Supplementary information

Rapid and efficient removal of Sr²⁺ ions by the easy-to-operate

and environmentally friendly KInSnS₄@collagen fibers aerogel

Jianghai He,^{a, c, d} Junhao Tang,^a Mingdong Zhang,^{b*} Chuan Lv,^a Lu Yang,^a Zhihua Chen,^a Yi Liu,^a Haiyan Sun,^a Meiling Feng,^{a, c, d*} and Xiaoying Huang^{a, c, d}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^b Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China

^c College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China.

^{*d*} Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P.R. China.

1. Batch adsorption experiments.

In isothermal adsorption experiments, separate solutions were prepared with different initial concentrations of Sr^{2+} ions ($C_0^{Sr} = 5-200 \text{ mg/L}$). The sample to solution ratios (m/V) were all 1 g/L (m=9 mg, V=9 mL). Adsorption took place for about 12 h at room temperature. The filtered supernatant was diluted with 2% HNO₃ solution and finally tested using inductively coupled plasma emission spectroscopy (ICP-OES).

Kinetic experiments were carried out by adding 50 mg of KInSnS₄@CFs aerogel to 50 ml of Sr²⁺ ion solution (C_0^{Sr} = 16.15 mg/L) at room temperature. The above mixture was stirred at specific adsorption time such as 1, 2, 3, 5, and 10 min. After that, an appropriate amount of supernatant was sampled, filtered, and then diluted with 2% HNO₃ solution. Finally, the Sr²⁺ concentration was determined using ICP-OES.

For pH-dependent studies, the pH of aqueous Sr^{2+} solutions was adjusted to 2 to 12 with HNO₃ or NaOH solutions. the initial concentrations of Sr^{2+} ions ranged from 6.79 mg/L to 7.11 mg/L. Adsorption experiments were carried out at room temperature with a m/V of 1 g/L (m = 9 mg, V = 9 mL) and an adsorption time of about 12 h. The supernatant after filtration was diluted with 2% HNO₃ solution and finally tested by ICP-OES. The sample product after the adsorption process was separated from the solution, washed several times with water and ethanol and freeze-dried. The stability of KInSnS₄@CFs aerogel was tested by PXRD and FTIR under different pH conditions.

Competitive ion adsorption experiments were performed at room temperature (m/V = 1 g/L, m = 9 mg, V = 9 mL), and the adsorption time was 12 h for all of them. Sr²⁺ removal experiments of the KInSnS₄@CFs aerogel were performed in the presence of coexisting Na⁺, Cs⁺, Ca²⁺, and Mg²⁺ ions. Sr²⁺ removal experiments of KInSnS₄@CFs aerogel in actual water samples were simulated by adding Sr²⁺ ions to tap water, river water, and lake water. The filtered supernatant was diluted with 2% HNO₃ solution and finally tested by plasma mass spectrometry (ICP-MS) and ICP-OES.

Elution and reuse experiments were carried out as follows. Firstly, a certain amount

of KInSnS₄@CFs aerogel was added into 11.02 mg/L Sr²⁺ solution at room temperature and they contacted for 12 h to give the solid adsorption product KInSnS₄@CFs-Sr. Secondly, KInSnS₄@CFs-Sr was eluted with 1 mol/L KCl solution. Then, the reusability of KInSnS₄@CFs aerogels in the subsequent four consecutive cycles was evaluated by adsorbing the same initial concentration of Sr²⁺ ion solution and using 1 mol/L KCl solution for elution. Three adsorption-elution cycle experiments were carried out. The 1 mol/L KCl solution was configured using KCl and deionized water.

2. Equations.

The equations for the analysis of adsorption data are summarized as follows: (1) Adsorption capacity q (mg/g):

$$q = \frac{(C_0 - C_e)V}{m} \tag{Eq. S1}$$

where $C_0 (mg/L)$ and $C_e (mg/L)$ are the initial and equilibrium concentration of target ions, respectively. m (g) and V (mL) are the mass of the adsorbent and the volume of the solution used in the adsorption experiment, respectively.

(2) Adsorption isotherm models:

The classical isotherm models including Langmuir isotherm model, Freundlich isotherm model, and Langmuir-Freundlich isotherm model are used to evaluate the maximum adsorption capacity (q_{max}) of the adsorbent for a target ion.

