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Supporting Information Text

1. Data process and Docking Setting

For each target, we used the following process to collect and preprocess the active molecules. Firstly, active molecules against
each target are collected from CHEMBL and BindingDB separately. Secondly, active molecules were filtered by IC50 (our
tasks focus on inhibitor design) value, and only the compounds with IC50 lower than 1,000 nM were retained. Thirdly, we
de-duplicate the remaining compounds by canonical SMILES. Finally, for each target, the number of non-redundant active
molecules is shown in Supplementary Table S1. These molecules were used to construct the active molecule library as a
reference.

In order to obtain the protein-ligand interactions between those molecules and target proteins, we need to dock them to
obtain complex structures. Therefore, it is necessary to prepare the protein acceptor pocket. For RORγt and DHODH targets,
referring to the work of Chen et al.(1), we used the protein co-crystal structures with PDB id 5NTP(2) and 6QU7(3). We
removed other chains in the original structures and performed hydrogen addition, hydrogen bond assignment, water removal,
restrain minimization, etc. The above operations were performed in protein prepare(4), using default parameters. The docking
grid was centered according to the ligand position, and the bounding box was set to 15 Å. For small molecules, we ran ligand
preparation(5) using Epik to set the ionization possible state under neutral conditions and generated up to 32 possible chiral
isomers per molecule. Then we used Glide for docking, using XP precision (consistent with the work of Chen et al.) and the
default value for other parameters. For the GSK3β and JNK3 targets, we used the protein co-crystal structures with PDB ids
6Y9S(6) and 4WHZ(7) as raw data. We repeated the above steps in RORγt|DHODH preparation for GSK3β| JNK3 task, but
we used the more common SP precision when docking.

2. Core Fragment Extraction and Scoring

Here are some detailed descriptions of core fragment extraction and scoring in our method. The overall extraction and selection
process is outlined in Supplementary Algorithm 1, where the PLIP function employs PLIP(8, 9) to extract PLIs from complex
structures, COMB enumerates valid combinations of PLIs, the EXTR function is detailed in Supplementary Algorithm 2, and
SCORE_SIZE, SCORE_INTER, and SCORE_DIS assign scores to the substructures. EXTR takes a given molecule and
pharmacophore as input and extracts the minimal substructure that preserves this pharmacophore. The pharmacophore is
defined as the combination of protein-ligand interactions (PLIs).

Algorithm 1: Extracting and selecting core fragments from active compounds
Input: Active molecules M, protein-ligand complexes C and key residues R
Output: Top-scoring core fragments F

1 DF ← empty dictionary // Accumulating score for each fragment ;
2 for m, c in M, C do
3 I ← PLIP(c) // PLIs;
4 P ← COMB(I) // Phamacophores as combinations of PLIs;
5 MF ← empty dictionary // Recording the max score for each fragment;
6 for p in P do
7 f ← EXTR(m,p) // Core fragments;
8 ss ← SCORE_SIZE(f ,m);
9 si ← SCORE_INTER(f ,I);

10 sd ← SCORE_DIS(f ,c,R);
11 s ← ss×(si+sd) // Scores;
12 mf ← MAX(mf , s) // mf ∈MF ;
13 end
14 for mf in MF do
15 df ← df + mf // df ∈ DF ;
16 end
17 end
18 F ← Top-scoring f in DF ;
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Algorithm 2: Core Fragment Extraction with Given Pharmacophore
Input: m as given molecule, p as given pharmacophore
Output: core fragment f

1 Function EXTR(m,p):
2 L ← empty set // set of interacted atoms;
3 for i in p do
4 L.add(a) for a in GET_ATOMS(m,i) // get interacted atoms;
5 end
6 S ← empty set // set of minimum substructure atoms;
7 for a in L do
8 for b in L do
9 P ← m.findShortestPath(a,b) // get atoms in the shortest path;

10 A ← P.extendRingAtoms // expand ring atoms in the path;
11 S.add(a’) for a’ in A // get minimum substructure atoms;
12 end
13 end
14 f ← m.getSubstructure(S) // get minimum substructure;
15 return f ;

The SCORE_SIZE function, SCORE_INTER function, and SCORE_DIS function were used as scoring functions of the
extracted core fragment. They can be formulated as below:

SCORE_SIZE rewards fragment that is neither too small nor too large, which is formulated by Eq. 1:
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, where h is the number of heavy atoms in the fragment and N represents the number of heavy atoms in the source molecule.
SCORE_INTER rewards fragment that shares more PLIs, and is represented as Eq. 2:

si =
∑
i∈I

∑
a∈i&f

1/len(i) [2]

, where i enumerates each PLI in I, a is any atom in core fragment f that contributes to PLI i, len(i) counted the number of
ligand atoms that share this PLI.

SCORE_DIS rewards fragment that is closer to given key residues, which is defined as the sum of the distance score obtained
by each atom in this fragment:

sd =
∑
a∈f

sa [3]

, where the distance score sa of each atom can be expressed as a piecewise function:

sa =

{ 0 da > 6
1 da < 3

− da
3 + 2 3 ≤ da ≤ 6

[4]

, where the minimum distance da between a given atom and key residues is calculated by:

da = min
b∈K

dis(a, b) [5]

, where b Enumerates key interacting residues in K.

3. Tree Initialization for Pharmacophore Fusion

In the INIT_GEN function of Algorithm 1 in the main text, AIxFuse iteratively and randomly samples child nodes in the
trees until the leaf node of rationale and then fuse them to generate molecules. The sampling probability of each child node is
determined by its weight that is initialized when building trees:

Pn = Wn∑
b∈Bn

Wb
[6]

, where Bn is the set of brother nodes of node n. The weights of nodes in each level are initialized when building trees. For
each Core, we accumulate the negative base 10 logarithms of the I/EC50 values of the active molecules that share this Core as
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its node weights. For each Growth Anchor, we accumulate the heavy atom number (8 if > 8) of all its Side Chains as its node
weight. Since a Fusing Anchor may be shared by multiple active molecules, we accumulate the number of active molecules that
share this Fusing Anchor as its node weight. The rationale is determined by the combination of Fusing Anchor and R-groups.
The R-groups are the combination of Fusing Anchors from other Growth Anchors. Therefore, the weight of Rationale is the
cumulative multiplication of the weights of these Fusing Anchors.

