Supporting Information

A solvent selection strategy on hydrogenation reaction inside tubular-flow reactor through statistic approach

Benny Wahyudianto^a, Takehiro Yamaki^a, Nobuo Hara^a, Yoshihiro Takebayashi^a, and Sho Kataoka^{*a} ^aResearch Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.

*E-mail: s-kataoka@aist.go.jp

List of tables

- Table S1. Detail of nitrobenzene hydrogenation reaction
- Table S2. List of abbreviations
- Table S3. Solvent's properties database from Aveva Pro II
- Table S4. Solvent's properties database from literatures
- Table S5.
 Hildebrand's cohesion energy density parameter of solvents
- Table S6. Kirkwood function on dielectric constant and refractive index
- Table S7.Solvent parameters on Linear Solvation Energy Relationship (LSER) based on Abraham-
Kamlet-Talf model
- Table S8. Solvent parameters on LSER based on Catalán model
- Table S9. Solvent parameters on LSER based on Gutmann model
- Table S10. Solvent parameters on LSER based on Hansen model
- Table S11. Solvent parameters on LSER based on Koppel–Palm (KP) model
- Table S12. Solvent parameters on LSER based on Swain model
- Table S13. R²-values of single regression analysis
- **Table S14.** R^2 -values of multi regression analysis of k_0 on existing LSER models
- Table S15. P-value of each parameter on existing LSER models for entire solvents
- **Table S16.** Mathematic equations for predicting nitrobenzene conversion and aniline yield based onexisting LSER models
- Table S17. R²-values from a combination of acidity and basicity of solvent
- Table S18. Statistical analysis of KAMALP-CATASB-SOLWAT multiple regression for nitrobenzene conversion
- Table S19. Statistical analysis of KAMALP–SWAIBS–DIPOLE multiple regression model for aniline production

List of figures

- Fig. S1. The size distribution of PdNPs-stabilized-PVP particles in reaction solution
- **Fig. S2.** Single regression analysis of aniline yield *vs.* KAMALP. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S3.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on AKT model. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S4.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on AKT model with correction on polarizability. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S5.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on Catalán model. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S6.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on Gutmann model. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S7.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on Hansen model. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S8.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on KP model. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S9.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on KP model with correction on Hildebrand's cohesion energy density. Blue: protic solvents/alcohols, red: aprotic solvents
- **Fig. S10.** Multiple regression analysis of (a) NBCONV and (b) ANYIEL on Swain model. Blue: protic solvents/alcohols, red: aprotic solvents

List of References

Table S1. Detail of nitrobenzene hydrogenation reaction

	Substrate						Proc	lucts								
Solvents	NB, <i>t_R</i> ~	3.80 min	PHA, <i>t_R ~</i>	~ 2.80 min	AN, <i>t_R</i> ~	3.10 min	HAB, <i>t_R</i> ~	- 4.05 min.	NSB, <i>t_R</i> ~	4.16 min.	AXB, <i>t_R</i> ~	6.30 min.	Material	Retention	k (c ⁻¹)	Pomarke
Solvents	Initial (mM)	Conv. (%)	Yield (%)	Selectivity (%)	Yield (%)	Selectivity (%)	Yield (%)	Selectivity (%)	Yield (%)	Selectivity (%)	Yield (%)	Selectivity (%)	balance (%)	time (s)	k ₀ (S)	Remarks
	50	55.97	3.08	5.50	46.09	82.35	0.00	0.00	0.90	1.61	0.00	0.01	94.11	172	0.0047	7 Statistical analysis
MeOH	50	56.59	3.87	6.83	42.29	74.73	0.00	0.00	1.97	3.47	0.04	0.08	91.62	227	0.0036	8
	50	46.38	3.10	6.69	36.39	78.46	0.00	0.00	1.52	3.28	0.00	0.00	94.64	170	0.0036	57
	50	38.01	3.01	7.91	25.74	67.72	0.00	0.00	8.05	21.17	0.24	0.64	99.26	137	0.0034	9 Statistical analysis
EtOH	50	42.54	3.84	9.04	32.99	77.55	0.00	0.00	16.00	37.61	0.02	0.05	110.34	131	0.0042	23
	50	41.42	3.94	9.52	32.11	77.53	0.00	0.00	14.16	34.18	0.07	0.17	108.93	122	0.0043	8
	50	62.08	4.06	6.53	54.94	88.49	0.00	0.00	1.01	1.63	0.01	0.02	97.94	170	0.0057	0 Statistical analysis
<i>n</i> -PrOH	50	64.64	3.79	5.86	56.38	87.23	0.00	0.00	0.74	1.15	0.01	0.01	96.30	171	0.0060	8
	50	64.69	4.11	6.36	56.74	87.71	0.00	0.00	0.78	1.21	0.01	0.01	96.96	170	0.0061	2
	50	47.59	2.42	5.10	34.23	71.93	0.00	0.00	2.58	5.42	1.10	2.32	93.85	189	0.0034	2 Statistical analysis
	50	28.83	4.96	17.20	18.66	64.72	0.00	0.00	1.94	6.72	0.09	0.32	96.91	263	0.0012	29
<i>i</i> -PrOH	50	31.72	5.22	16.47	22.18	69.92	0.00	0.00	1.09	3.44	0.06	0.19	96.90	263	0.0014	5
	50	99.50	0.33	0.33	91.99	92.46	0.00	0.00	0.37	0.37	0.01	0.01	93.22	N/A	N/A	5 min data collection
	50	58.50	0.00	0.00	55.55	94.96	0.00	0.00	0.28	0.48	0.42	0.72	98.17	N/A	N/A	5 min data collection
	50	33.32	4.22	12.68	25.21	75.69	0.00	0.00	0.34	1.03	0.01	0.03	96.48	105	0.0038	6 Statistical analysis
<i>n-</i> BuOH	50	30.87	5.35	17.33	21.84	70.74	0.00	0.00	0.65	2.10	0.11	0.35	97.18	105	0.0035	52
	50	25.36	4.82	18.99	18.54	73.11	0.00	0.00	0.63	2.49	0.03	0.14	98.70	105	0.0027	'9
	50	24.99	4.86	19.43	14.75	59.01	0.00	0.00	0.67	2.67	0.01	0.02	95.29	147	0.0019	6 Statistical analysis
tert-BuOH	50	33.04	7.12	21.54	23.64	71.55	0.00	0.00	0.78	2.37	0.01	0.03	98.52	146	0.0027	'5
	50	44.36	7.25	16.35	35.00	78.90	0.00	0.00	1.84	4.16	0.01	0.02	99.75	144	0.0040)7
Acetone	50	17.07	0.00	0.00	3.17	18.57	0.00	0.00	0.30	1.77	0.03	0.20	86.47	199	0.0009	4 Statistical analysis
AN	50	23.99	2.45	10.21	12.64	52.69	0.00	0.00	1.05	4.38	0.03	0.13	92.21	251	0.0010	9 Statistical analysis
AcOEt	50	2.87	0.38	13.38	3.80	132.12	0.00	0.00	0.14	4.92	0.00	0.00	101.45	176	0.0001	7 Statistical analysis
DMSO	50	8.03	0.08	1.01	0.04	0.46	0.00	0.00	0.06	0.77	0.00	0.00	92.15	291	0.0002	9 Statistical analysis
Dioxane	50	16.27	0.03	0.20	0.28	1.69	0.00	0.00	0.00	0.00	0.00	0.00	84.04	312	0.0005	7 Statistical analysis
n-hexane	50	12.04	0.00	0.00	0.49	4.10	0.00	0.00	0.00	0.00	0.00	0.00	88.46	284	0.0004	5 Statistical analysis
THF	50	15.37	0.02	0.13	0.13	0.87	0.00	0.00	0.00	0.00	0.00	0.00	84.78	329	0.0005	i1 Statistical analysis
Toluene	50	9.47	0.04	0.46	0.89	9.38	0.00	0.00	0.00	0.00	0.19	1.97	91.83	246	0.0004	0 Statistical analysis
CH ₂ Cl ₂	50	12.37	0.02	0.16	0.28	2.22	0.00	0.00	0.00	0.00	0.01	0.05	87.94	299	0.0004	4 Statistical analysis
CHCI ₃	50	20.98	0.01	0.07	0.29	1.37	0.00	0.00	0.24	1.12	0.00	0.00	79.56	291	0.0008	31 Statistical analysis
CCl ₄	50	16.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.21	7.20	85.62	326	0.0005	6 Statistical analysis
2,2,2-trifluoroethano	50	71.89	0.30	0.42	61.41	85.42	0.00	0.00	20.81	28.94	0.07	0.10	110.78	300	0.0042	23 Validation

