SUPPORTING INFORMATION

High-valent oxovanadium metallosupramolecular species as catalysts for the oxidation of benzyl alcohol derivatives

Edi Topić,^a Josipa Sarjanović,^a Danijela Musija,^b Mirna Mandarić,^a Tomica Hrenar,^a Jana Pisk,^{*a} and Višnja Vrdoljak^{*a}

Table of Contents

1. Characterization of compounds	2
1.1. PXRD	4
1.2. SCXRD	7
1.3. UV-Vis	20
1.4. NMR spectroscopy	23
1.5. ATR-IR spectroscopy	25
1.6. TGA	27

^{a.}University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000 Zagreb, Croatia; E-mail: <u>visnja.vrdoljak@chem.pmf.hr</u>

^{b.}University of Zagreb, School of Medicine, Department of Chemistry and Biochemistry, Šalata 3, 10000 Zagreb, Croatia.

1. Characterization of compounds

Elemental analyses (C, H, and N) were performed by the Analytical Services Laboratory of Rudjer Bošković Institute, Zagreb.

Powder X-ray diffraction (PXRD) data were collected on a Malvern Panalytical Aeris diffractometer in the Bragg-Brentano geometry using CuK_{α} radiation ($\lambda = 1.5406$ Å). Powder patterns were collected at room temperature in the region between 5° and 40° (2 θ). The data were collected and visualized using the Malvern Panalytical HighScore Software Suite.¹

Single crystal diffraction (SCXRD)

High-quality single crystals were grown in a way described in the manuscript. Diffracted intensities were collected on Rigaku XtaLAB Synergy-S diffractometer equipped with Dualflex source (CuKa radiation, $\lambda = 1.54184$ Å), and HyPix detector using ω -scans. The crystals were kept at 170 K during data collection. Data were prepared using the CrysAlis program package.² The structures were solved with dual space methods using SHELXT.³ The refinement procedure by full-matrix least-squares methods based on F^2 values against all reflections included anisotropic displacement parameters for all non-H atoms. Hydrogen atoms bound to carbon atoms were placed in geometrically idealized positions and refined using the riding model with $U_{iso} = 1.2U_{eq}$ of the connected carbon atom or as ideal CH₃ groups with $U_{iso} = 1.5U_{eq}$. Where possible, hydrogen atoms attached to heteroatoms were located in the difference Fourier maps at the final stages of the refinement procedure. Disorder of alkoxy chains of 1β , 2β and 5β was modelled in two orientations based on peaks in difference Fourier map. Void volume electron density in 1t, 1 β , 2 β and 5 β was modelled using solvent mask as implemented in Olex2. All refinements were performed using SHELXL.⁴ The SHELX programs operated within the Olex2 suite.⁵ Geometrical calculations and molecular graphics were done with Platon⁶ and Mercury.⁷ CCDC 2367532-2367538 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033).

UV-Vis spectroscopy

UV-Vis measurements were carried out using a Varian Cary Bio 100 spectrophotometer with 1-cm quartz cuvettes. The UV-Vis spectra of H₂SIH and complexes **1t** and **1**–**6** were recorded in methanol and acetonitrile at room temperature immediately after solution preparation. All compounds, except complex **6**, were dissolved in methanol or acetonitrile within minutes using ultrasound. The concentrations used were 6.0×10^{-5} mol dm⁻³ for H₂SIH and complexes **1**–**5**, 1.5×10^{-5} mol dm⁻³ for complex **6** due to incomplete dissolution.

Nuclear magnetic resonance spectra (¹H, APT, gHMQC and gHMBC NMR) were acquired on a Bruker Avance 600 NMR spectrometer using a C/H dual 5 mm probe and z-gradient accessories at 298K in CD₃OD or CDCl₃ and TMS as the internal standard.

Attenuated Total Reflectance Infrared spectra (ATR-IR) were recorded on a Perkin Elmer Spectrum One spectrometer fitted with an ATR reluctance attachment. Spectra were collected in the 4000–450 cm⁻¹ range on a diamond window.

Differential scanning calorimetry (DSC) method was used for getting information about the purity of hydrazone. Measurement was performed under the nitrogen stream (10 mL min⁻¹) on the TA Discovery DSC 25 instrument using Tzero aluminium pans and lids. The heating rate was 10 K min⁻¹ in the

temperature range from 25 to 400 °C. The result was evaluated using the TA Instruments Trios (v5.1.1.46572) software.