4. Implement of Other Methods

For the GSK3β|JNK3 benchmark task, both RationaleRL and MARS utilized activity predictors developed by Li et al. (10) to
estimate molecular activity. We aligned REINVENT2.0 with these approaches. We ran RationaleRL and MARS by the tutorials
in their GitHub pages∗†. For RationaleRL we directly ran python decode.py −−model ckpt/gsk3_jnk3_qed_sa/model.final
−−num_decode 500 > outputs.txt and generated 18,500 molecules. We then randomly sampled 10,000 molecules as
the generation result of RationaleRL. For MARS we ran python -m MARS.main −−train −−run_dir runs/gsk3b_jnk3
−−num_mols 10000 and employed the molecules of converged step (651) as the generation result of MARS. For REINVENT2.0
we changed the scoring_function configuration in the Reinforcement_Learning_Demo.ipynb of ReinventCommunity‡. We
replaced the original properties with qed_score, SA_score, and the predicted GSK3β and JNK3 activity scores that are used
in RationaleRL and MARS. After that, we first ran Reinforcement_Learning_Demo.ipynb to train the agent and then ran
Sampling_Demo.ipynb to generate 10,000 molecules.

For the RORγt|DHODH benchmark task, the machine learning models for molecular activities evaluation have not been
established before. Here we trained two Support Vector Machine (SVM) models for RORγt and DHODH activity prediction,
respectively. However, the training procedure like Li et al.(10) is not feasible. Because there are too few (113) DHODH
inactive molecules in ExCAPE-DB to train the machine-learning model. Here we assumed that most molecules in CHEMBL
are not active to DHODH if their assay information is not related to DHODH. We first collected molecules from CHEMBL and
curated an “inactive” molecule dataset that is 5 times larger than the active dataset (the size of the active dataset is shown in
Supplementary Table S1). We then split the dataset into a training set and a test set according to the molecular similarity.
Each molecule in the test set was lower than 0.8 Tanimoto similarity with any molecules in the training data. The size of
training data and test data is shown in Supplementary Table S2. We used the molecular fingerprint features of 2048 dimensions
as input. The hyperparameters of the SVM models are optimized by Bayesian optimization. As is shown in Supplementary
Fig. S1, the Area Under ROC Curve (AUC) obtained on DHODH and RORγt were 0.998 and 0.996, respectively. We then
used these two activity predictors in RationaleRL, MARS, and REINVENT2.0 to generate molecules for RORγt|DHODH
benchmark task.

5. Implementation of GNN training and evaluation

Supplementary Table S3 shows the molecular representation (11) used by our graph neural network. Most of these features are
encoded by one-hot representation, except for formal charge and radical electron number which are represented as integers due
to their additive properties. To construct a one-hot encoding feature, all possible categorical variables related to the feature are
listed and assigned values of either 1 or 0 (one-hot or null) based on their correspondence to those variables. For instance, a
16-bit vector is designated for encoding atomic symbols, while a 6-bit vector is employed for encoding hybridization states.
Notably, atomic chirality is encoded using three distinct bits: one indicating the presence of a chiral center, and the remaining
two bits specifying whether it is in R-form or S-form. Additionally, stereotypes of double bonds are denoted by a feature that
distinguishes their potential E/Z configurations.

The training of our graph neural network went through 5 iterations. In the first round of training, 10,000 molecules randomly
generated by INIT_GEN were used for model training. After the first round of training is completed, the obtained model
was used for the reward function of the second round of Monte Carlo tree search. In the generation procedure of the second
round, AIxFuse generated 10,000 molecules that were non-redundant with previous molecules. We then integrated all generated
molecules as a new training dataset and the second round of model training was performed to obtain a new docking scoring
prediction model. Iteratively, the fifth round of model training is finally completed. Using the model obtained from the fifth
round, AIxFuse generated 10,000 molecules as its final result.

To evaluate the performance of the model at each round, we constructed a test set based on the final generated molecules.
The molecules in the test set were de-redundant with all molecules in the training set. We used the model trained for each
epoch to make predictions on the training set. The performance evaluation metrics included MSE and R2. The formula of
MSE is as follows:

MSE = 1
n

n∑
i=1

(yi − ŷi)2 [7]

, where yi represents the ground-truth value, ŷi represents the predicted value of the model, and n represents the sample size.
The formula squares the difference between each observed value and the corresponding model-predicted value and averages it

∗https://github.com/wengong-jin/multiobj-rationale
†https://github.com/bytedance/markov-molecular-sampling
‡https:// github.com/MolecularAI/ReinventCommunity
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over all samples. The formula of R2 is as follows:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n

i=1(yi − ȳ)2 [8]

, where ȳ is the average of ground-truth value.

6. Generating Pharmacophore-Fused Molecules by two Self-Play MCTS Actors

Supplementary Algorithm 3 describes the SELF_PLAY function in Algorithm 1 of the main text. Here the REWARD function
R of any generated or simulated molecule m can be formulated as:

R = SQED × SSA × SNNA × SNNB [9]
SQED = max(min(10×QED(m), 8)− 6, 0.5) [10]

SSA = max(min(5.5− SA(m)), 0.5) [11]
SNN = max(−NN(m)− 6, 0.1) [12]

, where NN predicts the docking score of m against target A (NNA) or target B (NNB), and the upper confidence bound
(UCB) of reward expectation for a given node is used in the SELECT function of MCTS, which can be represented as:

UCBi = Wi

Ni
+ C × Pi ×

√∑
j∈N (i) Nj

1 + Ni
[13]

, where i denotes the index of given node, Ni is the number of selection for this node, Wi represents the total reward of this
node, C is a constant that controls the exploration tendency, Pi is the simulated reward of this node, and j is any brother node
of node i.

