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36 Text S1. Reagents and Chemicals.

37 Potassium monopersulfate triple salt (PMS, KHSO5·0.5KHSO4·0.5K2SO4, ≥ 99.5%), 

38 1-allylthiourea, Iron nitrate nonahydrate (Fe(NO3)3·9H2O), bisphenol A (BPA), 

39 Rhodamine B (RhB), sulfamethoxazole (SMX), hydrochloric acid (HCl, 37 wt.%), 

40 sodium hydroxide (NaOH), sulfuric acid (H2SO4, ＞ 98.0%), methyl alcohol (MeOH), 

41 ethanol absolute (EtOH), acetonitrile (ACN), Formate, isopropyl alcohol (IPA), tert-

42 butyl alcohol (TBA) and furfuryl alcohol (FFA) were purchased from Sinopharm 

43 Chemical Reagent Co., Ltd., China. Potassium thiocyanate (KSCN), p-Benzoquinone 

44 (q-BQ), Norfloxacin (OFL), 4-Chlorophenol (4-CP), Methyl Phenyl Sulfoxide (PMSO), 

45 5,5-Dimethyl-1-pyrroline N-oxide (DMPO, ≥ 97 %), and 2,2,6,6-tetramethyl-4-

46 piperidinol (TEMP, 99 %) were obtained from Aladdin Biochemical co., Ltd. (Shanghai, 

47 China). P-Chlorophenol (4-CP) was obtained from Shanghai Macklin Biochemical Co., 

48 Ltd. Benzoic acid (BA) and 4-nitrophenol (4-NP) was purchased from Shanghai Boer 

49 Chemical Reagent Co., Ltd. Silicon dioxide (SiO2) powder (20 nm) was purchased 

50 from Jinan Zhiding Welding Material Co., Ltd. Except for the mobile phase, which is 

51 chromatographically pure, all chemicals are of analytical grade and used without any 

52 further purification. Deionized water (18.25 MΩ cm) was used in all experiments.

53

54 Text S2. Characterizations.

55 The morphology of elements on the surface of FeSNC was examined using 

56 Scanning Electron Microscope (SEM) (Zeiss Merlin Compact). Energy Dispersive X-ray 

57 Detector (EDX) was analyzed by EDAX Inc. GENESIS. The degree of graphitization and 

58 defects in FeSNC was observed by Raman spectroscopy (Horiba LabRAM HR 

59 Evolution). The specific surface area, pore volume, pore size distribution and N2 

60 adsorption-desorption isotherms were determined by Quantachrome Autosorb-IQ3 

61 analyzer. The specific surface areas (SBET) were calculated using Brunauer-Emmett-

62 Teller (BET) equation, and the pore size distribution was calculated using the Barrett-

63 Joyner-Halenda (BJH) model. X-Ray Diffraction (XRD) patterns were obtained using 

64 Bruker D8 Advance equipped with Cu Kα radiation (40kV, 40 mA). X-ray 
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65 Photoelectron Spectroscopy (XPS) analysis was carried out on a Thermo Scientific K-

66 Alpha X-ray Photoelectron Spectrometer with Al Kα X-ray (hν = 1486.6 eV) radiation.

67

68 Text S3. Experimental details of the EPR analysis.

69 The common DMPO and TEMP were used as spin trapping agents. In the water-

70 mediated system, DMPO was used to trap ·OH/SO4·- and TEMP was used to trap 1O2 

71 produced in the reaction. In the methanol-mediated system, DMPO was used to trap 

72 O2·- produced. The specific operating parameters were: center magnetic field of 

73 3500.00 G, swept field width 100.0 G, power of 6.325 mW; microwave attenuation 

74 15.0 dB resonant frequency 9.826386 GHz, swept field time 30.00 s, modulation 

75 amplitude 1.000 G, modulation frequency 100.00 kHz, and number of sweeps 3 

76 times.

77

78 Text S4. Electrochemical test.

79 Using a standard three-electrode system, electrochemical experiments were 

80 performed on a CHI 660E electrochemical workstation. The working electrode was 

81 prepared as follows: 10.0 mg of FeSNC catalyst was weighed and mixed with 2.0 mL 

82 of ethanol and 0.25 mL of 5 wt.% Nafion solution (binder), and ultrasonication was 

83 carried out for 1 h to fully disperse the catalyst, and 20 μL of the dispersion was 

84 coated on a glassy carbon electrode, which was dried overnight in an oven at 60 ℃. 

