Supplementary Information (SI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2025

Supporting information

Depolymerization of polydimethylsiloxanes in ammonia – a new approach to silicone recycling

E.O. Minyaylo^{a,b}, A.I. Kudryavtseva^c, M.N. Temnikov^{a,b}, A.S. Peregudov^a, A.A. Anisimov^{a,b,c*}, A.M. Muzafarov^{a,d}

^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

^b Tula State Lev Tolstoy Pedagogical University, 300026, Tula, Russia

^c Moscow Center for Advanced Studies, 20 Kulakova Str., Moscow, Russia

^d Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia

Table of contents

Experimental	S3
General procedure for depolymerization of trimethylsiloxy terminated polydimethylsiloxane (PMS-200) in ammonia (samples 1-4)	S4
General procedure for depolymerization of silanol terminated polydimethylsiloxane (PDMS-(OH) ₂) in ammonia (sample 5)	S5
Synthesis of model silicone rubbers	S6
Synthesis of silicone rubber IIIa	S6
Synthesis of silicone rubber IIIb	S6
Synthesis of silicone rubber IIIc	S6
General procedure for depolymerization of silicone rubbers IIIa – IIIc and industrial silicone waste IVa – IVb in ammonia (samples 6-10)	S7
Isolation of reaction products 9-10	S7
General procedure for scaling up for depolymerization of industrial silicone waste IVa in ammonia (sample 11)	S7
Preparation of polysiloxane by cationic polymerization of depolymerizate 2b (sample 12)	S8
	S1

Preparation of polysiloxane by anionic polymerization of depolymerizate 9 (sample 13)	S8
GC data	S9
SEC data	S28
NMR data	S37
Photo	S43

Experimental

Anhydrous ammonia was purchased from Spectra Gases Inc.

Trimethylsiloxy terminated polydimethylsiloxane (PMS-200), silanol terminated polydimethylsiloxane (PDMS-(OH)₂), trimethylsiloxy terminated methylhydrosiloxane, K-18 catalyst (25 % solution of tin diethyldicaprylate in TEOS) were purchased from LLC "SILANE".

Karstedt's catalyst (a xylene solution of a platinum (0) complex with 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, Pt \sim 2%) was purchased from Aldrich. DMS-V25 was purchased from Gelest.

Chlorotrimethylsilane (TMSCl), Tetramethylammonium hydroxide (25% w/w in methanol), Amberlyst 15 were purchased from abcr GmbH.

Benzoyl peroxide was purchased from Acros.

Technical silicone rubber IVb - product of JSC "Polymer-Apparat".

Water was deionised by deionizer MILLIPORE MILLI-Q SYNTHESIS.

²⁹Si NMR spectra were recorded on a Bruker AvanceTM 500 spectrometer (Germany) operating at 79 MHz. The chemical shifts for ²⁹Si were measured with TMS as an external standard.

SEC analysis was performed on a Shimadzu chromatograph using a RID - 20A refractometer as the detector, a PSS SDV analytical 10^3 Å column (Size 300 x 8 mm) and 10^4 Å column (Size 300 x 8 mm), and toluene as an eluent.

Gas chromatography (GC) analysis was performed on a chromatograph (Crystallux 4000, Russia) at 50–280 °C, 20° min–1; catharometer detector, columns (2 mm \times 2 m) with 5% SE-30 stationary phase deposited onto Chromaton-N-AW-HMDS, helium as a carrier gas (30 mL min–1). Data were recorded and processed using the NetChrom 2.0 program package (Crystallux, Russia).

General procedure for depolymerization of trimethylsiloxy terminated polydimethylsiloxane (PMS-200) in ammonia (samples 1-4)

PMS-200 and required amount of H_2O were loaded into an autoclave equipped with a magnetic stirrer, then the autoclave was filled with required amount of NH_3 under chill-down using an IN-FLOW mass flow meter (Bronkhorst, Netherlands). The reaction mixture was heated at **T**°C for **t** h and then decompressed. The depolymerization products were obtained as transparent viscous liquids. Reagent loads, temperature and duration of synthesis are shown in Table S1. The products obtained were isolated in quantitative yields. The yield of HMDS was calculated using the M_n^{NMR} (Fig S34) of the initial PMS for depolymerizates that do not contain a high molecular weight fraction.