Algorithm 3: SELF_PLAY to Generate Pharmacophore-Fused Molecules
Input: TA as tree of target A and TB for target B, N as the neural network, and W as its weight parameters, and n as

the number of generated molecules
Output: Generated molecules G

1 G ← empty list // list of generated molecules;
2 while LEN(G) < n do
3 CA, CB ← TA.root.children,TB .root.children // Cores;
4 VA, VB ← SELECT (CA), SELECT (CB) // best Core;
5 S ← empty list // list to record the simulation results;
6 S, m ← SIMULATE (S, VA, VB , N , W);
7 G.append(m) // record m as generated molecules;
8 if Not FINAL_GEN then
9 G.extend(SAMPLE (S)) // to improve the training set diversity;

10 end
11 end
12 Function SIMULATE(S, VA, VB, N , W):
13 CA, CB ← VA.children, VB .children;
14 MA, MB ← SAMP_MOL (CA, CB) // sample Rationales to fuse molecules;
15 S.extend({MA, MB}) // record simulation results;
16 UPDATE_P (CA, CB , REWARD ({MA, MB}),N , W) // update P in Eq.13;
17 V ′

A, V ′
B ← SELECT (CA), SELECT (CB) // best child;

18 if IS_INSTANCE (V ′
A, Rationale) then

19 m ← FUSE (V ′
A, V ′

B) // fuse Rationales to generate molecules;
20 UPDATE_W_N (V ′

A, V ′
B , REWARD (m, N , W)) // update N, W in Eq.13;

21 return S, m

22 end
23 return SIMULATE (S, V ′

A, V ′
B , N , W) // recursive call;

7. Supplementary Results

In Table 1 of the main text, we report the similarity of the generated molecules to the active molecules. Here we are also
interested in understanding the distance between the property distribution of generated molecules and active molecules. As
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is shown in Table S4, Fréchet ChemNet Distance (FCD)(12) and Similarity to Nearest Neighbor (SNN) are both used to
evaluate the molecular similarity between generated compounds and inhibitors of GSK3β, JNK3, RORγt, and DHODH. When
compared with REINVENT2.0, RationaleRL, and MARS, AIxFuse achieved the minimum FCD on all four targets. This is
reasonable since molecules generated in the chemical space gaps between inhibitors of two targets are supposed to be similar
to both ends. For SNN we found that AIxFuse obtained the highest similarity to inhibitor libraries except RORγt’s. But
when we studied the property distribution distance to RORγt inhibitors, AIxFuse generated compounds achieved minimum
distance for QED, SA, LogP, and molecular weight, which is consistent with FCD. This is probably because, for molecular
generation, FCD is more suitable than SNN for similarity evaluation (12). Ranking property distance to GSK3β and JNK3
inhibitors ascendingly, AIxFuse was 1st|1st, 2nd|2nd, 1st|2nd and 3rd|1st on QED, SA, LogP and molecular weight, respectively.
For RORγt and DHODH, AIxFuse achieved minimum distribution distance on most properties except molecular weight. The
detailed density distributions are visualized in Supplementary Fig. S2.

In Figure 4C of the main text, we plotted the distribution of dual-target docking scores of generated molecules. We found
that besides AIxFuse, RationaleRL also successfully generated some molecules that obtained better docking scores than
(R)-14d. However, further study found that these molecules contain a large number of benzene ring fragments (examples
shown in Supplementary Fig. S3A). Due to the hydrophobic nature of the benzene ring, the LogP of RationaleRL-generated
molecules is concentrated above 7 (shown in Supplementary Fig. S2G). This could potentially lead to the problem of insufficient
solubility. MARS generated very few molecules with docking scores lower than (R)-14d. This could be due to that its
generated molecules are too small (illustrated in Supplementary Fig. S2H) to satisfy the binding modes required by both
targets simultaneously.

In the main text, we reported the success rate when generating 10,000 molecules. However, the number of generated
molecules would cause fluctuation in success rate. Therefore, here we also reported the success rate of AIxFuse, RationaleRL,
MARS, and REINVENT2.0 when generating 1,000 molecules for RORγt|DHODH task. AIxFuse achieved the highest success
rate of 42.3%, significantly outperforming other methods (RationaleRL:2.6%, MARS:0%, and REINVENT2.0:4.7%). That is
reasonable, under the constraint of SAR, the number of active compounds should be limited, discovering 423 hits in 1000 tries
can be as easy as finding 2396 hits in 10000 tries for AIxFuse.

Novelty is a crucial aspect in the generation of dual-target molecules. Molecules that exhibit excessive similarity to known
inhibitors are more likely to fall within the boundaries of existing patent protection. To assess this, we quantified the proportion
of generated molecules with high similarity. AIxFuse yielded a mere 3.71% of molecules with an over 0.8 similarity to known
inhibitors. This indicates that the molecules generated by AIxFuse are less likely to encroach upon existing patent protection.

8. Visual Inspection

We comprehensively considered the dual-target Docking scoring of the generated molecules, as well as the 2D SNN and 3D
SNN to the active molecules of different targets, and selected the top 200 molecules from the 10,000 generated by AIxFuse. For
the top 200 molecules, we use manual visual inspection to filter out molecules with unreasonable Docking poses. For example,
we observed that in the molecular docking pose of some generated molecules, the PLI pattern between the core fragments and
proteins has changed. It became different from the corresponding single-target active molecules.

Supplementary Fig. S4 shows a more intuitive example. As shown in Supplementary Fig. S4A, the generated molecule M
consists of red core fragments from active compounds of RORγt and blue from DHODH, which are called Fragment F1 and
Fragment F2, respectively. Supplementary Fig. S4B visualizes a positive compound of target A, which also consists of fragment
F1. In the docking pose of the RORγt active compound, fragment F1 interacts with residue 479 of target A, as shown in
Supplementary Fig. S4D. However, in the low-energy docking pose of molecule M in Supplementary Fig. S4C, fragment F1
does not interact with HIE479. Therefore, for molecules with similar problems, we filter them out by visual inspection. In the
end, we obtained 136 molecules that passed the filter and performed MM/GBSA calculations on them.

Supplementary Fig. S5 supplemented the RORγt|DHODH results of Figure 3A-D in the main text. Supplementary Fig.
S6 supplemented the RORγt|DHODH results of Figure 2E in the main text. Overall the results in RORγt|DHODH were
consistent with results in GSK3β|JNK3 task. Supplementary Table S5 illustrated the SMILES of our drug candidates for
MM/GBSA and ABFEP calculation, and Supplementary Table S6 showed the results.

9. Pearson correlation coefficient between docking scores and binding affinities

How do docking scores correlate with binding affinities? Here we calculated the docking score of compounds designed by Chen
et al(1). As shown in Supplementary Table S7), these molecules exhibited a Pearson correlation coefficient of 0.533 between
RORγt’s IC50 experimental values (lower is better) and Glide XP precision docking scores (lower is better) for 5NTP, and the
correlation coefficient for DHODH was 0.288. Overall, there is a positive correlation between the docking scores and IC50
experimental values. Considering that the computational cost of calculating docking scores is significantly lower compared to
experimental determination of IC50 values, using docking scores as one of the reinforcement learning objectives and as an
initial virtual screening tool is reasonable and efficient.

