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Materials

All solvents and aqueous ammonium hydroxide solution (28-30 w/w%) were obtained from Fisher
Scientific and used as received. The following reagents were also used as received: vanillin (99%,
BeanTown), 4-nitrophenyl chloroformate (97%, Oakwood), triethylamine (Acros Organics), guaiacol
(TCI), pentafluorophenyl carbonate (Thermo Scientific), thymine (97%, Thermo Scientific), pyridine
(Fisher), benzoyl chloride (BeanTown), 2-(boc-amino)ethyl bromide (MilliporeSigma), potassium
carbonate (Fisher), trifluoroacetic acid (= 99%, BeanTown), 2-chloro-4,6-diamino-1,3,5-triazine
(Aldrich), aminoethanethiol (TCI), di-tert-butyl dicarbonate (BeanTown), potassium
hydroxide(Thermo Scientific), 3,4-dimethoxybenzaldehyde (Aldrich), methylamine (2 M in THF,
Aldrich), glacial acetic acid (MilliporeSigma), chloroform-d (Cambridge Isotopes), dimethyl
sulfoxide-des (Cambridge Isotopes).

Methods

NMR spectroscopy was conducted on a Bruker 400 MHz NMR spectrometer equipped with a
cryoprobe for 'F experiments and a Varian INOVA 600 MHz spectrometer for DOSY and 'H-NMR
titration experiments. Column chromatography was carried out with a Teledyne CombiFlash® Rf+
Lumen automated flash chromatography system. ITC experiments were performed using a TA
Instruments Low Volume NanolITC.

Liquid chromatography-mass spectrometry (LC-MS) experiments were carried out on an Agilent
1200 Series LC/Thermo Fisher LTQ XL MSD equipped with a Agilent EC C18, 2.7 pm, 120 A LC
column (3 x 100 mm, reversed phase), UV diode-array detector monitoring 210 nm, 230 nm, 260 nm,
360 nm, and 505 nm wavelengths, and Agilent multimode source. Water with 0.1% formic acid
(solvent A) and acetonitrile with 0.1% formic acid (solvent B) were used as LC-MS eluents.
Compounds were eluted at a flow rate of 0.6 mL/min with a linear gradient of 5% to 100% solvent B
over 10 minutes, then constant at 100% solvent B for 2 minutes before equilibrating the column back
to 5% solvent B over 3 min. All masses were detected in positive ion mode.



Synthesis and Characterization

Synthesis of primary-amine-terminated diaminotriazine monomer (2).

NTSN ,El;,OHC
L .
HoN" N7 NH;, TFA/DCM
KOH (1.5 eq.) s (1:1, viv) s
+ — > T
o EtOH/H,0 N)%N 1hr N%N
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2-chloro-4,6-diamino-1,3,5-triazine (2.00 g, 1 eq.) was suspended in acetonitrile. Potassium
hydroxide (1.15 g, 1.5 eq.) was added to the mixture. 2-(boc-amino)ethanethiol (3.67 g, 1.5 eq.) was
also added. The mixture was refluxed for 24 hours. The reaction was filtered and the filtrate was dried
under reduced pressure. The filtration residue was extracted with dichloromethane (4 x 45 mL), and
the organic portion was dried under reduced pressure. Once dried, the extract was combined with the
filtrate and purified via silica-gel chromatography (hexanes, ethyl acetate). The purified intermediate
was dissolved in trifluoroacetic acid/dichloromethane (1:1, v:v) and stirred at RT for 1 hour. The
reaction was dried under reduced pressure to yield 7 as a white solid (overall yield = 50%). 'H NMR
(500 MHz, DMSO-d;) 6 7.86 (s, 3H), 6.93 (s, 4H), 3.16 (h, /= 5.8 Hz, 4H). 1*C NMR (126 MHz,
DMSO) 6 177.27, 162.63, 159.28, 159.00, 158.73, 158.45, 119.74, 117.40, 115.06, 112.73, 39.06, 27.05.
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Figure S1. 'H-NMR of primary-amine-terminated diaminotriazine (2) in DMSO-ds.
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Figure S2. 13C-NMR of primary-amine-terminated diaminotriazine (2) in DMSO-d.
Additional peaks in this spectrum are due to presence of trifluoroacetic acid in sample.

Synthesis of primary-amine-terminated thymine monomer (3).