NB: nitrobenzene
PHA: *N*-phenylhydroxylamine
AN: aniline
HAB: hydrazobenzene
NSB: nitrosobenzene
AXB: azoxybenzene

Conversion of nitrobenzene (%) = {Concentration of reacted nitrobenzene (mM) / Concentration of initial nitrobenzene (mM)} × 100 % Yield of product (%) = {Concentration of product (mM) / Concentration of initial nitrobenzene (mM)} × 100 % Selectivity of product (%) = {Concentration of product (mM) / Concentration of reacted nitrobenzene (mM)} × 100 % Material balance (%) = Remaining nitrobenzene (%) + Yield of *N*-phenylhydroxylamine (%) + Yield of aniline (%) + (2 × Yield of Hydrazobenzene) + Yield of nitrosobenzene + (2 × Yield of Azoxybenzene)

k₀ (s⁻¹) = [- ln {1 – (Concentration of reacted nitrobenzene (mM) / Concentration of initial nitrobenzene (mM))}] / retention time (s)

 $\rightarrow NO_2 \xrightarrow{H_2}$

Table S2. List of abbreviations

Abbreviation	Parameter
ACNTRC	Acentric factor
AQUEOS	Aqueous solibility (log S _w)
BOILPT	Normal boiling point (K)
BPP40C	Boiling point pressure at 313 K (kPa)
CATASA	Catalán's acidity parameter
CATASB	Catalán's basicity parameter
CATASP	Catalán's polarizability parameter
COHESI	Hildebrand cohesion energy density
COMBUS	Heat of combustion (J · mol ⁻¹)
CRITCP	Critical pressure (kPa)
CRITCT	Critical temperature (K)
CRITCV	Critical volume (m ³ · kmol ⁻¹)
CRITIC	Critical compressibility factor
DIELEC	Dielectric constant
DIMREN	Dimroth and Reichardt's hydrogen donor donation (normalization)
DIMRET	Dimroth and Reichardt's hydrogen donor donation
DIPOLE	Dipole moment (Deybe)
DNSITY	Density (g · mL ⁻¹)
ENTFOR	Enthalphy of formation (J \cdot mol ⁻¹)
GIBENR	Gibbs energy of formation (J · mol ⁻¹)
GUTACN	Gutmann's acceptor number
GUTDNN	Gutmann's donor number
HEATEV	Heat evaporation
HEATVA	Lower heating value (J · mol ⁻¹)
HETFUS	Heat of fusion (J · mol ⁻¹)
HILDEX	Hildebrand's solubility parameter (shodex)
HILTHO	Hildebrand's solubility parameter
HISOLU	Hydrogen solubility (·10 ⁻⁴)
HSNDIS	Hansen's dispersion parameter
HSNHYB	Hansen's hydrogen bonding parameter

