Supplementary Information (SI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2024

FTIR spectra of (a) Raw bent, (b) ABT-bent, (c) CTAB-bent, (d) GDU-bent, (e) ABT-bent-lac, (f) CTAB-bent-lac, (g) GDU-bent-lac

(a)

(b)

(d)

Scanning electron microscopy of a) raw bentonite, b) ABT-bent, c) CTAB-bent, d) GDU-bent, e) ABTbent-lac, f) CTAB-bent-lac, g) GDU-bent-lac

Effect of pH on: (a) activity and (b) stability of free and immobilized laccase

Effect of temperature on: (a) activity and (b) stability of free and immobilized laccase

Recycling effect on immobilized laccase activity

Storage stability of free and immobilized laccase

Lineweaver-Burk plot of the free laccase and the immobilized laccase on CTAB-bent, ABT-bent and GDU-bent. Reaction were carried out in pH 4.8 and room temperature.

Adsorption isotherms of proteins onto (a) ABT-bent and (b) CTAB-bent at room temperature

changes in biodegradability index of OMW

Table 1

parameter	Unit	Average value	
pH		5.05	
Water content	(%)	91	
Total phenolic content	mg L-1	≈ 1500	
Oil and Grease (O & G)	mg L-1	13000	
Turbidity		21300	
Total Suspended Solid (TSS)	mg L-1	82888	
Volatile Organic Compound (VOC)	mg L-1	58021	
BOD ₅	mg L-1	35000	
COD	mg L-1	180720	

characteristics of raw OMW used in this study

Chemical ana	lysis (%)	Physical analysis		
SiO ₂	69.8		Unit	
Al_2O_3	11.88	Water absorption	%	300-700
Fe ₂ O ₃	1.4	Inflation	ml/gr ²	22-25
Al(OH) ₃	1.07			
CaO	0.96	Humidity	%	4-8
Na ₂ O	1.03	Montmorillonite	%	86<
MgO	1.42	Grading	Mesh	400
K ₂ O	0.47	CEC	mEq/100gr	100-110
TiO ₂	0.1			

Table 2characteristics of the raw bentonite

Sample	Surface area	Total pore	Mean pore	BIH (nm)
	(m^{2}/g)	Volume (C ³ /g)	diameter (nm)	DJII (IIII)
Raw bentonite	32.099	0.0546	6.7989	1.66
ABT-bent	188.6400	0.1745	3.7002	1.22
CTAB-bent	94.1380	0.1186	5.0389	1.22
GDU-bent	201.9000	0.2387	4.7282	1.22
ABT-bent-lac	169.7300	0.1736	4.0918	1.22
CTAB-bent-lac	68.5710	0.1025	5.9784	1.22
GDU-bent-lac	141.5000	0.1484	4.1940	1.22

Table 3. Textural characteristics of bentonites and immobilized 1 laccases

Table 4 Kinetics values for free and immobilized laccase

	Km (mM)	Vmax (mM.min-1)	Catalytic efficiency (CE)
Free laccase	0.022	0.047	2.184
GDU-bent-lac	0.077	0.075	0.970
CTAB-bent-lac	0.113	0.030	0.261
ABT-bent-lac	0.032	0.020	0.618

 Table 5 Parameters of Langmuir and Freundlich isotherms for protein adsorption onto two modified

 bentonite supports

Models	ABT-bentonite	CTAB-bentonite
	Values	
Langmuir		
$q_{max} (mg/g)$	117.65	133.33
K ₁ (L/mg)	0.0035	0.133
R ²	0.9989	0.9998
Freundlich		
$K_{F} (mg/g)$	113.26	105.18
n (g/L)	13.17	5.9
R ²	0.5159	0.9413