Nº	m(PMS-200), g	PMS-200, mmol	V(H ₂ O), mL	H ₂ O, mmol	m(NH ₃), g	T, ℃	t, hours	HMDS yield, %
1 a	1	14	1	56	5	150	24	83.7
1b	1	14	1	56	5	150	12	91.6
1c	1	14	1	56	5	150	10	-
1d	1	14	1	56	5	150	8	-
1e	1	14	1	56	5	150	6	-
2a	1	14	0.5	28	5	150	24	84.2
2b	1	14	0.25	14	5	150	24	69.5
2c	1	14	0.1	5.5	5	150	24	-
2d	1	14	0	0	5	150	24	-
3 a	1	14	0.5	28	4	150	24	42.1
3b	1	14	0.5	28	3	150	24	-
3 c	1	14	0.25	14	4	150	24	75.8
3d	1	14	0.25	14	3	150	24	-
4 a	1	14	1	56	5	50	48	-
4b	1	14	1	56	5	125	24	-
4c	1	14	1	56	5	125	48	-

Table S1.

General procedure for depolymerization of silanol terminated polydimethylsiloxane (PDMS-(OH)₂) in ammonia (sample 5)

 $PDMS-(OH)_2$ and required amount of H_2O were loaded into an autoclave equipped with a magnetic stirrer, then the autoclave was filled with 5 g of NH_3 under chill-down using an IN-FLOW mass flow meter (Bronkhorst, Netherlands). The reaction mixture was heated at 150°C for 24 h and then decompressed. The depolymerization products were obtained as transparent viscous liquids. Reagent loads are shown in Table S2. The products obtained were isolated in quantitative yields.

Table S2.

.№	m(PDMS- (OH) ₂), g	PDMS-(OH) ₂ , mmol	V(H ₂ O), ml	H ₂ O, mmol	m(NH ₃), g	Т, °С	t, hours
5	1	14	0.25	14	5	150	24
5 a	1	14	1	56	5	150	24
5b	1	14	0.5	28	5	150	24
5c	1	14	0.1	5.5	5	150	24
5d	1	14	0	0	5	150	24

Synthesis of model silicone rubbers

Synthesis of silicone rubber IIIa

 $20 \ \mu\text{L}$ of Karstedt's catalyst was placed added to a vial containing 9.1 g (0.5 mmol) of DMS-V25. This mixture was then quickly added to the 30 % solution of 10 g (1 mmol) of methylhydrosiloxane in toluene, stirred, and poured into a PTFE mold to cure. After evaporation of the solvent, the silicone rubber IIIa was heated at 80 °C/1 mbar. The transparent cross-linked material was obtained, the gel fraction was 98%.

Synthesis of silicone rubber IIIb

The mixture of 50 % solution of 10 g (0.14 mmol (calculated for dimethylsiloxane unit)) of silanol terminated polydimethylsiloxane PDMS-(OH)₂ in toluene and 1 mL of K-18 was poured into a PTFE mold to cure. After evaporation of the solvent, the silicone rubber IIIb was heated at 80 °C/1 mbar. The transparent cross-linked material was obtained, the gel fraction was 93%.

Synthesis of silicone rubber IIIc

The mixture of 10 g (0.14 mmol (calculated for dimethylsiloxane unit)) of silanol terminated polydimethylsiloxane PDMS-(OH)₂ and 0.1 g (1 wt. %) of benzoyl peroxide was poured into a PTFE mold to cure in a circulating air oven at 150° C for 24 hours. The transparent cross-linked material was obtained, the gel fraction was 62%.