6 of 24 Sheng Chen, Junjie Xie, Renlong Ye, David Daqiang Xu, and Yuedong Yang



Fig. S1. ROC curves for the predictive model of A.DHODH and B.RORγt
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Fig. S2. The property distribution of molecules generated for GSK3β|JNK3 (A: QED, B: SA, C: LogP, D: Weight) and property distribution of molecules generated for
RORγt|DHODH (E: QED, F: SA, G: LogP, H: Weight)
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Fig. S3. The examples molecules generated by RationaleRL (A) and AIxFuse(B) that obtained better docking score than (R)-14d on RORγt

Sheng Chen, Junjie Xie, Renlong Ye, David Daqiang Xu, and Yuedong Yang 9 of 24



Fig. S4. An example of visual inspection: (A) A generated molecule M with red core fragment F1 from RORγt active compounds and blue core fragment F2 from DHODH. (B)
A RORγt active compound with corresponding core fragment F1. (C) The RORγt Docking pose of generated molecule M . (D) The Docking pose of the corresponding RORγt
active compound
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Fig. S5. Docking score prediction performance for (A) GSK3β, (B) JNK3, (E) RORγt, and (F) DHODH on different reinforcement learning iterations, and the scatter plot of
predictive docking score of final model and the ground-truth value for (C) GSK3β, (D) JNK3, (G) RORγt and (H) DHODH

Sheng Chen, Junjie Xie, Renlong Ye, David Daqiang Xu, and Yuedong Yang 11 of 24



Fig. S6. The t-SNE visualization of AIxFuse’s generated compounds on dual-target inhibitor design task for (A) GSK3β|JNK3 and (B) RORγt|DHODH.
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Table S1. Number of active compounds for different targets

Target Number of Active Compounds
GSK3β 2128
JNK3 791
RORγt 5902
DHODH 1210
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Table S2. Number of Training and Test dataset for RORγt and DHODH activity predictors.

Size of Dataset Training Test
RORγt 10740 1686
DHODH 3876 300
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Table S3. Initial Atomic and Bond Features

atom feature size description
atom symbol 16 [B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, metal] (one-hot)
degree 6 number of covalent bonds [0,1,2,3,4,5] (one-hot)
formal charge 1 electrical charge (integer)
radical electrons 1 number of radical electrons (integer)
hybridization 6 [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot)
aromaticity 1 whether the atom is part of an aromatic system [0/1] (one-hot)
hydrogens 5 number of connected hydrogens [0,1,2,3,4] (one-hot)
chirality 1 whether the atom is chiral center [0/1] (one-hot)
chirality type 2 [R, S] (one-hot)
bond feature size description
bond type 4 [single, double, triple, aromatic] (one-hot)
conjugation 1 whether the bond is conjugated [0/1] (one-hot)
ring 1 whether the bond is in ring [0/1] (one-hot)
stereo 4 [StereoNone, StereoAny, StereoZ, StereoE] (one-hot)
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Table S4. Molecular similarities and property distribution distance between generated molecules and inhibitors of GSK3β, JNK3, RORγt, and
DHODH

GSK3β|JNK3
Method REINVENT2.0 RationaleRL MARS AIxFuse
FCD 29.5|30.8 28.2|27.8 53.8|46.8 16.7|24.9
SNN 0.35|0.41 0.38|0.44 0.36|0.45 0.47|0.45
Dis. QED 0.12|0.08 0.11|0.14 0.23|0.27 0.04|0.02
Dis. SA 0.14|0.07 0.28|0.32 0.30|0.21 0.18|0.09
Dis. LogP 1.84|0.99 0.80|0.26 0.43|1.03 0.10|0.94
Dis. Weight 11.1|27.1 22.5|49.9 103.7|136.6 27.9|10.9

RORγt| DHODH
Method REINVENT2.0 RationaleRL MARS AIxFuse
FCD 39.1|39.7 38.2|35.6 59.2|49.0 23.7|14.1
SNN 0.45|0.37 0.44|0.37 0.41|0.38 0.31|0.60
Dis. QED 0.22|0.12 0.10|0.20 0.40|0.30 0.02|0.09
Dis. SA 1.64|0.95 1.27|0.58 1.71|1.02 0.61|0.17
Dis. LogP 0.37|1.09 2.20|2.93 1.44|0.80 0.11|0.63
Dis. Weight 181.4|61.1 73.8|47.0 291.2|170.5 46.3|74.4

16 of 24 Sheng Chen, Junjie Xie, Renlong Ye, David Daqiang Xu, and Yuedong Yang



Table S5. The SMILES of Reference Active Compounds and 134 Selected Molecules Generated by AIxFuse

