Supplementary Materials

for

Wide band gap selenide infrared nonlinear optical materials A^{II}Mg₆Ga₆Se₁₆ with strong SHG responses and high laser-induced damage thresholds

Linan Wang,^{‡ab} Dongdong Chu,^{‡ab} Zhihua Yang,^{ab} Junjie Li^{*ab} and Shilie Pan ^{*ab}

^aResearch Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

[‡]These authors contributed equally to this work.

*Corresponding authors (emails: lijunjie@ms.xjb.ac.cn (J.J. Li); slpan@ms.xjb.ac.cn (S.L. Pan))

- Table S1. Crystal data and structure refinements for $A^{II}Mg_6Ga_6Se_{16}$ ($A^{II} = Ca, Sr, Ba$).
- Table S2. Atomic coordinates (\times 10⁴), equivalent isotropic displacement parameters
- $(Å^2 \times 10^3)$ and bond valence calculations for CaMg₆Ga₆Se₁₆.
- Table S3 Selected bond lengths [Å] for CaMg₆Ga₆Se₁₆.
- Table S4. Selected bond angles [°] for $CaMg_6Ga_6Se_{16}$.
- Table S5. Anisotropic displacement parameters ($Å^2 \times 10^3$) for CaMg₆Ga₆Se₁₆.
- Table S6. Atomic coordinates (× 10⁴), equivalent isotropic displacement parameters
- $(Å^2 \times 10^3)$ and bond valence calculations for SrMg₆Ga₆Se₁₆.
- Table S7. Selected bond lengths [Å] for SrMg₆Ga₆Se₁₆.
- Table S8. Selected bond angles [°] for SrMg₆Ga₆Se₁₆.
- Table S9. Anisotropic displacement parameters ($Å^2 \times 10^3$) for SrMg₆Ga₆Se₁₆.
- Table S10. Atomic coordinates (× 10⁴), equivalent isotropic displacement parameters
- $(Å^2 \times 10^3)$ and bond valence calculations for BaMg₆Ga₆Se₁₆.
- Table S11. Selected bond lengths [Å] for BaMg₆Ga₆Se₁₆.
- Table S12. Selected bond angles [°] for BaMg₆Ga₆Se₁₆.
- Table S13. Anisotropic displacement parameters ($Å^2 \times 10^3$) for BaMg₆Ga₆Se₁₆.
- Table S14. The optical propertied of $A^{II}Mg_6Ga_6Se_{16}$ ($A^{II} = Ca, Sr, Ba$).
- Figure S1. The EDS spectra of (a) $CaMg_6Ga_6Se_{16}$; (b) $SrMg_6Ga_6Se_{16}$; (c) $BaMg_6Ga_6Se_{16}$.
- Figure S2. The Raman spectra of $A^{II}Mg_6Ga_6Se_{16}$ ($A^{II} = Ca, Sr, Ba$).

Figure S3. The XRD patterns of (a) SrMg₆Ga₆Se₁₆; (b) BaMg₆Ga₆Se₁₆.

Figure S4. The band structures, total and partial density of states of $SrMg_6Ga_6Se_{16}$ (a,b); $BaMg_6Ga_6Se_{16}$ (c,d).

Figure S5. The bonding electron density differences $(\Delta \rho^b)$ of $[A^{II}Se_6]$ triangular prisms, [MgSe₆] octahedra and [GaSe₄] tetrahedra in $A^{II}Mg_6Ga_6Se_{16}$ calculated by REDA method.

Figure S6. SHG density maps of occupied and unoccupied orbitals in the VE process. (a,b) SrMg₆Ga₆Se₁₆; (c,d) BaMg₆Ga₆Se₁₆.

EXPERIMENTS AND CALCULATIONS

1 Reagents. Mg (99 %), Ca (99.5 %), Sr (99.9 %), Ba (99.9 %), Ga (99.999 %) and Se (99.9 %) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (China). The raw reagents were stored in a dry Ar-filled glove box with oxygen and moisture levels below 0.1 ppm, and utilized without further purifications.

2 Syntheses. The crystallized samples of the title compounds were fabricated by the high temperature solid-state reactions with the starting mixtures Ca/Sr/Ba : Mg : Ga : Se = 1 : 6 : 6 : 16. First, the mixtures were mixed, ground and put into graphite crucibles. Then, the crucibles were placed into quartz tubes, which were further sealed with oxyhydrogen flame under a high vacuum of 10^{-3} Pa. After that, the samples were put into a computer-controlled furnace and slowly heated to 900 °C, kept for 2000 mins, then cooled to room temperature in 8600 mins. After reactions, the pure polycrystalline powder samples were harvested.

3 Single-Crystal X-ray Diffractions. A Bruker SMART APEX II CCD single crystal X-ray diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å) was performed to measure crystal diffraction data at room temperature. The SAINT program was utilized to integrate the diffraction data.¹ The crystal structures were refined and resolved by the SHELXTL program package.²

4 Energy-Dispersive X-ray Spectroscopy (EDS). The EDS spectra of the single crystals were characterized on a field emission scanning electron microscope (FE-SEM, JEOL JSM-7610F Plus, Japan) equipped with an energy-dispersive X-ray spectrometer (Oxford, X-Max 50).

5 Raman Spectroscopy. The powder samples were placed on the glass plates and tested by a LABRAM HR Evolution spectrometer (Japan) equipped with a CCD detector (532 nm radiation). The spectra were collected from 4000 to 40 cm⁻¹.

6 Powder X-ray Diffractions. A Bruker D2 PHASER diffractometer (Germany) with Cu K α radiation ($\lambda = 1.5418$ Å) was applied for the measurement of powder XRD patterns at room temperature. The 2θ range was set to 5–70 ° with a fixed counting time of 1 s/step.

7 UV-Vis-NIR Diffuse Reflectance Spectroscopy. The optical diffuse-reflectance spectra of powder samples were tested on a SolidSpec-3700DUV spectrophotometer from 176 to 2600 nm at room temperature. The collected spectra data were converted to optical absorbance by the Kubelka-Munk function:³

$$F(R) = K/S = (1-R)^2/2R$$
(1)

where, R, K and S represent the reflection coefficient, absorption value, scattering coefficient, respectively.

8 LIDT Measurements. The LIDTs of powder samples with the particle size of ≤ 45 µm were evaluated by the single-pulse LIDT method with an incident laser at 1.06 µm (frequency f = 10 Hz and pulse width $\tau_p = 10$ ns) at room temperature, where AGS samples with same size were used as the references.⁴

9 SHG Measurements. The SHG responses of powder samples were evaluated by the Kurtz-Perry method.⁵ The polycrystalline samples of the title compounds were ground and sieved into distinct particle size ranges (≤ 45 , 45–63, 63–90, 90–125, 125–180 and 180–212 µm), and AGS powder samples with same particle sizes were

used as the references. The measurements were carried out on a 2.09- μ m Q-switch laser at room temperature.

10 Theoretical Calculations. The band structures, partial and total density of states and birefringences of $A^{II}Mg_6Ga_6Se_{16}$ ($A^{II} = Ca, Sr, Ba$) were calculated by the plane wave pseudopotential method that implemented in the CASTEP software.⁶ The exchange-correlation potential was treated by the Perdew-Burke-Ernzerhof (PBE) method in the generalized gradient approximation (GGA).⁷ The interactions between the ionic cores and electrons were described by norm-conserving pseudopotential (NCP).⁸ The following orbital electrons were treated as valence electrons: Ca $3s^23p^64s^2$, Sr $4s^24p^65s^2$, Ba $6s^25p^66s^2$, Mg $2s^22p^63s^2$, Ga $3d^{10}4s^24p^1$ and Se $4s^24p^4$ in the calculations. The plane-wave energy cutoff was set to 900 eV, and Monkhorst-Pack kpoint meshes were adopted by $3 \times 3 \times 6$ with a density < 0.02 Å⁻¹ in the Brillouin zone (BZ).⁹ The Heyd-Scuseria-Ernzerhof 06 (HSE06) hybrid function was performed using the PWmat code, which runs on graphics processing unit processors (GPU).¹⁰ The other calculation parameters and convergent criteria used the default values of the CASTEP code.

The static SHG susceptibilities can be ascribed to virtual electron (VE) and virtualhole (VH) processes. At a zero frequency, the formula of second-order NLO coefficients can be derived as:¹¹

$$\chi_{\alpha\beta\gamma}^{(2)} = \chi_{\alpha\beta\gamma}^{(2)} (VE) + \chi_{\alpha\beta\gamma}^{(2)} (VH)$$

$$\chi_{\alpha\beta\gamma}^{(2)} (VE) = \frac{e^3}{2\hbar^2 m^3} \sum_{vvc} \int \frac{d^3k}{4\pi^3} P(\alpha\beta\gamma) Im[P_{vv}^{\alpha}, P_{cv}^{\beta}, P_{cv}^{\gamma}] \left(\frac{1}{\omega_{cv}^3 \omega_{vc}^2} + \frac{1}{\omega_{vc}^4 \omega_{cv}}\right)$$
(2)
(3)

$$\chi^{(2)}_{\alpha\beta\gamma} (VH) = \frac{e^3}{2\hbar^2 m^3} \sum_{vcc} \int \frac{d^3k}{4\pi^3} P(\alpha\beta\gamma) Im[P^{\alpha}_{cv}P^{\beta}_{cc}P^{\gamma}_{cv}] (\frac{1}{\omega^3_{cv}\omega^2_{vc}} + \frac{1}{\omega^4_{vc}\omega_{cv}})$$
(4)

where, α , β and γ are the Cartesian components; v and v' are the denote valence bands; c and c' are the denote conduction bands; $P(\alpha\beta\gamma)$ is full permutation; $\hbar\omega_{ij}$ is the band energy difference; P_{ij} is the momentum matrix elements.