General procedure for depolymerization of silicone rubbers IIIa – IIIc and industrial silicone waste IVa – IVb in ammonia (samples 6-10)

1 g of silicone and 0.25 mL (14 mmol) of H_2O were loaded into an autoclave equipped with a magnetic stirrer, then the autoclave was filled with 5 g of NH_3 under chill-down using an IN-FLOW mass flow meter (Bronkhorst, Netherlands). The reaction mixture was heated at 150°C for 24 h and then decompressed. The depolymerization products were obtained as transparent viscous liquids in case of samples 6-8 and as paste in case of samples 9-10.

Isolation of reaction products 9-10

The mixtures of low molecular weight products obtained in experiments **8** and **9** were separated from the fillers by centrifugation in pentane solution. The solutions obtained were further decanted. The solvent was distilled off on a rotary vacuum evaporator at 50 °C/850 mbar. The filler was evacuated at rt/2 mbar. The filler content of the original sample was 25% in the case of IVa and 50% in the case of IVb. The product mass of 8 after isolation was 0.68 g, the yield was 91 %. The product mass of 9 after isolation was 0.45 g, the yield was 90 %.

General procedure for scaling up for depolymerization of industrial silicone waste IVa in ammonia (sample 11)

4.25 g of IVa and 1.06 mL (59 mmol) H₂O were loaded into an autoclave equipped with a mechanical stirrer, then the autoclave was filled with 21.25 g of NH₃ under childown using an IN-FLOW mass flow meter. The reaction mixture was heated at 150°C for 24 h and then decompressed. The depolymerization product was obtained as white paste. Then the sample 11 was separated from the fillers by centrifugation in pentane solution. The solution obtained was further decanted. The solvent was distilled off on a rotary vacuum evaporator at 50 °C/850 mbar. The product mass after isolation was 2.98 g, the yield was 93 %.

Preparation of polysiloxane by cationic polymerization of depolymerizate 2b (sample 12)

A flask equipped with a magnetic stirrer was loaded with 3.09 g (41.76 mmol) of 2b and 0.062 g (2 wt%) of Amberlyst 15. The mixture was stirred for 8 hours at a temperature of 80 °C. Then the reaction mixture was dissolved in hexane. Amberlyst 15 was removed by filtration through a folded filter in a hexane solution. The solvent was distilled off on a rotary vacuum evaporator at 50 °C/360 mbar. Final polymer was analyzed by SEC.

Preparation of polysiloxane by anionic polymerization of depolymerizate 9 (sample 13)

A test tube equipped with a magnetic stirrer was loaded with 0.18 g (2.5 mmol) of 9, 7 μ L (0.018 mmol) of TMAH (25% w/w in methanol) and 0.2 mL of dry toluene. The mixture was stirred at 100 °C for 20 h under argon conditions. Then 0.0019 g (0.018 mmol) of TMSCl was added. Furthermore, the mixture was stirred at 100 °C for 2 h. Final polymer was analyzed by SEC.

Component	Time, min	Concentration, %	Area
HMDS	2.832	1.5957	1304.181
D3	3.143	1.9337	1580.432
L3	3.825	0.49096	401.261
	4.498	2.2279	1820.875
D4	4.774	28.917	23634.041
L4	5.373	5.7101	4666.888
D5	6.062	16.899	13811.166
L5	6.642	12.357	10099.293
D6	7.333	4.9375	4035.459
L6	7.872	12.97	10600.470
D7	8.506	1.8587	1519.108
L7	9.375	10.103	8256.820

Component	Time, min	Concentration, %	Area
HMDS	2.860	1.7382	372.331
D3	3.153	1.1199	239.875
L3	3.897	2.5349	542.989
	4.511	2.052	439.534
D4	4.737	38.171	8176.395
L4	5.515	12.281	2630.647
D5	6.065	20.222	4331.549
L5	6.983	10.092	2161.788
D6	7.431	4.419	946.553
L6	8.361	7.3697	1578.617