Table S2. List of abbreviations (continue)

Abbreviation	Parameter
HSNMOL	Hansen's molar volume
HSNPOL	Hansen's polarizability parameter
HYDDEF	Hydrogen deficiency number
KAMALP	Taft's hydrogen bond donation parameter
KAMBET	Taft's hydrogen bond acceptor parameter
КАМРНІ	Taft's polarizability parameter
KIRDIE	Kirkwood function on dielectric constant
KIRREF	Kirkwood function on reflactive index
LOQMOL	Liquid molar volume (m ³ · kmol ⁻¹)
MELTPT	Normal melting point (K)
PRACHR	Parachor
PRPENE	PR Peneloux (m ³ · kmol ⁻¹)
RADGYR	Radius of gyration (mm)
REFRAC	Refractive index
SOLPAR	Solubility parameter [(cal · cc) ^{0.5}]
SOLTAN	Solvent's solubility in <i>n</i> -octane (log <i>P</i>)
SOLWAT	Solvent's solubility in H ₂ O (%w/w)
SRPENE	SRK Peneloux (m ³ · kmol ⁻¹)
SWAIAC	Swain's acidity parameter
SWAIBS	Swain's- basicity parameter
TNSION	Surface tension (N \cdot m ⁻¹)
TRIPRS	Triple point pressure (kPa)
TRITEM	Triple point temperature (K)
UNIFAQ	UNIFAC Q
UNIFAR	UNIFAC R
VISCOS	Viscosity (<i>cP</i>)
WEIGHT	Molecular weight (g · mol ⁻¹)

Columnta	Parameters			
Solvents –	BOILPT	HEATEV		
MeOH	337.9	35.27		
EtOH	351.4	38.65		
<i>n</i> -PrOH	370.4	41.65		
<i>i</i> -PrOH	355.4	39.38		
<i>n</i> -BuOH	390.8	43.18		
tert-BuOH	355.6	39.04		
Acetone	329.4	29.57		
Acetonitrile	354.8	30.21		
AcOEt	350.2	32.23		
DMSO	464.0	43.87		
Dioxane	374.5	34.37		
<i>n</i> -hexane	341.9	28.79		
THF	339.1	29.86		
Toluene	383.8	33.51		
CH_2CI_2	312.9	28.38		
CHCl ₃	334.3	29.51		
CCl ₄	349.8	29.77		

 Table S3.
 Solvent's properties database from simulation with Aveva Pro II software

Colvente	Parameters						
Solvents	AQUEOS ¹	DIELEC ²	DIPOLE ³⁻⁴	HISOLU⁵	REFRAC ¹⁰		
MeOH	1.49	32.60	2.87	7.90 ⁶	1.3284		
EtOH	1.34	24.60	1.69	2.06	1.3614		
<i>n</i> -PrOH	1.22	20.10	3.09	2.31	1.3856		
<i>i</i> -PrOH	1.22	18.30	1.66	2.66	1.3772		
<i>n</i> -BuOH	0.00	17.80	1.66	2.69 ⁷	1.3993		
<i>tert</i> -BuOH	1.13	12.50	1.70	3.00	1.3877		
Acetone	1.24	21.01	2.69	2.87 ⁸	1.3586		
Acetonitrile	0.26	36.64	3.44	1.78 ⁸	1.3441		
AcOEt	-0.04	6.00	1.88	3.46	1.3724		
DMSO	1.11	47.00	4.10	0.76	1.4793		
Dioxane	1.05	2.21	0.45	1.76	1.4224		
<i>n</i> -hexane	-3.84	1.89	0.00	0.01 ⁸	1.3749		
THF	1.15	7.52	1.75	0.01 ⁸	1.4072		
Toluene	-2.21	2.38	0.31	3.15	1.4969		
CH_2CI_2	-0.63	9.08	1.14	1.78 ⁹	1.4241		
CHCl ₃	-1.17	4.81	1.15	0.25 ⁹	1.4458		
CCl ₄	-2.31	2.24	0.00	0.04 ⁹	1.4601		

 Table S4. Solvent's properties database from literatures

Calvanta	Parameters						
Solvents	SOLTAN ¹¹	SOLWAT ¹²⁻¹³	TNSION ¹⁴	VISCOS ¹⁵			
MeOH	-0.82	100	0.023	0.59			
EtOH	-0.32	100	0.022	1.10			
<i>n</i> -PrOH	0.34	100	0.023	2.30			
<i>i</i> -PrOH	0.26	100	0.022	2.40			
<i>n</i> -BuOH	2.34	0.43	0.025	2.98			
tert-BuOH	0.40	100	0.021	3.38			
Acetone	-0.24	100	0.024	0.36			
Acetonitrile	-0.34	100	0.029	0.38			
AcOEt	0.73	8.70	0.024	0.45			
DMSO	-1.35	100	0.043	2.24			
Dioxane	-0.42	100	0.033	1.37			
<i>n</i> -hexane	3.80	0.00	0.018	0.31			
THF	0.46	100	0.027	0.55			
Toluene	2.69	0.05	0.028	0.59			
CH_2CI_2	1.25	1.60	0.028	0.44			
CHCl ₃	1.97	0.82	0.027	0.57			
CCl ₄	2.64	0.08	0.027	0.97			

Table S4. Solvent's properties database from literatures (continue)