HNT
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N3-benzoyl thymine was synthesized following a procedure from Zhou and Shevlin.! Acetonitrile (50
mL) and pyridine (25 mL) were added to thymine (5.0 g, 1 eq.). The suspension was cooled to 0 °C in
an ice bath and benzoyl chloride (10.0 mL, 2.5 eq.) was added to the mixture. The reaction was
removed from the ice bath and stirred at RT for 18 hours. The reaction was partitioned between
dichloromethane (125 mL) and water (75 mL). The organic portion was dried under reduced pressure
and resuspended in 1,4-dioxane (75 mL) and water (40 mL). Potassium carbonate (3.0 g, 0.55 eq.) was
added to solution and the reaction was stirred at RT for 3 hours. The reaction was dried under

reduced pressure and partitioned between dichloromethane and water. The organic fraction was
dried under reduced pressure to give N3-benzoyl thymine (step 1 yield = 8.3205 g, 91%). N3-benzoyl
thymine (0.5 g, 1 eq.) was dissolved in 9 mL. DMF. Potassium carbonate (0.33 g, 1.1 eq.) and 2-(boc-
amino)ethyl bromide (0.73 g, 1.5 eq.) were added to solution, and the reaction was stirred at RT for
48 hours. 6 mL Ethyl acetate and 30 mL water were added to the reaction. The mixture was



refrigerated to precipitate the, which was isolated via vacuum filtration (step 2 yield = 1.8948 g, 81%).
Finally, the doubly-protected thymine was dissolved in 12 mL trifluoroacetic acid/dichloromethane
(3:1, v:v) and stirred for 12 hours. The reaction was dried by rotary evaporation. 10 mL water was
added to the residue, and the organic was washed repeatedly with ethyl acetate (6 x 5 mL) to give 8.
The aqueous layer was lyophilized to yield a white solid (step 3 yield = 88%, overall yield = 65%). 'H
NMR (500 MHz, DMSO) 6 11.31 (s, 1H), 7.99 (s, 3H), 7.45 (s, /= 1.4 Hz, 1H), 3.87 (t, /= 5.8 Hz, 2H),

3.08 (d, /=11.6 Hz, 1H), 1.75 (s, 3H). 3C NMR (126 MHz, DMSO) 6 164.48, 151.51, 141.18, 108.95,
45.22, 37.95, 12.07.
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Figure S3. 'H-NMR of primary amine-terminated thymine monomer (3) in DMSO-dg.
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Figure S4. 13C-NMR of primary amine-terminated thymine monomer (3) in DMSO-d.

Synthesis of divanillin carbonate (6).

~N N ~
(0] (6] O
NO
e LT B r°
Os o’ o TEA oo o _0

Divanillin carbonate was synthesized according to the procedure developed by Hoff et al.? Vanillin
(92.3 g, 0.61 mol, 5.0 equiv.) and triethylamine (25.3 mL, 0.18 mol, 1.5 equiv.) were dissolved in
dichloromethane (250 mL) in a 1-L round-bottom flask equipped with an addition funnel. Once
cooled to 0 °C, a solution of 4-Nitrophenyl chloroformate (24.4 g, 0.18 mol, 1.0 equiv.) dissolved in
dichloromethane (100 mL) was added dropwise over 45 minutes. The reaction was stirred for 18 h
and then washed with 1 M HCI (1 x 200 mL), saturated NaHCOj3 (4 x 250 mL), and brine (1 x 300
mL). The organic layer was dried over Na,SO, before the solvent was removed by rotary evaporation.
The yellow solid was then triturated with diethyl ether (4 x 250 mL) to yield divanillin carbonate
(30.0 g, 75%) as a white solid. "H NMR (500 MHz, CDCls) 8 9.95 (s, 1H), 7.60 — 7.42 (m, 6H), 3.9 (s, 6H).
13C NMR (126 MHz, CDCl3) 6 190.99, 152.01, 149.96, 144.72, 135.78, 124.73, 122.96, 111.35, 56.46.
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Figure S5. 'H-NMR of divanillin carbonate in CDCl;.
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Synthesis of pentafluorophenyl guaiacol carbonate (10).

o F F F o~
oH . Fﬁow"ﬁj LA Fﬁowoﬁj
©/ . £ O ¢ DIPEA . e
F F F

0.28 g guaiacol (1 eq.) was dissolved in 2 mL dichloromethane. N,N-diisopropylethylamine (0.594 mL,
1.5 eq.) was added to solution and the solution was cooled to 0° C. Bis(pentafluorophenyl) carbonate
(3.6 g, 4 eq.) were dissolved in 5 mL dichloromethane and added to the guaiacol solution dropwise.
The reaction was stirred at 0 °C for 15 minutes. The reaction was dried via rotary evaporation and
purified via flash chromatography (hexanes/ethyl acetate). 'H NMR (500 MHz, Chloroform-d) & 7.32
—7.21 (m, 2H), 7.05 — 6.95 (m, 2H), 3.90 (s, 3H). 3C NMR (126 MHz, CDCl;) § 150.88, 149.61, 142.52,
140.54, 140.03, 139.07, 137.09, 128.14, 121.85, 120.93, 112.91, 56.13. F NMR (376 MHz,
Chloroform-d) 6 -161.96 — -161.91 (m), -161.87 (d, /= 4.8 Hz), -161.83 — -161.78 (m), -157.12 (t, /=
21.6 Hz), -153.01 — -152.91 (m), -152.90 — -152.84 (m).
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Figure S7. 'H-NMR of pentafluorophenyl guaiacol carbonate in CDCl;.
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General Reductive Amination Procedure. Methanol was added to primary-amine terminated
monomer (1.5 eq. if 2 or 3, 3 eq. if methylamine). If the monomer was 2 or 3, triethylamine (1.5 eq.)
was added to the mixture. The solution was added to aldehyde-terminated oligomer precursor (1 eq.).
Acetic acid (0.1 eq.) was added to the mixture. The reaction was stirred at 60 °C in the microwave
reactor. Reactions were stirred for 20 minutes if the oligomer contained diaminotriazine pendant
groups, and for 40 minutes if the oligomer contained thymine pendant groups. The reaction was
allowed to cool to below 35 °C prior to reduction with sodium borohydride. Sodium borohydride (1
eq.) was added to solution and the reaction was stirred at RT for 1 hour. The reaction was then
quenched with water and extracted into dichloromethane. The combined organic portions were
washed with water and dried under rotary evaporation to yield secondary-amine-terminated
oligomer precursor.