The hyperpolarizabilities (β) were computed by Gaussian 09 revision D.01 program.¹⁰ The GaussView 5 software visualizes the output file. β_i and β_{tot} can be expressed as:

$$\beta_{i} = \frac{1}{3} \sum_{j} \beta_{ijj} + \beta_{jji} + \beta_{jjj}, \ i,j = \{x, y, z\}$$

$$\beta_{tot} = \sqrt{(\beta_{x}^{2} + \beta_{y}^{2} + \beta_{z}^{2})}$$
(5)
(6)

Response Electron Distribution Anisotropy Index (REDA, ζ) reflects birefringence and response charge density can be reduced by:¹²

$$\zeta = \sum_{g} \left[\frac{N_c Z_a \Delta \rho^b}{n_1 E_o} \right]_g \tag{7}$$

where N_c represents nearest neighbor coordination number, Z_a is formal charge of anion; $\Delta \rho^b = \rho_{max}^b - \rho_{min}^b$, ρ_{max}^b and ρ_{min}^b are the maximum and minimum of the covalent electron density of the covalent bond on the optical principal axes of a crystal; n_1 and E_o are the minimum refractive index and optical band gap, respectively.

Empirical formula	CaMg ₆ Ga ₆ Se ₁₆	SrMg ₆ Ga ₆ Se ₁₆	BaMg ₆ Ga ₆ Se ₁₆
Formula weight	1867.62	1915.16	1964.88
Crystal system	hexagonal		
Space group	рб		
a/Å	17.5327(3)	17.6115(9)	17.7326(6)
c/Å	7.7603(2)	7.7684(3)	7.7899(3)
Volume/Å ³	2065.89(9)	2086.70(2)	2121.33(17)
Ζ	3	3	3
$\rho_{\rm calc}/{\rm g~cm^{-3}}$	4.504	4.572	4.614
μ/mm^{-1}	27.248	28.689	27.719
F(000)	2466.0	2520.0	2574.0
2θ range for data	4.646 to 72.664	4.626 to 54.932	4.594 to 54.96
collection/°			
Index ranges	$-29 \le h \le 29, -29 \le k$	$-22 \le h \le 22, -22 \le k$	$-22 \le h \le 23, -23 \le k$
	\leq 29, -12 \leq <i>l</i> \leq 12	\leq 22, -10 \leq <i>l</i> \leq 10	$\leq 23, -10 \leq l \leq 10$
Independent reflections	7002 [$R_{\rm int} = 0.0884$,	$3406 \ [R_{\rm int} = 0.0605,$	3453 [$R_{\rm int} = 0.0575$,
	$R_{\rm sigma} = 0.0534$]	$R_{\rm sigma} = 0.0399$]	$R_{\text{sigma}} = 0.0385$]
Data/restraints/parameters	7002/0/153	3406/0/152	3453/0/154
Goodness-of-fit on F ²	1.081	1.023	1.022
$R_1, wR_2 [I > 2\sigma (I)]^{a}$	0.0389, 0.0989	0.0243, 0.0574	0.0261, 0.0618
R_1 , wR_2 [all data] ^{a)}	0.0537, 0.1089	0.0394, 0.0647	0.0338, 0.0670
Largest diff. peak/hole/e Å-	1.84/-1.74	1.51/-0.88	1.73/-1.32
3			
Flack parameter	0.028(9)	-0.013(14)	0.018(12)

Table S1. Crystal data and structure refinements for $A^{II}Mg_6Ga_6Se_{16}$ ($A^{II} = Ca, Sr, Ba$).

^{a)} $R_1 = F_o - F_c/F_o$ and $wR_2 = [w(F_o^2 - F_c^2)^2/wF_o^4]^{1/2}$ for $F_o^2 > 2\sigma$ (F_o^2)

	, ,			80 0 10			
Atom	Wyckoff	x	У	Z	U(eq)	BVS ^{a)}	
Cal	1 <i>e</i>	6666.67	3333.33	10000	14.2(10)	1.64	
Ca2	1 <i>a</i>	10000	10000	10000	15.1(12)	1.62	
Ca3	1 <i>c</i>	3333.33	6666.67	10000	25.7(16)	1.63	
Mg1	3 <i>k</i>	10436(4)	8017(3)	5000	7.2(9)	1.95	
Mg2	3 <i>j</i>	7494(4)	9485(4)	10000	9.3(10)	2.05	
Mg3	3 <i>k</i>	3803(4)	4728(4)	5000	10.5(10)	1.90	
Mg4	3 <i>j</i>	3873(4)	4732(4)	10000	9.2(9)	1.90	
Mg5	3 <i>k</i>	4300(4)	1342(4)	5000	9.1(9)	2.07	
Mg6	3 <i>j</i>	4200(5)	1340(5)	10000	14.8(11)	2.10	
Gal	61	8128.8(8)	7804.2(8)	7484.4(14)	7.2(2)	2.95	
Ga2	61	5592.1(8)	7020.2(8)	7493.0(14)	6.8(2)	3.06	
Ga3	61	4705.4(8)	3572.1(7)	7493.5(16)	6.5(2)	3.00	
Sel	61	8421.2(8)	9264.6(7)	7545.6(16)	9.7(2)	1.93	
Se2	3 <i>j</i>	5893.2(12)	7952.6(13)	10000	8.1(3)	2.02	
Se3	3 <i>j</i>	8726.9(13)	7431.8(11)	10000	8.0(3)	1.88	
Se4	3 <i>k</i>	8670.5(13)	7360.3(11)	5000	7.1(3)	1.93	
Se5	61	6657.5(7)	6541.9(7)	7506.5(19)	6.44(18)	2.19	
Se6	61	4111.0(8)	5875.0(9)	7524.3(14)	9.38(18)	1.92	
Se7	3 <i>k</i>	2008.7(15)	4038.3(12)	5000	8.3(3)	2.02	
Se8	61	3249.0(7)	3368.0(8)	7507.1(18)	6.45(19)	1.86	
Se9	3 <i>k</i>	5281.3(11)	4551.9(11)	5000	7.2(3)	2.00	
Se10	3 <i>j</i>	5335.4(12)	4543.2(11)	10000	7.4(3)	1.90	
Sel1	61	5093.8(9)	2473.6(8)	7536(2)	8.63(18)	2.00	
GII ^{b)}		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0.155	· · · · · · · · · · · · · · · · · · ·		

Table S2. Atomic coordinates (\times 10⁴), equivalent isotropic displacement parameters

(Å² \times 10³) and bond valence calculations for CaMg₆Ga₆Se₁₆.

^{a)}The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37). ^{b)}The global instability index (GII) calculated using

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$

where N is the number of atoms in the formula unit. The GII is calculated as 0.155 which is lower than 0.2 indicating the rationality of the structure from this side.

Atom	Atom	Length	Atom	Atom	Length
Cal	Sel1 ¹	3.0612(15)	Mg3	Se8 ¹⁶	2.844(5)
Cal	Se11	3.0612(15)	Mg3	Se8	2.844(5)
Cal	Se11 ⁵	3.0612(15)	Mg3	Se9	2.762(8)
Cal	Sel1 ³	3.0612(15)	Mg4	Se2 ¹¹	2.798(7)
Cal	Se11 ⁴	3.0612(15)	Mg4	Se6	2.652(4)
Cal	Se11 ²	3.0612(15)	Mg4	Se6 ¹	2.652(4)
Ca2	Se1 ⁶	3.0640(13)	Mg4	Se81	2.836(4)
Ca2	Se1 ⁸	3.0640(13)	Mg4	Se8	2.836(4)
Ca2	Se1 ⁹	3.0640(12)	Mg4	Se10	2.747(8)
Ca2	Se1 ⁷	3.0640(12)	Mg5	Se4 ³	2.883(6)
Ca2	Se1 ¹	3.0640(13)	Mg5	Se5 ¹⁷	2.727(5)
Ca2	Se1	3.0640(12)	Mg5	Se5 ³	2.727(5)
Ca3	Se6 ¹⁰	3.0609(12)	Mg5	Se9 ³	2.717(6)
Ca3	Se6 ¹	3.0609(12)	Mg5	Se11 ¹⁶	2.640(5)
Ca3	Se6 ¹¹	3.0609(12)	Mg5	Sel1	2.640(5)
Ca3	Se6 ¹²	3.0609(12)	Mg6	Se3 ³	2.820(7)
Ca3	Se6	3.0609(12)	Mg6	Se5 ³	2.691(5)
Ca3	Se6 ¹³	3.0609(12)	Mg6	Se5 ⁴	2.691(5)
Mg1	Se1 ⁷	2.668(4)	Mg6	Se10 ³	2.809(7)
Mg1	Se1 ¹⁴	2.668(4)	Mg6	Sel1	2.638(5)
Mg1	Se4	2.712(6)	Mg6	Se11 ¹	2.638(5)
Mg1	Se7 ⁵	2.816(7)	Gal	Sel	2.3476(15)
Mg1	Se8 ¹⁵	2.791(4)	Gal	Se3	2.454(2)
Mg1	Se8 ⁵	2.791(4)	Gal	Se4	2.442(2)
Mg2	Sel ¹	2.652(4)	Gal	Se5	2.4168(15)
Mg2	Se1	2.652(4)	Ga2	Se2	2.4235(19)
Mg2	Se2	2.752(8)	Ga2	Se5	2.3998(15)
Mg2	Se3 ⁶	2.769(7)	Ga2	Se6	2.3591(15)
Mg2	Se8 ¹²	2.752(4)	Ga2	Se7 ¹²	2.420(2)
Mg2	Se810	2.752(4)	Ga3	Se8	2.3942(16)
Mg3	Se6 ¹⁶	2.663(5)	Ga3	Se9	2.4448(17)
Mg3	Se6	2.663(5)	Ga3	Se10	2.4550(17)
Mg3	Se7	2.745(7)	Ga3	Sel1	2.3417(14)