Columnta	Parameters						
Solvents	HEATEV ¹⁶	<i>Т</i> (К) ¹⁶	HSNMOL ¹⁷	COHESI			
MeOH	36.7	313	40.7	0.84			
EtOH	42.2	313	58.5	0.68			
<i>n</i> -PrOH	46.4	313	75.2	0.58			
<i>i</i> -PrOH	44.8	315	76.8	0.55			
<i>n</i> -BuOH	53	310	91.5	0.55			
<i>tert</i> -BuOH	44.9	313	95.8	0.44			
Acetone	30.7	313	74.0	0.38			
Acetonitrile	34.8	315	52.6	0.61			
AcOEt	34.6	313	98.5	0.32			
DMSO	52.1	318	71.3	0.69			
Dioxane	37	318	85.7	0.40			
<i>n</i> -hexane	30.7	313	131.6	0.21			
THF	31.9	311	81.7	0.36			
Toluene	37.3	318	106.8	0.32			
CH_2CI_2	29.2	308	63.9	0.42			
CHCl ₃	30.8	321	80.7	0.35			
CCl ₄	32.3	308	97.1	0.31			

Table S5. Hildebrand's cohesion energy density parameter of solvents

Hildebrand's cohesion energy density (**COHESI**), $kJ \cdot mol^{-1} = (BPP40C - RT) / BOILPT$

R : molar gas constant, 8.314 J · mol⁻¹ · K⁻¹

Colvente	Parameters				
solvents -	KIRDIE	KIRREF			
MeOH	0.477	0.203			
EtOH	0.470	0.221			
<i>n</i> -PrOH	0.464	0.235			
<i>i</i> -PrOH	0.460	0.230			
<i>n</i> -BuOH	0.459	0.242			
<i>tert</i> -BuOH	0.442	0.236			
Acetone	0.465	0.220			
Acetonitrile	0.480	0.212			
AcOEt	0.385	0.227			
DMSO	0.484	0.284			
Dioxane	0.223	0.254			
<i>n</i> -hexane	0.186	0.229			
THF	0.406	0.246			
Toluene	0.240	0.293			
CH_2CI_2	0.422	0.255			
CHCl ₃	0.359	0.267			
CCl ₄	0.226	0.274			

Table S6. Kirkwood function on dielectric constant and refractive index

 $KIRDIE^{5} = (DIELEC - 1) / (2 \times DIELEC + 1)$ $KIRREF^{5} = (REFRAC^{2} - 1) / (REFRAC^{2} + 2)$

Columnta	Abraham-Abbout-Kamlet-Talf							
Solvents -	KAMALP	KAMBET	камрні	CORPOL ¹⁹⁻²⁰	COHESI			
MeOH	0.93	0.62	0.60	0.00	0.84			
EtOH	0.83	0.77	0.54	0.00	0.68			
<i>n</i> -PrOH	0.84	0.90	0.52	0.00	0.58			
<i>i</i> -PrOH	0.76	0.84	0.48	0.00	0.55			
<i>n</i> -BuOH	0.84	0.84	0.47	0.00	0.55			
tert-BuOH	0.42	0.93	0.41	0.00	0.44			
Acetone	0.08	0.48	0.40	0.00	0.38			
Acetonitrile	0.19	0.40	0.75	0.00	0.61			
AcOEt	0.00	0.45	0.55	0.00	0.32			
DMSO	0.00	0.76	0.40	0.00	0.69			
Dioxane	0.00	0.37	0.55	0.00	0.40			
<i>n</i> -hexane	0.00	0.00	-0.04	0.00	0.21			
THF	0.00	0.55	0.58	0.00	0.36			
Toluene	0.00	0.11	0.54	1.00	0.32			
CH_2CI_2	0.13	0.10	0.82	0.50	0.42			
CHCl ₃	0.20	0.10	0.58	0.50	0.35			
CCl ₄	0.00	0.10	0.28	0.50	0.31			

 Table S7.
 Solvent parameters on Linear Solvation Energy Relationship (LSER) based on Abraham-About-Kamlet-Talf model¹⁸

Correction on polarizability (CORPOR)

Solvente -		Catalán					
	Solvents –	CATASA	CATASB	CATASP			
	MeOH	0.86	0.55	0.61			
	EtOH	0.85	0.66	0.40			
	<i>n</i> -PrOH	0.85	0.78	0.37			
	<i>i</i> -PrOH	0.85	0.83	0.28			
	<i>n</i> -BuOH	0.84	0.81	0.34			
	tert-BuOH	0.83	0.93	0.15			
	Acetone	0.88	0.48	0.00			
	Acetonitrile	0.90	0.29	0.04			
	AcOEt	0.80	0.54	0.00			
	DMSO	1.00	0.65	0.07			
	Dioxane	0.70	0.44	0.00			
	<i>n</i> -hexane	0.52	0.06	0.00			
	THF	0.84	0.59	0.00			
	Toluene	0.66	0.13	0.00			
	CH_2CI_2	0.88	0.18	0.04			
	CHCl ₃	0.79	0.07	0.05			
	CCl ₄	0.63	0.04	0.00			

 Table S8.
 Solvent parameters on LSER based on Catalán model²¹

Colvente	Gutmann				
Solvents	GUTACN	GUTDNN			
MeOH	41.50	19.00			
EtOH	37.90	19.20			
<i>n</i> -PrOH	37.30	19.80			
<i>i</i> -PrOH	33.50	21.10			
<i>n</i> -BuOH	36.80	19.50			
tert-BuOH	27.10	38.00			
Acetone	12.50	17.00			
Acetonitrile	18.90	14.10			
AcOEt	9.30	17.10			
DMSO	19.30	29.80			
Dioxane	10.30	14.30			
<i>n</i> -hexane	0.00	0.00			
THF	8.00	20.00			
Toluene	0.00	0.10			
CH_2Cl_2	20.40	1.00			
CHCl₃	23.10	4.00			
CCl ₄	8.60	0.00			