General Carbamation Procedure. Secondary-amine-terminated oligomer precursor and divanillin
carbonate (1.1 eq.) were combined. N,N-dimethylformamide was added to the mixture
(concentration of secondary-amine-terminated precursor was 300 mM). Triethylamine (1.1 eq.) was
added to the mixture. The reaction was heated in the microwave reactor. The reaction was
concentrated under reduced pressure. The dry reaction was resuspended in dichloromethane and
ammonium hydroxide (1:1, v:v) and stirred at RT for 1 hour. The reaction was extracted with
dichloromethane. The combined organic portions were washed with 1 M HCl and saturated sodium
bicarbonate. The organic portion was dried under rotary evaporation to yield aldehyde terminated
oligomer precursor.

General Procedure for End-Capping Reaction. The secondary-amine-terminated precursor was
dissolved in acetonitrile and cooled to 0 °C. Triethylamine and pentafluorophenyl guaiacol carbonate
were added to solution. The reaction was stirred at 0 °C for 15 minutes. The reaction was dried under
reduced pressure and purified via flash chromatography (dichloromethane/methanol).

Deviations from the general procedures listed above are now described for each oligomer, where
applicable.
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Synthesis of mDm. Reductive amination reactions were stirred at room temperature for 6 hours
instead of being heated in the microwave reactor. The first carbamation reaction used acetonitrile
instead of DMF. '"H NMR (500 MHz, CDCl;) 6 7.22 — 6.81 (m, 13H), 5.86 (d, /= 64.2 Hz, 4H), 4.78 -
4.45 (m, 6H), 3.94 - 3.79 (m, 15H), 3.65 (dt, /= 28.7, 7.6 Hz, 2H), 3.30 (dt, /= 41.8, 7.4 Hz, 2H), 3.10 -
291 (m, 6H). 3C NMR (126 MHz, CDCl;) § 180.44, 155.29, 155.11, 154.66, 154.42, 151.84, 151.74,
149.32, 148.74, 140.71, 140.53, 139.84, 136.12, 129.69, 129.61, 126.57, 123.34, 123.15, 120.89, 120.43,
120.32, 120.20, 120.02, 119.83, 112.59, 112.48, 111.98, 111.47, 111.23, 56.25, 56.20, 56.09, 52.90,
52.84,52.10, 47.42, 34.73, 34.54, 34.21, 28.21, 27.85.
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Figure S10. 'H-NMR of mDm in CDCl;.
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Figure S12. Total Ion Chromatogram and MS spectrum of mDm.
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Synthesis of mmD. Reductive amination reactions were stirred at room temperature for 6
hours instead of being heated in the microwave reactor. Both carbamation reactions used
acetonitrile instead of DMF. Triethylamine was not used in the end-capping reaction. 'H
NMR (500 MHz, CDCly) § 7.22 — 6.83 (m, 13H), 5.10 (d, /= 36.0 Hz, 4H), 4.78 — 4.46 (m, 6H), 3.94 —
3.80 (m, 15H), 3.67 (dt, /=24.9, 7.5 Hz, 2H), 3.31 (dt, /= 41.5, 7.1 Hz, 2H), 3.00 (dd, /= 41.7,9.7 Hz,
6H). 13C NMR (126 MHz, CDCls) 6 180.60, 165.57, 165.48, 155.23, 154.60, 154.48, 152.05, 151.95,
151.75, 151.70, 149.32, 148.70, 140.57, 140.50, 140.10, 139.94, 136.31, 135.71, 135.62, 129.91, 129.78,
126.72, 123.31, 120.96, 120.60, 120.31, 120.22, 119.87, 119.80, 116.51, 112.64, 112.46, 111.92, 111.55,

