SUPPLEMENTAL INFORMATION

Hsp90a forms condensate engaging client proteins with RG motif

repeats

Jiaojiao Hu^{1,2}, Hui Dong^{1,2}, Yichen Li³, Jinge Gu^{1,2}, Liang Yang^{4,5}, Chenfang Si¹, Yaoyang Zhang¹, Tingting Li^{4,5}, Dan Li^{3,6*}, Cong Liu^{1,2*}

¹Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, Shanghai 201210, China

²State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy

of Sciences, Shanghai, 200032, China

³Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

⁴Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China

⁵Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing 100191, China

⁶Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China *To whom correspondence should be addressed. E-mails: <u>hujj@sioc.ac.cn</u>, <u>lidan2017@sjtu.edu.cn</u> and <u>liulab@sioc.ac.cn</u>

а	1	2	3	4	5	6	7	8	9	10	11	12
A	0.1M Citric acid pH 3.5	0.1M Citric acid pH 3.5, 50% (v/v) PEG 500	0.1M Citric acid pH 3.5, 20% (w/v) PEG 3,350	0.1M Citric acid pH 3.5, 20% (w/v) PEG 8,000	0.1M Citric acid pH 3.5, 20% (w/v) Ficoll 400	0.1M Citric acid pH 3.5, 20% (w/v) Dextran 10	0.1M Citric acid pH 3.5, 20% (w/v) Dextran 40	0.1M Citric acid pH 3.5, 20% (w/v) Dextran 70	0.1M Citric acid pH 3.5, 3 M Sodium chloride	0.1M Citric acid pH 3.5, 3 M Ammonium sulfate	50 µM CR7	50 µM CR20
в	0.1M Citric acid pH 4.5	0.1M Citric acid pH 4.5, 50% (v/v) PEG 500	0.1M Citrle acid pH 4.5, 20% (w/v) PEG 3,350	0.1M Citric acid pH 4.5, 20% (w/v) PEG 8,000	0.1M Citric acid pH 4.5, 20% (w/v) Ficoll 400	0.1M Citric acid pH 4.5, 20% (w/v) Dextran 10	0.1M Citric acid pH 4.5, 20% (w/v) Dextran 40	0.1M Citric acid pH 4.5, 20% (w/v) Dextran 70	0.1M Citrie acid pH 4.5, 3 M Sodium chloride	0.1M Citrle acid pH 4.5, 3 M Ammonium sulfate	200 µM CR7	200 µM CR20
с	0.1M Bis-Tris pH 5.5	0.1M Bis-Tris pH 5.5, 50% (v/v) PEG 500	0.1M Bis-Tris pH 5.5, 20% (w/v) PEG 3,350	0.1M Bis-Tris pH 5.5, 20% (w/v) PEG 8,000	0.1M Bis-Tris pH 5.5, 20% (w/v) Ficoll 400	0.1M Bis-Tris pH 5.5, 20% (w/v) Dextran 10	0.1M Bis-Tris pH 5.5, 20% (w/v) Dextran 40	0.1M Bis-Tris pH 5.5, 20% (w/v) Dextran 70	0.1M Bis-Tris pH 5.5, 3 M Sodium chloride	0.1M Bis-Tris pH 5.5, 3 M Ammonium sulfate	1000 µM CR7	1000 µM CR20
D	0.1M Bis-Tris pH 6.5	0.1M Bis-Tris pH 6.5, 50% (v/v) PEG 500	0.1M Bis-Tris pH 6.5, 20% (w/v) PEG 3,350	0.1M Bis-Tris pH 6.5, 20% (w/v) PEG 8,000	0.1M Bis-Tris pH 6.5, 20% (w/v) Ficoll 400	0.1M Bis-Tris pH 6.5, 20% (w/v) Dextran 10	0.1M Bis-Tris pH 6.5, 20% (w/v) Dextran 40	0.1M Bis-Tris pH 6.5, 20% (w/v) Dextran 70	0.1M Bis-Tris pH 6.5, 3 M Sodium chloride	0.1M Bis-Tris pH 6.5, 3 M Ammonium sulfate	200 μM Heparin	200 μM Heparin 20% (w/v) PEG 3,350
E	0.1M HEPES pH 7.5	0.1M HEPES pH 7.5, 50% (v/v) PEG 500	0.1M HEPES pH 7.5, 20% (w/v) PEG 3,350	0.1M HEPES pH 7.5, 20% (w/v) PEG 8,000	0.1M HEPES pH 7.5, 20% (w/v) Ficoll 400	0.1M HEPES pH 7.5, 20% (w/v) Dextran 10	0.1M HEPES pH 7.5, 20% (w/v) Dextran 40	0.1M HEPES pH 7.5, 20% (w/v) Dextran 70	0.1M HEPES pH 7.5, 3 M Sodium chloride	0.1M HEPES pH 7.5, 3 M Ammonium sulfate	1000 µM Heparin	1000 μM Heparin 10% (w/v) PEG 3,350
F	0.1M Tris pH 8.5	0.1M Tris pH 8.5, 50% (v/v) PEG 500	0.1M Tris pH 8.5, 20% (w/v) PEG 3,350	0.1M Tris pH 8.5, 20% (w/v) PEG 8,000	0.1M Tris pH 8.5, 20% (w/v) Ficoll 400	0.1M Tris pH 8.5, 20% (w/v) Dextran 10	0.1M Tris pH 8.5, 20% (w/v) Dextran 40	0.1M Tris pH 8.5, 20% (w/v) Dextran 70	0.1M Tris pH 8.5, 3 M Sodium chloride	0.1M Tris pH 8.5, 3 M Ammonium sulfate	2 µg/µl PolyU	2 μg/μl PolyU 20% (w/v) PEG 3,350
G	0.1M Zinc acetate	0.1M Calcium chloride	0.1M Magnesium acetate	0.1M Magnesium sulfate	0.1M Manganese chloride	0.1M Sodium chloride	0.1M Potassium acetate	0.1M Sodium acetate	0.1M Ammonium sulfate	0.1M Lithium chloride	5% (w/v) PEG 3,350	12% (w/v) PEG 3,350
н	0.1M Zinc acetate 20% (w/v) PEG 3,350	0.1M Calcium chloride 20% (w/v) PEG 3,350	0.1M Magnesium acetate 20% (w/v) PEG 3,350	0.1M Magnesium sulfate 20% (w/v) PEG 3,350	0.1M Manganese chloride 20% (w/v) PEG 3,350	0.1M Sodium chloride 20% (w/v) PEG 3,350	0.1M Potassium acetate 20% (w/v) PEG 3,350	0.1M Sodium acetate 20% (w/v) PEG 3,350	0.1M Ammonium sulfate 20% (w/v) PEG 3,350	0.1M Lithium chloride 20% (w/v) PEG 3,350	18% (w/v) PEG 3,350	25% (w/v) PEG 3,350