Table S3 Selected bond lengths [Å] for CaMg₆Ga₆Se₁₆.

¹+X,+Y,2-Z; ²1+Y-X,1-X,2-Z; ³1-Y,+X-Y,+Z; ⁴1-Y,+X-Y,2-Z; ⁵1+Y-X,1-X,+Z; ⁶1+Y-X,2-X,+Z; ⁷2-Y,1+X-Y,+Z; ⁸1+Y-X,2-X,2-Z; ⁹2-Y,1+X-Y,2-Z; ¹⁰1-Y,1+X-Y,2-Z; ¹¹+Y-X,1-X,+Z; ¹²1-Y,1+X-Y,+Z; ¹³+Y-X,1-X,2-Z; ¹⁴2-Y,1+X-Y,1-Z; ¹⁵1+Y-X,1-X,1-Z; ¹⁶+X,+Y,1-Z; ¹⁷1-Y,+X-Y,1-Z

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
Se11 ²	Ca1	Se11 ³	77.29(6)	Se6	Mg3	Se7	95.1(2)
Se11 ²	Cal	Se11 ¹	85.13(5)	Se6 ¹⁶	Mg3	Se7	95.1(2)
Se11 ³	Ca1	Se11 ⁵	85.13(5)	Se6	Mg3	Se8 ¹⁶	172.7(3)
Se11 ⁴	Cal	Se11 ⁵	77.29(6)	Se6 ¹⁶	Mg3	Se8 ¹⁶	89.12(4)
Se11 ²	Cal	Se11 ⁵	134.03(2)	Se6	Mg3	Se8	89.12(4)
Se11 ¹	Cal	Sel1	77.29(6)	Se6 ¹⁶	Mg3	Se8	172.7(3)
Se11 ¹	Cal	Se11 ⁴	85.13(5)	Se6	Mg3	Se9	103.59(19)
Se11 ²	Cal	Se11 ⁴	85.13(4)	Se6 ¹⁶	Mg3	Se9	103.59(19)
Se11 ³	Cal	Sel1	85.13(5)	Se7	Mg3	Se8	78.30(16)
Se11 ²	Cal	Sel1	134.03(2)	Se7	Mg3	Se8 ¹⁶	78.30(16)
Se11 ⁴	Ca1	Se11	134.03(2)	Se7	Mg3	Se9	152.1(3)
Se11 ³	Cal	Se11 ⁴	134.03(2)	Se8 ¹⁶	Mg3	Se8	86.37(19)
Se11 ⁵	Cal	Sel1	85.13(4)	Se9	Mg3	Se8	81.48(18)
Se11 ¹	Cal	Se11 ⁵	134.03(2)	Se9	Mg3	Se8 ¹⁶	81.48(18)
Se11 ³	Cal	Se11 ¹	134.03(2)	Se210	Mg4	Se81	77.59(15)
Se1 ⁹	Ca2	Sel ¹	85.41(3)	Se6	Mg4	Se2 ¹⁰	90.89(19)
Se1 ⁶	Ca2	Se1	85.41(3)	Se6 ¹	Mg4	Se210	90.89(19)
Se1 ⁷	Ca2	Se1	85.41(3)	Se6 ¹	Mg4	Se6	92.8(2)
Se1 ¹	Ca2	Se1	76.91(5)	Se6 ¹	Mg4	Se8	168.3(3)
Se1 ⁸	Ca2	Se1 ⁹	85.41(3)	Se6	Mg4	Se8	89.50(5)
Se1 ⁷	Ca2	Se1 ⁹	76.91(5)	Se6	Mg4	Se8 ¹	168.3(3)
Se1 ⁹	Ca2	Se1 ⁶	133.897(16)	Se6 ¹	Mg4	Se8 ¹	89.50(5)
Se1 ⁸	Ca2	Se1 ⁶	76.91(5)	Se6 ¹	Mg4	Se10	106.70(19)
Se1 ¹	Ca2	Se1 ⁶	133.897(16)	Se6	Mg4	Se10	106.70(19)
Se1 ⁸	Ca2	Se1 ⁷	133.897(16)	Se8	Mg4	Se81	86.01(18)
Se1 ⁸	Ca2	Se1	133.898(16)	Se10	Mg4	Se2 ¹⁰	154.1(3)
Se1 ⁷	Ca2	Se1 ⁶	85.41(3)	Se10	Mg4	Se8	83.55(18)
Se1 ⁸	Ca2	Sel ¹	85.41(3)	Se10	Mg4	Se81	83.55(18)
Se1 ⁹	Ca2	Se1	133.896(16)	Se5 ¹⁷	Mg5	Se4 ³	80.77(16)
Se1 ⁷	Ca2	Sel ¹	133.897(16)	Se5 ³	Mg5	Se4 ³	80.77(16)
Se6 ¹⁰	Ca3	Se611	134.176(15)	Se5 ¹⁷	Mg5	Se5 ³	91.0(2)
Se6 ¹⁰	Ca3	Se6 ¹	134.176(15)	Se9 ³	Mg5	Se4 ³	158.7(3)
Se611	Ca3	Se6	134.176(16)	Se9 ³	Mg5	Se5 ³	84.35(16)
Se6 ¹²	Ca3	Se6	84.80(3)	Se9 ³	Mg5	Se5 ¹⁷	84.35(16)
Se6 ¹³	Ca3	Se6 ¹	84.80(3)	Se11 ¹⁶	Mg5	Se4 ³	99.41(16)
Se6 ¹²	Ca3	Se6 ¹	134.176(16)	Se11	Mg5	Se4 ³	99.41(16)
Se6 ¹⁰	Ca3	Se6 ¹²	84.80(3)	Se11	Mg5	Se5 ¹⁷	177.2(2)
Se6 ¹⁰	Ca3	Se6 ¹³	77.73(4)	Se11 ¹⁶	Mg5	Se5 ³	177.2(2)
Se6 ¹¹	Ca3	Se6 ¹²	77.73(4)	Sel1	Mg5	Se5 ³	86.27(4)
Se6 ¹¹	Ca3	Se6 ¹	84.80(3)	Se11 ¹⁶	Mg5	Se5 ¹⁷	86.27(4)

Table S4. Selected bond angles [°] for $CaMg_6Ga_6Se_{16}$.