111.21, 111.13, 56.19, 56.08, 52.94, 52.84, 52.02, 51.92, 50.97, 47.51, 47.37, 34.81, 34.50, 34.45, 34.14,
28.03, 27.59.
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Figure S13. 'H-NMR in CDCl; of mmD.
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Figure S15. Total ion chromatogram and MS spectrum of mmD.
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Synthesis of mDD. The first and second reductive amination reactions were stirred at room
temperature for 6 hours instead of being heated in the microwave reactor. The first carbamation
reaction used acetonitrile instead of DMF. The third reductive amination was done in
methanol/DMSO (9:1, v:v).. The end-capping reaction was carried out in DMF rather than
acetonitrile. 'H NMR (500 MHz, CDCl3) 6 7.23 — 6.79 (m, 13H), 5.24 — 4.99 (m, 8H), 4.81 — 4.43 (m,
6H), 3.92 - 3.78 (m, 15H), 3.67 (d, /= 26.9 Hz, 4H), 3.41 - 3.22 (m, 4H), 2.99 (d, /= 44.6 Hz, 3H). 13C
NMR (126 MHz, MeOD) 6 180.12, 180.08, 179.99, 165.30, 155.32, 155.20, 154.71, 151.85, 151.74,
151.63, 151.57, 151.49, 149.15, 148.56, 140.24, 140.12, 139.99, 139.79, 139.72, 139.62, 136.32, 136.16,
136.06, 135.95, 129.58, 129.51, 126.75, 123.13, 123.03, 120.81, 120.77, 120.39, 120.17, 119.88, 119.73,
112.49, 112.31, 111.89, 111.36, 111.22, 111.17, 55.96, 55.91, 55.85, 52.70, 52.61, 51.74, 51.54, 47.73,
47.42, 47.18, 46.98, 34.28, 34.00, 27.79, 27.14.
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Figure S16. 'H-NMR of mDD in CDCl;.
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Figure S17. 3C-NMR of mDD in 0.9:0.1 CDCl3:MeOD.

[M+H]
1028.330

1050

T
1040

(=2
o
-

wn o 0
~ 2] N

(%) Aysuayu

T 1
1020 1030

T
1010

T
1000

1.5%x107

1x107
5x106

Aysuau|

m/z (Da)

Time (min)

Figure S18. Total ion chromatogram and MS spectrum of mDD.

19



Synthesis of DmD. The first reductive amination reaction was not purified via aqueous washes; the

crude reaction was taken directly to the first carbamation. The third reductive amination reaction

was performed in methanol/DMSO (3:1, v:v) without acetic acid. Each carbamation reaction followed
the general protocol. 'H NMR (500 MHz, CDCls) 6 7.22 — 6.80 (m, 13H), 5.50 — 5.00 (m, 8H), 4.84 -
4.40 (m, 6H), 3.92 — 3.78 (m, 15H), 3.73 — 3.58 (m, 4H), 3.40 — 3.19 (m, 4H), 3.17 — 2.95 (m, 3H). 13C

NMR (126 MHz, MeOD) 6 180.19, 164.99, 164.88, 164.59, 155.31, 155.16, 154.69, 154.65, 154.56, 151.82,

151.71, 151.58, 151.49, 150.67, 149.11, 148.63, 140.26, 140.13, 139.91, 139.79, 139.69, 136.23, 136.03, 135.76,

130.03, 129.79, 126.74, 123.07, 120.81, 120.76, 120.58, 120.22, 120.04, 119.84, 112.49, 112.39, 112.20, 111.96,

111.83,111.62,111.29,111.23, 111.16, 55.99, 55.96, 55.93, 55.91, 55.86, 52.78, 51.84, 51.73, 51.62, 51.48, 47.47,

47.31, 46.92, 46.82, 34.61, 34.30, 27.83, 27.09.
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Figure S19. 'H-NMR of DmD in CDCl;.
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Synthesis of DDD. The first reductive amination reaction was not purified; the crude reaction was