Fig S2. GC spectra of 1b

Component	Time, min	Concentration, %	Area
	1.289	0.52896	191.318
HMDS	2.841	1.6525	597.679
D3	3.154	1.6572	599.396
L3	3.828	3.0322	1096.718
	4.491	1.8424	666.375
D4	4.741	36.272	13119.221
L4	5.355	11.924	4312.801
D5	6.027	14.539	5258.558
L5	6.523	10.816	3912.176
	7.186	1.1334	409.955
D6	7.307	2.1165	765.509
L6	7.622	7.5182	2719.253
D7	8.339	1.345	486.476

L7	8.764	4.6103	1667.494
D8	9.420	0.3312	119.792
L8	9.935	0.68096	246.298

Fig S3. GC spectra of 1c

Fig S4. GC spectra of 1d

Component	Time, min	Concentration, %	Area
	1.291	0.6473	246.171
	2.039	0.0095477	3.631
HMDS	2.833	2.1773	828.041
D3	3.143	1.8592	707.057
L3	3.807	2.1766	827.761
	4.481	1.9459	740.030
D4	4.729	30.693	11672.733
L4	5.353	12.106	4604.116
D5	6.018	12.387	4710.700
L5	6.537	13.316	5063.920
	7.184	1.1359	431.976
D6	7.302	1.5673	596.046
L6	7.632	9.1947	3496.774
D7	8.343	1.2489	474.968
L7	8.781	5.8247	2215.158
Component	Time,52 m£n981	0.75781 Concentration, % 2.9527	288.197 Area 1122.918
	0.661	0.24052	91.599
	1.350	0.18552	70.654
HMDS	2.841	2.4663	939.248
D3	3.152	3.7153	1414.925
L3	4.503	3.2202	1226.366
D4	4.757	38.516	14668.258
L4	5.325	4.0871	1556.528
D5	6.045	12.259	4668.833
L5	6.647	9.9183	3777.271

D6	7.344	3.2685	1244.764
L6	7.973	11.72	4463.323
D7	8.595	1.9349	736.888
L7	9.554	8.4688	3225.247
D9	0.000	0	0.000
L9	0.000	0	0.000

Fig S5. GC spectra of 1e

Area

Fig S6. GC spectra of 2a

	min	%	
	0.662	0.16459	72.149
	1.314	0.22871	100.259
HMDS	2.837	1.6025	702.466
D3	3.143	0.87898	385.314
L3	3.907	0.2294	100.562
	4.491	1.7835	781.817
D4	4.769	48.784	21385.077
L4	5.288	3.5038	1535.924
D5	6.045	20.138	8827.840
L5	6.523	6.8568	3005.755
	7.243	0.96565	423.305
D6	7.325	3.2529	1425.943
L6	7.674	6.4802	2840.667
	8.413	0.56874	249.316
D7	8.513	0.75028	328.897
L7	8.919	3.812	1671.040

Component	Time, min	Concentration, %	Area
	0.261	0.16215	56.459
	0.703	0.84345	293.679
	1.322	0.10893	37.927
HMDS	2.844	1.3246	461.225
D3	3.147	0.75743	263.726
L3	4.490	1.6199	564.045
D4	4.768	61.784	21512.395
L4	5.262	2.5899	901.771
D5	6.027	14.997	5221.836
L5	6.487	4.8135	1675.985
	7.189	1.0959	381.570

D6	7.312	2.1856	760.981
L6	7.628	4.7238	1644.782
D7	8.356	0.33857	117.887
L7	8.827	2.655	924.439

Fig S7. GC spectra of 2b

Component Time, min		Concentration, %	Area				
HMDS	2,823	0,942	107,885				
D3	3,147	5,097	583,767				
	4,462	2,119	242,628				
D4	4,720	61.784	21512.395				
	5,897	1,473	168,671				
D5	6,009	11,655	1334,770				
L5	6,410	1,021	116,931				
	7,168	1,941	222,274				
D6	7,307	2,063	236,283				