Thermogravimetric analyses (TGA) were performed on a Mettler-Toledo TG/DSC 3+ Stare System thermobalance using open alumina crucibles under an oxygen atmosphere in the temperature range from 25 to 600 °C. All experiments were recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 10 mL min⁻¹. The results of TGA and experiments were evaluated using the Mettler STARe software.

Fourier Transform Infrared spectra (FTIR) of the gaseous products evolved during thermal decomposition of the complexes were recorded with the use of the thermobalance coupled online with the Nicolet iS50 FT-IR spectrometer (Thermo Scientific) by a transfer line heated at 200 °C. FTIR spectra were recorded in the range of 4000–400 cm⁻¹ with a resolution of 4 cm⁻¹.

Catalytic investigation

The catalytic oxidation of alcohols was monitored using gas chromatography (GC) on an Agilent 8860 chromatograph (Agilent Technologies, Santa Clara, CA, USA) equipped with a flame ionization detector (FID) and an HP-5 column (30 m \times 0.320 mm \times 0.25 µm). Quantification of reaction parameters was achieved through calibration curves generated from authentic standards of the reactants and products. The conversion of alcohols to their respective aldehydes was calculated relative to internal standards, including biphenyl for benzyl alcohol, acetophenone for 2-nitro and 2-chlorobenzyl alcohol, and dodecane for 2-methylbenzyl alcohol. Calibration curve correlation coefficients (R^2) were consistently high at 0.9999, confirming the accuracy of the quantification.

1.1. PXRD

Fig. S1 Powder X-ray diffraction patterns of (a) tetranuclear assembly $[VO(SIH)(OCH_3)]_4$ ·4CH₃OH (1t·4CH₃OH) obtained by reaction of NH₄VO₃ with H₂SIH in CH₃OH; (b) $[VO(SIH)(OCH_3)]_4$ ·4CH₃OH (1t·4CH₃OH) calculated from the X-ray single-crystal structure.

Fig. S2 Powder X-ray diffraction patterns of polynuclear assemblies $[VO(SIH)(OR)]_n$ belonging to α series: (a and b) R = OC₂H₅ (2α); (c and d) R = OC₃H₇ (3α), (e and f) R = OC₄H₉ (4α). The red lines indicate those of prepared samples, while the blue lines indicate those calculated from the X-ray single-crystal structures of the corresponding samples.

Fig. S3 Powder X-ray diffraction patterns of polynuclear assemblies $[VO(SIH)(OR)]_n$ belonging to α series: (a and b) R =OCH₃ (1 β ·0.25CH₃OH); (c and d) R = OC₂H₅ (2 β ·0.25C₂H₅OH), (e) R = OC₄H₉ (4 β); (f and g) R = OC₅H₁₀ (5 β). The red lines indicate those of prepared samples, while the blue lines indicate those calculated from the X-ray single-crystal structures of the corresponding samples.

(a) [VO(SIH)(OCH₃)]₄·4CH₃OH (**1t**·4CH₃OH) obtained by reaction of NH₄VO₃ with H₂SIH in CH₃OH;

(b) thermally activated complex $[VO(SIH)]_x$ obtained by heating of 1t-4CH₃OH for 1 hour at 165 °C;

(c) sample obtained upon an immersion of $[VO(SIH)]_x$ in methanol for one week;

(d) [VO(SIH)(OCH₃)]₄·4CH₃OH (1t·4CH₃OH) calculated from the X-ray single-crystal structure;

(e) sample obtained upon an immersion of $[VO(SIH)]_x$ in ethanol for one week;

(f) $[VO(SIH)(OC_2H_5)]_n \cdot 0.25CH_3OH$ (2 α) calculated from the X-ray single-crystal structure;

(g) sample obtained upon an immersion of [VO(SIH)]_x in propanol for one week;

(h) $[VO(SIH)(OC_3H_7)]_n(3\alpha)$ calculated from the X-ray single-crystal structure;

(i) sample obtained upon an immersion of [VO(SIH)]_x in butanol for one week;

(j) $[VO(SIH)(OC_4H_9)]_n$ (4 α) calculated from the X-ray single-crystal structure;

(k) sample obtained upon an immersion of $[VO(SIH)]_x$ in pentanol for one week;

(l) $[VO(SIH)(OC_4H_9)]_n(5\beta)$ calculated from the X-ray single-crystal structure;

1.2. SCXRD

Table S1 Experimental and	d crystallographic	data for α polymorphs	of [VO(OR)(SIH)] polymers
---------------------------	--------------------	------------------------------	---------------------------

