Supporting Information Understanding CeO₂ Modified Defective Carbon as Electrocatalyst for Electrochemical Reduction of CO₂

Yihan Wu, Ying Chang**, Jingchun Jia*

College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot, 010022, China.

*Corresponding author. E-mail: changying@imnu.edu.cn, jjc1983@126.com

Figure S1. a) SEM image of V₀-C-1300, b) SEM image of V₀-CeO₂/C-900, c) SEM image of V₀-CeO₂/C-1100.

Figure S2. a) TEM image of V_0 -CeO₂/C-1300.

Figure S3. a) TEM image of V_0 -CeO₂/C-900.

Figure S4. a) TEM image of V_0 -C-1300.

Figure S6. XPS spectra of V_0 -C-1300: (a) survey spectra, (b) N1s, (c) C1s, (d) O1s.

Figure S8. a) N₂ adsorption/desorption isotherms, and b) pore size distribution of V₀-C-1300.

Figure S9. LSV curves of V₀-CeO₂/C-1300 in different atmospheres.

Figure S10. TEM image and EDS elemental mappings of V₀-CeO₂/C-1300 after stability test.

Figure S11. FE_{CO} of V₀-CeO₂/C-1300.

Figure S12. The electrochemical active area of V_0 -CeO₂/C at different temperatures and V_0 -C-1300.

Figure S13 The electrochemical impedance spectroscopic (EIS) Nyquist plots of V₀-CeO₂/C at different temperatures and V₀-C-1300.

Element	Line Type	k factor	Absorption Correction	Wt%	Wt% Sigma
С	K series	2.50675	1.00	95.14	0.45
N	K series	3.14061	1.00	0.48	0.34
Ce	L series	2.01965	1.00	4.39	0.30
Total:				100.00	

Table S1. The EDS element content of V_0 -C-1300.

Table S2. EXAFS fitting parameters at the Ce L-edge for various samples ($S_0^2=0.75$ from CeO₂)

	shell	CN^a	R ^b (Å)	$\sigma^{2c}(\text{\AA}^2)$	$\Delta E_0^{d}(eV)$	R factor
CeO ₂	Ce-O	8	2.32±0.01	0.0083	6.4±1.1	0.0179
C-C1	Ce-Cl	6.9±0.7	2.68±0.01	0.0107	52.00	0.0175
CeCl ₃	Ce-Cl	6.7±0.7	2.87±0.01	0.0107	-3.2±0.9	
Ce-Sample	Ce-O	6.0±0.7	2.28±0.03	0.0202	3.3±2.1	0.0175

^{*a*}*CN*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. R factor: goodness of fit. Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy were estimated as CN±20%; R ± 1%; $\sigma^2 \pm 20\%$.

Chemical formula	j/mA cm ⁻²	Product composition	Main products (FE)	Electrolyte	Electrolyzer type	Ref.
This work	12.6	CO H ₂	CO (79 %)	0.5M KHCO ₃	H-type cell	
Eu–N–C	16	CO H ₂	CO (59 %)	0.5M KHCO ₃	H-type cell	[1]
Pr-NC-8	~0.25	CO H ₂	CO (93 %)	0.5M KHCO3	standard three electrode system	[2]
$La_{0.6}Sr_{0.4}Fe_{0.8}Ni_{0.2}O_{3-\delta}$	193	CO H ₂	CO (99 %)	/	symmetrical half-cell	[3]
ZnLa/CN	2.5	CO H ₂	CO (26 %)	0.1M KHCO ₃	standard three electrode system	[4]
Y/NC and Sc/NC	~2	CO H ₂	CO(88 %)/ CO(81%)	0.5M KHCO ₃	H-type cell	[5]
Ce _{0.016} Zn _{0.984} O	24	CO H ₂	CO (88 %)	0.5M KHCO ₃	H-type cell	[6]

Table S3. The catalyst contains rare earth elements and the main product of CO₂RR is CO.

Reference

[1] X. Zeng, L. Liao, M. Wang, H. Wang, Rare-earth metal- N_6 centers in porous carbon for electrocatalytic CO₂ reduction, Physical Chemistry Chemical Physics 25 (2023) 20381-20394.

[2] F. Hu, L. Liao, B. Chi, H. Wang, Rare earth praseodymium-based single atom catalyst for high performance CO₂ reduction reaction, Chemical Engineering Journal 436 (2022)135271..

[3] C. Yang, Y. Tian, J. Pu, B. Chi, Anion Fluorine-Doped La_{0.6}Sr_{0.4}Fe_{0.8}Ni_{0.2}O_{3-δ} Perovskite Cathodes with Enhanced Electrocatalytic Activity for Solid Oxide Electrolysis Cell Direct CO₂ Electrolysis, ACS Sustainable Chemistry & Engineering 10 (2022) 1047-1058.

[4] Z Liang, L Song, M Sun, B Huang, Y Du, Tunable CO/H₂ ratios of electrochemical reduction of CO₂ through the Zn-Ln dual atomic catalysts[J]. Science advances, 2021, 7(47): eabl4915.

[5] J Liu, X Kong, L Zheng, X Guo, X Liu, J Shui, Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction[J]. ACS nano, 2020, 14(1): 1093-1101.

[6] X Ren, Y Gao, L Zheng, Z Wang, P Wang, Z Zheng, Y Liu, H Cheng, Y Dai, B Huang, Oxygen vacancy enhancing CO₂ electrochemical reduction to CO on Ce-doped ZnO catalysts[J]. Surfaces and Interfaces, 2021, 23: 100923.