L6	7,573	1,810	207,288
	8,343	1,891	216,517
D7	8,501	0,619	70,935
L7	8,756	2,590	296,599

Fig S8. GC spectra of 2c

Component	Time, min	Concentration, %	Area
HMDS	2,809	0,798	173,614
D3	3,135	0,902	196,292
L3	3,712	2,019	439,163
	4,458	2,014	437,959
D4	4,710	27,606	6004,355
	5,253	8,461	1840,183
D5	5,925	1,359	295,498
L5	6,025	19,832	4313,418
	6,513	14,065	3059,057
D6	7,194	1,417	308,174
L6	7,325	4,399	956,749

D7	8,390	0,397	86,370
L7	8,756	2,590	296,599

Fig S9. GC spectra of 3a

Fig S10. GC spectra of **3b**

	min		
	1.298	0.65718	181.421
HMDS	2.853	1.4691	405.574
D3	3.155	0.92414	255.118
L3	3.859	3.7068	1023.292
	4.503	1.715	473.455
D4	4.741	39.308	10851.401
L4	5.369	7.0388	1943.141
D5	6.055	20.291	5601.632
L5	6.674	7.3494	2028.877
D6	7.385	5.6155	1550.209
L6	7.977	5.6737	1566.293
D7	8.717	1.3389	369.621
L7	0.000	2,590	0.000
D9	0.000	0	0.000
	9.777 Time	0	1356.068
Compgnent	9,777 Time, 0,000	0 Concentration, %	1356.068 Ø .000
Compgnent HMDS	9.777 Time, 0.000 2.842	0 Concentration, % 1.44	1356.068 0.000 887.372
Component HMDS D3	9,777 0,000 2.842 3.151	0 Concentration, % 1.44 1.0844	1356.068 0.000 887.372 668.264
Component HMDS D3 L3	9,777 Time, 2.842 3.151 3.911	0 Concentration, % 1.44 1.0844 0.14015	1356.068 0.000 887.372 668.264 86.370
Component HMDS D3 L3	9.777 Compo 2.842 3.151 3.911 4.501	0 Concentration, % 1.44 1.0844 0.14015 1.5571	1356.068 0.000 887.372 668.264 86.370 959.581
Component HMDS D3 L3 D4	9.777 Time, 0.000 2.842 3.151 3.911 4.501 4.802	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629
Component HMDS D3 L3 D4 L4	9.777 Comp 2.842 3.151 3.911 4.501 4.802 5.303	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035 2.7816	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629 1714.147
Component HMDS D3 L3 D4 L4 D5	9.777 Time, 2.842 3.151 3.911 4.501 4.802 5.303 6.061	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035 2.7816 18.702	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629 1714.147 11524.913
Component HMDS D3 L3 D4 L4 D5 L5	9,777 Time , 0,000 2.842 3.151 3.911 4.501 4.802 5.303 6.061 6.525	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035 2.7816 18.702 5.1013	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629 1714.147 11524.913 3143.674
Component HMDS D3 L3 D4 L4 D5 L5	9,777 Time , 0,000 2.842 3.151 3.911 4.501 4.802 5.303 6.061 6.525 7.205	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035 2.7816 18.702 5.1013 1.1179	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629 1714.147 11524.913 3143.674 688.905
Component HMDS D3 L3 D4 L4 D5 L5 D6	9.777 Time , 0.000 2.842 3.151 3.911 4.501 4.802 5.303 6.061 6.525 7.205 7.328	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035 2.7816 18.702 5.1013 1.1179 2.9107	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629 1714.147 11524.913 3143.674 688.905 1793.737
Component HMDS D3 L3 D4 L4 D5 L5 D6 L6	9.777 Time , 0.000 2.842 3.151 3.911 4.501 4.802 5.303 6.061 6.525 7.205 7.328 7.660	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035 2.7816 18.702 5.1013 1.1179 2.9107 5.3622	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629 1714.147 11524.913 3143.674 688.905 1793.737 3304.455
Component HMDS D3 L3 D4 L4 D5 L5 D6 L6 D7	9.777 Time, 0.000 2.842 3.151 3.911 4.501 4.802 5.303 6.061 6.525 7.205 7.328 7.660 8.386	0 Concentration, % 1.44 1.0844 0.14015 1.5571 52.035 2.7816 18.702 5.1013 1.1179 2.9107 5.3622 1.765	1356.068 0.000 887.372 668.264 86.370 959.581 32066.629 1714.147 11524.913 3143.674 688.905 1793.737 3304.455 1087.652