The Langmuir isotherm model is suitable for estimating monolayer chemisorption and localized physical adsorption on homogeneous surfaces with little interaction between adsorbates. Langmuir isotherm model is shown in below:¹

$$q = q_{max} \frac{K_L C_e}{1 + bC_e}$$
(Eq. S2)

The Freundlich isotherm model typically describes multilayer adsorption on heterogeneous surfaces with an uncertain number of active binding sites. Freundlich isotherm model is shown in below:¹

$$q = K_F C_e^{\frac{1}{n}}$$
(Eq. S3)

The Langmuir-Freundlich isotherm model is an extension of the Langmuir and Freundlich isotherm model, which is simplified to Langmuir isotherm model with high surface coverage and Freundlich isotherm model with low surface coverage. Langmuir-Freundlich isotherm model is shown in below:²

$$q = q_{max} \frac{(K_L C_e)^{\frac{1}{n}}}{1 + (K_L C_e)^{\frac{1}{n}}}$$
(Eq. S4)

where q_m is the maximum adsorption capacity (mg/g); K_L is the Langmuir constant related to the affinity of the ion for the adsorbent (L/mg), and *n* is the density constant

at the adsorption site. K_F (mg^{1-1/n} · L^{1/n}/g) is the fitting parameter related to the adsorption capacity.

(3) Removal rate R (%):

$$R = \frac{(C_0 - C_e)}{C_0} \times 100\%$$
 (Eq. S5)

(4) Kinetics model:

Pseudo-first-order kinetics model is shown in below,³

$$ln \frac{(q_e - q)}{q_e} = -k_1 t$$
 (Eq. S6)

Pseudo-second-order kinetics model is shown in below,⁴

$$\frac{t}{q} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(Eq. S7)

where k_1 and k_2 are pseudo-first-order and the pseudo-second-order rate constant of kinetics models, respectively. The pseudo-second-order rate expression has been widely applied to the adsorption of pollutants from aqueous solutions.

$$K_{d} = \frac{V(C_{0} - C_{e})}{m C_{0}}$$
(Eq. S8)

(6) The column adsorption process of Sr^{2+} by $KInSnS_4@CFs$ aerogel was further studied through Thomas models analysis.⁵

$$\frac{C_t}{C_0} = \frac{1}{1 + \exp(K_T q_e m/Q - K_T C_0 t)}$$
(Eq. S9)

Where C_0 (mg/L) and C_t (mg/L) are the concentrations at the initial and time t (min), respectively. K_T (L·min⁻¹·mg⁻¹) is the rate constant in the Thomas model. q_e (mg/g) is the maximum adsorption capacity of the adsorbent, Q (L/min) is the volume flow rate, and m (g) is the mass of the adsorbent in the adsorption column.

3. Figure S1–Figure S13.

Figure S2. q_e of Sr²⁺ ions removal by KInSnS₄@CFs aerogel with different mass ratios.

Figure S3. The simulated and as-prepared PXRD patterns of KInSnS₄.

Figure S4. Thermogravimetric curves of KInSnS₄, CFs, and KInSnS₄@CFs aerogel.

Figure S5. (a) XPS full spectra of CFs and KInSnS₄@CFs aerogel. (b) FTIR spectra of KInSnS₄, CFs, and KInSnS₄@CFs aerogel.

Figure S6. Photographs for products of $KInSnS_4@CFs$ aerogel after the treatment of Sr^{2+} ions solutions with different pH values.

Figure S7. PXRD (a) and FTIR (b) patterns of the pristine KInSnS₄@CFs aerogel and those samples treating at different pH values.

Figure S8. (a) K_d of Cs⁺ and Sr²⁺ ions by KInSnS₄@CFs aerogel with different Cs⁺/Sr²⁺ molar ratios. (b) K_d of Ca²⁺ and Sr²⁺ ions by KInSnS₄@CFs aerogel with different Ca²⁺/Sr²⁺ molar ratios. (c) K_d of Mg²⁺ and Sr²⁺ ions by KInSnS₄@CFs aerogel with different Mg²⁺/Sr²⁺ molar ratios. (d) K_d and R of various ions by KInSnS₄@CFs aerogel at equal mass concentration of Na⁺, Ca²⁺, Mg²⁺, and Sr²⁺.