 Table S9.
 Solvent parameters on LSER based on Gutmann model²²

Columna	Hansen						
Solvents	HSNDIS	HSNHYB	HSNMOL	HSNPOL			
MeOH	15.10	22.30	40.70	12.30			
EtOH	15.80	19.40	58.50	8.80			
<i>n</i> -PrOH	16.00	17.40	75.20	6.80			
<i>i</i> -PrOH	15.80	16.40	76.80	6.10			
<i>n</i> -BuOH	16.00	15.80	91.50	5.70			
tert-BuOH	15.20	14.70	95.80	5.10			
Acetone	15.50	7.00	74.00	10.40			
Acetonitrile	15.30	6.10	52.60	18.00			
AcOEt	15.80	7.20	98.50	5.30			
DMSO	18.40	10.20	71.30	16.40			
Dioxane	19.00	7.40	85.70	1.80			
<i>n</i> -hexane	14.90	0.00	131.60	0.00			
THF	16.80	8.00	81.70	5.70			
Toluene	18.00	2.00	106.80	1.40			
CH_2CI_2	18.20	6.10	63.90	6.30			
CHCl ₃	17.80	5.70	80.70	3.10			
CCI_4	17.80	0.60	97.10	0.00			

Table S10. Solvent parameters on LSER based on Hansen model¹⁷

Cohiento	Koppel-Palm									
Solvents	KIRDIE⁵	KIRREF⁵	COHESI	SWAIBS ²³	DIMRET ²⁴					
MeOH	0.48	0.20	0.84	0.50	0.76					
EtOH	0.47	0.22	0.68	0.45	0.65					
<i>n</i> -PrOH	0.46	0.23	0.58	0.44	0.62					
<i>i</i> -PrOH	0.46	0.23	0.55	0.44	0.57					
<i>n</i> -BuOH	0.46	0.24	0.55	0.43	0.60					
tert-BuOH	0.44	0.24	0.44	0.50	0.40					
Acetone	0.47	0.22	0.38	0.81	0.57					
Acetonitrile	0.48	0.21	0.61	0.86	0.46					
AcOEt	0.38	0.23	0.32	0.59	0.23					
DMSO	0.48	0.28	0.69	1.08	0.44					
Dioxane	0.22	0.25	0.40	0.67	0.16					
<i>n</i> -hexane	0.19	0.23	0.21	-0.01	0.01					
THF	0.41	0.25	0.36	0.67	0.21					
Toluene	0.24	0.29	0.32	0.54	0.10					
CH_2CI_2	0.42	0.26	0.42	0.80	0.31					
CHCl ₃	0.36	0.27	0.35	0.73	0.26					
CCl ₄	0.23	0.27	0.31	0.34	0.05					

 Table S11. Solvent parameters on LSER based on Koppel–Palm (KP) model

Columnta	Swain				
Solvents -	SWAIAC	SWAIBS			
MeOH	0.75	0.50			
EtOH	0.66	0.45			
<i>n</i> -PrOH	0.63	0.44			
<i>i</i> -PrOH	0.59	0.44			
<i>n</i> -BuOH	0.61	0.43			
<i>tert</i> -BuOH	0.45	0.50			
Acetone	0.25	0.81			
Acetonitrile	0.37	0.86			
AcOEt	0.21	0.59			
DMSO	0.34	1.08			
Dioxane	0.19	0.67			
<i>n</i> -hexane	0.01	-0.01			
THF	0.17	0.67			
Toluene	0.13	0.54			
CH_2CI_2	0.33	0.80			
CHCl ₃	0.42	0.73			
CCl ₄	0.09	0.34			

Table S12. Solvent parameters on LSER based on Swain model^[23]

Table S13. R²-values from single regression analysis

R ² -value	ACNTRC	AQUEOS	BOILPT	BPP40C	CATASA	CATASB	CATASP	COHESI	COMBUS	CRITCP
NBCONV	0.626	0.218	0.008	0.059	0.070	0.259	0.784	0.433	0.054	0.223
ANYIEL	0.727	0.233	0.000	0.102	0.094	0.353	0.819	0.474	0.016	0.166
k _o	0.743	0.217	0.000	0.100	0.081	0.363	0.865	0.448	0.017	0.169
R ² -value	CRITCT	CRITCV	CRITIC	DIELEC	DIMREN	DIMRET	DIPOLE	DNSITY	ENTFOR	GIBENR
NBCONV	0.106	0.259	0.025	0.126	0.566	0.586	0.110	0.106	0.030	0.060
ANYIEL	0.080	0.203	0.052	0.165	0.607	0.685	0.172	0.196	0.070	0.104
k _o	0.078	0.180	0.018	0.132	0.626	0.674	0.120	0.161	0.078	0.108
R ² -value	GUTACN	GUTDNN	HEATEV	HEATVA	HETFUS	HILDEX	HILTHO	HISOLU	HSNDIS	HSNHYB
NBCONV	0.706	0.100	0.243	0.052	0.260	0.063	0.276	0.237	0.192	0.654
ANYIEL	0.693	0.151	0.337	0.015	0.206	0.093	0.267	0.345	0.260	0.711
k _o	0.757	0.142	0.379	0.015	0.204	0.144	0.315	0.286	0.223	0.741