SMILES Name

CC1=C(OC2CCN(C(CC(C(F)(F)F)C(F)(F)F)=O)CC2)C=C(Cl)C=C1NC3=NC4=C(CCC[C@H]4O)S3 (R)-14d
Cc1ncc(C(=O)Nc2cc(Cl)cc(CN3CCN(C(=O)C4CCCC4)[C@@H](C)C3)c2C)cn1 GSK-98E
COCCOc1cc(C#N)cc(C(=O)Nc2cnc3c(c(C4CCN(C(=O)C5CCCC5)CC4)cn3C)c2C)c1 BDBM189939
N#Cc1cccc(C(=O)Nc2cccc3c2CCC3N2CCN(C(=O)C3CCCC3)CC2)c1 BDBM50509677
CCn1c(CO)nn(-c2cc(O[C@@H](C)C(F)(F)F)c(cc2F)C(=O)Nc2c(F)cccc2Cl)c1=O BAY2402234
Cc1ccc(C(F)(F)F)cc1NC(=O)c1cc(F)c(-n2nc3n(c2=O)CCCC3)cc1OC(C)C(F)(F)F BDBM490418
Cc1ccc(F)cc1NC(=O)c1cc(F)c(-n2nc3n(c2=O)CCCC3)cc1OC(C)C1CCCCC1 BDBM490490
CCn1c(CO)nn(Cc2cccc(C(=O)Nc3cccc4c3CCC4N3CCN(C(=O)C4CCCC4)CC3)c2)c1=O AF-1
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(N2CCN(C(=O)C3CCCC3)CC2)ccc1C AF-2
CCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)Nc1cccc2c1CCC2N1CCN(C(=O)C2CCCC2)CC1 AF-3
CCn1c(CO)nn(-c2ccc3c(=O)n(-c4ccccc4CCC4CCN(C(=O)C(C)C)CC4)cc(C(C)=C)c3c2)c1=O AF-4
CC(Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(F)cc(N2CCN(C(=O)C3CCCC3)CC2)c1Cl)C(F)(F)F AF-5
CCCC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(F)cc(N2CCN(C(C)=O)CC2)c1Cl AF-6
Cc1c(NN=Cc2ccccc2C(O)=O)cnc2c1c(C1CCN(C(=O)C3CCOC3)CC1)cn2C AF-7
CCc1nn(-c2cc(OC(C)C)c(C(=O)Nc3ccccc3Cc3ccc(N4CCN(C(C)=O)CC4)cc3F)cc2F)c(=O)n1C AF-8
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(F)c1CC1CCN(C(=O)C(C)C)CC1 AF-9
CCCCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)Nc1cccc(C(=O)N2CCN(C(=O)C3CCCC3)CC2)c1 AF-10
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(=O)N2CCN(c3cccc(F)c3)CC2)c1C AF-11
CC(Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1(c2cc(Cl)cc(C3CC3)c2)CC1)C1CCCCC1 AF-12
CCc1nn(-c2cc(OC(C)C)c(C(=O)NC3(Cc4ccc(N5CCN(C(C)=O)CC5)cc4F)CC3)cc2F)c(=O)n1C AF-13
Cc1c(NC(=O)c2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cccc1C(=O)N1CCN(c2cccc(F)c2)CC1 AF-14
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(N2CCN(C(=O)C3CCCC3)CC2)ccc1C AF-15
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(=O)N2CCN(C(=O)C3CCCC3)CC2)c1C AF-16
CCCCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NCCC1CCN(C(=O)C2CCCC2)C(C)C1 AF-17
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1CCN(C(=O)N2CCN(c3cccc(F)c3)CC2)CC1 AF-18
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1Cc1ccc(F)cc1 AF-19
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C2CCN(C(=O)C3CCCC3)C(C)C2)c1 AF-20
CC(=O)N1CCN(c2ccc(Cc3ccccc3NC(=O)c3ccc(-n4nc5n(c4=O)CCCC5)c(F)c3)c(F)c2)CC1 AF-21
CCCC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(=O)C2CCCC2)c1Cl AF-22
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(F)(F)c2ccccc2Cl)c1CO AF-23
CCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1-c1ccc2[nH]cc(C3CCN(C(=O)C4CCCC4)CC3)c2c1 AF-24
CCc1nn(-c2cc(OC(C)C)c(C(=O)Nc3ccccc3CCc3ccccc3F)cc2F)c(=O)n1C AF-25
CCCCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)Nc1ccccc1Cc1cccc(F)c1 AF-26
CCCC(C)Oc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)NC1(c2ccc(N3CCN(C(C)=O)CC3)cc2F)CC1 AF-27
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)C1CCN(C(=O)C2CCCC2)CC1C AF-28
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(F)c1Cc1cccc(Cl)c1 AF-29
CCn1c(CO)nn(C(=O)Nc2cnc3c(c(C4CCN(C(=O)C(C)C)CC4)cn3C)c2OC)c1=O AF-30
CCc1nn(-c2cc(OC(C)C)c(C(=O)NC3(c4cc(Cl)cc(C5(CF)CC5)c4)CC3)cc2F)c(=O)n1C AF-31
O=C(Nc1ccccc1C(F)c1cccc(C(F)(F)F)c1)c1ccc(-n2nc3n(c2=O)CCCC3)c(F)c1 AF-32
CCCCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccc(F)cc2)c1C AF-33
CCc1nn(-c2cc(OC(C)C3CC3)c(C(=O)NC3(Cc4ccc(Cl)cc4C4CC4)CC3)cc2F)c(=O)n1C AF-34
CC(Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1(c2ccc(O)cc2F)CC1)C1CCCCC1 AF-35
CCc1nn(-c2cc(OC(C)C3CCCCC3)c(C(=O)NC3(c4cccc(C(F)(F)F)c4)CC3)cc2F)c(=O)n1C AF-36
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1CCc1cccc(F)c1 AF-37
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1Cc1cccc(C)c1F AF-38
CCc1nn(-c2cc(OC(C)C)c(C(=O)Nc3ccccc3C(F)(F)c3cccc(F)c3)cc2F)c(=O)n1C AF-39
CCc1nn(-c2cc(OC(C)C)c(C(=O)Nc3ccccc3CCc3c(F)cccc3F)cc2F)c(=O)n1C AF-40
CCCCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(C(F)(F)C(=O)C2CCCC2)ccc1C AF-41
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(F)c2)c1C#N AF-42
CCn1c(CO)nn(Nc2cnc3c(c(C4CCN(C(=O)CC(C)C)CC4)cn3C)c2C)c1=O AF-43
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1C(F)(F)c1ccc(F)cc1 AF-44
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(F)(F)c2cccc(F)c2)c1CO AF-45
CCc1nn(-c2cc(OC(C)C)c(C(=O)Nc3ccccc3Cc3ccc(F)cc3)cc2F)c(=O)n1C AF-46
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccc(F)cc1S(=O)(=O)c1cccc(Cl)c1 AF-47
O=C(Nc1cccc(C(F)(F)F)c1Cc1ccccc1F)c1ccc(-n2nc3n(c2=O)CCCC3)c(F)c1 AF-48
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CC(C)(C(=O)Nc1cccc(F)c1)c1ccc(NC(=O)Cc2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cc1 AF-49
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(F)(F)c2ccccc2F)c1CO AF-50
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(Cl)c2)c1Cl AF-51
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(Cl)c2)c1C AF-52
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccc(F)c(C)c2)c1CO AF-53
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(F)ccc1Cc1ccccc1F AF-54
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1CCC(F)(c2ccc(C3CC3)cc2Cl)CC1 AF-55
CCc1nn(-c2cc(OC(C)C)c(C(=O)NC3(c4cc(Cl)cc(C5(C(F)F)CC5)c4)CC3)cc2F)c(=O)n1C AF-56
CCn1c(CO)nn(Nc2cnc3c(c(C4CCN(C(=O)C(C)C)CC4)cn3C)c2C(F)(F)F)c1=O AF-57
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1Cc1ccc(F)cc1O AF-58
CCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)Nc1ccccc1Cc1ccc(F)cc1 AF-59
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(F)cc(-c2cccc(F)c2)c1Cl AF-60
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccccc2Cl)c1C#N AF-61
CCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)Nc1ccccc1C(F)(F)c1ccccc1F AF-62
CCc1nn(-c2cc(OC(C)c3ccccc3)c(C(=O)NC3(c4ccccc4Cl)CC3)cc2F)c(=O)n1C AF-63