Figure S9. (a) EDS analysis results of $KInSnS_4@CFs-Sr$. (b) EDS analysis results of $KInSnS_4@CFs-Sr$ after elution with 1 mol/L KCl solution.

Figure S10. PXRD patterns of the pristine and the samples after each cycle

Figure S11. SEM images of KInSnS₄@CFs aerogel with different resolutions, 2.5 k (a), 10 k (b), 20 k (c) and 30 k (d), respectively.

Figure S12. Experimental setup for the dynamic capture of Sr^{2+} ions using a column packed with KInSnS₄@CFs aerogel.

Figure S13. EDS analysis results of KInSnS₄@CFs aerogel (a) and KInSnS₄@CFs-Sr (b).

4. Table S1–Table S19.

Table S1. Experimental results of adsorption capacity studies of KInSnS₄@CFs aerogels with different mass ratios (m/V = 1000 mg/L, room temperature and 12 h contact time).

KInSnS ₄ @CFs mass ratio	$C_0^{\rm Sr}$ (mg/L)	C _e ^{Sr} (mg/L)	q _e ^{sr} (mg/g)
1:2	12.66 ± 0.0064	0.61 ± 0.0085	12.06 ± 0.0021
3:4	12.66 ± 0.0064	0.39 ± 0.0028	12.28 ± 0.0035
1:1	12.66 ± 0.0064	0.29 ± 0.0021	12.38 ± 0.0042
5:4	12.66 ± 0.0064	0.19 ± 0.0021	12.48 ± 0.0042
3:2	12.66 ± 0.0064	0.19 ± 0.0021	12.48 ± 0.0042

Table S2. Experimental results of the adsorption capacity study of $KInSnS_4@CFs$ aerogel, $KInSnS_4$, and CFs (m/V = 1000 mg/L, at room temperature and 12 h contact time).

Sample	$C_0^{\rm Sr}$ (mg/L)	C _e ^{sr} (mg/L)	$q_{\rm e}^{\rm Sr}$ (mg/g)
KInSnS ₄ @CFs	7.23 ± 0.070	0.0011 ± 0.00040	7.23 ± 0.070
aerogel	14.58 ± 0.16	0.075 ± 0.0038	14.50 ± 0.17
	30.00 ± 0.20	0.94 ± 0.00	29.06 ± 0.20
	63.78 ± 0.25	26.76 ± 0.23	37.02 ± 0.030
	95.69 ± 1.06	59.14 ± 0.057	36.55 ± 1.12
	235.33 ± 0.10	196.73 ± 0.32	38.60 ± 0.21
KInSnS ₄	4.59 ± 0.00	0.30 ± 0.055	4.29 ± 0.055
	9.68 ± 0.028	0.26 ± 0.0040	9.42 ± 0.024
	31.20 ± 0.17	0.54 ± 0.0010	30.66 ± 0.17
	50.49 ± 0.55	0.81 ± 0.0040	49.68 ± 0.56
	105.95 ± 1.13	25.54 ± 0.14	80.41 ± 1.27
	149.5 ± 1.84	70.09 ± 1.46	79.42 ± 0.37
	202.00 ± 0.99	119.60 ± 0.78	82.45 ± 1.77
CFs	0.24 ± 0.00	0.22 ± 0.0042	0.023 ± 0.0042
	0.45 ± 0.00	0.42 ± 0.0014	0.033 ± 0.0014
	0.77 ± 0.0057	0.73 ± 0.00	0.038 ± 0.0057
	1.07 ± 0.0028	1.06 ± 0.0014	0.012 ± 0.011
	3.20 ± 0.025	3.18 ± 0.0071	0.025 ± 0.033

Table	S3.	Adsorption	constants	obtained	by	fitting	isotherm	data	with	Langmuir
model	, Fre	undlich mod	del and Lan	gmuir-Fre	und	lich mo	del.			