R ² -value	HSNMOL	HSNPOL	HYDDEF	KAMALP	KAMBET	КАМРНІ	KIRDIE	KIRREF	LOQMOL	MELTPT
NBCONV	0.237	0.044	0.232	0.841	0.354	0.020	0.229	0.250	0.240	0.131
ANYIEL	0.197	0.071	0.255	0.852	0.444	0.021	0.282	0.286	0.199	0.152
k _o	0.171	0.040	0.278	0.925	0.457	0.011	0.265	0.237	0.173	0.157
R ² -value	PRACHR	PRPENE	RADGYR	REFRAC	SOLPAR	SOLTAN	SOLWAT	SRPENE	SWAIAC	SWAIBS
NBCONV	0.193	0.403	0.253	0.249	0.436	0.082	0.202	0.047	0.709	0.082
ANYIEL	0.205	0.426	0.224	0.284	0.478	0.094	0.175	0.053	0.717	0.081
k _o	0.170	0.468	0.181	0.236	0.457	0.059	0.135	0.067	0.760	0.102
	R ² -va	lue TNS	ION TRI	PRS TRI	TEM UNI	FAQ UNI	FAR VISO	COS WEI	GHT	
	NBCC	NV C	164 (004 0	131 0	187 0	233 0	.150 0	.275	

0.151

0.157

0.137

0.112

0.186

0.156

0.179

0.226

0.350

0.294

Table S13. R²-value from single-regression analysis (continue)

Note:

Value with a bold-style indicates the best R2-value on each category (**NBCONV**, **ANYIEL**, or k_0)

0.165

0.172

0.008

0.005

ANYIEL

k₀

			R ² -value					
No.	LSER model	ko						
		Entire solvents	Protic solvents	Aprotic solvents				
1	АКТ	0.929	0.866	0.582				
2	AKT w/ polarity cor.	0.929	0.880	0.583				
3	AKT w/ polarity and cohesion cor.	0.929	N/A	0.590				
4	Catalán	0.885	0.749	0.307				
5	Gutmann	0.762	0.627	0.168				
6	Hansen	0.798	0.647	0.615				
7	КР	0.889	0.726	0.441				
8	KP w/ cohesion cor.	0.894	N/A	0.441				
9	Swain	0.883	0.598	0.197				

Table S14. R^2 -values of multi regression analysis of k_0 on existing LSER models

		Entire solvents							
No.	LSER model	NBCONV	<i>P</i> -value (%)	ANYIEL	P-value (%)	k _o	<i>P</i> -value (%)		
1	AKT	KAMALP	<1	KAMALP	<1	KAMALP	<1		
2	AKT w/ polarity cor.	KAMALP	<1	KAMALP	<1	KAMALP	<1		
3	AKT w/ polarity and cohesion cor.	KAMALP	<1	KAMALP	<1	KAMALP	<1		
4	Catalán	CATASP	<1	CATASP	<1	CATASP	<1		
5	Gutmann	GUTACN	<1	GUTACN	<1	GUTACN	<1		
6	Hansen	HSNHYB	1.33	HSNHYB	<1	HSNHYB	<1		
7	KD.	DIMADET	-1	DIMRET	<1	DIMRET	<1		
/	KP	DIIVIRET	<1	SWAIBS	2.28	SWAIBS	<1		
0	KD	N1 / A	NI / A	CIMAIDO	4.65	DIMRET	1.16		
8	KP W/ conesion cor.	N/A	N/A	SWAIBS	1.65	SWAIBS	<1		
0		SWAIAC	<1	SWAIAC	<1	SWAIAC	<1		
9 Swai	Swain	SWAIBS	1.64	SWAIBS	1.47	SWAIBS	<1		

 Table S15. P-value of each parameter on existing LSER models for entire solvents

Model	y-axis	Mathematic equations
		$y = A_0 + A_1 \cdot (KAMALP) + A_2 \cdot (KAMBET) + A_3 \cdot (KAMPHI)$
A 1/T	NBCONV	y = 12.77 + 44.19 · (KAMALP) - 2.90 · (KAMBET) - 0.77 · (KAMPHI)
AKI	ANYIEL	y = -1.47 + 41.95 · (KAMALP) + 3.99 · (KAMBET) - 0.50 · (KAMPHI)
	k _o	y = 0.47 + 4.53 · (KAMALP) + 0.21 · (KAMBET) - 0.49 · (KAMPHI)
		$y = A_0 + A_1 \cdot (KAMALP) + A_2 \cdot (KAMBET) + A_3 \cdot (KAMPHI) + A_4 \cdot (CORPOL)$
AKT w/ polarizability	NBCONV	y = 13.88 + 44.60 · (KAMALP) - 5.59 · (KAMBET) + 0.54 · (KAMPHI) - 3.89 · (CORPOL)
correction	ANYIEL	y = -0.53 + 42.30 · (KAMALP) + 1.72 · (KAMBET) + 0.61 · (KAMPHI) - 3.29 · (CORPOL)
	k _o	y = 0.47 + 4.54 · (KAMALP) + 0.21 · (KAMBET) - 0.49 · (KAMPHI) - 0.00 · (CORPOL)
		$y = A_0 + A_1 \cdot (KAMALP) + A_2 \cdot (KAMBET) + A_3 \cdot (KAMPHI) + A_4 \cdot (POLCOR) + A_5 \cdot (COHESI)$
AKT w/ polarizability	NBCONV	y = 14.00 + 54.24 · (KAMALP) - 2.55 · (KAMBET) - 4.30 · (KAMPHI) - 2.34 · (CORPOL) + 1.48 · (COHESI)
corrections	ANYIEL	y = -1.27 + 14.37 · (KAMALP) - 3.91 · (KAMBET) + 3.04 · (KAMPHI) - 4.74 · (CORPOL) + 8.27 · (COHESI)
	k _o	y = 0.58 + 3.31 · (KAMALP) + 0.31 · (KAMBET) - 0.36 · (KAMPHI) - 0.01 · (POLCOR) - 0.28 · (COHESI)