Se6 ¹⁰	Ca3	Se6	84.80(3)	Se11 ¹⁶	Mg5	Se9 ³	94.72(18)
Se6 ¹¹	Ca3	Se6 ¹³	84.80(3)	Se11	Mg5	Se9 ³	94.72(18)
Se6 ¹³	Ca3	Se6 ¹²	134.176(15)	Se11	Mg5	Se11 ¹⁶	96.4(2)
Se6 ¹³	Ca3	Se6	134.176(15)	Se5 ²	Mg6	Se3 ³	84.26(19)
Se6	Ca3	Se6 ¹	77.73(4)	Se5 ³	Mg6	Se3 ³	84.26(19)
Se1 ⁷	Mg1	Se1 ¹⁴	95.49(19)	Se5 ³	Mg6	Se5 ²	92.0(2)
Se1 ⁷	Mg1	Se4	94.16(18)	Se5 ²	Mg6	Se10 ³	82.91(17)
Se1 ¹⁴	Mg1	Se4	94.16(18)	Se5 ³	Mg6	Se10 ³	82.91(17)
Se1 ⁷	Mg1	Se7 ⁵	100.78(16)	Se10 ³	Mg6	Se3 ³	161.5(3)
Se1 ¹⁴	Mg1	Se7 ⁵	100.78(16)	Se11 ¹	Mg6	Se3 ³	103.49(18)
Se1 ⁷	Mg1	Se8 ⁵	88.05(4)	Se11	Mg6	Se3 ³	103.49(18)
Se1 ¹⁴	Mg1	Se8 ¹⁵	88.05(4)	Se11 ¹	Mg6	Se5 ²	87.03(5)
Se1 ¹⁴	Mg1	Se8 ⁵	176.43(19)	Se11 ¹	Mg6	Se5 ³	172.0(3)
Se1 ⁷	Mg1	Se8 ¹⁵	176.43(19)	Se11	Mg6	Se5 ²	172.0(3)
Se4	Mg1	Se7 ⁵	157.7(2)	Se11	Mg6	Se5 ³	87.03(5)
Se4	Mg1	Se8 ¹⁵	86.07(16)	Sel1 ¹	Mg6	Se10 ³	89.12(19)
Se4	Mg1	Se8 ⁵	86.07(16)	Se11	Mg6	Se10 ³	89.12(19)
Se815	Mg1	Se7 ⁵	78.00(18)	Se11	Mg6	Se11 ¹	92.9(3)
Se8 ⁵	Mg1	Se7 ⁵	78.00(18)	Se1	Gal	Se3	112.67(7)
Se815	Mg1	Se8 ⁵	88.41(17)	Se1	Gal	Se4	117.12(7)
Se1 ¹	Mg2	Se1	91.88(19)	Se1	Gal	Se5	123.39(6)
Se1 ¹	Mg2	Se2	104.92(19)	Se4	Gal	Se3	104.89(7)
Se1	Mg2	Se2	104.92(19)	Se5	Gal	Se3	98.79(7)
Se1	Mg2	Se3 ⁶	89.3(2)	Se5	Gal	Se4	96.90(7)
Se1 ¹	Mg2	Se3 ⁶	89.3(2)	Se5	Ga2	Se2	106.69(7)
Se1	Mg2	Se8 ¹²	89.18(4)	Se5	Ga2	Se7 ¹²	104.90(7)
Se1 ¹	Mg2	Se811	89.18(4)	Se6	Ga2	Se2	109.97(7)
Se1	Mg2	Se811	174.7(3)	Se6	Ga2	Se5	114.86(5)
Se1 ¹	Mg2	Se8 ¹²	174.7(3)	Se6	Ga2	Se7 ¹²	113.31(7)
Se2	Mg2	Se3 ⁶	159.3(2)	Se7 ¹²	Ga2	Se2	106.54(6)
Se2	Mg2	Se811	79.79(19)	Se8	Ga3	Se9	98.24(7)
Se2	Mg2	Se8 ¹²	79.79(19)	Se8	Ga3	Se10	100.19(7)
Se811	Mg2	Se3 ⁶	85.51(17)	Se9	Ga3	Se10	104.78(6)
Se8 ¹²	Mg2	Se3 ⁶	85.51(17)	Sel1	Ga3	Se8	127.20(6)
Se8 ¹²	Mg2	Se811	89.29(18)	Sel1	Ga3	Se9	113.67(9)
Se6 ¹⁶	Mg3	Se6	94.8(2)	Se11	Ga3	Se10	110.04(8)

¹+X,+Y,2-Z; ²1-Y,+X-Y,2-Z; ³1-Y,+X-Y,+Z; ⁴1+Y-X,1-X,2-Z; ⁵1+Y-X,1-X,+Z; ⁶1+Y-X,2-X,+Z; ⁷2-Y,1+X-Y,+Z; ⁸1+Y-X,2-X,2-Z; ⁹2-Y,1+X-Y,2-Z; ¹⁰+Y-X,1-X,+Z; ¹¹1-Y,1+X-Y,2-Z; ¹²1-Y,1+X-Y,+Z; ¹³+Y-X,1-X,2-Z; ¹⁴2-Y,1+X-Y,1-Z; ¹⁵1+Y-X,1-X,1-Z; ¹⁶+X,+Y,1-Z; ¹⁷1-Y,+X-Y,1-Z; ¹⁸+Y-X,1-X,1-Z

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cal	15.9(15)	15.9(15)	11(2)	0	0	7.9(8)
Ca2	17.6(17)	17.6(17)	10(3)	0	0	8.8(9)
Ca3	21(2)	21(2)	35(4)	0	0	10.4(11)
Mg1	8(2)	9(2)	6(2)	0	0	4.6(19)
Mg2	13(2)	15(2)	5(2)	0	0	10(2)
Mg3	14(2)	10(2)	5(2)	0	0	5(2)
Mg4	13(2)	8(2)	4.8(19)	0	0	4.3(19)
Mg5	9(2)	8(2)	9(2)	0	0	4(2)
Mg6	14(3)	12(3)	16(2)	0	0	4(3)
Gal	9.6(5)	6.7(5)	5.4(4)	-0.5(4)	-0.3(4)	4.2(4)
Ga2	7.1(5)	7.2(4)	6.0(4)	0.5(3)	0.9(4)	3.4(4)
Ga3	7.5(4)	6.1(4)	6.1(4)	-0.2(4)	0.0(4)	3.5(3)
Se1	12.5(5)	7.3(4)	10.2(5)	-1.8(4)	-1.0(4)	5.6(4)
Se2	10.8(8)	5.2(7)	7.3(6)	0	0	3.2(6)
Se3	7.4(7)	11.8(8)	5.7(5)	0	0	5.5(6)
Se4	9.1(7)	8.5(7)	5.6(5)	0	0	5.8(6)
Se5	6.2(4)	5.8(4)	7.8(4)	-0.1(3)	0.1(3)	3.3(3)
Se6	6.9(4)	8.8(4)	10.1(4)	-0.3(5)	0.9(5)	2.2(4)
Se7	11.9(8)	10.5(7)	6.7(6)	0	0	8.6(6)
Se8	5.1(4)	6.2(4)	7.4(4)	0.3(3)	0.4(3)	2.4(3)
Se9	3.7(6)	8.1(7)	6.2(5)	0	0	0.3(5)
Se10	7.9(7)	5.9(6)	5.4(5)	0	0	1.3(5)
Sel1	11.6(4)	7.2(4)	8.2(4)	-1.0(4)	-1.8(4)	5.5(4)

Table S5. Anisotropic displacement parameters ($Å^2 \times 10^3$) for CaMg₆Ga₆Se₁₆.

	1	1	1		1	1
Atom	Wyckoff	<i>x</i>	У	Z	U(eq)	BVS ^{a)}
Sr1	1 <i>f</i>	6666.67	3333.33	10000	27.3(12)	1.87
Sr2	1 <i>d</i>	3333.33	6666.67	10000	26.3(12)	1.86
Sr3	1 <i>b</i>	0	0	10000	26.9(12)	1.84
Mg1	3 <i>k</i>	4669(8)	3853(10)	10000	25(3)	1.90
Mg2	3 <i>j</i>	5844(9)	8617(8)	10000	23(3)	1.97
Mg3	3 <i>k</i>	5759(10)	8611(8)	5000	24(2)	2.02
Mg4	3 <i>j</i>	4641(8)	3780(11)	5000	24(3)	2.02
Mg5	3 <i>j</i>	2506(10)	512(9)	10000	26(3)	2.12
Mg6	3 <i>k</i>	2415(9)	393(8)	5000	21(2)	2.06
Gal	61	6977.2(12)	5519.8(12)	7476(5)	19.9(5)	2.95
Ga2	61	5238.0(11)	6310.7(11)	7479(5)	18.9(4)	3.00
Ga3	61	1963.5(12)	2199.8(12)	7477(4)	18.8(4)	3.06
Sel	61	5785.7(11)	4088.4(11)	7512(4)	20.9(4)	2.02
Se2	3 <i>j</i>	7966(3)	5948(3)	5000	18.9(8)	2.04
Se3	3 <i>k</i>	7932(3)	5860(3)	10000	20.7(8)	2.19
Se4	3 <i>k</i>	6773.8(10)	6778.9(10)	7509(5)	18.6(3)	1.94
Se5	61	4637(3)	5361(3)	5000	18.8(9)	2.03
Se6	61	4962.3(12)	7485.3(12)	7504(5)	20.9(3)	1.90
Se7	3 <i>j</i>	4586(3)	5392(3)	10000	19.5(9)	1.89
Se8	3 <i>j</i>	3409.7(11)	3451.2(11)	7508(5)	18.4(3)	1.97
Se9	3 <i>k</i>	1628.4(12)	734.5(11)	7509(5)	20.9(3)	1.84
Se10	61	1320(3)	2510(3)	10000	18.2(8)	2.07
Sel1	3 <i>k</i>	1373(3)	2590(3)	5000	19.2(8)	1.86
GII ^{b)}			·	0.096	·	·

Table S6. Atomic coordinates (\times 10⁴), equivalent isotropic displacement parameters

 $(Å^2 \times 10^3)$ and bond valence calculations for SrMg₆Ga₆Se₁₆.

^{a)}The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37). ^{b)}The global instability index (GII) calculated using

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$

where N is the number of atoms in the formula unit. The GII is calculated as 0.096 which is lower than 0.2 indicating the rationality of the structure from this side.