taken directly to the first carbamation. The second and third reductive aminations were performed in
methanol/DMSO (3:1, v:v). The reactions were lyophilized and purified via trituration with water.
Following trituration, the residue was dried under reduced pressure and taken to the next reaction.
Each carbamation reaction followed the general protocol, except the reactions were suspended in
pure ammonium hydroxide, not a mixture of dichloromethane and ammonium hydroxide. The
reaction was trituration with water. 'H NMR (500 MHz, DMSO) § 7.25 — 6.82 (m, 12H), 6.73 (s, 11H),
4.62 (dd, /=69.6, 36.4 Hz, 6H), 3.86 — 3.68 (m, 15H), 3.59 — 3.36 (m, 6H), 3.30 — 3.08 (m, 6H). 13C
NMR (126 MHz, MeOD) § 180.21, 164.35, 163.56, 155.16, 154.61, 152.13, 151.64, 151.53, 151.44,
149.10, 148.62, 140.18, 140.04, 139.74, 139.65, 136.35, 136.21, 136.03, 129.90, 129.67, 126.77, 123.01,
120.76, 120.51, 120.22, 120.06, 112.47, 112.29, 111.98, 111.55, 111.29, 111.23, 111.17, 55.93, 55.87,
55.83,51.97,51.67, 51.40, 46.72, 27.84, 27.19.
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Figure S22. 'H-NMR of DDD in DMSO-ds.
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Figure S24. Total ion chromatogram and MS spectrum of DDD.
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Synthesis of mTm. The first reductive amination reaction was stirred at room temperature for 6
hours instead of being heated in the microwave reactor. 'H NMR (500 MHz, CDCls) 6 8.61 (d, /= 34.2
Hz, 1H), 7.23 — 6.81 (m, 14H), 4.69 — 4.44 (m, 6H), 4.00 — 3.80 (m, 17H), 3.67 (m, /= 55.4 Hz, 2H),
3.12 — 2.93 (m, 6H), 1.87 (d, /= 6.9 Hz, 3H). 3C NMR (126 MHz, CDCls) & 164.14, 164.07, 155.29,
155.15, 154.98, 154.58, 152.09, 151.98, 151.85, 151.75, 151.56, 150.56, 149.34, 148.70, 141.04, 140.71,
140.53, 139.40, 136.36, 135.17, 129.84, 129.75, 126.65, 126.59, 123.56, 123.34, 121.14, 120.91, 120.61,
120.18, 113.61, 113.28, 112.60, 112.36, 111.99, 111.82, 111.57, 111.22, 111.14, 110.46, 110.38, 56.28,
56.09, 52.91, 52.86, 47.52, 46.45, 46.22, 45.95, 34.74, 34.54, 34.45, 34.11, 12.39.
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Figure S25. 'H-NMR of mTm in CDCl;.
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Figure S26. 3C-NMR of mTm in CDCl;.
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Figure S27. Total ion chromatogram and MS spectrum of mTm.
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Synthesis of mmT. The first two reductive amination reactions are stirred at room temperature for 6
hours instead of being heated in the microwave reactor. 'H NMR (500 MHz, CDCl;) 6 8.62 (d, /= 35.4
Hz, 1H), 7.25 - 6.82 (m, 14H), 4.72 — 4.44 (m, 6H), 4.01 — 3.80 (m, 17H), 3.67 (m, /= 55.5 Hz, 2H),
3.11 — 2.92 (m, 6H), 1.87 (d, /= 6.7 Hz, 3H). 3C NMR (126 MHz, CDCls) § 164.10, 155.19, 155.01,
154.59, 152.05, 151.95, 151.67, 151.38, 150.56, 149.33, 148.70, 141.08, 140.55, 140.25, 140.06, 140.01,
135.69, 135.61, 135.25, 129.94, 129.82, 127.03, 126.97, 123.50, 123.40, 123.24, 121.13, 121.02, 120.60,
120.42, 120.23, 119.88, 113.56, 113.20, 112.68, 112.52, 111.87, 111.54, 111.20, 111.11, 110.44, 110.37,
56.24, 56.08, 55.93, 53.02, 52.94, 52.84, 34.78, 34.48, 34.35, 34.13, 12.38.
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Figure S28. 'H-NMR of mmT in CDCl;.
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Figure S29. 3C-NMR of mmT in CDCl;.
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Figure S30. Total ion chromatogram and MS spectrum of mmT.
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Synthesis of mTT. The first reductive amination reaction was stirred at room temperature for 6
hours instead of being heated in the microwave. The end-capping reaction was performed in DMF
rather than acetonitrile. 'H NMR (500 MHz, CDCl3) 6§ 9.67 — 8.67 (m, 2H), 7.24 — 6.60 (m, 15H), 4.66
—4.42 (m, 6H), 4.08 — 3.54 (m, 23H), 3.09 — 2.88 (m, 3H), 1.90 (d, /= 28.5 Hz, 6H). 13C NMR (126
MHz, MeOD) 8 164.92, 155.23, 154.87, 154.70, 152.03, 151.91, 151.70, 151.51, 151.37, 151.20, 151.02,
149.16, 148.55, 141.54, 141.25, 140.19, 139.77, 135.62, 135.51, 129.61, 129.55, 127.03, 123.36, 123.32,
123.13, 120.95, 120.75, 120.44, 120.17, 113.29, 113.04, 112.60, 112.45, 111.41, 111.22, 111.16, 110.41,
110.31, 56.02, 55.97, 55.93, 55.77, 53.46, 53.02, 52.72, 52.63, 52.40, 47.67, 46.20, 45.92, 34.29, 33.99,