Identifier	2α	3α	4α
Empirical formula	C ₁₅ H ₁₄ N ₃ O ₄ V	C ₁₆ H ₁₆ N ₃ O ₄ V	C ₁₇ H ₁₈ N ₃ O ₄ V
M _r	351.23	365.26	379.28
Т/К	169.99(10)	169.99(10)	169.99(10)
Crystal system	orthorhombic, dark red irregular	orthorhombic, brown plate	orthorhombic, orange irregular
Space group	P b c a	Pbca	Pbca
a/Å	13.05222(6)	12.9499(3)	12.5068(2)
b/Å	11.39032(5)	11.4867(3)	11.70940(10)
c/Å	21.55450(11)	21.6234(5)	23.1275(3)
α/°	90	90	90
β°	90	90	90
γ/°	90	90	90
<i>V</i> /Å ³	3204.49(2)	3216.52(13)	3386.96(8)
Ζ	8	8	8
$ ho_{ m calc}/ m g\ m cm^{-3}$	1.456	1.509	1.488
μ/mm^{-1}	5.391	5.393	5.143

F(000)	1440	1504	1568
Crystal size/mm ³	0.665×0.14×0.11	0.26×0.05×0.02	0.195×0.078×0.042
Radiation	$CuK\alpha (\lambda = 1.54184\text{\AA})$	$CuK\alpha (\lambda = 1.54184\text{\AA})$	$CuK\alpha (\lambda = 1.54184\text{\AA})$
2\Theta range/°	8.204 to 155.53	8.178 to 155.356	7.646 to 155.626
Index ranges	$-16 \le h \le 16,$ $-14 \le k \le 14,$ $-23 \le l \le 27$	$-8 \le h \le 16, \\ -14 \le k \le 14, \\ -26 \le l \le 27$	$-15 \le h \le 14, \\ -14 \le k \le 14, \\ -29 \le l \le 29$
Reflections collected	127302	16891	24059
Independent reflections	3412 [<i>R</i> _{int} = 1.44%, <i>R</i> _{sigma} = 5.88 %]	3389 [<i>R</i> _{int} = 3.33%, <i>R</i> _{sigma} = 3.87 %]	3604 [<i>R</i> _{int} = 2.82%, <i>R</i> _{sigma} = 3.79 %]
Data/restraints/parameters	3412/-/210	3389/-/218	3604/-/227
g_1, g_2 in w^a	0.0437, 1.5078	0.0479, 2.2125	0.0704, 3.7488
Goodness–of–fit on F^2 , S^b	1.096	1.068	1.077
Final <i>R</i> and wR^c values $[I \ge 2\sigma(I)]$	$R_1 = 2.87\%, wR_2 = 8.17\%$	$R_1 = 3.77\%, wR_2 = 9.95\%$	$R_1 = 4.76\%, wR_2 = 12.93\%$
Final <i>R</i> and <i>wR</i> ^c values [all data]	$R_1 = 2.89\%, wR_2 = 8.2\%$	$R_1 = 4.2\%, wR_2 = 10.24\%$	$R_1 = 5.13\%, wR_2 = 13.3\%$
Largest diff. peak/hole / e Å ⁻³	0.545/-0.339	0.620/-0.372	1.317/-0.558

 ${}^{a}w = 1/[\sigma F_{o}^{2} + (g_{1}P)^{2} + g_{2}P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$ ${}^{b}S = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})2]/(N_{r} - N_{p})\}^{1/2} \text{ where } N_{r} = \text{number of independent reflections, } N_{p} = \text{number of refined parameters.}$ ${}^{c}R = \Sigma||F_{o}| - |F_{c}|/\Sigma|F_{o}|; wR = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})2]/\Sigma[w(F_{o}^{2})2]\}^{1/2}$