Atom	Atom	Length	Atom	Atom	Length
Sr1	Sel ²	3.152(3)	Mg3	Se6 ⁵	2.759(9)
Sr1	Sel ³	3.152(3)	Mg3	Se6	2.759(9)
Sr1	Sel ⁴	3.152(3)	Mg3	Se11	2.792(15)
Sr1	Sel ⁵	3.152(3)	Mg4	Se2	2.784(17)
Sr1	Sel ¹	3.152(3)	Mg4	Se5	2.661(9)
Sr1	Sel	3.152(3)	Mg4	Se5 ¹⁴	2.661(9)
Sr2	Se10 ⁷	3.152(3)	Mg4	Se6 ¹⁴	2.752(9)
Sr2	Se10 ⁸	3.152(3)	Mg4	Se6	2.752(9)
Sr2	Se10 ⁹	3.152(3)	Mg4	Se7	2.739(16)
Sr2	Se10	3.152(3)	Mg5	Se3 ¹⁶	2.702(11)
Sr2	Se10 ⁵	3.152(3)	Mg5	Se3 ¹¹	2.702(11)
Sr2	Se10 ⁶	3.152(3)	Mg5	Se7	2.877(14)
Sr3	Se5 ⁵	3.159(2)	Mg5	Se8 ⁷	2.748(13)
Sr3	Se5 ¹²	3.159(2)	Mg5	Se10	2.630(11)
Sr3	Se5 ¹¹	3.159(2)	Mg5	Se10 ¹⁴	2.630(11)
Sr3	Se5 ¹⁰	3.159(2)	Mg6	Se3 ¹³	2.702(11)
Sr3	Se5 ¹³	3.159(2)	Mg6	Se3 ¹¹	2.702(11)
Sr3	Se5	3.159(2)	Mg6	Se9 ⁷	2.883(15)
Mg1	Se1 ⁵	2.654(9)	Mg6	Se10	2.627(11)
Mg1	Sel	2.654(9)	Mg6	Se10 ⁵	2.627(11)
Mg1	Se4 ¹	2.827(15)	Mg6	Se11	2.814(16)
Mg1	Se6 ¹	2.819(10)	Gal	Se3	2.419(2)
Mg1	Se6 ⁴	2.819(10)	Gal	Se5	2.340(2)
Mg1	Se9 ¹	2.744(16)	Gal	Se7 ¹⁰	2.447(5)
Mg2	Sel	2.628(9)	Gal	Se11 ¹⁰	2.454(5)
Mg2	Se1 ¹⁴	2.628(9)	Ga2	Se6	2.394(3)
Mg2	Se2 ¹	2.754(16)	Ga2	Se8	2.444(4)
Mg2	Se6 ¹⁵	2.839(10)	Ga2	Se9	2.459(4)
Mg2	Se6 ¹	2.839(10)	Ga2	Se10	2.342(2)
Mg2	Se81	2.767(17)	Ga3	Se1	2.350(2)
Mg3	Se4	2.787(15)	Ga3	Se2	2.420(4)
Mg3	Se5 ⁵	2.637(9)	Ga3	Se3	2.403(2)
Mg3	Se5	2.637(9)	Ga3	Se4	2.431(4)

Table S7. Selected bond lengths [Å] for SrMg₆Ga₆Se₁₆.

¹1-Y,+X-Y,+Z; ²1+Y-X,1-X,+Z; ³1+Y-X,1-X,1-Z; ⁴1-Y,+X-Y,1-Z; ⁵+X,+Y,1-Z; ⁶1-Y,1+X-Y,+Z; ⁷+Y-X,1-X,+Z; ⁸1-Y,1+X-Y,1-Z; ⁹+Y-X,1-X,1-Z; ¹⁰+Y-X,-X,+Z; ¹¹-Y,+X-Y,+Z; ¹²+Y-X,-X,1-Z; ¹³-Y,+X-Y,1-Z; ¹⁴+X,+Y,-Z; ¹⁵1-Y,+X-Y,-Z; ¹⁶-Y,+X-Y,-Z

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
Se1 ²	Sr1	Se1 ³	133.56(4)	Se5	Mg3	Se4	104.2(4)
Se1 ²	Sr1	Se1 ¹	86.13(9)	Se5 ⁴	Mg3	Se5	94.3(4)
Se1	Sr1	Se1 ²	86.13(9)	Se5	Mg3	Se6 ⁴	174.7(6)
Se1 ⁴	Sr1	Se1 ²	133.56(4)	Se5	Mg3	Se6	88.08(9)
Se1 ³	Sr1	Se1 ¹	75.92(12)	Se5 ⁴	Mg3	Se6 ⁴	88.08(9)
Se1	Sr1	Se1 ⁴	75.91(12)	Se5 ⁴	Mg3	Se6	174.7(6)
Se1	Sr1	Se1 ³	133.56(4)	Se5 ⁴	Mg3	Sel1	88.9(4)
Se1	Sr1	Sel ¹	86.13(9)	Se5	Mg3	Sel1	88.9(4)
Se1	Sr1	Se1 ⁵	133.56(4)	Se6 ⁴	Mg3	Se4	79.7(3)
Se1 ⁵	Sr1	Se1 ³	86.13(9)	Se6	Mg3	Se4	79.7(3)
Sel ⁴	Sr1	Se1 ³	86.13(9)	Se6	Mg3	Se6 ⁴	89.2(4)
Se1 ⁵	Sr1	Sel ¹	133.56(4)	Se6 ⁴	Mg3	Sel1	86.4(4)
Se1 ⁵	Sr1	Sel ⁴	86.13(9)	Se6	Mg3	Sel1	86.4(4)
Sel ⁴	Sr1	Sel ¹	133.56(4)	Se5	Mg4	Se2	100.2(4)
Se1 ⁵	Sr1	Se1 ²	75.91(12)	Se5 ¹⁴	Mg4	Se2	100.2(4)
Se10 ⁴	Sr2	Se10 ⁹	86.22(9)	Se5 ¹⁴	Mg4	Se5	94.4(4)
Se10 ⁹	Sr2	Se10 ⁶	75.79(12)	Se5 ¹⁴	Mg4	Se6	177.9(4)
Se10 ⁷	Sr2	Se10	86.22(9)	Se5	Mg4	Se6	87.75(8)
Se10 ⁹	Sr2	Se10	133.52(4)	Se5	Mg4	Se6 ¹⁴	177.9(4)
Se10 ⁸	Sr2	Se10	133.52(4)	Se5 ¹⁴	Mg4	Se6 ¹⁴	87.75(8)
Se10 ⁷	Sr2	Se10 ⁴	133.52(4)	Se5 ¹⁴	Mg4	Se7	92.8(4)
Se10 ⁴	Sr2	Se10 ⁶	133.52(4)	Se5	Mg4	Se7	92.8(4)
Se10 ⁸	Sr2	Se10 ⁶	133.52(4)	Se6 ¹⁴	Mg4	Se2	79.4(4)
Se10 ⁸	Sr2	Se10 ⁴	86.22(9)	Se6	Mg4	Se2	79.4(4)
Se10 ⁸	Sr2	Se10 ⁷	75.79(12)	Se6	Mg4	Se6 ¹⁴	90.1(4)
Se10 ⁸	Sr2	Se10 ⁹	86.22(9)	Se7	Mg4	Se2	160.8(5)
Se10 ⁷	Sr2	Se10 ⁶	86.22(9)	Se7	Mg4	Se6	87.1(4)
Se10 ⁷	Sr2	Se10 ⁹	133.52(4)	Se7	Mg4	Se6 ¹⁴	87.1(4)
Se10 ⁴	Sr2	Se10	75.79(12)	Se3 ¹⁶	Mg5	Se3 ¹⁰	92.4(5)
Se10 ⁶	Sr2	Se10	86.22(9)	Se3 ¹⁰	Mg5	Se7	82.1(4)
Se5 ⁴	Sr3	Se5 ¹⁰	133.41(3)	Se3 ¹⁶	Mg5	Se7	82.1(4)
Se5	Sr3	Se5 ¹³	133.41(3)	Se3 ¹⁶	Mg5	Se8 ⁷	85.0(3)
Se5	Sr3	Se5 ¹⁰	86.46(8)	Se3 ¹⁰	Mg5	Se8 ⁷	85.0(3)
Se5 ¹¹	Sr3	Se5	86.46(8)	Se8 ⁷	Mg5	Se7	161.3(6)
Se5 ¹⁰	Sr3	Se5 ¹³	75.47(10)	Se10	Mg5	Se3 ¹⁶	178.0(5)
Se5 ¹²	Sr3	Se5 ¹⁰	133.41(4)	Se10	Mg5	Se3 ¹⁰	85.98(9)
Se5 ⁴	Sr3	Se5 ¹³	86.45(8)	Se10 ¹⁴	Mg5	Se3 ¹⁶	85.98(9)
Se5 ¹¹	Sr3	Se5 ¹²	75.47(10)	Se10 ¹⁴	Mg5	Se3 ¹⁰	178.0(5)
Se5 ¹¹	Sr3	Se5 ¹⁰	86.45(8)	Se10	Mg5	Se7	98.8(3)
Se5 ⁴	Sr3	Se5	75.47(10)	Se10 ¹⁴	Mg5	Se7	98.8(3)

Table S8. Selected bond angles [°] for $SrMg_6Ga_6Se_{16}$.