Table S16. Mathematic equations generating from experimental outputs and some parameters from the existing LSER models

Model	<i>y</i> -axis	Mathematic equations
		$y = C_0 + C_1 \cdot (CATASA) + C_2 \cdot (CATASB) + C_3 \cdot (CATASP)$
Catalán	NBCONV	y = 19.41 - 9.48 · (CATASA) + 3.79 · (CATASB) + 79.38 · (CATASP)
Catalali	ANYIEL	y = 6.24 - 11.25 · (CATASA) + 10.75 · (CATASB) + 78.48 · (CATASP)
	k _o	y = 1.47 - 1.77 · (CATASA) + 1.16 · (CATASB) + 8.16 · (CATASP)
		$y = G_0 + G_1 \cdot (GUTACN) + G_2 \cdot (GUTDNN)$
Gutmann	NBCONV	y = 4.50 + 1.16 · (GUTACN) - 0.23 · (GUTDNN)
Gutinann	ANYIEL	y = -8.58 + 1.12 · (GUTACN) - 0.07 · (GUTDNN)
	k _o	y = -0.49 + 0.12 · (GUTACN) - 0.01 · (GUTDNN)
		$y = H_0 + H_1 \cdot (HSNDIS) + H_2 \cdot (HSNHYB) + H_3 \cdot (HSNMOL) + H_4 \cdot (HSNPOL)$
Hancon	NBCONV	y = 106.95 - 3.56 · (HSNDIS) + 1.57 · (HSNHYB) - 0.35 · (HSNMOL) - 1.48 · (HSNPOL)
папзен	ANYIEL	y = 68.96 - 3.50 · (HSNDIS) + 1.93 · (HSNHYB) - 0.14 · (HSNMOL) - 0.77 · (HSNPOL)
	k _o	y = 6.01 - 0.28 · (HSNDIS) + 0.21 · (HSNHYB) - 0.01 · (HSNMOL) - 0.10 · (HSNPOL)

Table S16. Mathematic equations generating from experimental outputs and some parameters from the existing LSER models (continue)

Model	y-axis	Mathematic equations					
		$y = K_0 + K_1 \cdot (KIRDIE) + K_2 \cdot (KIRREF) + K_3 \cdot (SWAIBS) + K_4 \cdot (DIMRET)$					
VD	NBCONV	y = 6.17 - 41.91 · (KIRDIE) + 81.58 · (KIRREF) - 28.76 · (SWAIBS) + 83.93 · (DIMRET)					
۸P	ANYIEL	y = -11.19 - 8.76 · (KIRDIE) + 78.85 · (KIRREF) - 34.53 · (SWAIBS) + 75.92 · (DIMRET)					
	k _o	y = -2.45 - 1.79 · (KIRDIE) + 15.98 · (KIRREF) - 3.90 · (SWAIBS) + 8.66 · (DIMRET)					
		$y = K_0 + K_1 \cdot (KIRDIE) + K_2 \cdot (KIRREF) + K_3 \cdot (COHESI) + K_4 \cdot (SWAIBS) + K_5 \cdot (DIMRET)$					
KP w/ cohesion	NBCONV	y = 4.27 - 33.33 · (KIRDIE) + 66.09 · (KIRREF) + 21.64 · (COHESI) - 31.16 · (SWAIBS) + 66.62 · (DIMR					
correction	ANYIEL	y = -13.83 + 3.13 · (KIRDIE) + 57.35 · (KIRREF) + 30.05 · (COHESI) - 37.86 · (SWAIBS) + 51.89 · (DIMRET					
	k _o	y = -2.58 - 1.21 · (KIRDIE) + 14.92 · (KIRREF) + 1.47 · (COHESI) - 4.06 · (SWAIBS) + 7.49 · (DIMRET)					
		$y = S_1 + S_2 \cdot (SWAIAC) + S_3 \cdot (SWAIBS)$					
Swain	NBCONV	y = 13.28 + 66.11 · (SWAIAC) - 22.21 · (SWAIBS)					
Swalli	ANYIEL	y = 1.31 + 68.87 · (SWAIAC) - 23.01 · (SWAIBS)					
	k _o	y = 0.61 + 7.12 · (SWAIAC) - 2.55 · (SWAIBS)					

Table S16. Mathematic equations generating from experimental outputs and some parameters from the existing LSER models (continue)

	, , ,						
Para	meter	R ² -sc	R ² -score Paramete		neter	eter R ² -score	
1	2	NBCONV	ANYIEL	1	2	NBCONV	ANYIEL
CATASA	CATASB	0.261	0.356	DIMREN	CATASB	0.566	0.615
CATASA	GUTACN	0.781	0.739	DIMREN	GUTACN	0.707	0.702
CATASA	КАМВЕТ	0.375	0.466	DIMREN	KAMBET	0.568	0.621
CATASA	SWAIBS	0.574	0.666	DIMREN	SWAIBS	0.759	0.805
GUTDNN	CATASB	0.386	0.488	KAMALP	CATASB	0.846	0.853
GUTDNN	GUTACN	0.722	0.694	KAMALP	GUTACN	0.842	0.857
GUTDNN	KAMBET	0.634	0.704	KAMALP	KAMBET	0.842	0.855
GUTDNN	SWAIBS	0.248	0.315	KAMALP	SWAIBS	0.841	0.852
HSNHYB	CATASB	0.714	0.732	SWAIAC	CATASB	0.710	0.722
HSNHYB	GUTACN	0.715	0.732	SWAIAC	GUTACN	0.713	0.717
HSNHYB	КАМВЕТ	0.683	0.719	SWAIAC	KAMBET	0.709	0.725
HSNHYB	SWAIBS	0.727	0.783	SWAIAC	SWAIBS	0.810	0.817