Samples	Adsorption isotherm model	Langmuir model	Langmuir-Freundlich model	Freundlich model
KInSnS₄@CFs	<i>R</i> ²	0.911	0.967	0.885
aerogel	$q_{ m max}{ m Sr}(m mg/g)$	36.74 ± 2.16	41.48 ± 3.77	
	<i>b</i> (L/mg)	7.53 ± 3.43	5.49 ± 4.19	
	n		2.58 ± 0.68	9.04 ± 1.90
	k _F			23.41 ± 2.30
KInSnS₄	<i>R</i> ²	0.923	0.992	0.773
	q_{\max}^{Sr} (mg/g)	83.06 ± 5.75	80.7 ± 1.71	
	<i>b</i> (L/mg)	0.97 ± 0.30	1.50 ± 0.070	
	n		0.38 ± 0.045	4.53 ± 1.27
	k _F			31.58 ± 7.85

Table S4. Sn elemental contents in KInSnS₄ and KInSnS₄@CFs aerogel.

Sample	Sn content (mg/g)
KInSnS ₄	284.25 ± 20.15
KInSnS₄@CFs aerogel	125.25 ± 7.42

Table S5. The Sr²⁺ adsorption kinetics results of KInSnS₄@CFs aerogel (m/V = 1000 mg/L, at room temperature).

 /		
t (min)	C _e ^{sr} (mg/L)	R ^{Sr} (%)
0	16.15 ± 0.071	0.00
1	3.87 ± 0.014	76.04 ± 0.017
2	1.30 ± 0.0071	91.98 ± 0.0087
3	1.16 ± 0.00	92.82 ± 0.031
5	1.12 ± 0.0071	93.10 ± 0.014
7	1.11 ± 0.00	93.13 ± 0.030
10	1.12 ± 0.0071	93.10 ± 0.074
15	1.11 ± 0.00	93.13 ± 0.030
30	1.09 ± 0.00	93.25 ± 0.030
60	1.1 ± 0.00	93.19 ± 0.030
120	1.1 ± 0.0071	93.22 ± 0.014
180	1.1 ± 0.00	93.19 ± 0.030
300	1.09 ± 0.014	93.25 ± 0.058
420	1.09 ±0.00	93.25 ± 0.030

Table S6. Kinetic fitting parameters of KInSnS₄@CFs aerogel for Sr²⁺ removal. (m/V = 1000 mg/L, at room temperature).

	<i>k</i> ₁	<i>k</i> ₂	$m{q}_{ m e}^{ m Sr}$	R ²
	(min ^{_1})	(g·mg ^{−1} ·min ^{−1})	(mg·L ^{−1})	Λ
Pseudo-first-order model	1.72	-	15.12	0.99
Pseudo-second-order model	-	0.066	0.0026	1.00

Table S7. The pH-dependent adsorption results of KInSnS₄@CFs aerogel for Sr²⁺ removal (m/V = 1000 mg/L, at room temperature and 12 h contact time).

	, 0,	, i		,
рН	$C_0^{\rm Sr}$ (mg/L)	C _e ^{sr} (mg/L)	K _d ^{Sr} (mL/g)	R ^{Sr} (%)
2	7.01 ± 0.014	2.01 ± 0.0057	$2.49 \times 10^3 \pm 16.88$	71.36 ± 0.14
3	7.04 ± 0.00	0.41 ± 0.0028	$1.62 \times 10^4 \pm 118.46$	94.18 ± 0.040
4	7.07 ± 0.071	0.13 ± 0.0013	$5.30 \times 10^4 \pm 15.80$	98.15 ± 0.00054
5	7.11 ± 0.071	0.12 ± 0.00085	$5.97 \times 10^4 \pm 164.12$	98.35 ± 0.0045
6	6.98 ± 0.11	0.15 ±0.00057	$4.69 \times 10^4 \pm 590.23$	97.91 ± 0.026
7	7.06 ± 0.00	0.13 ±0.00071	$5.52 \times 10^4 \pm 315.96$	98.22 ± 0.010
8	7.08 ± 0.028	0.13 ±0.00029	$5.36 \times 10^4 \pm 337.47$	98.17 ± 0.011
9	7.02 ± 0.028	0.18 ±0.00071	$3.85 \times 10^4 \pm 316.37$	97.47 ± 0.020
10	7.04 ± 0.11	0.12 ±0.00042	$5.93 \times 10^4 \pm 1188.79$	98.34 ± 0.033
11	7.08 ± 0.057	0.34 ± 0.00	$2.00 \times 10^4 \pm 167.56$	95.23 ± 0.038
12	6.79 ± 0.042	0.75 ± 0.0071	$8.11 \times 10^3 \pm 29.56$	89.02 ± 0.036