Se511	Sr3	Se5 ⁴	133.42(3)	Se10 ¹⁴	Mg5	Se8 ⁷	93.8(4)
Se5 ¹²	Sr3	Se5 ¹³	86.45(8)	Se10	Mg5	Se8 ⁷	93.8(4)
Se511	Sr3	Se5 ¹³	133.41(3)	Se10	Mg5	Se10 ¹⁴	95.6(5)
Se5 ¹²	Sr3	Se5 ⁴	86.46(8)	Se3 ¹⁰	Mg6	Se3 ¹³	91.5(5)
Se5 ¹²	Sr3	Se5	133.42(3)	Se3 ¹³	Mg6	Se9 ⁷	82.6(3)
Sel ⁴	Mg1	Se1	93.8(4)	Se3 ¹⁰	Mg6	Se9 ⁷	82.6(3)
Sel ⁴	Mg1	Se4 ²	90.2(4)	Se3 ¹³	Mg6	Se11	84.8(4)
Sel	Mg1	Se4 ²	90.2(4)	Se3 ¹⁰	Mg6	Se11	84.8(4)
Sel ⁴	Mg1	Se6 ⁵	88.54(11)	Se10 ⁴	Mg6	Se3 ¹³	86.02(10)
Sel	Mg1	Se6 ⁵	168.0(6)	Se10	Mg6	Se3 ¹³	170.4(6)
Sel ⁴	Mg1	Se6 ²	168.0(6)	Se10	Mg6	Se3 ¹⁰	86.02(10)
Sel	Mg1	Se6 ²	88.54(11)	Se10 ⁴	Mg6	Se3 ¹⁰	170.4(6)
Sel	Mg1	Se9 ²	106.2(4)	Se10 ⁴	Mg6	Se9 ⁷	87.9(4)
Sel ⁴	Mg1	Se9 ²	106.2(4)	Se10	Mg6	Se9 ⁷	87.9(4)
Se6 ⁵	Mg1	Se4 ²	78.1(4)	Se10 ⁴	Mg6	Se10	94.9(5)
Se6 ²	Mg1	Se4 ²	78.1(4)	Se10	Mg6	Sel1	104.2(4)
Se6 ²	Mg1	Se6 ⁵	86.8(4)	Se10 ⁴	Mg6	Sel1	104.2(4)
Se9 ²	Mg1	Se4 ²	155.6(5)	Se11	Mg6	Se9 ⁷	161.9(6)
Se9 ²	Mg1	Se6 ⁵	84.3(3)	Se3	Gal	Se711	97.73(16)
Se9 ²	Mg1	Se6 ²	84.3(3)	Se3	Gal	Se11 ¹¹	99.48(17)
Se1 ¹⁴	Mg2	Se1	95.5(4)	Se5	Gal	Se3	121.61(10)
Se1	Mg2	Se2 ²	95.5(4)	Se5	Gal	Se711	117.27(18)
Se114	Mg2	Se2 ²	95.5(4)	Se5	Gal	Se11 ¹¹	112.96(19)
Se1	Mg2	Se6 ²	88.63(10)	Se711	Gal	Se11 ¹¹	104.95(11)
Se1 ¹⁴	Mg2	Se6 ²	172.9(6)	Se6	Ga2	Se8	98.93(17)
Se1	Mg2	Se6 ¹⁵	172.9(6)	Se6	Ga2	Se9	100.58(16)
Se114	Mg2	Se6 ¹⁵	88.63(10)	Se8	Ga2	Se9	104.89(10)
Se114	Mg2	Se8 ²	102.6(4)	Se10	Ga2	Se6	125.54(10)
Se1	Mg2	Se8 ²	102.6(4)	Se10	Ga2	Se8	114.20(18)
Se2 ²	Mg2	Se6 ²	78.4(4)	Se10	Ga2	Se9	110.20(17)
Se2 ²	Mg2	Se6 ¹⁵	78.4(4)	Se1	Ga3	Se2	113.83(18)
Se2 ²	Mg2	Se8 ²	152.9(5)	Se1	Ga3	Se3	112.89(9)
Se6 ¹⁵	Mg2	Se6 ²	86.7(4)	Se1	Ga3	Se4	110.01(17)
Se8 ²	Mg2	Se6 ¹⁵	81.9(3)	Se2	Ga3	Se4	106.50(10)
Se8 ²	Mg2	Se6 ²	81.9(3)	Se3	Ga3	Se2	105.88(16)
Se4	Mg3	Sel1	160.5(5)	Se3	Ga3	Se4	107.31(17)
Se5 ⁴	Mg3	Se4	104.2(4)				

¹1+Y-X,1-X,+Z; ²1-Y,+X-Y,+Z; ³1+Y-X,1-X,1-Z; ⁴+X,+Y,1-Z; ⁵1-Y,+X-Y,1-Z; ⁶1-Y,1+X-Y,+Z; ⁷+Y-X,1-X,+Z; ⁸+Y-X,1-X,1-Z; ⁹1-Y,1+X-Y,1-Z; ¹⁰-Y,+X-Y,+Z; ¹¹+Y-X,-X,+Z; ¹²+Y-X,-X,1-Z; ¹³-Y,+X-Y,1-Z; ¹⁴+X,+Y,-Z; ¹⁵1-Y,+X-Y,-Z; ¹⁶-Y,+X-Y,-Z

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sr1	28.3(17)	28.3(17)	25(3)	0	0	14.1(8)
Sr2	26.0(18)	26.0(18)	27(3)	0	0	13.0(9)
Sr3	26.9(17)	26.9(17)	27(3)	0	0	13.5(8)
Mg1	24(6)	21(5)	30(5)	0	0	11(5)
Mg2	23(5)	28(6)	19(4)	0	0	13(5)
Mg3	25(5)	23(6)	22(5)	0	0	10(5)
Mg4	28(6)	35(6)	13(4)	0	0	19(5)
Mg5	33(7)	38(7)	16(5)	0	0	25(6)
Mg6	26(6)	19(5)	22(5)	0	0	14(5)
Gal	20.1(9)	19.7(9)	19.3(9)	1.3(12)	0.0(11)	9.4(7)
Ga2	19.0(9)	19.0(8)	18.5(8)	-1.4(11)	2.1(12)	9.4(6)
Ga3	20.6(8)	18.8(9)	17.1(6)	-2.0(12)	-1.2(11)	9.9(8)
Se1	20.2(8)	21.1(9)	19.1(9)	2.0(11)	-0.3(12)	8.6(6)
Se2	20.0(18)	20.8(19)	16.5(14)	0	0	10.7(14)
Se3	17.9(17)	27(2)	20.0(16)	0	0	13.1(15)
Se4	16.9(7)	19.6(7)	19.6(7)	-0.3(12)	-0.6(11)	9.2(6)
Se5	20.0(18)	16.6(17)	18.9(19)	0	0	8.4(15)
Se6	23.9(8)	19.6(8)	20.5(8)	1.2(12)	1.5(15)	11.8(7)
Se7	19.1(19)	17.9(17)	18(2)	0	0	6.2(16)
Se8	18.2(8)	17.7(8)	19.0(7)	0.3(11)	-0.8(10)	8.6(6)
Se9	24.2(9)	20.4(8)	19.8(8)	-0.1(12)	1.5(16)	12.4(7)
Se10	21.5(17)	20(2)	14.6(14)	0	0	12.0(14)
Sel1	15.3(15)	26(2)	18.1(15)	0	0	11.1(14)

Table S9. Anisotropic displacement parameters (Å² × 10³) for SrMg₆Ga₆Se₁₆.

Atom	Wyckoff	x	<i>y</i>	Z	U(eq)	BVS ^{a)}		
Ba1	1 <i>c</i>	3333.33	6666.67	10000	23.5(6)	2.14		
Ba2	1 <i>e</i>	6666.67	3333.33	0	22.7(6)	2.14		
Ba3	1 <i>a</i>	0	0	0	20.6(6)	2.20		
Ba4	1 <i>b</i>	0	0	5000	28(5)	2.24		
Mg1	3 <i>k</i>	3750(6)	4626(5)	5000	19.7(17)	2.13		
Mg2	3 <i>k</i>	7117(6)	5823(6)	5000	23.1(18)	2.04		
Mg3	3 <i>j</i>	3852(6)	4656(6)	0	25(2)	2.06		
Mg4	3 <i>j</i>	7199(6)	5890(6)	0	24.5(17)	1.97		
Mg5	3 <i>k</i>	597(6)	2547(5)	0	23.5(18)	1.89		
Mg6	3 <i>j</i>	510(5)	2467(6)	5000	23.4(19)	1.99		
Gal	61	5529.9(12)	6893.3(10)	7477(3)	17.7(4)	2.99		
Ga2	61	4785.9(11)	3634.3(12)	2539(3)	18.1(5)	2.95		
Ga3	61	2268.6(11)	1904.1(11)	2522(3)	16.8(3)	3.03		
Se1	3 <i>j</i>	5806.9(16)	7838(2)	10000	18.4(5)	1.79		
Se2	61	4095.3(12)	5732.8(12)	7489(2)	18.5(3)	2.17		
Se3	3 <i>k</i>	5895.6(16)	7863.5(18)	5000	16.4(5)	1.91		
Se4	61	6781.6(10)	6717.3(10)	7517(4)	16.3(3)	1.91		
Se5	3 <i>j</i>	5411(2)	4567(2)	0	18.6(5)	1.78		
Se6	61	4970.5(10)	2415.9(11)	2514(2)	19.7(3)	2.10		
Se7	3 <i>k</i>	5364(2)	4615(2)	5000	18.3(5)	1.89		
Se8	61	3331.3(9)	3432.2(9)	2489(4)	17.3(3)	2.19		
Se9	61	849.1(12)	1693.0(12)	2507.2(19)	20.0(3)	2.10		
Se10	3 <i>j</i>	2495.3(17)	1235(2)	0	18.7(5)	1.90		
Sel1	3 <i>k</i>	2580.5(16)	1277(2)	5000	18.0(5)	1.97		
GII ^{b)}				0.128	0.128			

Table S10. Atomic coordinates (\times 10⁴), equivalent isotropic displacement parameters

 $(\text{\AA}^2 \times 10^3)$ and bond valence calculations for BaMg₆Ga₆Se₁₆.