Fig S11. GC spectra of 3c

L9 10.257 1.1816 728.145

Component	Time, min	Concentration, %	Area				
	1.091	0.28795	115.430				
	1.310	0.10007	40.115				
HMDS	2.838	1.367	547.975				
D3	3.145	1.1899	477.014				
	4.492	1.7154	687.669				
D4	4.761	48.08	19273.910				
L4	5.280	3.1375	1257.755				
D5	6.044	22.307	8942.200				
L5	6.503	5.467	2191.576				
	7.196	1.2498	501.020				
D6	7.323	4.015	1609.483				
L6	7.645	5.9734	2394.554				
D7	8.364	0.40542	162.522				
L7	8.872	4.1705	1671.837				
	9.583	0.53424	214.160				

Component	Time, min	Concentration, %	Area				
D3	3.145	1.3586	602.431				
L3	3.752	2.5069	1111.585				
D4	4.779	54.8	24299.326				
L4	5.293	6.8272	3027.310				
D5	6.045	16.807	7452.533				
L5	6.497	5.835	2587.350				
D6	7.334	3.1766	1408.551				
L6	7.643	4.5733	2027.865				
D7	8.563	0.54608	242.140				
L7	8.893	3.5693	1582.687				

Fig S14. GC spectra of 6

	min		
	1.363	0.49899	68.169
	1.451	3.132	427.871
	1.616	4.3269	591.121
	1.840	7.3866	1009.116
	2.655	5.2028	710.769
D3	3.146	1.7017	232.473
L3	0.000	0.000	0.000
D4	4.720	48.98	6691.335
L4	5.625	0.24967	34.108
D5	6.039	20.395	2786.228
L5	6.947	1.0259	140.157
D6	7.385	3.3344	455.523
D7	8.155	1.5072	205.909
L7	8.741	0.29424	40.198
	9.754	1.9648	268.420

Component	Time, min	Concentration, %	Area				
D3	3.164	1.6413	467.863				
L3	0.000	0	0.000				
D4	4.788	70.266	20029.083				
L4	0.000	0	0.000				
D5	6.070	18.247	5201.285				
L5	0.000	0	0.000				
D6	7.388	2.6056	742.731				
L6	7.817	3.5755	1019.182				
D7	0.000	0	0.000				
L7	8.885	3.665	1044.697				

Component Time,

Concentration. %

Area

Fig S16. GC spectra of 8

min		
3.125	1.715	676.088
4.222	0.041	16.195
4.738	69.947	27577.284
5.299	0.206	81.298
5.527	0.229	90.138
6.012	20.962	8264.372
6.615	0.641	252.576
7.305	3.255	1283.441
7.725	0.475	187.359
8.480	0.782	308.266
8.810	0.239	94.372
9.526	0.346	136.376
9.794	0.069	27.377
10.429	0.202	79.629
10.671	0.034	13.555
11.231	0.127	50.010
11.961	0.099	38.859
12.622	0.111	43.928
13.304	0.146	57.441
14.053	0.139	54.692
14.939	0.129	50.980
16.037	0.107	42.000
16.037	0.107	42