Identifier	1 β·0.25CH ₃ OH	1t-4CH ₃ OH	2 β·0.25C ₂ H ₅ OH	5β
Empirical formula	$C_{57}H_{52}N_{12}O_{17}V_4$	C ₁₅ H ₁₆ N ₃ O ₅ V	$C_{31\cdot 34}H_{26}N_6O_{8\cdot 50}V_2$	$C_{35\cdot67}H_{28\cdot50}N_6O_8V_2$
M _r	690.43	369.25	724.60	771.03
T/K	169.98(10)	170(2)	293(2)	170(2)
Crystal system	orthorhombic, brown plate	tetragonal, yellow block	orthorhombic, brown plate	orthorhombic, brown block
Space group	I b c a	<i>I</i> -4	Ibca	I b c a
a/Å	22.0687(2)	18.1755(4)	20.6605(9)	21.2703(3)
b/Å	20.5886(2)	18.1755(4)	22.3137(8)	29.7362(4)
c/Å	26.8420(3)	10.3739(4)	29.1125(15)	22.5536(4)
α/°	90	90	90	90
β°	90	90	90	90
γ/°	90	90	90	90
<i>V</i> /Å ³	12196.0(2)	3427.0(2)	13421.2(10)	14265.1(4)
Ζ	16	8	16	16
$\rho_{\rm calc}/{\rm g~cm^{-3}}$	1.504	1.431	1.434	1.436
μ/mm^{-1}	5.668	5.112	5.181	4.901
F(000)	5648	1520	5921	6312
Crystal size/mm ³	0.227×0.19×0.051	0.09×0.06×0.05	0.32×0.02×0.02	0.05×0.03×0.02
Radiation	$CuK\alpha (\lambda = 1.54184 \text{\AA})$	$CuK\alpha (\lambda = 1.54184 \text{Å})$	$CuK\alpha (\lambda = 1.54184 \text{Å})$	$CuK\alpha (\lambda = 1.54184 \text{\AA})$

Table S2 Experimental and crystallographic data for β polymorphs of [VO(OR)(SIH)] polymers and 1t-4CH₃OH tetramer

2\Theta range/°	8.012 to 155.45	9.818 to 155.094	7.924 to 154.864	8.246 to 155.516
Index ranges	$-24 \le h \le 27,$ $-19 \le k \le 26,$	$-22 \le h \le 22,$ $-19 \le k \le 23,$	$-24 \le h \le 26,$ $-28 \le k \le 26,$	$-26 \le h \le 20,$ $-37 \le k \le 37,$
	$-33 \le l \le 34$	$-13 \le l \le 13$	$-35 \le l \le 35$	$-28 \le l \le 28$
Reflections collected	34430	17514	86108	33047
Independent reflections	$\begin{array}{c} 6412 \ [R_{\text{int}} = 2.55\%, \ R_{\text{sigma}} = \\ 3.15 \ \% \end{array}$	$3558 [R_{int} = 4.21\%, R_{sigma} = 5.22\%]$	$6996 [R_{int} = 4.66\%, R_{sigma} = 12.28\%]$	7431 $[R_{int} = 4.93\%, R_{sigma} = 8.63\%]$
Data/restraints/parameters	6412/-/409	3558/-/200	6996/-/428	7431/-/494
g_1, g_2 in w^a	0.0547, 11.9058	0.0506, 1.9758	0.0868, 7.4950	0.1305, 16.8622
Goodness–of–fit on F^2 , S^b	1.092	1.074	1.023	1.050
Final <i>R</i> and wR^c values $[I \ge 2\sigma(I)]$	$R_1 = 3.52\%, wR_2 = 9.99\%$	$R_1 = 3.81\%, wR_2 = 9.87\%$	$R_1 = 5.77\%, wR_2 = 14.71\%$	$R_1 = 6.78\%, wR_2 = 19.09\%$
Final <i>R</i> and <i>wR</i> ^c values [all data]	$R_1 = 3.77\%, wR_2 = 10.18\%$	$R_1 = 4.18\%, wR_2 = 10.28\%$	$R_1 = 9.49\%, wR_2 = 16.96\%$	$R_1 = 8.88\%, wR_2 = 20.74\%$
Largest diff. peak/hole / e Å ⁻³	0.348/-0.474	0.160/-0.291	0.581/-0.413	0.916/0.781
Flack parameter	-	0.005(4)	-	-

 ${}^{a}w = 1/[\sigma F_{o}^{2} + (g_{1}P)^{2} + g_{2}P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$ ${}^{b}S = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})2]/(N_{r} - N_{p})\}^{1/2} \text{ where } N_{r} = \text{number of independent reflections, } N_{p} = \text{number of refined parameters.}$ ${}^{c}R = \Sigma||F_{o}| - |F_{c}|/\Sigma|F_{o}|; wR = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})2]/\Sigma[w(F_{o}^{2})2]\}^{1/2}$

Fig. S5 Bond lengths in the coordination environment of the vanadium ion. Bond length standard deviations are omitted for clarity, and can be found in respective CIF files.