^{a)}The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37). ^{b)}The global instability index (GII) calculated using

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$

where N is the number of atoms in the formula unit. The GII is calculated as 0.128 which is lower than 0.2 indicating the rationality of the structure from this side.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Bal	Se2 ⁶	3.2606(16)	Mg3	Se1 ²³	2.907(10)
Bal	Se2	3.2605(16)	Mg3	Se2 ²⁰	2.614(6)
Bal	Se2 ⁵	3.2606(16)	Mg3	Se2 ¹⁴	2.614(6)
Bal	Se2 ⁷	3.2606(16)	Mg3	Se5	2.847(9)
Bal	Se2 ⁴	3.2606(16)	Mg3	Se8	2.705(7)
Bal	Se2 ⁸	3.2606(16)	Mg3	Se8 ¹³	2.705(7)
Ba2	Se6 ¹⁰	3.2612(16)	Mg4	Se4 ²⁰	2.742(6)
Ba2	Se6 ⁹	3.2611(16)	Mg4	Se4 ¹⁴	2.742(6)
Ba2	Se6 ¹¹	3.2612(16)	Mg4	Se5	2.849(10)
Ba2	Se6 ¹²	3.2611(16)	Mg4	Se6 ¹¹	2.651(6)
Ba2	Se6	3.2612(16)	Mg4	Se6 ¹⁰	2.651(6)
Ba2	Se6 ¹³	3.2612(16)	Mg4	Se10 ¹⁰	2.800(10)
Ba3	Se9 ¹⁶	3.2518(17)	Mg5	Se1 ²³	2.749(9)
Ba3	Se9	3.2518(17)	Mg5	Se4 ²³	2.816(6)
Ba3	Se9 ¹⁷	3.2518(17)	Mg5	Se4 ²⁴	2.816(6)
Ba3	Se9 ¹⁸	3.2517(17)	Mg5	Se9 ¹³	2.643(6)
Ba3	Se9 ¹³	3.2517(17)	Mg5	Se9	2.643(6)
Ba3	Se9 ¹⁵	3.2517(17)	Mg5	Se10 ¹⁵	2.890(9)
Ba4	Se9	3.2451(17)	Mg6	Se3 ⁴	2.758(9)
Ba4	Se9 ¹⁹	3.2450(17)	Mg6	Se4 ⁴	2.831(6)
Ba4	Se9 ²⁰	3.2450(17)	Mg6	Se4 ²⁴	2.831(6)
Ba4	Se9 ¹⁷	3.2451(17)	Mg6	Se9 ²⁰	2.616(6)
Ba4	Se9 ²¹	3.2451(17)	Mg6	Se9	2.616(6)
Ba4	Se9 ¹⁵	3.2450(17)	Mg6	Sel1 ¹⁵	2.786(9)
Mg1	Se2 ²⁰	2.605(6)	Gal	Se1	2.467(3)
Mg1	Se2	2.605(6)	Gal	Se2	2.339(2)
Mg1	Se3 ⁴	2.814(9)	Gal	Se3	2.447(3)
Mg1	Se7	2.872(9)	Gal	Se4	2.391(3)
Mg1	Se8 ²⁰	2.700(6)	Ga2	Se5	2.458(3)
Mg1	Se8	2.700(6)	Ga2	Se6	2.342(2)
Mg2	Se4 ²⁰	2.767(7)	Ga2	Se7	2.443(3)
Mg2	Se4	2.767(7)	Ga2	Se8	2.421(2)
Mg2	Se6 ¹⁰	2.625(6)	Ga3	Se8	2.406(2)
Mg2	Se6 ²²	2.625(6)	Ga3	Se9	2.352(2)
Mg2	Se7	2.755(10)	Ga3	Se10	2.430(3)
Mg2	Se11 ¹⁰	2.816(10)	Ga3	Sel1	2.426(3)
INIgz	3611	2.810(10)	Uas	3611	2.42

Table S11. Selected bond lengths [Å] for $BaMg_6Ga_6Se_{16}$.

¹+Y-X,1-X,1+Z; ²1-Y,1+X-Y,1+Z; ³+X,+Y,1+Z; ⁴+Y-X,1-X,+Z; ⁵1-Y,1+X-Y,+Z; ⁶+Y-X,1-X,2-Z; ⁷+X,+Y,2-Z; ⁸1-Y,1+X-Y,2-Z; ⁹1-Y,+X-Y,+Z; ¹⁰1+Y-X,1-X,+Z; ¹¹1+Y-X,1-X,-Z; ¹²1-Y,+X-Y,-Z; ¹³+X,+Y,-Z; ¹⁴+X,+Y,-1+Z; ¹⁵-Y,+X-Y,+Z; ¹⁶+Y-X,-X,-Z; ¹⁷+Y-X,-X,+Z; ¹⁸-Y,+X-Y,-Z; ¹⁹-Y,+X-Y,1-Z; ²⁰+X,+Y,1-Z; ²¹+Y-X,-X,1-Z; ²²1+Y-X,1-X,1-Z; ²³+Y-X,1-X,-1+Z; ²⁴+Y-X,1-X,1-Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Se2 ⁵	Ba1	Se2 ⁴	87.72(4)	Se6 ²²	Mg2	Se4	87.32(6)
Se2 ⁵	Ba1	Se2 ⁶	73.72(6)	Se6 ¹⁰	Mg2	Se6 ²²	95.1(3)
Se2 ⁵	Ba1	Se2 ⁷	132.838(19)	Se6 ¹⁰	Mg2	Se7	92.8(2)
Se2 ⁶	Ba1	Se2 ⁸	87.72(4)	Se6 ²²	Mg2	Se7	92.8(2)
Se2 ⁶	Bal	Se2 ⁷	87.72(4)	Se6 ²²	Mg2	Se11 ¹⁰	99.4(3)
Se2	Bal	Se2 ⁸	73.72(6)	Se6 ¹⁰	Mg2	Se11 ¹⁰	99.4(3)
Se2 ⁵	Bal	Se2	87.72(4)	Se7	Mg2	Se4	87.9(2)
Se2 ⁶	Bal	Se2 ⁴	132.838(19)	Se7	Mg2	Se4 ²⁰	87.9(2)
Se2 ⁶	Bal	Se2	132.837(19)	Se7	Mg2	Se11 ¹⁰	161.8(4)
Se2 ⁷	Bal	Se2 ⁸	87.72(4)	Se2 ¹⁴	Mg3	Se1 ²³	87.8(2)
Se2 ⁷	Bal	Se2	132.838(19)	Se2 ²⁰	Mg3	Se1 ²³	87.8(2)
Se2 ⁷	Bal	Se2 ⁴	73.72(6)	Se2 ²⁰	Mg3	Se2 ¹⁴	96.9(3)
Se2 ⁴	Bal	Se2	87.72(4)	Se2 ¹⁴	Mg3	Se5	103.3(2)
Se2 ⁵	Bal	Se2 ⁸	132.838(19)	Se2 ²⁰	Mg3	Se5	103.3(2)
Se2 ⁴	Bal	Se2 ⁸	132.838(19)	Se2 ²⁰	Mg3	Se8 ¹³	171.0(4)
Se6 ⁹	Ba2	Se6 ¹³	132.870(18)	Se2 ²⁰	Mg3	Se8	85.14(7)
Se6 ¹⁰	Ba2	Se6 ¹¹	73.82(6)	Se2 ¹⁴	Mg3	Se8 ¹³	85.14(7)
Se6 ⁹	Ba2	Se6	87.65(4)	Se2 ¹⁴	Mg3	Se8	171.0(4)
Se6 ⁹	Ba2	Se6 ¹⁰	87.65(4)	Se5	Mg3	Se1 ²³	163.1(4)
Se6 ⁹	Ba2	Se6 ¹²	73.82(6)	Se8 ¹³	Mg3	Se1 ²³	83.6(2)
Se6 ⁹	Ba2	Se6 ¹¹	132.870(18)	Se8	Mg3	Se1 ²³	83.6(2)
Se6	Ba2	Se6 ¹¹	132.868(18)	Se8 ¹³	Mg3	Se5	84.6(2)
Se6 ¹²	Ba2	Se6 ¹³	87.65(4)	Se8	Mg3	Se5	84.6(2)
Se6 ¹³	Ba2	Se6 ¹¹	87.65(4)	Se8	Mg3	Se8 ¹³	91.6(3)
Se6	Ba2	Se6 ¹⁰	87.65(4)	Se4 ²⁰	Mg4	Se414	89.7(3)
Se6 ¹²	Ba2	Se6 ¹¹	87.65(4)	Se4 ²⁰	Mg4	Se5	87.4(2)
Se6	Ba2	Se6 ¹³	73.82(6)	Se414	Mg4	Se5	87.4(2)
Se613	Ba2	Se6 ¹⁰	132.867(18)	Se4 ²⁰	Mg4	Se10 ¹⁰	80.8(2)
Se612	Ba2	Se6	132.869(18)	Se414	Mg4	Se10 ¹⁰	80.8(2)
Se612	Ba2	Se6 ¹⁰	132.870(18)	Se6 ¹⁰	Mg4	Se414	174.4(4)
Se915	Ba3	Se9 ¹⁷	132.871(19)	Se6 ¹¹	Mg4	Se4 ²⁰	174.4(4)
Se9	Ba3	Se9 ¹⁷	132.873(19)	Se6 ¹¹	Mg4	Se414	87.32(7)
Se913	Ba3	Se9 ¹⁶	132.871(19)	Se6 ¹⁰	Mg4	Se4 ²⁰	87.32(7)
Se913	Ba3	Se9 ¹⁷	87.64(4)	Se6 ¹¹	Mg4	Se5	87.8(2)
Se918	Ba3	Se9 ¹⁶	132.871(19)	Se6 ¹⁰	Mg4	Se5	87.8(2)
Se917	Ba3	Se9 ¹⁶	73.83(6)	Se6 ¹¹	Mg4	Se6 ¹⁰	95.3(3)
Se915	Ba3	Se9	87.64(4)	Se6 ¹¹	Mg4	Se10 ¹⁰	103.4(2)
Se9 ¹⁸	Ba3	Se9	132.874(19)	Se6 ¹⁰	Mg4	Se10 ¹⁰	103.4(2)
Se9 ¹⁸	Ba3	Se9 ¹⁷	87.64(4)	Se10 ¹⁰	Mg4	Se5	163.2(3)
Se9	Ba3	Se9 ¹⁶	87.64(4)	Se1 ²³	Mg5	Se4 ²³	84.9(2)