50 MB			4801 D4																		
4000																					
3000	- Et ₂ O			50 2																	
2000	ſ	D3	14	د.05 ال	32 D6																
00		906'EF 4	151 151 151 151 151 151 151 151 151 151	0 - 5 6.572	° 27.369	9.016 🕂 م	10	11	12	13	14	15	16	17	18	19	20	21	22	23	2 ми
					Fi	g S	17.	GC	spe	ectra	a of	9									

Component	Time, min	Concentration, %	Area
	2.749	0.077256	41.116
	2.891	0.085607	45.560
D3	3.147	0.90481	481.541
L3	3.906	0.2534	134.858
	4.515	0.12066	64.216
D4	4.801	59.916	31887.402
D4	4.933	2.5943	1380.660
L4	5.309	1.9678	1047.275
	5.566	0.8213	437.095
D5	6.058	15.519	8259.149
L5	6.572	2.8392	1511.037
D6	7.369	2.3327	1241.450
L6	7.832	6.8592	3650.441
L7	9.016	5.7086	3038.103

Fig S18. GC spectra of 10

Time, min	Concentration, %	Area
3.141	6.3813	2478.797
0.000	0.000	0.000
4.497	0.50419	195.853
4.764	51.181	19881.213
5.271	2.3305	905.268
5.554	0.1183	45.954
6.037	15.777	6128.550
6.512	6.1659	2395.132
7.221	0.19607	76.163
7.324	2.1386	830.733
7.721	8.1838	3178.961
8.596	0.3189	123.875
8.771	6.704	2604.144
	Time, min 3.141 0.000 4.497 4.764 5.271 5.554 6.037 6.512 7.221 7.324 7.721 8.596 8.771	Time, minConcentration, %3.1416.38130.0000.0004.4970.504194.76451.1815.2712.33055.5540.11836.03715.7776.5126.16597.2210.196077.3242.13867.7218.18388.5960.31898.7716.704

Component Time, min		Concentration, %	Area	
	2.255	0.20039	66.723	
	2.781	0.23228	77.339	
	2.898	0.34489	114.834	
D3	3.161	6.197	2063.356	
L3	0.000	0	0.000	
	4.519	0.33544	111.690	
D4	4.780	60.561	20164.681	
L4	5.265	1.6556	551.251	
D5	6.037	10.559	3515.881	
L5	6.493	4.3457	1446.948	
D6	7.329	1.4739	490.743	
L6	7.719	7.8474	2612.875	
L7	8.756	6.2467	2079.917	

Tab	le	S3.
		~ • •

sample	Mp, kDa	Mn, kDa	Mw, kDa	PDI	Column size, Å
PMS-200 (I)	14.1	8.6	19.3	2.25	10 ³

Fig S21. SEC curves of products 2a-2b after ammonia decompression

Fig S22. SEC curves of depolymerization products 3a - 3b after decompression

Fig S23. SEC curves of depolymerization products 3c - 3d after decompression

Fig S24. SEC curves of depolymerization products 4a - 4c after decompression

Fig S25. SEC curve of PDMS-(OH)₂

Т	'ah	le	S 4
1	au	IU.	υт.

sample	Mp, kDa	Mn, kDa	Mw, kDa	PDI	Column size, Å
PDMS-(OH) ₂ (II)	68.9	56.6	75.9	1.34	104

Fig S26. SEC curves of initial PDMS-(OH)₂ II and its depolymerization product 7 after ammonia decompression

Fig S27. SEC curve of product 12

sample	Mp, kDa	Mn, kDa	Mw, kDa	PDI	Column size, Å
12	16.5	8.4	16.3	1.95	10 ³

Fig S28. SEC curve of product 13

Table S6.

sample	Mp, kDa	Mn, kDa	Mw, kDa	PDI	Column size, Å
13	79.6	9.6	24.5	2.56	10 ³

S38

S39

S40

<u>Photo</u>

sample 9

sample 10

Fig S35. Photographs of depolymerization products of silicone industrial waste after ammonia decompression

Fig S36. Autoclave for scaling the depolymerization process