Table S17. R^2 -values from a combination of acidity and basicity of solvent

NB: bold letter indicates top five R^2 -score

Table S18. Statistical analysis of KAMALP-CATASB-SOLWAT multiple regression for nitrobenzene conversion

Summary Output

Regression Statistics	
Multiple R	0.95
R Square	0.91
Adjusted R Square	0.89
Standard Error	5.76
Observations	17

ANOVA

	df	SS	MS	F	Significance F
Regression	3	4310.9	1437.0	43.3	5.0E-07
Residual	13	431.0	33.2		
Total	16	4741.9			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.22	2.73	4.48	0.00	6.32	18.11
KAMALP	46.54	4.94	9.43	0.00	35.87	57.20
CATASB	-18.22	7.56	-2.41	0.03	-34.56	-1.88
SOLWAT	0.11	0.04	3.00	0.01	0.03	0.19

Table S19. Statistical analysis of KAMALP–SWAIBS–DIPOLE multiple regression model for aniline production

Summary Output

Regression Statistics					
Multiple R	0.95				
R Square	0.90				
Adjusted R Square	0.88				
Standard Error	6.15				
Observations	17				

ANOVA

	df	SS	MS	F	Significance F
Regression	3	4599.8	1533.3	40.5	7.3E-07
Residual	13	491.8	37.8		
Total	16	5091.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	5.07	4.96	1.02	0.33	-5.65	15.79
KAMALP	34.92	5.55	6.29	0.00	22.93	46.91
SWAIBS	-20.72	9.92	-2.09	0.06	-42.15	0.71
DIPOLE	5.35	2.05	2.62	0.02	0.93	9.77

Fig. S1. The size distribution of PdNPs-stabilized-PVP particles in reaction solution

Fig. S2. Single regression analysis of aniline yield *vs.* **KAMALP**. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S3. Multiple regression analysis of (a) **NBCONV** and (b) **ANYIEL** on AKT model. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S4. Multiple regression analysis of (a) **NBCONV** and (b) **ANYIEL** on AKT model with correction on polarizability. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S5. Multiple regression analysis of (a) **NBCONV** and (b) **ANYIEL** on Catalán model. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S6. Multiple regression analysis of (a) **NBCONV** and (b) **ANYIEL** on Gutmann model. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S7. Multiple regression analysis of (a) **NBCONV** and (b) **ANYIEL** on Hansen model. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S8. Multiple regression analysis of (a) **NBCONV** and (b) **ANYIEL** on KP model. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S9. Multiple regression analysis of (a) **NBCONV** and (b) **ANYIEL** on KP model with correction on Hildebrand's cohesion energy density. Blue: protic solvents/alcohols, red: aprotic solvents

Fig. S10. Multiple regression analysis of (a) NBCONV and (b) ANYIEL on Swain model. Blue: proticsolvents/alcohols,red:aproticsolvents

References

- [1] Aqueous Solubility (Log Sw), https://www.stenutz.eu/chem/solv33.php
- [2] Common Solvents Used in Organic Chemistry: Table of Properties, https://organicchemistrydata.org/solvents/
- [3] A5: Dipole Moments, https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Atomic_and_M olecular_Properties/A5%3A_Dipole_Moments
- [4] Anonymous, https://people.chem.umass.edu/xray/solvent.html
- [5] V. Fajt, L. Kurc, and L. Červený, Int. J. Chem. Kinet., 2008, 40, 240–252.
- [6] Q. Liu, F. Takemura, and A. Yabe, J. Chem. Eng. Data, 1996, 41, 1141-1143.
- [7] J. Pardo, M.C. López, J. Santafé, F.M. Royo, and J.S. Urieta, *Fluid Phase Equilib.*, 1995, **109**, 29-37.
- [8] K. Shirono, T. Morimatsu, and F. Takemura, J. Chem. Eng. Data, 2008, 53, 1867-1871.
- [9] E. Brunner, J. Chem. Eng. Data, 1985, **30**, 3, 269-273.
- [10] Dielectric constants and refractive index, https://www.stenutz.eu/chem/dielectric_ri.php
- [11] Log P, partition between octanol and water, https://www.stenutz.eu/chem/logP.php
- [12] Solvent Miscibility, https://www.precisionlabware.com/content/18-solvent-miscibility
- [13] Physical properties of alcohols, https://www.britannica.com/science/alcohol/Physicalproperties-of-alcohols
- [14] Surface Tension, https://www.engineeringtoolbox.com/surface-tension-d_962.html
- [15] Viscosity, https://www.stenutz.eu/chem/solv30.php
- [16] J. S. Chickos, and W. E. Acree, Jr., 2003, J. Phys. Chem. Ref. Data, 2003, 32 (2), 519–878.
- [17] C. M. Hansen, Hansen Solubility Parameters A User's Handbook, CRC Press Taylor & Francis Group, 2007.
- [18] Kamlet-Taft solvent parameters, https://www.stenutz.eu/chem/kamlettaft.php
- [19] S. Henkel, M. C. Misuraca, P. Troselj, J. Davidson, and C. A. Hunter, Chem. Sci., 2018, 9, 88–99.
- [20] W. E. Waghorne, 2020, J. Solution Chem., 49, 466–485.
- [21] SPP solubility parameters, https://www.stenutz.eu/chem/solv25.php?sort=4
- [22] Gutmann acceptor and donor numbers, https://www.stenutz.eu/chem/gutmann.php
- [23] Swain Acity and Basity, https://www.stenutz.eu/chem/swain.php
- [24] Dimroth and Reichardt ET, https://www.stenutz.eu/chem/dimroth.php