Supplementary Information

Enhancing HER Performance via Nitrogen Defects: A

Comparative DFT Study of Fe and Ru Single-Atom

Catalysts on Graphene

Hongyu Yang¹, Xin Xia^{1*}, Shijie An¹, Moujie Huang², Hao Ma¹, Feng Ye¹, Chuang Peng², Chao Xu¹

¹Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing 102206, China ² School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China *Corresponding author: xxia@ncepu.edu.cn(X. Xia)

Supplementary Figures

Figure S1. The optimized structures Ru on the substrate of (a)graphene, (b)N_graphitic, (c)N_pyridinic and (d)N_pyrrolic doped graphene; The optimized structures of Fe SA on the substrate of (e)graphene, (f)N_graphitic, (g)N_pyridinic and (h)N_pyrrolic doped graphene. the C, N, Ru and Fe atoms are represented by dark brown, blue, gray and yellow balls, respectively.

Figure S2. PDOS and COHP analysis for Fe SACs on the (a) N_pyrrolic, (b) 2N, (c) 3N and (d) 4N-doped graphene substrates.

Figure S3. COHP of C-H bonds for (a) Ru SAC@N_pyrrolic, (b) Ru SAC@3N, (c)Fe SAC@N_pyrrolic and (d)Fe SAC@3N doped graphene

Figure S4. The optimized hydrogen adsorption configurations for (a)Vac₂_C and (b)Fe SAC@N_pyridinic doped graphene. Dark brown, blue, yellow and white represent C, N, Fe and H, respectively.

Figure S5. COHP of Ru-H bonds for (a)Ru SAC@2N, (b)Ru SAC@4N; COHP of Fe-H bonds for (a)Fe SAC@2N, (b)Fe SAC@4N doped graphene

Figure S6. Electron Density Difference mapping for Fe deposition on the substrates (a)N_graphitic, (b)N_pyridinic, (c)N_pyrrolic, (d)2N_Vac, (e)3N_Vac and (f)4N_Vac. The yellow and blue areas denote electron accumulation and depletion, respectively.

Figure S7. The optimized hydrogen adsorption configurations for (a)Ru SAC @N_pyrrolic, (b)Ru SAC@2N, (c)Ru SAC@3N, (d)Ru SACs@4N,(e)Fe SAC @N_pyrrolic, (f)Fe SAC@2N,(g)Fe SAC@3N and (h)Fe SACs@4N doped graphene. Dark brown, blue, gray, yellow and white represent C, N, Ru, Fe and H, respectively.

Figure S8. volcano plots of max $|\Delta G_{H^*}|$ vs binding energy (E_{bind}) of (a) Ru SACs and (b) Fe SACs on N doped graphene substrates. The worst absorption case represented by the maximum $|\Delta G_{H^*}|$ is considered as the most limiting step of HER reaction in the acidic condition. Note that, the zigzag site nitrogen in metal SAC@N_pyridinic and 3N show very strong deprotonation tendency $(\Delta G_{H^*}>1.4\text{eV})$, these sites are considered as non-active sites during HER.

Figure S9. volcano plots of ΔG_{H^*} varies with the positive charge of supported Co SACs.

Supplementary Tables

Structure	E/atom	E_{DEF}
Structure	(eV)	(eV)
Gra_C	-9.22	/
Vac_C	-8.76	7.89
Vac ₂ _C	-8.88	5.47
N_graphitic	-9.12	0.91
N_pyridinic	-8.80	6.19
N_pyrrolic	-8.66	8.64
2N_Vac	-8.83	4.73
3N_Vac	-8.85	3.67
4N_Vac	-8.82	3.18
$N_Vac_2_C$	-8.81	5.75
$2N_Vac_2$	-8.66	7.19
$3N_Vac_2$	-8.72	5.34
$4N_Vac_2$	-8.77	3.51

Table S1. Calculated energetic results for various substrate models of N doped graphene. E_{DEF} represents the defect formation energy.

Table S2. Calculated energetic and bond formation results of Fe SACs on the various models of defect containing graphene substrates. E_{bind} [Fe] represents the binding energy of Fe. ΔE represents the total formation energy of Fe SACs@N_x moieties. i.e. $\Delta E = E_{DEF} + E_{bind}$ [Fe]. $d_{\text{Fe-N}}$ represents the distance between the Fe and N atoms. $d_{\text{Fe-C}}$ represents the distance between the Fe and neighboring C atoms. Q_{Fe} represents the positive charge of Fe atoms on the N doped substrate derived from Bader charge analysis.

