_{exp}}$		
Chi-square coefficient (x^2)	$x^2 = \sum \left[\frac{(q_{exp} - q_{pred})^2}{q_{pred}} \right]$		

qe (mg g^{-1}) is the equilibrium concentration of metal ions, and qt (mg g^{-1}) is the adsorbed amount of metal ions after time t (min), Ce (mg L^{-1}) is equilibrium concentration of metal ions. k_1 (min⁻¹) and k_2 (min⁻¹) are the rate constants for the pseudo first and second order, respectively. K_{id} (mg/g. min^{0.5}) is a rate constant, and C is the thickness of the boundary layer. q_m and q_s are the maximum sorption capacity (mg. g^{-1}) of Langmuir and Sips models. k_L (L. mg⁻¹), K_F (L/ mg), K_{ad} (mol²/J²), and K_S (L/ mg) are represent the constants of Langmuir, Freundlich, Dubinin—Radushkevich, and Sips models. n refer to the sorption intensity, mS is Sips constant. q_s is the theoretical isotherm saturation capacity (mg/g). The mean sorption energy (E_{DR}) which equals $(1/\sqrt{2}K_{ad})$; ε is Dubinin—Radushkevich isotherm constant and equal $(R^T \ln(1+1/C_e))$ [6-7]. AER and X^2 are the relative error and Chi-square coefficients respectively, the number of test points is n, the experimental equilibrium capacity is q_{pred} (mg g^{-1}), while the predicted capacity is q_{pred} (mg g^{-1}).

References:

- 1) Hu, Q., Pang, S. and Wang, D., 2022. In-depth insights into mathematical characteristics, selection criteria and common mistakes of adsorption kinetic models: a critical review. Separation & Purification Reviews, 51(3), pp.281-299.
- 2) Yao, C. and Chen, T., 2017. A film-diffusion-based adsorption kinetic equation and its application. Chemical Engineering Research and Design, 119, pp.87-92.
- 3) Elzoghby, A., Fahmy, H., Taha, M. and Ibrahim, S., 2023. Active carbon-based waste packaging materials for uranium sorption from aqueous solution. Environmental Science and Pollution Research, pp.1-16.
- 4) Wang, J. and Guo, X., 2020. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, p.127279.
- 5) Al-Ghouti, M.A. and Da'ana, D.A., 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of hazardous materials, 393, p.122383.
- 6) Abou-Hadid, A.F., El-Behairy, U.A., Elmalih, M.M., Amdeha, E., El Naggar, A.M., Taha, M.H. and Hussein, A.E., 2022. Production of efficient carbon fiber from different solid waste residuals for adsorption of hazardous metals from wastewater samples. Biomass Conversion and Biorefinery, pp.1-16.
- 7) Saleh, T.A., 2022. Kinetic models and thermodynamics of adsorption processes: classification. In *Interface Science and Technology* (Vol. 34, pp. 65-97). Elsevier.
- 8) A.A. Younes, A.M. Masoud, M.H. Taha, Amino-functionalised cross-linked polyacrylamide for the adsorption of U(VI) ions from contaminated aqueous solutions, Int. J. Environ. Anal. Chem. (2021). https://doi.org/10.1080/03067319.2021.2003348.

 Table S2: The values of the applied Weber and Morris kinetic model parameters

	PS	EA-PS	Cr@EA-PS	
Weber and Morris model				
k _i (mg/g min ^{1/2})	0.04	0.05	0.11	
C	0.01	0.41	9.28	
R ²	0.99	0.99	0.99	

 Table S3: Sorption and desorption efficiencies (%) for five successive cycles.

	Sorption, %	Desorption, %
Run #1	93.2	93.4
Run #2	92.8	93.1
Run #3	91.3	92.1
Run #4	90.7	91.3
Run #5	90.1	90.4