Supporting Information

Porous polylactic acid fibers by centrifugal spinning with phase separation for oil removal application

Kenji Kinashi^{1*}, Masaki Negoro², Hoan Ngoc Doan^{3,4*}, Phu Phong Vo^{4,5}, Khanh Van Thi Khuat⁶, Wataru Sakai¹, Naoto Tsutsumi¹

¹ Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.

² Master's Program of Innovative Materials, Kyoto Institute of Technology, Matsugasaki, Sakyo, 606-8585 Kyoto, Japan

³ Tissue Engineering and Regenerative Medicine Laboratory, School of Biomedical Engineering, International University.

⁴ Vietnam National University Ho Chi Minh City, Vietnam.

⁵ Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.

⁶ Doctor's Program of Materials Chemistry, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.

Corresponding author emails: kinashi@kit.ac.jp; dnhoan@hcmiu.edu.vn

Figure S1. Fiber diameter distributions of the PLA fibers prepared from 10 wt% PLA solutions

Figure S2. Viscosity of PLA solutions with varying CHCl₃/DMF ratios.

Viscosity (mPa s)
421
207
70

 Table S1. Viscosity of the oils used for the oil absorption test.