Structure	E _{bind} [Fe] (eV)	ΔE (eV)	d _{Fe-N} (Å)	d _{Fe-C} (Å)	$Q_{\rm Fe}$ (eV)	ICOHP Fe-N (eV)
Gra_C	4.61	4.61	/	2.07	+0.43	/
Vac_C	-2.58	5.31	/	1.76	+0.71	/
Vac ₂ _C	1.03	6.50	/	1.85	+0.91	/
$N_Vac_2_C$	3.06	8.81	1.85	1.84	+0.74	-2.48
N_graphitic	4.61	5.52	2.41	2.01	+0.60	-0.10
N_pyridinic	-1.99	4.20	1.77	1.76	+0.53	-3.47
N_pyrrolic	-0.99	7.65	1.73	1.83	+0.75	-3.70
2N	-0.36	4.37	1.78	1.74	+0.84	-3.37
3N	0.35	4.02	1.78	/	+1.03	-3.28
4N	-2.09	1.42	1.88	/	+0.99	-2.68

Table S3. Calculated energetic and bond formation results of Ru SACs on the various models of defect containing graphene substrates. E_{bind} [Ru] represents the binding energy of Ru. ΔE represents the total formation energy for the Fe SACs@Nx moieties, i.e. $\Delta E = E_{DEF} + E_{bind}$ [Ru]. d_{Ru-N} represents the distance between the Ru and N atoms. d_{Ru-C} represents the distance between the Ru and neighboring C atoms. Q_{Ru} represents the positive charge of Ru atoms on the N doped substrate derived from Bader charge analysis.

Structure	E _{bind} [Ru] (eV)	ΔE (eV)	d _{Ru-N} (Å)	d _{Ru-C} (Å)	$Q_{ m Ru}$ (eV)	ICOHP Ru-N (eV)
Gra_C	5.98	5.98	/	2.22	+0.39	/
Vac_C	-1.41	6.48	/	1.87	+0.66	/
Vac ₂ _C	1.49	6.96	/	2.02	-0.56	/
N_graphitic	5.68	6.59	2.60	2.13	+0.38	-0.03
N_pyridinic	-0.07	6.12	1.91	1.87	+0.32	-3.75
N_pyrrolic	0.15	8.79	1.97	1.98	+0.49	-3.02
$N_Vac_2_C$	4.37	10.12	2.05	1.96	+0.74	-2.38
2N	1.36	5.79	1.92	1.86	+0.70	-3.68
3N	2.34	6.01	1.91	/	+0.81	-3.68
4N	0.25	3.35	1.94	/	+0.96	-3.46

	Ru			Fe			
	Adsorption	Distance	ICOUD	Adsorption	Distanc	ICOUD	
	sites		(\mathbf{N})	sites	e	$(\mathbf{a}\mathbf{V})$	
	Bond	(A)	(67)	Bond	(Å)	(67)	
N_pyrrolic	С-Н	1.20	-5.45	Fe-H	1.55	-2.84	
2N	Ru-H	1.68	-2.93	Fe-H	1.57	-2.70	
3N	С-Н	1.12	-5.77	C-H	1.12	-5.77	
4N	Ru-H	1.58	-2.93	Fe-H	1.63	-2.08	

 Table S4 The calculated bonding information for H adsorption on the N-doped graphene.

Table S5 Calculated charge state of Ru and Fe SACs and energetic results for hydrogen adsorption. All possible H* adsorption sites on the substrates have been considered. Q_M denotes the positive charge of metal SACs on the N doped substrate (derived from Bader charge analysis).

Substrate Structure	Q _{Ru}	ΔG _{H*} @Ru	∆G _{H*} _{min} (eV)	ΔG _{H*} _{max} (eV)	Q _{Fe}	ΔG _{H*} @Fe	∆G _{H*} _{min} (eV)	ΔG _{H*} _{max} (eV)
N_graphiti	0.38	-0.42	(-)0.42	0.81	0.60	-0.39	(-)0.39	0.81
с								
N_pyridini	0.32	-0.49	0.34	(-)0.49	0.53	-0.38	(-)0.14	0.66
c								
N_pyrrolic	0.49	0.21	0.01	0.26	0.75	0.02	0.02	0.47
2N	0.70	-0.10	(-)0.10	(-)0.30	0.84	-0.01	(-)0.01	(-)0.23
3 N	0.81	-0.41	0.19	0.57	1.03	-0.28	0.26	0.72
4N	0.96	-0.64	0.59	(-)0.64	0.99	-0.18	(-)0.18	0.84

Table S6 Calculated charge state of Co SACs and energetic results for hydrogen adsorption. All possible H* adsorption sites on the substrates have been considered. Q_M denotes the positive charge of Co SACs on the N doped substrate (derived from Bader charge analysis).

Substrate Structure	E _{bind} [Co] (eV)	Q _{Co}	ΔG _{H*} @Co	ΔG _{H*} _{min} (eV)	ΔG _{H*} _{max} (eV)
N_graphitic	4.06	0.43	-0.34	(-)0.34	0.84
N_pyridinic	-1.59	0.75	0.05	0.05	0.80
N_pyrrolic	-1.42	0.85	0.41	0.20	(-)0.50
2N	-0.13	0.77	-0.3	(-)0.30	(-)0.46
3N	0.67	0.89	-0.4	0.30	0.54
4N	-2.65	0.82	0.05	0.05	0.82

Substrate Structure	*⊿E[Ru] (eV)	*⊿E [Fe] (eV)
N_graphitic-2H	2.83	1.95
N_pyridinic-2H	2.99	2.75
N_pyrrolic-2H	3.89	2.89
2N-2H	4.05	2.54
3N-2H	4.34	2.57
4N-2H	2.83	0.72

Table S7 Ru and Fe SACs substitution on the edge sites of N doped graphene. $*\Delta E$ represents the energy required to replace 2H on the substrate with metal ions.