•		0, ,			,
Molar ratio (Na ⁺ /Sr ²⁺)	М	C_0^{M} (mg/L)	$C_{\rm e}^{\rm M}$ (mg/L)	K _d ^M (mL/g)	<i>R</i> ^M (%)
2.01	Na+	6.43 ± 0.11	5.66 ± 0.30	138.15 ± 41.19	12.08 ± 3.18
3.81	Sr ²⁺	4.97 ± 0.070	0.040 ± 0.0085	1.26 × 10 ⁵ ± 29.00	99.19 ± 0.18
	Na⁺	20.88 ± 0.020	18.31 ± 0.11	140.11 ± 8.20	12.29 ± 0.63
15.24	Sr ²⁺	5.00 ± 0.028	0.040 ± 0.0021	$1.26 \times 10^5 \pm 61.00$	99.21 ± 0.038
F2 25	Na⁺	70.57 ± 0.25	63.69 ± 0.54	108.13 ± 5.48	9.76 ± 0.45
53.35	Sr ²⁺	5.04 ± 0.028	0.097± 0.0028	$5.10 \times 10^4 \pm 12.00$	98.08 ± 0.045
152.44	Na⁺	200.00 ± 0.85	190.50 ± 0.99	49.87 ± 1.00	4.75 ± 0.091
	Sr ²⁺	5.03 ± 0.028	0.35 ± 0.0014	$1.34 \times 10^4 \pm 22.64$	93.06 ± 0.010

Table S8. The adsorption results of KInSnS₄@CFs aerogel under different Na⁺/Sr²⁺ molar ratios (m/V = 1000 mg/L, at room temperature and 12 h contact time).

Table S9. The adsorption results of KInSnS₄@CFs aerogel under different Cs⁺/Sr²⁺ molar ratios (m/V = 1000 mg/L, at room temperature and 12 h contact time).

Molar ratio (Cs ⁺ /Sr ²⁺)	Μ	C_0^{M} (mg/L)	C _e ^M (mg/L)	K _d ^M (mL/g)	R ^M (%)
2.64	Cs⁺	18.60 ± 0.057	2.08 ± 0.00	$7.94 \times 10^3 \pm 27.19$	88.82 ± 0.034
2.64	Sr ²⁺	5.08 ± 0.014	0.15 ± 0.014	$3.30 \times 10^4 \pm 3302.00$	97.05 ± 0.29
26.36	Cs+	185.60 ± 0.57	112.00 ± 0.57	$6.57 \times 10^2 \pm 13.42$	39.65 ± 0.49
	Sr ²⁺	5.28 ± 0.028	2.65 ± 0.028	$9.92 \times 10^2 \pm 31.94$	49.81 ± 0.80
F2 72	Cs ⁺	374.80 ± 0.57	300.00 ± 1.13	$2.50 \times 10^2 \pm 2.83$	19.96 ± 0.18
52.72	Sr ²⁺	5.25 ± 0.028	3.31 ± 0.021	$5.88 \times 10^2 \pm 1.64$	37.05 ± 0.065
424.00	Cs+	910.00 ± 5.66	885.00 ± 1.41	28.26 ± 8.04	2.71 ± 0.76
131.80	Sr ²⁺	5.13 ± 0.035	4.12 ± 0.014	$2.44 \times 10^2 \pm 12.85$	19.61 ± 0.83

Table S10. The adsorption results of KInSnS₄@CFs aerogel under different Ca²⁺/Sr²⁺ molar ratios (m/V = 1000 mg/L, at room temperature and 12 h contact time).

