Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2024

Supplementary materials

Selective hydrogenation of CO₂ to formic acid with higher yield in an aqueous medium

with a nano-nickel-metal catalyst: reaction parameter optimization by response

surface methodology (RSM)

Rajeev Ranjan, Prakash Biswas*, and K. K. Pant

Affiliation

Department of Chemical Engineering, Indian Institute of Technology Roorkee,

Roorkee-247667, Uttarakhand, India

*Corresponding author: Tel.: (+91)-1332-28-5820

Email: prakash.biswas@ch.iitr.ac.in; prakashbiswas@gmail.com

Contents

- 1. N_2 adsorption-desorption isotherm of nano-nickel catalyst
- 2. FTIR spectrum of NiO-SG catalyst
- 3. DR-UV-vis spectra of NiO-SG catalyst
- 4. FE-SEM images with EDX of catalysts
- 5. Catalyst screening for the CO₂ hydrogenation to formic acid
- 6. ¹H NMR of the reaction mixture
- 7. XRD pattern of nano-nickel catalyst
- 8. Formic acid yield for recycles experiments
- 9. Results obtained from CO₂-TPD for basic sites
- 10. Selected factors with their corresponding coded values

References

1. N_2 adsorption-desorption isotherm of nano-nickel catalyst

Figure S1. N₂ adsorption-desorption isotherm of nano-nickel catalyst (a) NiO-PM, (b) NiO-HT, (c) NiO-SG, (d) NiO-DC.

2. FTIR spectrum of NiO-SG catalyst

Figure S2. FTIR spectra of NiO-SG catalyst^{1,2}.

3. DR-UV-vis spectra of NiO-SG catalyst

Figure S3. (a) UV-vis diffuse reflectance spectra (DRS) of NiO-SG catalyst, (b) Tauc plot of NiO-SG catalyst^{3,4}.

4. FE-SEM images with EDX of catalysts

Figure S4. FE-SEM images with EDX of (A) NiO-PM, (B) NiO-PM EDX, (C) NiO-HT, (D) NiO-HT EDX, (E) NiO-SG, (F) NiO-SG EDX, (G) NiO-DC (H) NiO-DC EDX.

5. Catalyst screening for the CO₂ hydrogenation to formic acid

Figure S5. CO₂ hydrogenation to formic acid over various catalysts

Reaction condition: 200 °C, 60 bar pressure, 1 g catalyst, water as solvent.

6. ¹H <u>NMR of the reaction mixture</u>

Page 8 of 13

Figure S6. (A) ¹H NMR of the reaction mixture with DMSO-d6 as a reference^{5–7}.

7. XRD pattern of nano-nickel catalyst

Figure S7. XRD pattern of nano-nickel catalyst (a) NiO-R1, (b) NiO-SG.

8. Formic acid yield for recycles experiments.

Figure S8. Formic acid yield in the recycles experiments.

9. Results obtained from CO_2 -TPD for basic sites

Catalyst	Weak base	Moderate base	Strong base	Total basic strength	
	(mmol/g-cat)	(mmol/g-cat)	(mmol/g-cat)	(mmol/g-cat)	
NiO-PM	0.0012	0.0033	0.0056	0.0101	
NiO-HT	0.0012	0.0080	0.0133	0.0225	
NiO-SG	-	-	0.1079	0.1079	
NiO-DC	0.0010	0.0006	0.0020	0.0036	

Table S1. Results obtained from CO₂-TPD for basic sites

10. Selected factors with their corresponding coded values

Table S2. Selected factors with their corresponding coded values

Factor	Name	(-a)	-1	0	+1	(+α)
A	Temperature (°C)	20.00	50.00	125.00	200.00	230.00
B	Catalyst loading (g)	0.0400	0.20	0.60	1.00	1.16
C	Feed ratio P(CO ₂ /H ₂)	0.2000	0.50	1.25	2.00	2.30

- 1 S. Yin, Y. Zeng, C. Li, X. Chen and Z. Ye, .
- S. Joshi, S. Kalyanasundaram and V. Balasubramanian, *Appl. Spectrosc.*, 2013, 67, 841–845.
- U. Baig, A. Khan, M. A. Gondal, M. A. Dastageer and W. S. Falath, *Nanomaterials*, ,
 DOI:10.3390/nano10061098.
- 4 N. Duraisamy, K. Kandiah, R. Rajendran, S. Prabhu, R. Ramesh and G. Dhanaraj, *Res. Chem. Intermed.*, 2018, **44**, 5653–5667.
- 5 Ö. Coşkuner, C. A. Castilla-Martinez, O. Sonzogni, E. Petit, U. B. Demirci and A. Kantürk Figen, *Int. J. Hydrogen Energy*, DOI:10.1016/j.ijhydene.2021.12.236.
- 6 C. Fletcher, Y. Jiang and R. Amal, *Chem. Eng. Sci.*, 2015, **137**, 301–307.
- 7 B. D. Bankar, K. Ravi, R. J. Tayade and A. V. Biradar, J. CO2 Util., 2023, 67, 102315.