12.13,12.01.
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Figure S31. 'H-NMR of mTT in CDCls.
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Figure S32. 13C-NMR of mTT in 0.9:0.1 CDCl5:MeOD.
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Synthesis of TmT. The product of the first and second reductive amination reactions were taken
directly to the first carbamation without purification. The second reductive amination was stirred at
60 °C for 45 minutes in the microwave reactor. The first carbamation reaction was stirred at 75 °C for
1 hour in the microwave reactor. The second carbamation reaction was stirred at 65 °C for 10 minutes
in the microwave reactor. The first carbamation reaction was purified by stirring in pure ammonium
hydroxide at room temperature for 1 hour before triturating with water. The end-capping reaction
was stirred at room temperature for 30 minutes. 'H NMR (500 MHz, CDCl;) 6 8.77 (m, J = 49.3, 32.7
Hz, 1H), 8.46 — 7.98 (m, 1H), 7.25 - 6.73 (m, 15H), 4.74 — 4.39 (m, 6H), 3.88 (m, ] = 11.5, 4.8 Hz, 19H),
3.78 —3.55 (m, 4H), 3.12 - 2.93 (m, 3H), 1.84 (m, ] = 17.2 Hz, 6H). 13C NMR (126 MHz, MeOD) §
164.77, 155.28, 155.03, 154.92, 154.71, 154.64, 151.86, 151.74, 151.49, 151.25, 151.11, 151.00, 149.14,
148.83, 141.10, 141.02, 140.19, 140.02, 139.86, 139.33, 136.03, 135.39, 129.63, 129.37, 126.96, 123.29,
123.11, 122.99, 122.80, 120.95, 120.89, 120.77, 120.65, 120.36, 120.28, 119.97, 113.11, 112.76, 112.57,
112.40, 111.94, 111.66, 111.18, 111.06, 110.48, 110.42, 56.00, 55.90, 55.84, 55.79, 52.72, 52.46, 47 .41,
47.23, 46.51, 46.28, 46.16, 46.06, 45.81, 34.59, 34.29, 12.09.
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Figure S34. 'H-NMR of TmT in CDCl;
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Figure S35. 3C-NMR of TmT in 0.9:0.1 CDCl;:MeOD
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Synthesis of TTT. The product of the first reductive amination reaction was taken directly to the
first carbamation without purification. The second reductive amination reaction used
methanol/DMSO (4:1, v:v). The third reductive amination used mixture methanol/DMSO as the
reaction solvent (1:1, v:v).The first carbamation reaction was stirred at 75 °C for 1 hour in the
microwave reactor. The second carbamation reaction was stirred at 120 °C for 30 minutes in the
microwave reactor. Both carbamation reactions were purified by stirring in pure ammonium
hydroxide at room temperature for 1 hour before triturating with water. The end-capping reaction
was stirred overnight at room temperature. 1H NMR (600 MHz, CD30OD) § 7.17 — 6.66 (m, 16H), 4.55
—4.27 (m, 6H), 3.94 - 3.70 (m, 21H), 3.63 (d, ] = 30.8 Hz, 6H), 1.80 — 1.68 (m, 9H).
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Figure S37. 'H-NMR of TTT in MeOD/CDCl; (1:9, v:v)
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Figure S38. Total ion chromatogram and MS spectrum of TTT.
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Synthesis of 12. 12 mL acetonitrile were added to 0.4992 g 2-chloro-4,6-diamino-1,3,5-triazine (1
eq.). 0.289 g potassium hydroxide (1.5 eq.) were added to the suspension. 0.48 mL 1-propanethiol (1.5
eq.) were also added to the suspension. The reaction was stirred at 81 °C for 24 hours with attached
reflux condenser. The reaction was filtered. The filtrate was dried under rotary evaporation and then
purified via flash chromatography (dichlormethane/methanol). Yield = 0.05 g, 8%. 'H NMR (500
MHz, DMSO) & 6.64 (s, 4H), 2.96 (t, /= 7.2 Hz, 4H), 1.61 (h, /= 7.3 Hz, 2H), 0.95 (t, /= 7.4 Hz, 3H).
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Figure S39. 'H-NMR of stand-alone diaminotriazine monomer (12) in DMSO-dg.

33



Synthesis of 13. 0.5081 g Nj-benzoyl thymine (1 eq.) was dissolved in 4.4 mL N,N-
dimethylformamide. 0.77 mL N,N-diisopropylethylamine (2 eq.) were added to solution. The solution
was stirred for 10 minutes. 0.26 mL 1-iodobutane (leq.) were added to solution. The reaction was
stirred at 50 °C for 24 hours. The reaction was concentrated under reduced pressure and purified via
flash chromatography (hexanes/ethyl acetate). N3-benzoyl-N;-butyl-thymine was dissolved in 5 mL
of 200 mM potassium carbonate in methanol. The reaction was stirred at RT for 24 hours. The
reaction was dried under rotary evaporation and purified via flash chromatography (hexanes/ethyl
acetate). Yield = 0.1248 g, 31%. 'H NMR (500 MHz, CDCls) & 8.31 (s, 1H), 6.97 (d, /= 1.4 Hz, 1H),
3.69 (t, /= 7.4 Hz, 2H), 1.66 (p, 2H), 1.36 (h, /= 7.5 Hz, 2H), 0.96 (t, /= 7.3 Hz, 3H). 1*C NMR (126
MHz, CDCl;) 8 164.06, 150.75, 140.41, 110.52, 48.32, 31.14, 19.71, 13.67, 12.35.
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Figure S40. 'H-NMR of stand-alone thymine monomer (13) in CDCl;.
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Figure S41. 13C-NMR of stand-alone thymine monomer (13) in CDCls.
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TH-NMR Titration and Dilution Experiments
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Figure S43. 'H-NMR titration of mDm into mTm (3 mM) in CDCl; (full spectrum).
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Figure S44. 'H-NMR titration of mDm into mTm (3 mM) in CDCI; fitted to 1:1 isotherm.
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Figure S45. 'H-NMR titration of mDm into mmT (5 mM) in CDCl3, NH region.
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Figure S46. 'H-NMR titration of mDm into mmT (5 mM) in CDCl; (full spectrum).
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Figure S47. 'H-NMR titration of mDm into mmT (3 mM) in CDCI; fitted to 1:1 isotherm.
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Figure S48. 'H-NMR titration of mmD into mTm (3 mM) in CDCl;, NH region.
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Figure S49. 'H-NMR titration of mmD into mTm (3 mM) in CDCl; (full spectrum).
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Figure S50. 'H-NMR titration of mmD into mTm (3 mM) in CDCI; fitted to 1:1 isotherm.
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Figure S51. 'H-NMR titration of mmD into mmT (3 mM) in CDClIj; (full spectrum).