Molar ratio (Ca ²⁺ /Sr ²⁺)	Μ	C_0^{M} (mg/L)	C _e ^M (mg/L)	K _d ^M (mL/g)	<i>R</i> ^M (%)
2.10	Ca ²⁺	12.06 ± 0.035	7.20 ± 0.042	$6.74 \times 10^2 \pm 4.96$	40.27 ± 0.18
2.19	Sr ²⁺	5.05 ± 0.00	0.092 ± 0.0030	$5.36 \times 10^4 \pm 21.00$	98.17 ± 0.070
13.12	Ca ²⁺	32.51 ± 0.13	21.40 ± 0.092	$5.19 \times 10^2 \pm 12.81$	34.18 ± 0.55
	Sr ²⁺	5.04 ± 0.021	2.13 ± 0.0070	$1.40 \times 10^3 \pm 17.87$	57.8 ± 0.32
52.40	Ca ²⁺	109.60 ± 0.99	94.38 ± 0.28	$1.61 \times 10^2 \pm 7.10$	13.89 ± 0.53
52.46	Sr ²⁺	5.04 ± 0.064	4.07 ± 0.021	$2.38 \times 10^2 \pm 9.20$	19.26 ± 0.60
104.93	Ca ²⁺	211.60 ± 0.57	195.90 ± 1.27	80.16 ± 4.13	7.42 ± 0.35
	Sr ²⁺	5.00 ± 0.028	4.50 ± 0.035	112.36 ± 2.46	10.10 ± 0.20

	· ·	0, ,	1		/
Molar ratio (Mg²+/Sr²+)	М	C_0^{M} (mg/L)	C _e ^M (mg/L)	K _d ^M (mL/g)	<i>R</i> ^M (%)
2.00	Mg ²⁺	7.00 ± 0.28	2.71 ± 0.042	$1.58 \times 10^3 \pm 63.94$	61.27 ± 0.96
3.60	Sr ²⁺	4.96 ± 0.028	0.22 ± 0.0050	2.12 × 10 ⁴ ± 365.02	95.49 ± 0.070
14.42	Mg ²⁺	21.36 ± 0.050	12.67 ± 0.00	$6.85 \times 10^2 \pm 3.91$	40.67 ± 0.14
	Sr ²⁺	5.17 ± 0.014	2.30 ± 0.00	$1.25 \times 10^3 \pm 6.15$	55.51 ± 0.12
F7.00	Mg ²⁺	77.47 ± 0.58	67.06 ± 0.29	$1.55 \times 10^2 \pm 3.65$	13.42 ± 0.27
57.66	Sr ²⁺	4.98 ± 0.035	4.11 ± 0.021	$2.12 \times 10^2 \pm 2.35$	17.49 ± 0.16
108.12	Mg ²⁺	139.05 ± 0.071	131.55 ± 0.21	57.01 ± 1.17	5.39 ± 0.10
	Sr ²⁺	5.09 ± 0.0071	4.44 ± 0.00	$1.45 \times 10^2 \pm 1.59$	12.68 ± 0.12

Table S11. The adsorption results of KInSnS₄@CFs aerogel under different Mg²⁺/Sr²⁺ molar ratios (m/V = 1000 mg/L, at room temperature and 12 h contact time).

Table S12. The adsorption results of KInSnS₄@CFs aerogel at equal molar ions concentration of Na⁺, Ca²⁺, Mg²⁺ and Sr²⁺ (m/V = 1000 mg/L, at room temperature and 12 h contact time).

М	C_0^{M} (mg/L)	$C_{\rm e}^{\rm M}$ (mg/L)	<i>R</i> ^M (%)	K_{d}^{M} (mL/g)
Na⁺	1.61 ± 0.0040	1.59 ± 0.00	1.40 ± 0.20	14.15 ± 2.20
Ca ²⁺	2.45 ± 0.020	1.57 ± 0.030	35.94 ± 1.60	5.61× 10 ² ± 39.80
Mg ²⁺	1.76 ± 0.0060	0.52 ± 0.020	70.28 ± 1.10	2.37× 10 ³ ± 3.50
Sr ²⁺	4.93 ± 0.030	0.10 ± 0.010	97.99 ± 0.20	$4.90 \times 10^4 \pm 13.40$

Table S13. The adsorption results by $KInSnS_4@CFs$ aerogel at equal mass ions concentration of Na⁺, Ca²⁺, Mg²⁺ and Sr²⁺ (m/V = 1000 mg/L, at room temperature and 12 h contact time).

