Supporting Information

Water-assisted ketonization of methyl palmitate to palmitone over metals incorporated TiO₂ catalysts

Jetsadagorn Pittayatornkul^a, Tosapol Maluangnont^{* b}, Siriporn Jongpatiwut ^c, Piyasan Praserthdam^d, Makoto Ogawa^e and Tawan Sooknoi^{** a,f,}

^a Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
^b College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
^c The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
^d Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
^e School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
^f Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
^c Corresponding author email * tosapol.ma@kmitl.ac.th, ** kstawan@gmail.com
^c Co-author email <u>64605025@kmitl.ac.th, Siriporn.j@chula.ac.th, Makoto.ogawa@vistec.ac.th, piyasan.p@chula.ac.th</u>

Fig. S1. Tauc plot of reduced catalysts

Entry	Catalyst -	Acidity (μmol/g)			
		Weak	Medium	Strong	
1	TiO ₂	3.70	1.90	0.58	
2	0.5Pt/TiO ₂	2.83	0.80	1.50	
3	0.5Ru/TiO ₂	4.20	1.60	0.60	
4	0.5Pd/TiO ₂	6.93	4.30	1.29	
5	TiO ₂ sol-gel	4.67	2.44	2.00	

Fig. S2. NH₃-TPD of reduced catalysts

Fig. S3. TGA of spent TiO_2 from the reaction with/without water co-fed.

Fig. S4. XRD of the spent catalysts under various conditions

Fig. S5. Raman spectra of the fresh and spent TiO_2 (a) and $0.5Pd/TiO_2$ (b).

Table S1 Peak area and D/G band ratio from Raman spectra of the spent TiO_2 under H_2 and N_2 as carrier gas

Entry	Catalyst	Pea		
		D-band	G-band	D/G
1	Spent TiO ₂ under N ₂	148229	113545	1.3
2	Spent TiO ₂ under H ₂	57735	76685	0.75

Reaction condition 10% Methyl palmitate in dodecane : 3.1 ml/h, carrier gas flow rate : 50 ml/min, contact time : 581 gh/mol, activation temperature : 400 °C in air, reduction temperature : 400 °C under H_2 , reaction temperature : 400 °C, water : feed ratio 0.24

Fig. S6. Time on stream profiles for ketonization of methyl palmitate over TiO_2 and TiO_2 sol-gel *Reaction condition 20%Methyl palmitate in dodecane : 3.1 ml/h, N₂ or H₂ flow rate : 50 ml/min, contact time : 58 gh/mol, activation temperature : 400 °C in air, reduction temperature : 400 °C under H₂, reaction temperature : 400 °C, water : feed ratio 0.24*

Fig. S7. CO₂-TPD profiles and basicity of reduced 0.5Pd/TiO₂ and TiO₂ catalysts

Fig. S8. Contact time profile for ketonization of methyl palmitate over TiO_2 catalyst Reaction condition 10%Methyl palmitate in dodecane : 3.1 ml/h, N_2 or H_2 flow rate : 50 ml/min, contact time : 58-581 gh/mol, activation temperature : 400 °C in air, reduction temperature : 400 °C under H_2 , reaction temperature : 400 °C, water : feed ratio 0.24