Supplementary Materials

A simplified chemical kinetic model with a reaction mechanism based on

multidimensional average error iteration method for ammonia and

ammonia/hydrogen combustion

Daiyao Yue, Chongkai Zhao, Rui Sun, Jieyu Jiang, Chunjie Sui, Xin Zhong, Bin Zhang*

College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

(*Corresponding author: zb-sh@163.com)

S1 Additional validations of the present model

1 Laminar flame speeds

 $1.1 H₂$

Fig. S1. Laminar flame speeds of H₂/air flame varying with normalized equivalence ratio, $\varphi = \varphi(1 + \varphi)$, at standard

pressure. Data sources of experiment: Hu $(2009)^1$; Krejci $(2013)^2$; Beeckmann $(2016)^3$.

1.2 Shrestha et al.⁴

Fig. S2. Laminar flame speeds predictions for $NH_3/H_2/a$ ir mixtures at variable pressure. $T = 473$ K.

Fig. S3. Laminar flame speeds predictions for $NH_3/O_2/N_2$ mixtures at variable oxygen content. $p = 1$ bar.

1.3 Mei et al. ⁵

Fig. S4. Laminar flame speeds of NH₃/(35%O₂/65%N₂) mixtures at $T = 298$ K and $p = 1-5$ atm.

Fig. S5. Laminar flame speeds result of $NH_3/O_2/N_2$ mixtures at $T = 298$ K and $p = 1$ atm with different oxygen contents.

1.4 Lhuillier et al. ⁶

Fig. S6. Laminar flame speeds result of NH₃/H₂/air mixtures at $T = 298-473$ K, $p = 1$ atm and $x_{H2} = 0-60$ %.

2 Ignition delay time

2.1 Dai et al. ⁷

Fig. S7. Ignition delay times of NH₃/O₂ and NH₃/O₂/H₂ mixture measured in a rapid compression machines (RCM) at $\varphi = 0.5{\text -}2.0, p = 60$ bar.

2.2 Pochet et al. ⁸

Fig. S8. Ignition delay times of NH₃/O₂ mixture measured in a rapid compression machines (RCM) at different *T* and $p. \varphi = 0.35$.

Figure. S9. Ignition delay times of NH₃/O₂/H₂ mixture measured in a rapid compression machines (RCM) at different *T*. $x_{H2} = 0 - 25\%$, $\varphi = 0.35$, $p = 43.5$ bar

3 species concentration

3.1 Stagni et al.⁹

Fig. S10. Oxidation of 1000 ppm NH₃ with 2000 ppm O_2 in a FR. Experimental and modeling results. $p = 950$ torr. *τ* = 0.05 s.

Fig. S11. Experiments and modeling results for NH₃ speciation profiles for a mixture of 0.5% NH₃ in shock tube.

Fig. S12. Experiments and modeling results for NH₃ speciation profiles for a mixture of 0.42% NH₃/2% H₂ in shock tube.

3.3 Alturaifi et al.¹¹

Fig. S13. NH₃ and H₂O speciation profiles in the oxidation of NH₃ in ~99% Ar. φ = 0.58.

Fig. S14. NH₃ and H₂O speciation profiles in the oxidation of NH₃ in ~99% Ar. φ = 0.90.

Fig. S15. NH₃ and H₂O speciation profiles in the oxidation of NH₃ in ~99% Ar. φ = 1.06.

Fig. S16. NH₃ and H₂O speciation profiles in the oxidation of NH₃ in ~99% Ar. φ =2.03. 3.4 Osipova et al. ¹²

Fig. S17. Mole fraction profiles of reagents and main oxidation products in the stoichiometric NH₃/O₂/Ar blend (*p* $= 1$ atm, $T = 900 - 1300$ K, $\tau = 1$ s, NH₃ = 2000 ppm).

Fig. S18. Mole fractions profiles of reagents and main oxidation products in the stoichiometric NH₃/H₂/O₂/Ar blend ($p = 1$ atm, $T = 800-1300$ K, $\tau = 1$ s, NH₃ = 2000 ppm, NH₃/H₂ = 7/3 by volume).

References:

- E. Hu, Z. Huang, J. He, C. Jin and J. Zheng, *International Journal of Hydrogen Energy*, 2009, **34**, 4876–4888.
- M. C. Krejci, O. Mathieu, A. J. Vissotski, S. Ravi, T. G. Sikes, E. L. Petersen, W. Metcalfe, A. Keromnes and H. J. Curran, .
- J. Beeckmann, R. Hesse, S. Kruse, A. Berens, N. Peters, H. Pitsch and M. Matalon, *Proceedings of the Combustion Institute*, 2017, **36**, 1531–1538.
- K. P. Shrestha, C. Lhuillier, A. A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel and F. Mauss, *Proceedings of the Combustion Institute*, 2021, **38**, 2163–2174.
- B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao and Y. Li, *Combustion and Flame*, 2019, **210**, 236–246.
- C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino and C. Mounaïm-Rousselle, *Fuel*, 2020, **263**, 116653.
- L. Dai, S. Gersen, P. Glarborg, H. Levinsky and A. Mokhov, *Combustion and Flame*, 2020, **215**, 134–144.
- M. Pochet, V. Dias, B. Moreau, F. Foucher, H. Jeanmart and F. Contino, *Proceedings of the Combustion Institute*, 2019, **37**, 621–629.
- A. Stagni, C. Cavallotti, S. Arunthanayothin, Y. Song, O. Herbinet, F. Battin-Leclerc and T. Faravelli, *React. Chem. Eng.*, 2020, **5**, 696–711.
- S. A. Alturaifi, O. Mathieu and E. L. Petersen, *Combustion and Flame*, 2022, **235**, 111694.
- S. A. Alturaifi, O. Mathieu and E. L. Petersen, *Proceedings of the Combustion Institute*, 2023, **39**, 233–241.
- K. N. Osipova, X. Zhang, S. M. Sarathy, O. P. Korobeinichev and A. G. Shmakov, *Fuel*, 2022, **310**, 122202.