Figure S52. 'H-NMR titration of mmD into mmT (3 mM) in CDCI; fitted to 1:1 isotherm.
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Figure S53. 'H-NMR titration of mmm into mmT (3 mM) in CDCl;, NH region.
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Figure S54. 'H-NMR titration of mmm into mmT (3 mM) in CDClI; (full spectrum).
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Figure S55. 'H-NMR titration of mmm into mmD (3 mM) in CDCl;, NH, region.
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Figure S56. 'H-NMR titration of mmm into mmD (3 mM) in CDCl; (full spectrum).
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Figure S57. 'H-NMR dilution of mmD in CDCl;, NH, region.
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Figure S58. 'H-NMR dilution of mmD in CDCl; (full spectrum).
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ITC Experiments

ITC experiments were performed using a Low Volume NanoITC and an organic solvent buret handle
(TA Instruments). Titrations with monovalent oligomers involved an initial 1.5 uL injection followed
by 19 injections of 2 uL. Experiments with divalent or trivalent oligomers (including mixed sequence
experiments) had 25 injections of 2 pL. Every experiment was stirred at 350 revolutions per minute
and included a 5-minute equilibration period both prior to the first injection and after every
injection. Thermodynamic binding parameters were calculated by using the TA Instruments
NanoAnalyze software to integrate raw data from the thermogram and fit it to an independent
binding model.

Monovalent SeDOC ITC Experiments

Table S1. Thermodynamic binding parameters for mDm-mTm measured by ITC.

Log K, (M) AH (k] mol) AG (k] mol ™) TAS (k] mol ) n
Trial 1 3.32 -3.2 -18.9 15.7 1.09
Trial 2 3.07 -2.6 -17.5 14.9 1.01
Trial 3 3.41 -3.7 -19.5 15.7 1.12
1 .
[mDm] : [mTm] e Trial 1
0 ' = Trial 2
T 2 3 4 _
E 14 4 Trial 3
S -2
X
O -3
-4- A 4
-5-

Figure S59. ITC titration of mDm (100 mM) into mTm (10 mM) in chloroform.
Samples contained residual TFA from HPLC.

Table S2. Thermodynamic binding parameters for mDm-mmT measured by ITC.

Log K, (M) AH (k] mol ™ AG (k] mol!) TAS (k] mol!) n
Trial 1 3.37 -3.8 -19.2 15.5 1.10
Trial 2 3.04 -5.0 -17.3 12.3 0.97
Trial 3 3.23 -4.7 -18.4 13.7 0.94
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Figure S60. ITC titration of mDm (100 mM) into mmT (10 mM) in chloroform.
Samples contained residual TFA from HPLC.

Table S3. Thermodynamic binding parameters of mmD-mTm measured by ITC.

Log K, (M) AH (k] mol ™V AG (k] mol 1) TAS (k] mol!)
Trial 1 3.06 -3.7 -17.4 13.8
Trial 2 3.70 -2.3 -21.1 18.8
Trial 3 3.33 4.1 -19.0 149
19 .
. [mmD] : [mTm] e Trial1
0 = Trial 2
T 1 3 4 _
S -1 4 Trial 3
g -
S -2+
X
O -3
44 i
-5-

Figure S61. ITC titration of mmD (100 mM) into mTm (10 mM) in chloroform.
Samples contained residual TFA from HPLC.

Table S4. Thermodynamic binding parameters of mmD-mmT measured by ITC.
Log K, (M) AH (k] mol™V AG (k] mol!) TAS (k] mol!)

Trial 1 3.21 -4.3 -18.3 14.0
Trial 2 2.82 -5.6 -16.1 10.5
Trial 3 2.68 -5.7 -15.3 9.6
Trial 4 3.49 -4.2 -19.9 15.8
Trial 5 3.61 -2.2 -20.6 18.4

1.14
0.99
0.97

0.92
0.77
0.98
1.00
1.36
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Figure S62. ITC titration of mmD into mmT in chloroform. In trials 1-3 of Fig S30, the samples
contained TFA, the concentration of mmD in the syringe was 100 mM, and the concentration of
mmT in the sample cell was 10 mM. In trials 4 and 5, the samples were TFA-free, the concentration
of mmD in the syringe was 10 mM, and the concentration of mmT in the cell was 1 mM.
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Figure S63. Binding stoichiometries of complexes of monovalent SeDOCs measured by ITC in

chloroform.
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Figure S64. ITC titration of mmm (100 mM) into mmT (10 mM). The data is overlayed with
representative trials of the titrations of mmD into mmT and mDm into mmT.
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Figure S65. ITC titration of mmm (100 mM) into mmD (10 mM). The data is overlayed with
representative trials of the titrations of mmD into mmT and mmD into mTm.
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Figure S66. Comparison of thermodynamic binding parameters of mDm-mTm in chloroform and in

acetonitrile.
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Figure S67. Comparison of thermodynamic parameters of mDm-mTm, mmD-mmT, and d-t.