М	C_0^{M} (mg/L)	$C_{\rm e}^{\rm M}$ (mg/L)	<i>R</i> ^M (%)	K _d ^M (mL/g)
Na+	5.76 ± 0.02	5.59 ± 0.011	2.91 ± 0.17	29.98 ± 1.84
Ca ²⁺	5.71 ± 0.028	2.12 ± 0.0035	62.88 ± 0.12	$1.69 \times 10^3 \pm 8.86$
Mg ²⁺	5.51 ± 0.035	2.03 ± 0.011	63.20 ± 0.040	$1.72 \times 10^3 \pm 3.22$
Sr ²⁺	5.13 ± 0.0070	0.40 ± 0.011	92.30 ± 0.23	$1.20 \times 10^4 \pm 382.88$

Table S14. The results on Sr^{2+} ions removal by KInSnS₄@CFs aerogel in actual water samples contaminated with Sr^{2+} ions (m/V = 1000 mg/L, at room temperature and 12 h contact time).

Water	C ₀ ^{Sr} (mg/L)	C _e ^{sr} (mg/L)	K _d ^{sr} (mL/g)	R ^{Sr} (%)
Tap water (Fuzhou, Fujian)	5.38 ± 0.025	0.41 ± 0.016	$1.22 \times 10^4 \pm 44.00$	92.40 ± 0.25
Lake water (Qishan Lake, Fuzhou)	5.33 ± 0.00	1.19 ± 0.0070	$3.50 \times 10^3 \pm 26.85$	77.78 ± 0.13
River water (Fuzhou, Fujian)	5.29 ± 0.02	0.32 ± 0.0030	$1.55 \times 10^4 \pm 102.00$	93.94 ± 0.038

Water	$C_0^{\kappa}(mg/L)$	$C_0^{\text{Na}}(\text{mg/L})$	$C_0^{Ca}(mg/L)$	$C_0^{Mg}(mg/L)$
Tap water (Fuzhou, Fujian)	3.40 ± 0.092	9.85 ± 0.028	10.46 ± 0.050	1.71 ± 0.021
Lake water (Qishan Lake, Fuzhou)	5.06 ± 0.21	14.57 ± 0.050	14.64 ± 0.050	2.54 ± 0.0071
River water (Fuzhou, Fujian)	2.35 ± 0.29	6.59 ± 0.0071	12.16 ± 0.014	1.85 ± 0.0071

Table S15. The concentration of K^+ , Na^+ , Ca^{2+} , and Mg^{2+} ions in tap water, lake water, and river water.

Table S16. The results on Sr^{2+} ions removal by KInSnS₄@CFs aerogel in the cyclic experiments (m/V = 1000 mg/L, at room temperature and 12 h contact time).

Cycles	$C_0^{\rm Sr}$ (mg/L)	C _e ^{Sr} (mg/L)	R ^{Sr} (%)
1	11.02 ± 0.078	0.079 ± 0.00040	99.28 ± 0.0090
2	11.02 ± 0.078	0.12 ± 0.00040	98.88 ± 0.010
3	11.02 ± 0.078	0.11 ± 0.00010	99.04 ± 0.0056