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(CCc2cccc(F)c2)c1C AF-64
CCc1nn(-c2ccc(C(=O)Nc3ccccc3CCc3cccc(Cl)c3)cc2F)c(=O)n1C AF-65
O=C(Nc1ccccc1C(F)(F)c1cccc(F)c1)c1ccc(-n2nc3n(c2=O)CCCC3)c(F)c1 AF-66
CCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)Nc1ccccc1CCc1cccc(CC)c1 AF-67
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccc(F)cc2)c1Cl AF-68
O=C(Nc1ccc(F)cc1Cc1ccc(F)cc1)c1ccc(-n2nc3n(c2=O)CCCC3)c(F)c1 AF-69
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(C(F)(F)F)c2)c1C#N AF-70
OC(=O)C1=C(C(=O)NCc2ccc(-c3ccc(C(O)(C(F)(F)F)C(F)(F)F)cc3)c(C3CC3)c2)CCC1 AF-71
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccc(F)cc2)c1C#N AF-72
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1C(F)(F)c1cccc(Cl)c1 AF-73
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(F)(F)F)c1Cc1cccc(F)c1 AF-74
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(F)c2)c1C AF-75
COc1ccccc1C(=O)Nc1cnc2c(c(C3CCN(C(=O)C(C)C(F)(F)F)CC3)cn2C)c1C AF-76
OC(=O)C1=C(C(=O)Nc2ccc(-c3cccc(C(=O)C4CCCC4)c3)cc2F)CCC1 AF-77
CCc1nn(-c2cc(O)c(C(=O)Nc3ccccc3CCc3cccc(Cl)c3)cc2F)c(=O)n1C AF-78
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(Cl)c2)c1CO AF-79
CCc1nn(-c2ccc(C(=O)Nc3ccccc3Nc3cccc(C(F)(F)F)c3)cc2F)c(=O)n1C AF-80
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1CCC(F)(Cc2cccc(F)c2)CC1 AF-81
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(Cl)c2)c1CO AF-82
CCCC(C)Oc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)NC1(c2cccc(C(F)(F)F)c2)CC1 AF-83
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccc(F)cc2)c1C AF-84
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1C(F)(F)c1ccc(F)cc1 AF-85
CCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1C(=O)Nc1ccccc1C(F)(F)c1cccc(F)c1 AF-86
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(F)(F)c2ccccc2F)c1 AF-87
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(F)cc(-c2ccccc2F)c1Cl AF-88
Cc1c(NC(=O)c2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cccc1C(F)(F)c1cccc(F)c1 AF-89
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(F)c1Cc1ccc(F)cc1 AF-90
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(F)c1Cc1cccc(F)c1 AF-91
CC(Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccc(F)cc2)c1CO)C(F)(F)F AF-92
Cc1c(NC(=O)c2ccc(-n3nc4n(c3=O)CCCC4)c(F)c2)cccc1C(F)(F)c1ccccc1Cl AF-93
CC(Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2ccccc2F)c1CO)C(F)(F)F AF-94
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ccccc1C(F)Cc1ccccc1F AF-95
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1CCN(C(=O)c2ccc(C3CC3)cc2Cl)CC1 AF-96
Oc1cccc(-c2ccc(NC(=O)C3=C(C(=O)C4CCN(C(=O)C5CCCC5)CC4)CCC3)c(F)c2)c1 AF-97
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1CC(=O)Nc1ccc(C(C)(C)C(=O)Nc2ccc(F)cc2)cc1 AF-98
CCc1nn(-c2cc(O)c(C(=O)Nc3ccccc3C(F)(F)c3ccc(F)cc3)cc2F)c(=O)n1C AF-99
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cc(F)ccc1Oc1cccc(F)c1 AF-100
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1(c2ccc(-c3ccccc3F)cc2)CC1 AF-101
CCc1nn(-c2cc(O)c(C(=O)Nc3ccccc3Cc3cccc(C(F)(F)F)c3)cc2F)c(=O)n1C AF-102
Cc1c(NC(=O)c2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cccc1C(F)(F)c1ccccc1F AF-103
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(-c2cccc(F)c2)c1Cl AF-104
CCc1nn(-c2cc(OC(C)CC(=O)C3CCCC3)c(C(=O)Nc3ccccc3C(F)(F)F)cc2F)c(=O)n1C AF-105
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(S(=O)(=O)Cc2ccc(F)cc2)c1CO AF-106
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CCCCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1ncccc1Cc1ccccc1F AF-107
O=C(NC1(c2ccc(-c3cccc(Cl)c3)cc2)CC1)c1ccc(-n2nc3n(c2=O)CCCC3)c(F)c1 AF-108
Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1(c2ccc(C3(CF)CC3)cc2Cl)CC1 AF-109
OCc1c(NC(=O)c2ccc(-n3nc4n(c3=O)CCCC4)c(F)c2)cccc1-c1cccc(C(F)(F)F)c1 AF-110
OCc1c(NC(=O)c2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cccc1C(F)(F)c1ccccc1Cl AF-111
CC(=O)CC(=O)Nc1ccc(-c2ccc(N(C)C(=O)c3c(F)cccc3Cl)c(OCC3CCC3)c2)cc1 AF-112
OCc1c(NC(=O)c2ccc(-n3nc4n(c3=O)CCCC4)c(F)c2)cccc1C(F)(F)c1ccccc1F AF-113
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1(c2ccc(-c3cccc(F)c3)cc2)CC1 AF-114
OCc1c(NC(=O)c2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cccc1-c1cccc(C(F)(F)F)c1 AF-115
OCc1c(NC(=O)c2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cccc1C(F)(F)C(=O)C1CCCC1 AF-116
CCOc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1cccc(C(F)(F)C(=O)C2CCCC2)c1CO AF-117
CCOc1cc(-n2nc(CC)n(C)c2=O)c(F)cc1CC(=O)Nc1ccc(C(C)(C)C(=O)Nc2ccc(F)cc2)cc1 AF-118
CC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1oncc1-c1cccc(C(F)(F)F)c1 AF-119
CC(C)(C(=O)Nc1ccccc1)c1ccc(NC(=O)Cc2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cc1 AF-120
OCc1c(NC(=O)c2ccc(-n3nc4n(c3=O)CCCC4)c(F)c2)cccc1C(F)(F)c1ccccc1Cl AF-121
Cc1cc(C(O)=O)c2[nH]c(-c3ccc(NCCc4ccc(C(F)(F)F)cc4)c(Cl)c3)nc2c1 AF-122
OC(c1ccc(-n2ncc3c2CCCC3NC(=O)c2noc3c2CCCC3)cc1)(C(F)(F)F)C(F)(F)F AF-123
Cc1c(NC(=O)c2cc(F)c(-n3nc4n(c3=O)CCCC4)cc2O)cccc1C(=O)c1ccccc1Cl AF-124
CCn1c(CO)nn(Nc2ccc(NCCc3ccc(C(F)(F)F)cc3)c(Cl)c2)c1=O AF-125
CCC(C)Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)Nc1oncc1-c1cccc(C(F)(F)F)c1 AF-126
CC(Oc1cc(-n2nc3n(c2=O)CCCC3)c(F)cc1C(=O)NC1(c2c(Cl)cccc2C2CC2)CC1)C(F)(F)F AF-127
O=C(NC1CCCc2c1cnn2OCc1ccc(C(F)(F)F)cc1)c1noc2c1CCCC2 AF-128
CCn1c(CO)nn(Nc2ccc(C(C)(C)C(=O)Nc3cccc(F)c3)cc2)c1=O AF-129
OC(c1ccc(-n2ncc3c2CCCC3NC(=O)c2onc3c2CCCC3)cc1)(C(F)(F)F)C(F)(F)F AF-130
CCC(=O)CC(=O)Nc1ccc(-c2ccc(C(O)(C(F)(F)F)C(F)(F)F)cc2CC)cc1 AF-131
CC(C(C)=O)C(=O)Nc1ccc(S(=O)(=O)Cc2ccc(C3CC3)cc2Cl)cc1 AF-132
O=C(Nc1oncc1-c1cccc(C(F)(F)F)c1)c1ccc(-n2nc3n(c2=O)CCCC3)c(F)c1 AF-133
CCC(=O)CC(=O)Nc1ccc(-c2ccc(C(O)(C(F)(F)F)C(F)(F)F)cc2)cc1 AF-134
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Table S6. The MM/GSBA and ABFEP Binding Free Energies of Reference Active Compounds and 134 Selected Molecules Generated by AIxFuse