Multivalent SeDOC Experiments

Table S5. Thermodynamic binding parameters of mDD-mTT measured by ITC in chloroform.

Log K, (M) AH (k] mol'¥  AG (k] mol!)

TAS (k] mol)

Trial 1 3.80 -19.8 21.7
Trial 2 3.75 -22.7 -22.4
Trial 3 3.84 213 219
Trial 4 3.80 20.8 20.8
54 .
[mDD] : [mTT] * Trial1
0 L] L] L] | L] L] L] L) . Tria|2
S ] 1 3 4 s+ Trial 3
E 7 i
= i e Trial 4
2
< 104
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Figure S68. ITC titration of mDD (10 mM) into mTT (1 mM) in chloroform.

Samples were TFA-free.

ot
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Table S6. Thermodynamic binding parameters of DmD-TmT measured by ITC in chloroform.

Log K, (M) AH (k] mol'¥  AG (k] mol!)

TAS (k] mol)

Trial 1 3.79 -37.1 -21.6
Trial 2 3.82 -37.9 -21.8

[DmD] : [TmT]
0 T——————

2 3 4 e Trial 1

10- m  Trial 2

Q (kJ/mol)
S
1

=30

-40-
Figure S69. ITC titration of DmD into TmT in chloroform.

-155
-16.1

n

0.60
0.64

Trial 1: 10 mM DmbD titrated into 1 mM TmT. Trial 2: 15 mM DmbD titrated into 2 mM TmT. Samples

were TFA-free.
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Table S7. Thermodynamic binding parameters of mDD-TmT measured by ITC in chloroform.

Log K, (M) AH (k] mol ™V AG (k] mol'))  TAS (k] mol?) n
Trial 1 3.82 -32.5 -21.8 -10.6 0.69
Trial 2 3.87 -36.0 -22.1 -13.9 0.66
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0 I L] 1 .
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10- = Trial 2
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-40-

Figure S70. ITC titration of mDD (15 mM) into TmT (2 mM) in chloroform.
Samples were TFA-free.

Table S8. Thermodynamic binding parameters of DmD-mTT measured by ITC in chloroform.

Log K, (M) AH (k] mol ™V AG (k] mol)  TAS (k] mol?) n
Trial 1 3.61 -27.4 -20.6 -6.8 0.59
Trial 2 3.69 -28.1 -21.0 -7.1 0.57

[DmD] : [ImTT]
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Figure S71. ITC titration of DmD (15 mM) into mTT (4 mM) in chloroform.
Samples were TFA-free.

Table S9. Thermodynamic binding parameters of DDD-TTT measured by ITC in chloroform.

Log K, (M) AH (k] mol™ AG (k] mol'!) TAS (k] mol!) n
Trial 1 4.94 -77.5 -28.2 -49.3 0.62
Trial 2 4.76 -58.3 -27.1 -31.2 0.88
Trial 3 4.89 -52.9 -27.9 -25.0 0.86
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Figure S72. ITC titration of TTT (1 mM) into DDD (0.1 mM) in chloroform.
Samples were TFA-free.

Mixed Mode SeDOC ITC Experiments

Table S10. Thermodynamic binding parameters of mmD-mTT measured by ITC in chloroform.

Log K, (M) AH (k] mol ™V AG (k] mol'))  TAS (k] mol?) n
Trial 1 3.42 -12.4 -19.5 7.2 0.80
Trial 2 3.16 -12.7 -18.0 5.3 0.78
5_
e Trial 1
6 [mmD] : [mTT] = Trial 2
T ]
3 25
£
S -5+
=
(¢
-10_
-15-

Figure S73. ITC titration of mmD (30 mM) into mTT (5 mM) in chloroform.
Samples were TFA-free.

Table S11. Thermodynamic binding parameters of mmD-TTT measured by ITC in chloroform.

Log K, (M) AH (k] mol ™V AG (k] mol'))  TAS (k] mol?) n
Trial 1 3.53 9.1 -20.1 11.1 0.95
Trial 2 3.53 -10.9 -20.1 9.2 0.94
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Figure S74. ITC titration of mmD (15 mM) into TTT (2 mM) in chloroform.
Samples were TFA-free.

Table S12. Thermodynamic binding parameters of mDD-TTT measured by ITC in chloroform.

Log K, (M) AH (k] mol’”  AG (k] mol'!)  TAS (k] mol!) n
Trial 1 4.15 -33.5 -23.7 -99 1.54
Trial 2 411 -34.7 -235 -11.2 1.47
10 .
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Figure S75. ITC titration of mDD (10 mM) into TTT (1 mM) in chloroform.
Samples were TFA-free.
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