b

- (a) Conditions included in HiPPS profiles.
- (b) DIC images for wells C7, C8, G4, and H2-H9.

Figure S2. Addition of Hsp90 α in cell lysates to induce Hsp90 α granules. DIC images of varying concentrations of Hsp90 α LLPS in cell lysates (1 mg/ mL) after induction with 10% PEG 8,000 for 30 min.

Figure S3. The formation of Hsp90 α condensation in cell lysates.

DIC images of 20 μ M Hsp90 α LLPS in cell lysates (1 mg/ mL) with or without the addition of 10% PEG 8,000.

Figure S4. Analysis of YGG and QN motif in proteins from Hsp90 α granules and control group.

(a) Percentage of YGG motif-containing proteins within the Hsp90 α granules compared to percentage of YGG motif-containing proteins in the control.

(b) The number of YGG motifs in the client proteins of Hsp90 α granules.

(c) Percentage of QN motif-containing proteins within the Hsp90 α granules compared to percentage of QN motif-containing proteins in the control.

(d) The number of QN motifs in the client proteins of Hsp90 α granules.

b

Figure S5. Structure comparison of NTD, MD, CTD and mutants using AlphaFold2. Comparison of NTD (a), MD (b) and CTD (c) constructs prediction models. WT constructs are colored with gray, while mutant constructs are colored with yellow. The mutating sites are red with zoom-in views and residues labeled.

Figure S6. The binding affinities of hnRNPA1 and TDP-43 to Hsp90 α measured by the BLI assay.

The binding affinities of Hsp90 α to hnRNPA1 (a) and TDP-43 (b) were measured by BLI. The association and dissociation profiles are divided by a vertical black line.

Figure S7. The binding affinities of GR_{20} and PR_{20} to $Hsp90\alpha$ measured by the BLI assay.

The binding affinities of Hsp90 α to GR₂₀ (a) and PR₂₀ (b) were measured by BLI. The association and dissociation profiles are divided by a vertical black line.