Name MM/GBSA △G(kcal/mol) ABFEP △G(kcal/mol) IC50(nM)
RORγt DHODH Sum RORγt DHODH Sum RORγt DHODH

(R)-14d -59.91 -38.05 -97.96 -20.36 -8.99 -29.35 110 297
GSK-98K(charged) -62.66 -6.54 0.7
GSK-98K(neutral) -67.51 -18.97 0.7
BDBM189939 -74.79 -21.63 12
BDBM50509677 -70.27 -19.92 465
BAY2402234 -50.40 -17.09 4.17
BDBM490418 -55.77 -18.59 35
BDBM490490 -64.72 -18.82 6.85
AF-5 -74.44 -66.55 -140.99 -18.68 -21.45 -40.31
AF-20 -60.57 -61.76 -122.33 -17.48 -18.02 -35.50
AF-2 -75.46 -71.27 -146.73 -16.01 -17.93 -33.94
AF-16 -72 -54.34 -126.34 -17.65 -15.82 -33.47
AF-3 -76.97 -65.76 -142.73 -13.92 -18.07 -31.99
AF-1 -83.33 -63.52 -146.85 -20.00 -6.19 -26.19
AF-4 -70.95 -71.45 -142.4 -6.88 -14.05 -20.93
AF-8 -70.54 -67.32 -137.86 -15.22
AF-10 -70.2 -66.1 -136.3 -14.23
AF-13 -68.68 -64.27 -132.95 -15.22
AF-15 -69.12 -57.3 -126.42 -13.11
AF-17 -62.04 -63.81 -125.85 -16.33
AF-21 -65.64 -55.99 -121.63 -12.81
AF-24 -59.37 -60.08 -119.45 -15.69
AF-27 -58.11 -60.19 -118.3 -8.58
AF-28 -58.2 -59.7 -117.9 -9.83
AF-49 -55.46 -54.51 -109.97 -13.43
AF-6 -71.68 -67.78 -139.46
AF-7 -68.83 -69.68 -138.51
AF-9 -72.5 -65.02 -137.52
AF-11 -68.06 -67.41 -135.47
AF-12 -60.06 -74.65 -134.71
AF-14 -64.85 -63.45 -128.3
AF-18 -61.8 -63.12 -124.92
AF-19 -60.09 -63.28 -123.37
AF-22 -56.85 -64.27 -121.12
AF-23 -59.01 -61.24 -120.25
AF-25 -54.62 -64.81 -119.43
AF-26 -53.88 -64.44 -118.32
AF-29 -57.68 -59.45 -117.13
AF-30 -63.11 -53.83 -116.94
AF-31 -55.67 -61.07 -116.74
AF-32 -53.75 -62.61 -116.36
AF-33 -48.69 -66.96 -115.65
AF-34 -49.07 -66.37 -115.44
AF-35 -55.22 -59.87 -115.09
AF-36 -49.98 -65.05 -115.03
AF-37 -54.67 -60.19 -114.86
AF-38 -51.86 -62.45 -114.31
AF-39 -49.51 -64.79 -114.3
AF-40 -52.75 -60.85 -113.6
AF-41 -53.36 -60.03 -113.39
AF-42 -53.02 -59.58 -112.6
AF-43 -55.3 -57.07 -112.37
AF-44 -52.4 -58.46 -110.86
AF-45 -53.59 -57.2 -110.79
AF-46 -52.87 -57.84 -110.71