(a) 2α

(b) 3a

(c) 4a

(e) 1t

(f) 2β

Fig. S6 Asymmetric unit (top) and packing of molecules/polymers (bottom) for compounds characterized in this work. Atoms are shown as thermal ellipsiods at 50% probability level. Where applicable, void space is enclosed in yellow surface.

Fig. S7 Folded-square shape of tetranuclear complex 1t (side view).

1.3. UV-Vis

Compound	Solvent	$\lambda_{\rm max}/\rm nm~(\epsilon/\rm dm^3~mol^{-1}~\rm cm^{-1})$
	CH ₃ OH	$214 (1.88 \cdot 10^4), \sim 238^a, \sim 279^a, 288 (1.36 \cdot 10^4), \sim 299^a, 333 (1.17 \cdot 10^4)$
H ₂ SIH	CH ₃ CN	232 ($1.06 \cdot 10^4$), ~277 ^a , 286 ($1.69 \cdot 10^4$), 297 ($1.52 \cdot 10^4$), 329 ($1.24 \cdot 10^4$)
	CH ₃ OH	230 ($1.04 \cdot 10^5$), ~275 ^a , 322 ($6.95 \cdot 10^4$), 404 ($1.76 \cdot 10^4$)
	CH ₃ CN	231 (7.37 \cdot 10 ⁴), 271 (5.47 \cdot 10 ⁴), 323 (4.27 \cdot 10 ⁴), ~340 ^a , 403 (2.25 \cdot 10 ⁴)
	CH ₃ OH	231 (3.18·10 ⁴), ~275 ^a , 322 (2.09·10 ⁴), 404 (5.78·10 ³)
$[VO(SIII)(OCII_3)]_n$	CH ₃ CN	231 (2.02·10 ⁴), 267 (1.66·10 ⁴), 320 (1.29·10 ⁴), 390 (5.25·10 ³)
	CH ₃ OH	232 (2.68·10 ⁴), ~275 ^a , 322 (1.82·10 ⁴), 404 (4.46·10 ³)
$[VO(SIII)(OC_2II_5)]_n$	CH ₃ CN	$231 (1.27 \cdot 10^4), 267 (1.00 \cdot 10^4), 320 (7.89 \cdot 10^3), 390 (3.34 \cdot 10^3)$
	CH ₃ OH	231 (2.78·10 ⁴), ~275 ^a , 321 (1.88·10 ⁴), 404 (4.67·10 ³)
$[VO(SIII)(OC_3II_7)]_n$	CH ₃ CN	$231 (1.88 \cdot 10^4), 267 (1.54 \cdot 10^4), 320 (1.20 \cdot 10^4), 390 (4.89 \cdot 10^3)$
	CH ₃ OH	231 (2.88·10 ⁴), ~275 ^a , 322 (1.95·10 ⁴), 404 (4.80·10 ³)
$[VO(SIII)(OC_4II_9)]_n$	CH ₃ CN	231 (2.13·10 ⁴), 267 (1.74·10 ⁴), 320 (1.36·10 ⁴), 390 (5.59·10 ³)
	CH ₃ OH	231 (2.54·10 ⁴), ~275 ^a , 322 (1.71·10 ⁴), 404 (4.27·10 ³)
$[VO(SIII)(OC_5II_{11})]_n$	CH ₃ CN	231 (2.50·10 ⁴), 267 (2.05·10 ⁴), 320 (1.60·10 ⁴), 390 (6.59·10 ³)
	CH ₃ OH	229, ~275°, 322, 401
	CH ₃ CN	232, ~275°, 323, ~338°, 405

Table S3 UV-Vis spectral data of H_2 SIH and its complexes in methanol and acetonitrile.

^a Shoulder. ^b Due to incomplete dissolution of the compound, ε values remained undetermined.

Fig. S8 The UV-Vis spectra of H₂SIH and its complexes in methanol. The concentrations were 6.0×10^{-5} mol dm⁻³ for H₂SIH and [VO(SIH)(OR)]_n complexes (1–5), 1.5×10^{-5} mol dm⁻³ for [VO(SIH)(OCH₃)]₄ (1t), and below 3×10^{-5} mol dm⁻³ for [VO₂(HSIH)] (6).

Fig. S9 The UV-Vis spectra of H₂SIH and its complexes in acetonitrile. The concentrations were 6.0×10^{-5} mol dm⁻³ for H₂SIH and [VO(SIH)(OR)]_n complexes (1–5), 1.5×10^{-5} mol dm⁻³ for [VO(SIH)(OCH₃)]₄ (1t), and below 3×10^{-5} mol dm⁻³ for [VO₂(HSIH)] (6).