<i>t</i> (min)	C _t (mg/L)	$C_{\rm t}/C_0$	R ^{Sr} (%)
0	0	0	0
2.5	0.062 ± 0.013	0.0059 ± 0.0012	99.41 ± 0.12
12.5	0.042 ± 0.0048	0.0041 ± 0.00045	99.60 ± 0.045
17.5	0.043 ± 0.00028	0.0041 ±0.000036	99.59 ± 0.0036
32.5	0.039 ± 0.000071	0.0037 ± 0.00000074	99.63 ± 0.000074
42.5	0.041 ± 0.00035	0.0039 ± 0.000026	99.61 ± 0.0026
52.5	0.039 ± 0.00035	0.0038 ± 0.000042	99.62 ± 0.0042
62.5	0.037 ± 0.00092	0.0036 ± 0.000081	99.64 ± 0.0054
87.5	0.038 ± 0.00064	0.0036 ± 0.000054	99.64 ± 0.00061
97.5	0.038 ± 0.00014	0.0037 ± 0.0000061	99.63 ± 0.00014
107.5	0.039 ± 0.00085	0.0037 ± 0.0000074	99.63 ± 0.0074
132.5	0.075 ± 0.0018	0.0072 ± 0.00016	99.28 ± 0.0016
137.5	0.08 ± 0.0026	0.0077 ± 0.00024	99.23 ± 0.0024
147.5	0.14 ± 0.00064	0.014 ± 0.000089	98.65 ± 0.0089
157.5	0.21 ± 0.00099	0.021 ± 0.00014	97.94 ± 0.014
172.5	0.36 ± 0.0023	0.034 ± 0.00029	96.57 ± 0.029
182.5	0.46 ± 0.0018	0.044 ± 0.00026	95.57 ± 0.026
197.5	0.57 ± 0.0015	0.055 ± 0.00025	94.52 ± 0.025
202.5	0.63 ± 0.0036	0.060 ± 0.00022	93.96 ± 0.022
242.5	0.89 ± 0.013	0.086 ± 0.0014	91.44 ± 0.088
272.5	1.06 ± 0.0071	0.10 ± 0.00088	89.88 ± 0.18
347.5	2.02 ± 0.014	0.19 ± 0.0018	80.62 ± 0.54
422.5	3.36 ± 0.050	0.32 ± 0.0054	67.82 ± 0.82
452.5	3.89 ± 0.078	0.37 ± 0.0082	62.73 ± 0.18
497.5	4.56 ± 0.028	0.44 ± 0.0018	56.26 ± 0.12
617.5	6.00 ± 0.00	0.58 ± 0.0012	42.45 ± 0.73
632.5	6.10 ± 0.063	0.58 ± 0.0073	41.53 ± 0.26
647.5	6.45 ± 0.014	0.62 ± 0.0026	38.13 ± 0.14
652.5	6.53 ± 0.028	0.63 ± 0.0014	37.36 ± 0.66
852.5	9.54 ± 0.05	0.91 ± 0.0066	8.54 ± 0.051
872.5	9.55 ± 0.014	0.92 ± 0.00051	8.40 ± 0.56
897.5	9.63 ± 0.078	0.92 ± 0.0056	7.67 ± 0.078

Table S17. Results of adsorption column experiments of KInSnS₄@CFs aerogel ($C_0^{Sr} = 10.425 \text{ mg/L}$, room temperature).

Table S18. Thomas model fitting parameters for column experimental data at roomtemperature.

Solution	K _T (L·min⁻¹·mg⁻¹)	$q_{ m e}$ (mg/g)	<i>R</i> ²
10.43 ± 0.024 mg/L Sr ²⁺	$7.03 \times 10^{-4} \pm 2.66 \times 10^{-5}$	58.64 ± 0.64	0.99

sacic	BCI.		
	lon	C_0^M (mg/L)	$C_{\rm e}^{M}$ (mg/L)
	Sr ²⁺	46.54 ± 0.37	26.28 ± 0.26
	K+	0.020 ± 0.00078	17.67 ± 0.17

Table S19. The concentration of Sr^{2+} and K^+ ions in solution after Sr^{2+} adsorption by KInSnS₄@CFs aerogel.

References

- 1. K. Y. Foo and B. H. Hameed, Insights into the modeling of adsorption isotherm systems, *Chem. Eng. J.*, 2010, **156**, 2-10.
- 2. O. Altin, H. O. Ozbelge and T. Dogu, Use of general purpose adsorption isotherms for heavy metal clay mineral interactions, *J. Colloid Interface Sci.*, 1998, **198**, 130-140.
- 3. S. Azizian, Kinetic models of sorption: a theoretical analysis, *J. Colloid Interface Sci.*, 2004, **276**, 47-52.
- 4. Y. S. Ho, Review of second-order models for adsorption systems, *J. Hazard. Mater.*, 2006, **136**, 681-689.
- 5. T. Mathialagan and T. Viraraghavan, Adsorption of cadmium from aqueous solutions by perlite, *J. Hazard. Mater.*, 2002, **94**, 291-303.