85 A platinum sheet and a saturated silver chloride electrode were used as the counter 

86 electrode and reference electrode, respectively. The I-t curve of the catalyst was 

87 tested with 50 mM Na2SO4 as the electrolyte, and the applied voltage was -0.5 V. 

88 PMS and organic pollutants were added to the electrolyte solution at 100 s and 200 s, 

89 respectively, and the current changes were observed.
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Table S1. HPLC conditions for organic contaminants

Organic 
pollutants mobile phase (V/V) flow rate (mL·min-1) Wavelength 

(nm)

BPA MeOH/UPW = 70/30 1.0 230

SMX ACN/UPW = 30/70 1.0 265

OFL ACN/1% Phosphoric acid
= 15/85 1.0 288

4-CP MeOH/UPW = 70/30 1.0 278

NB ACN/UPW = 50/50 1.0 270

TC MeOH/0.1% Phosphoric 
acid = 60/401.0 1.0 360

BA MeOH/ 0.2 M ammonium 
acetate solution = 10/90 1.0 230

Table S2. Surface elemental content of FeSNC

Name Atomic % PP At. %

C1s 87.49 91.92

Fe2p 0.33 0.11

N1s 11.47 6.84

S2p 0.72 1.12

Table S3. BET specific surface area, pore volume and pore size of FeSNC, FeNC and 
SNC

catalyst SBET (m2·g-1) pore volume 
(cm3·g-1)

Average pore size 
(nm)

FeSNC 349.1 0.618 7.93

FeNC 90.1 0.119 6.63

SNC 360.7 0.849 10.82
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Table S4. Comparison of the catalytic activity of FeSNC with reported catalysts

Catalyst dosage
(mg/L) PMS (mM) Pollutants 

(mg/L)
Removal 

Efficicy (%)
Reaction 

Time (min) Ref.

FeSNC (0.1) 1.00 BPA (20) 100 3 This work

DPA-Fe2O3 (0.5) 3.25 BPA (15) 90 120 (1)

Fe0.8Co2.2O4 (0.1) 0.33 BPA (20) 95 60 (2)

CuFe2O4 (0.4) 0.81 BPA (50) 95 60 (3)

GAC (1.0) 5.70 AO7 (20) 100 60 (4)

N-rGO (0.12) 0.8 BPA (88) 95 7 (5)

Ca-BSAC (0.1) 0.33 BPA (22.83) 100 30 (6)

FeCNx-700 (50) 0.15 BPA (0.088) 94 5 (7)

FeCo2S4-CN (20) 0.15 SMX (4.99) 91.9 15 (8)

3D γ-
MnO2@ZnFe2O4/r

GO (0.1)
6.5 Phenol (20) 100 30 (9)

Co@N-C (0.1) 0.25 BPA (10) 100 10 (10)

FeOOH/Mt-TC-C 
(0.1) 1.00 BPA (20) 100 30 (11)

FeNP-N-C (0.15) 0.66 BPA (20) 100 30 (12)

Pd/g-C3N4 (0.1) 1.00 BPA (20) 60 91 (13)

Fe-NS@C (0.1） 1.00 BPA (20) 100 15 (14)

Fe-N-BC (0.2) 1.00 AO7 (20) 100 90 (15)

FeSA-N-C-20 
(0.15) 0.65 BPA (20) 100 30 (16)

EC-700-W (0.2) 0.5 SDZ (10) 100 60 (17)

SA-Mn-NC (0.05) 1.0 BPA (20) 100 5 (18)

NGC700 (0.1) 0.65 BPA (20) 98 4 (19)

Table S5. Actual Fe content of FeSNC and FeNC

catalyst Me (wt.%)

FeSNC 0.64

FeNC 4.81
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Fig. S1. Preparation of FeSNC catalyst
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Fig. S2. XPS survey of FeSNC.
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Fig. S3. Kinetic curves of BPA adsorption by FeSNC.

Fig. S4. (a) XPS survey of used FeSNC; High-resolution XPS spectrum of (b) Fe 2p, (c) S 

2p and (d) N 1s of used FeSNC.
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