1.4. NMR spectroscopy

	H ₂ S	H ₂ SIH		[VO(SIH)(OC ₃ H ₇)]	
Atom	δ / ppm	δ / ppm	δ / ppm	δ / ppm	
	(¹ H)	(^{13}C)	(¹ H)	(¹³ C)	
1	8.56	151.41	8.84	154.41	
4	-	162.51	—	169.32	
5	_	140.92	—	139.94	
6	7.90	121.76	8.07	122.41	
7	8.76	149.75	8.68	149.27	
8	_	_	—	_	
9	8.76	149.75	8.68	149.27	
10	7.90	121.76	8.07	122.41	
11	-	117.99	—	120.18	
12	-	158.21	—	164.20	
13	6.95	116.34	7.04	116.45	
14	7.33	131.83	7.55	134.52	
15	6.94	119.24	6.96	102.14	
16	7.48	130.33	7.65	132.60	

Table S4 ¹H and ¹³C chemical shifts (ppm) of H₂SIH and [VO(SIH)(OC₃H₇)]

Scheme S1 The structural formula of H₂SIH with the NMR numbering scheme.

Fig. S10 A portion of the (a) ¹H NMR and (b) ¹³C NMR spectra in CD₃OD of H₂SIH (red line), $[VO(SIH)(OC_3H_7)]$ (blue line).

1.5. ATR-IR spectroscopy

Fig. S11 IR-ATR spectra of $[VO(SIH)(OCH_3)]_4$ ·4CH₃OH (for 1t·4CH₃OH), $[VO(SIH)(OCH_3)]_n$ ·0.25MeOH (1·0.25CH₃OH) and $[VO_2(HSIH)]$ (6) (from top to bottom).

Fig. S12 IR-ATR spectra of coordination polymers (compounds belonging to the β series are marked with an asterisk): $[VO(SIH)(OCH_3)]_n \cdot 0.25MeOH (1\beta \cdot 0.25CH_3OH), [VO(SIH)(OC_2H_5)]_n (2\alpha), [VO(SIH)(OC_2H_5)]_n \cdot 0.25C_2H_5OH (2\beta \cdot 0.25C_2H_5OH), [VO(SIH)(OC_3H_7)]_n (3\alpha), [VO(SIH)(OC_4H_9)]_n (4\alpha), [VO(SIH)(OC_4H_9)]_n (4\beta), [VO(SIH)(OC_4H_9)]_n (5\beta) (from top to bottom).$

1.6. TGA

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 t / °C

Fig. S13 TG curve of $[VO(SIH)(OCH_3)]_4$ ·2MeOH (1t·2CH₃OH) under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 t / °C

Fig. S14 TG curve of 1β ·0.25 CH₃OH under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

Fig. S15 TG curve of 2α under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 t/°C

Fig. S16 TG curve of **2** β •0.25CH₃OH under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

Fig. S17 TG curve of 3α under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

Fig. S18 TG curve of 4α under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 °C t/°C

Fig. S19 TG curve of 4β under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

17 0

Fig. S20 TG curve of 5 β under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

Fig. S21 TG curve of **6** under the O₂ atmosphere in the range of 25 - 600 °C. Experiment was recorded with a heating rate of 5 °C min⁻¹ in a dynamic atmosphere with a flow rate of 200 cm³ min⁻¹.

References

² Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.42.49; Rigaku Oxford Diffraction: Oxford, UK, 2020.

³ G. M. Sheldrick, SHELXT– Integrated space-group and crystal-structure determination. *Acta Crystallogr. A Found. Adv.* **2015**, 71, 3–8. doi:10.1107/s2053273314026370

⁴ G. M. Sheldrick, Crystal structure refinement with SHELXL. *Acta Crystallogr. C Struct. Chem.* 2015, **71**, 3–8. doi:10.1107/s2053229614024218.

⁵O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, 42, 339-341. doi: 10.1107/s0021889808042726.

⁶ A. L. Spek, Structure validation in chemical crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **2009**, 65, 148–155. doi:10.1107/s090744490804362x.

⁷ C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, The Cambridge Structural Database. *Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater.* **2016**, 72, 171-179. doi:10.1107/s2052520616003954

¹ T. Degen, M. Sadki, E. Bron, U. König, G. Nénert, The High Score suite. Powder Diffr. 2014, **29**, S13–S18. https://doi.org/10.1017/s0885715614000840