Supplementary information

Kinetics on the valorization of hexoses with Sn-USY catalysts in methanolic media: glycosidation vs retroaldol cleavage.

J.M. Jiménez Martín¹, M. El Tawil-Lucas¹, C. García-Jerez¹, J. Moreno¹, A. García¹, B. Hernández¹, J. Iglesias^{1,2,*}

¹ Chemical & Environmental Engineering Group. Universidad Rey Juan Carlos. C/ Tulipán s/n. Móstoles. 28933. Madrid. Spain.

² Instituto de Tecnologías para la Sostenibilidad. Universidad Rey Juan Carlos. C/ Tulipán s/n. Móstoles. 28933. Madrid. Spain.

*Corresponding author email: jose.iglesias@urjc.es

INDEX

S-1: Validation of the model for case studies with different temperatures, a catalyst load of 10 g/L and glucose as substrate.

S-2: Validation of the model for case studies with different temperatures, a catalyst load of 10 g/L and fructose as substrate.

S-3: Validation of the model for case studies with different temperatures, a catalyst load of 10 g/L and mannose as substrate.

S-4: Validation of the model for case studies with different catalyst load with glucose as substrate at 140 $^{\circ}$ C.

S-5: Validation of the model for case studies with different catalyst load with fructose as substrate at 140 $^{\circ}$ C.

S-6: Validation of the model for case studies with different catalyst load with mannose as substrate at 140 °C.

Number of pages: 19 Number of figures: 18

<u>S-1: Validation of the model for case studies with different temperatures, a catalyst load of 10 g/L and glucose as substrate</u>

Figure S-1. Validation of the kinetic model at 100 °C when glucose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) Methyl Fructoside (MFP), C) Glucose, D) Methyl Glucoside (MGP), E) Mannose, F) Methyl Mannoside (MMP), G) dihydroxyacetone (DHA), H) Methyl lactate (MLa), I) glycolaldehyde dimethyl acetal (GADMA) and J) methyl 2-hydroxy-4-methoxybutanoate (MMHB).

Figure S-2. Validation of the kinetic model at 120 °C when glucose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-3. Validation of the kinetic model at 140 °C when glucose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-4. Validation of the kinetic model at 160 °C when glucose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

S-2: Validation of the model for case studies with different temperatures, a catalyst load of 10 g/L and fructose as substrate

Figure S-5. Validation of the kinetic model at 100 °C when fructose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-6. Validation of the kinetic model at 120 °C when fructose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-7. Validation of the kinetic model at 140 °C when fructose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-8. Validation of the kinetic model at 160 °C when fructose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

S-3: Validation of the model for case studies with different temperatures, a catalyst load of 10 g/L and fructose as substrate

Figure S-9. Validation of the kinetic model at 100 °C when mannose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-10. Validation of the kinetic model at 120 °C when mannose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-11. Validation of the kinetic model at 140 °C when mannose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-12. Validation of the kinetic model at 160 °C when mannose is fed as substrate. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

<u>S-4: Validation of the model for case studies with different catalyst load with glucose as</u> substrate at 140 °C.

Figure S-13. Validation of the kinetic model at 140 °C when glucose is fed as substrate with a catalyst load of 5 g/L. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-14. Validation of the kinetic model at 140 °C when glucose is fed as substrate with a catalyst load of 20 g/L. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-15. Validation of the kinetic model at 140 °C when fructose is fed as substrate with a catalyst load of 5 g/L. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-16. Validation of the kinetic model at 140 °C when fructose is fed as substrate with a catalyst load of 20 g/L. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

<u>S-6: Validation of the model for case studies with different catalyst load with mannose as</u> substrate at 140 °C.

Figure S-17. Validation of the kinetic model at 140 °C when mannose is fed as substrate with a catalyst load of 5 g/L. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.

Figure S-18. Validation of the kinetic model at 140 °C when mannose is fed as substrate with a catalyst load of 20 g/L. The concentration is presented for the following components: A) Fructose, B) MFP, C) Glucose, D) MGP, E) Mannose, F) MMP, G) DHA, H) MLa, I) GADMA and J) MMHB.