Continuous synthesis of hexanitrostilbene by difunctional

electrochemical reactor

Supporting Information

Table of contents:

1.Experiments for electrochemical conversion		
2. Experiments for mixing effect of static mixer	S3	
3.Laboratory preparation	S4	
4.NMR spectra	S4	
5.Optimization of feed flow rate	S5	

1.1 Electrochemical conversion of TNT

Fig. S1 Liquid phase diagram of TNT pre-electrochemistry and post-electrochemistry. **1.2 Electrochemical conversion of TNBCl**

Fig. S2 Liquid phase diagram of TNBCl pre-electrochemistry and post-electrochemistry.

1.3 Hydrogen nuclear magnetic spectra of TNT

Fig. S3 (A) Hydrogen nuclear magnetic spectra of TNT pre-electrochemistry (500 MHz, DMSO-d6) δ = 8.9732, 3.2544. (B) Hydrogen nuclear magnetic spectra of TNT post-electrochemistry (500 MHz, DMSO-d6) δ = 8.9721, 3.2797.

1.4 Hydrogen nuclear magnetic spectra of TNBCl

Fig. S4 (A) Hydrogen nuclear magnetic spectra of TNBCl pre-electrochemistry (500 MHz, DMSO-d6) $\delta = 8.9721$, 3.2609. (B) Hydrogen nuclear magnetic spectra of TNBCl post-electrochemistry (500 MHz, DMSO-d6) $\delta = 8.9589$, 3.2609.

1.5 Hydrogen nuclear magnetic spectra of HNBB

Fig. S5 (A) Hydrogen nuclear magnetic spectra of HNBB pre-electrochemistry (500 MHz, DMSO-d6) δ = 9.0470, 3.3154. (B) Hydrogen nuclear magnetic spectra of HNBB post-electrochemistry (500 MHz, DMSO-d6) δ = 9.1091, 9.0738, 7.1416, 3.3595. The NMR peak of HNS (δ = 9.1091, 7.1416) appeared in the electrochemical products of HNBB, but not in the electrochemical products of TNT and TNBCl.

1.6 Details about Faradaic efficiency calculations.

$$FE (\%) \text{ for HNS production} = \frac{mol of HNS formed \times 96485}{Q/2} \times \frac{100\%}{100\%}$$

At a constant current of 8 mA for 900 s, Q =7.2 C. Due to a conversion rate of 74.33%, 4.4 mM

HNBB is converted to 0.0327 mmol of HNS in 10 ml of DMSO.

 $\begin{array}{r} 0.0327 \times 0.001 \times 96485 \times 2 \\ FE = & 7.2 \\ \end{array} = 87.65\%$

1.7 Standard curve of HNS and HNBB

Fig. S6 (A) The standard curve of HNS, $y=1.085 \times 10^8 x-785333$ (R² = 0.999). (B) The standard curve of HNBB, $y=1.009 \times 10^8 x-86949$ (R² = 0.999).

2.1 Mixing effect of static mixer

Fig. S7 Segmented preparation diagram.

2 g TNT was dissolved in 11 mL MeOH and 22 mL THF as solution 1, fed at the rate of 1.5 mL/s. 11 mL 5% NaClO solution was added to 10 mL water as solution 2, fed at the rate of 1 mL/s. 0.15 g $^{n}Bu_{4}NBF_{4}$ and 0.05 g DABCO were added in three-neck flask, filtration after 1.5 h under 8 mA current.

3 Laboratory preparation

Fig. S8 Physical diagram of the electrochemical reactor.

4 NMR spectra

Fig. S9 Hydrogen nuclear magnetic spectra of HNS synthesized by electrochemical reactor 1H NMR (500 MHz, DMSO-d6) δ = 7.143 (s, 2H), 9.112 (s, 4H).

5 Optimization of feed flow rate

Entry	Flow rate of	Flow rate of	Reaction	ⁿ Bu ₄ NBF ₄ /g	DABCO/g	Current/A	Yield/%
	TNT (mL/s)	NaClO (mL/s)	time/h				
1	1	0.7	0.5	0.04	0.02	0.008	51.21 ± 0.39
2	1.5	1	0.5	0.04	0.02	0.008	58.53±0.26
3	2	1.4	0.5	0.04	0.02	0.008	53.78±0.18
4	2.5	1.75	0.5	0.04	0.02	0.008	49.91±0.27

Table S2 The influence of flow rate on yield of HNS synthesized by TNT in one step

Notes: According to the conversion relationship between flow rate and flow velocity, $Q = v \times S$. Flow rate: 1 mL/s, Pipe diameter: 1.6 mm. 1 cm³/s = $v^*\pi^*0.08^*0.08$, about 0.5 m/s. The velocities for solution 1 are simulated at 0.5 m/s, 0.75 m/s, 1.0 m/s, and 1.25 m/s in CFD. Similarly, the velocities for solution 2 are simulated at 0.35 m/s, 0.5 m/s, 0.75 m/s, and 0.87 m/s.

The flow rate ratio was kept consistent with the volume ratio. 2 g TNT was dissolved in 11 mL MeOH and 22 mL THF as solution 1, 11 mL 5% NaClO solution was added to 10 mL water as solution 2, 0.04 g $^{n}Bu_{4}NBF_{4}$ and 0.02 g DABCO were added. The reaction continued for 30 min and the constant current was 8 mA, the pH of solution was controlled to be 10 - 10.5. To prevent HNS from blocking the microchannels, the prepared solution was subjected to ice water bath.