20 of 24 Sheng Chen, Junjie Xie, Renlong Ye, David Daqiang Xu, and Yuedong Yang



AF-47 -45.07 -65.6 -110.67
AF-48 -52.31 -57.78 -110.09
AF-50 -49.2 -60.37 -109.57
AF-51 -51.36 -58.17 -109.53
AF-52 -53.58 -55.83 -109.41
AF-53 -50.9 -58.46 -109.36
AF-54 -50.88 -58.09 -108.97
AF-55 -56.43 -52.15 -108.58
AF-56 -51.25 -57.21 -108.46
AF-57 -52.05 -56.18 -108.23
AF-58 -54.14 -53.94 -108.08
AF-59 -51.16 -56.85 -108.01
AF-60 -51.26 -56.57 -107.83
AF-61 -51.78 -55.88 -107.66
AF-62 -47.2 -60.45 -107.65
AF-63 -47.3 -60.3 -107.6
AF-64 -44.69 -62.73 -107.42
AF-65 -45.67 -61.69 -107.36
AF-66 -46.35 -60.6 -106.95
AF-67 -51.06 -55.8 -106.86
AF-68 -50.38 -56.46 -106.84
AF-69 -47.81 -58.42 -106.23
AF-70 -51.36 -54.71 -106.07
AF-71 -60.97 -44.96 -105.93
AF-72 -51.82 -53.68 -105.5
AF-73 -50.38 -55.11 -105.49
AF-74 -50.04 -55.41 -105.45
AF-75 -49.78 -55.33 -105.11
AF-76 -58.09 -46.76 -104.85
AF-77 -48.35 -56.31 -104.66
AF-78 -52.36 -52.3 -104.66
AF-79 -49.01 -55.63 -104.64
AF-80 -51.69 -52.73 -104.42
AF-81 -47.37 -57.03 -104.4
AF-82 -45.16 -58.92 -104.08
AF-83 -47.73 -55.54 -103.27
AF-84 -49.11 -54.16 -103.27
AF-85 -48.54 -54.4 -102.94
AF-86 -47.26 -55.1 -102.36
AF-87 -46.76 -55.12 -101.88
AF-88 -45.94 -55.52 -101.46
AF-89 -44.65 -56.6 -101.25
AF-90 -47.92 -53.21 -101.13
AF-91 -48.81 -52.3 -101.11
AF-92 -46.7 -54.16 -100.86
AF-93 -50.58 -50.17 -100.75
AF-94 -46.31 -54.39 -100.7
AF-95 -47.59 -53.09 -100.68
AF-96 -48.58 -51.21 -99.79
AF-97 -51.68 -47.87 -99.55
AF-98 -49.83 -49.67 -99.5
AF-99 -44.74 -54.76 -99.5
AF-100 -45.43 -54.05 -99.48
AF-101 -43.09 -56.22 -99.31
AF-102 -49.27 -49.12 -98.39
AF-103 -44.65 -53.35 -98
AF-104 -44.51 -53.43 -97.94
AF-105 -54.87 -42.76 -97.63
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AF-106 -53.65 -43.85 -97.5
AF-107 -42.82 -54.66 -97.48
AF-108 -44.92 -52.3 -97.22
AF-109 -49.07 -48.14 -97.21
AF-110 -47.45 -49.51 -96.96
AF-111 -44.42 -52.39 -96.81
AF-112 -52.64 -43.97 -96.61
AF-113 -43.68 -52.9 -96.58
AF-114 -49.85 -46.62 -96.47
AF-115 -42.23 -54.04 -96.27
AF-116 -40.61 -55.28 -95.89
AF-117 -38.17 -55.7 -93.87
AF-118 -54.73 -38.95 -93.68
AF-119 -43.64 -49.14 -92.78
AF-120 -45.31 -47.01 -92.32
AF-121 -42.44 -49.6 -92.04
AF-122 -48.14 -43.34 -91.48
AF-123 -48 -42.22 -90.22
AF-124 -39.98 -49.7 -89.68
AF-125 -42.76 -46.61 -89.37
AF-126 -35.73 -53.01 -88.74
AF-127 -34.65 -53.75 -88.4
AF-128 -45.52 -42.73 -88.25
AF-129 -39.27 -48.97 -88.24
AF-130 -46.64 -31.69 -78.33
AF-131 -36.75 -41.31 -78.06
AF-132 -37.38 -38.38 -75.76
AF-133 -36.41 -38.62 -75.03
AF-134 -37.17 -36.42 -73.59

Table S7. The Pearson correlation coefficient between the experimental IC50 values and Glide docking score in XP precision calculated for
compounds designed by Chen et al.

Name IC50 (RORg-GAL4)(µM) 5NTP_XP(kcal/mol) IC50 (DHODH-DCIP)(µM) 6QU7_XP(kcal/mol)
Pearson CC 0.533 0.288
1 2.62+-1.11 -11.5914 4.52+-1.02 -6.91941
2 0.608+-0.107 -11.6796 -7.61399
3 -11.6352 -7.7303
4 0.077+-0.007 -12.4057 11.3+-2.2 -8.21876
5 0.057+-0.006 -13.4383 -6.77313
6 -11.7743 8.43+-2.73 -8.42524
7 -11.9298 -8.07016
8 -12.197 -8.46557
9 -10.3516 -7.08803
10a 1.42+-0.13 -11.4063 7.55+-2.44 -7.80274
10b -11.6258 -8.02023
10c -11.4834 -7.57213
10d 1.74+-0.09 -11.3669 1.41+-0.93 -6.43276
10e 3.48+-0.35 -11.1399 4.68+-1.25 -7.44297
11a 1.02+-0.06 -11.3293 6.08+-1.59 -7.99301
11b 1.67+-0.29 -11.7647 1.02+-0.26 -7.22738
11c 6.22+-0.22 -11.4469 1.15+-0.24 -6.89881
11d 0.101+-0.028 -11.4048 -6.49601
12a 0.250+-0.007 -11.9099 2.15+-0.26 -8.12074
12b 2.87+-0.12 -11.7419 0.363+-0.073 -7.20621
12c 0.419+-0.075 -12.6051 20.3+-4.8 -7.36317
12d 1.33+-0.07 -11.3734 -5.25923
12e 0.181+-0.026 -13.1847 13.9+-1.6 -7.8926
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12f 0.684+-0.171 -11.8241 0.573+-0.222 -7.68181
12g 0.789+-0.046 -12.0415 9.32+-1.97 -7.59719
13a -10.3156 -8.49811
13b -10.986 -8.36593
13c -10.5374 -7.78962
13d -10.6048 -7.50032
13e -11.4236 12.1+-2.1 -8.27973
13f 2.72+-0.37 -11.6602 1.04+-0.23 -7.41614
13g 3.18+-0.14 -11.4208 0.73+-0.22 -8.86979
13h 2.06+-0.11 -11.8668 2.67+-0.04 -8.20438
13i 1.84+-0.05 -11.7782 2.35+-0.53 -8.2495
14a 0.940+-0.291 -14.3494 0.794+-0.232 -9.94898
14b 0.269+-0.012 -14.3831 0.588+-0.291 -10.2068
14c 0.533+-0.003 -13.8171 0.159+-0.067 -8.9525
14d 0.110+-0.008 -13.264 0.297+-0.026 -10.2414
(R)-14d 0.083+-0.005 -12.9914 0.172+-0.068 -10.1629
(S)-14d 0.098+-0.010 -13.2868 0.432+-0.002 -10.6318
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