Supporting Materials

Fabrication of disposal microextraction analytical tool for in-vitro detection of *Staphylococcus* bacterial pathogen using volatile metabolites emission

Keerthana Selvamuthukumar^a, Debsmita Mandal^a, Harshika Poojary^a, Gouri Illanad^b, Bharath Prasad AS^c, Sophia Koo^{d,e,f} and Chiranjit Ghosh^{* a,d,e}

^a Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education, Manipal (MAHE), Karnataka, 576104, India.

^b Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, 580021, India

^c Department of Public Health Genomics, Manipal School of Life Sciences (MSLS), Manipal Academy of Higher Education, Manipal (MAHE), Karnataka 576104, India.

^d Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115

^e Harvard Medical School, Harvard University, 25 Shattuck Street, Boston, 02115, MA, USA

^f Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA

* Corresponding Author: Chiranjit Ghosh

Email: chiranjit.ghosh@manipal.edu

1. Fundamental theory of direct immersion and headspace mode in SPME

In the past few years, significant advancements have been made in solid-phase microextraction and thin-film microextraction, which are considered the popular non-exhaustive and passive sampling techniques. The SPME technology works on the partition equilibrium between the sample matrix and the sorbent coating¹. The main operational principle to quantitate the extracted compounds by the following procedure can be determined through the equation 1:

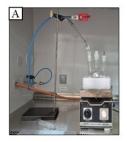
$$n_e^{eq} = \frac{K_{es}V_eV_s}{K_{es}V_e + V_s}C_s^0 \tag{1}$$

where n= quantity of analytes extracted, Ve= Volume of the extraction phase, vs= sample volume, Kes = The distribution constant of the analyte in the extraction phase to the sample matrix and Cs = sample concentration.

There are two common extraction modes in the SPME technique: direct immersion (DI-SPME) and headspace analysis (HS-SPME). In DI-SPME, the sorbent-coated fiber is directly immersed in the sample matrix, facilitating mass transfer from the sample matrix to the SPME-coated fiber.

Equation (2) depicts the DI-SPME in the condition when the sample volume (VS) is much higher than the Kes and Ve

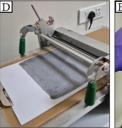
$$n = K_{es} V_e C_s \tag{2}$$

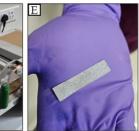

In case of the headspace analysis, the fiber is exposed to the headspace, which consists of volatile and semi-volatile compounds present above the sample matrix. The equation for the headspace is represented in the equation 3.

Where Khs represents the distribution constant available between the sample matrix and the headspace, Vhs is the volume of the headspace (negligible).

The mode of extraction used in the study will be chosen based on the researcher's requirements. For instance, DI-SPME enhances the extraction efficiency, particularly for the polar and semivolatile compounds, making it resourceful for the untargeted analysis for capturing innumerable compounds. The HS-SPME can be used in situations where direct contact between the sample and the SPME device should be avoided to reduce the fouling and extend the lifespan of the coating².

Figure S1: Direct immersion and headspace extraction of metabolites from *Staphylococcus aureus* culture media


200 ml of Acetonitrile solution


5ml of DVB monomer and 300mg of Azobisisobutyronitrile (AIBN)

DVB particles

Coating process

TF-SPME patch

Figure S2: Fabrication of p-TF-SPME patch from the synthesized DVB polymer

Table S1: The parameters associated with the BAGI score³

S. No	Parameters	Factors considered	Justification
1	Type of Analysis	Screening	Our study relies on
			untargeted analysis
2	Multi- or single-element	Multi-element	We were able to
	analysis	methods that are used	determine 8
		for the determination	compounds of
		of 6-15 analytes of	different classes
		the same chemical	through the direct
		class or 2–15	immersion and
		analytes of different	headspace mode of
		chemical class	extraction and later
			analysis through the
			GC-MS
3	Analytical technique	Instrumentations that	We used GC-MS/MS
		are not commonly	which are not
		available in the	commonly available
		laboratories	in the labs.
4	Simultaneous sample	2-12	We were able to
	preparation		perform 10 samples at
			the same time for the
			sample preparation.
5	Sample preparation	Miniaturized	We used a
		extraction sample	miniaturized
		preparation	extraction technique
		technique	based on SPME
6	Samples per h	2 hours	1.5 hours for
			achieving O.D
			30 minutes for the
			desorption
7	Reagents and materials	Commonly available	We used for 1ml of
		reagent Acetonitrile	acetonitrile for the
		(ACN) was used	desorption of the
			metabolites that were

			extracted from the p-
			TF-SPME patch
8	Preconcentration	One step	We incorporated TF-
		preconcentration step	SPME based
		is required to attain	approach for the
		the sensitivity	preconcentration
9	Degree of automation	Semi-automated	It is a semi-automated
		method with the	analysis through GC-
		common device	MS/MS
10	Amount of Sample	100-500 µL (or mg)	Only 300 µL of
		bioanalytical samples	bioanalytical samples
			were utilised for the
			analysis

References

- L. Cai, J. Dong, Y. Wang and X. Chen, *Electrophoresis*, 2019, **40**, 2041–2049.
- 2 E. Gionfriddo, É. A. Souza-Silva and J. Pawliszyn, *Anal Chem*, 2015, **87**, 8448–8456.
- 3 N. Manousi, W. Wojnowski, J. Płotka-Wasylka and V. Samanidou, *Green Chemistry*, 2023, **25**, 7598–7604.