Table S12. Selected bond angles [°] for $BaMg_6Ga_6Se_{16}$.

Se9 ¹⁸	Ba3	Se915	73.83(6)	Se1 ²³	Mg5	Se4 ²⁴	84.9(2)
Se913	Ba3	Se9	73.83(6)	Se1 ²³	Mg5	Se10 ¹⁵	156.3(3)
Se9 ¹⁸	Ba3	Se913	87.64(4)	Se4 ²⁴	Mg5	Se4 ²³	86.8(3)
Se913	Ba3	Se9 ¹⁵	132.875(19)	Se4 ²³	Mg5	Se10 ¹⁵	78.0(2)
Se9 ¹⁵	Ba3	Se9 ¹⁶	87.64(4)	Se4 ²⁴	Mg5	Se10 ¹⁵	78.0(2)
Se9 ¹⁶	Ba3	Se10 ¹⁶	66.61(5)	Se9	Mg5	Se1 ²³	106.1(2)
Se9 ¹⁷	Ba3	Se10 ¹⁶	66.61(5)	Se9 ¹³	Mg5	Se1 ²³	106.1(2)
Se9 ¹³	Ba3	Se10 ¹⁶	143.08(3)	Se9	Mg5	Se4 ²³	167.2(4)
Se9	Ba3	Se10 ¹⁶	143.09(3)	Se9	Mg5	Se4 ²⁴	87.72(8)
Se9 ¹⁵	Ba3	Se10 ¹⁶	66.26(5)	Se9 ¹³	Mg5	Se4 ²³	87.72(8)
Se9 ¹⁸	Ba3	Se10 ¹⁶	66.26(5)	Se9 ¹³	Mg5	Se4 ²⁴	167.2(4)
Se10 ¹⁶	Ba3	Se10 ¹⁵	120	Se9	Mg5	Se9 ¹³	95.3(3)
Se9 ¹⁵	Ba4	Se9 ¹⁶	87.87(4)	Se9	Mg5	Se10 ¹⁵	89.6(2)
Se9 ²⁰	Ba4	Se9	73.51(6)	Se9 ¹³	Mg5	Se10 ¹⁵	89.6(2)
Se9 ¹⁵	Ba4	Se9 ²¹	73.51(6)	Se3 ⁵	Mg6	Se4 ⁵	82.7(2)
Se9 ¹⁵	Ba4	Se9	87.87(4)	Se3 ⁵	Mg6	Se4 ²⁴	82.7(2)
Se9 ¹⁵	Ba4	Se9 ²⁰	132.772(19)	Se3 ⁵	Mg6	Se11 ¹⁵	154.2(3)
Se9	Ba4	Se919	132.769(19)	Se4 ⁵	Mg6	Se4 ²⁴	87.7(3)
Se9	Ba4	Se9 ¹⁶	87.87(4)	Se9 ²⁰	Mg6	Se3 ⁵	102.2(2)
Se9 ²⁰	Ba4	Se9 ¹⁶	132.768(19)	Se9	Mg6	Se3 ⁵	102.2(2)
Se9 ¹⁹	Ba4	Se9 ¹⁶	73.51(6)	Se9 ²⁰	Mg6	Se4 ⁵	87.93(7)
Se9 ²¹	Ba4	Se9	132.770(19)	Se9 ²⁰	Mg6	Se4 ²⁴	172.9(3)
Se9 ²¹	Ba4	Se9 ¹⁹	87.87(4)	Se9	Mg6	Se4 ⁵	172.9(3)
Se9 ²¹	Ba4	Se9 ¹⁶	132.768(19)	Se9	Mg6	Se4 ²⁴	87.93(7)
Se9 ²⁰	Ba4	Se9 ¹⁹	87.87(4)	Se9	Mg6	Se9 ²⁰	95.9(3)
Se9 ²⁰	Ba4	Se9 ²¹	87.87(4)	Se9	Mg6	Se11 ¹⁵	94.9(2)
Se9 ¹⁵	Ba4	Se9 ¹⁹	132.768(19)	Se9 ²⁰	Mg6	Se11 ¹⁵	94.9(2)
Se2 ²⁰	Mg1	Se2	96.2(3)	Se11 ¹⁵	Mg6	Se4 ²⁴	78.7(2)
Se2	Mg1	Se3 ⁵	92.9(2)	Se11 ¹⁵	Mg6	Se4 ⁵	78.7(2)
Se2 ²⁰	Mg1	Se3 ⁵	92.9(2)	Se2	Gal	Se1	110.72(11)
Se2 ²⁰	Mg1	Se7	98.4(2)	Se2	Gal	Se3	114.27(11)
Se2	Mg1	Se7	98.4(2)	Se2	Gal	Se4	123.87(9)
Se2	Mg1	Se8 ²⁰	85.43(7)	Se3	Gal	Se1	104.96(9)
Se2 ²⁰	Mg1	Se8 ²⁰	177.6(3)	Se4	Gal	Se1	101.27(11)
Se2	Mg1	Se8	177.6(3)	Se4	Gal	Se3	99.51(11)
Se2 ²⁰	Mg1	Se8	85.43(7)	Se6	Ga2	Se5	112.95(11)
Se3 ⁵	Mg1	Se7	163.1(3)	Se6	Ga2	Se7	117.46(11)
Se8 ²⁰	Mg1	Se3 ⁵	85.4(2)	Se6	Ga2	Se8	119.57(10)
Se8	Mg1	Se3 ⁵	85.4(2)	Se7	Ga2	Se5	105.36(11)
Se8 ²⁰	Mg1	Se7	83.0(2)	Se8	Ga2	Se5	100.08(12)
Se8	Mg1	Se7	83.0(2)	Se8	Ga2	Se7	98.92(12)
Se8	Mg1	Se8 ²⁰	92.9(3)	Se8	Ga3	Se10	108.28(11)
Se4 ²⁰	Mg2	Se4	90.3(3)	Se8	Ga3	Se11	107.17(11)

Se4	Mg2	Se11 ¹⁰	79.3(2)	Se9	Ga3	Se8	110.63(9)
Se4 ²⁰	Mg2	Se11 ¹⁰	79.3(2)	Se9	Ga3	Se10	110.09(11)
Se6 ²²	Mg2	Se4 ²⁰	177.5(3)	Se9	Ga3	Se11	113.70(11)
Se6 ¹⁰	Mg2	Se4	177.5(3)	Se11	Ga3	Se10	106.75(9)
Se6 ¹⁰	Mg2	Se4 ²⁰	87.32(6)				

¹+Y-X,1-X,1+Z; ²1-Y,1+X-Y,1+Z; ³+X,+Y,1+Z; ⁴+Y-X,1-X,+Z; ⁵1-Y,1+X-Y,+Z; ⁶+Y-X,1-X,2-Z; ⁷+X,+Y,2-Z; ⁸1-Y,1+X-Y,2-Z; ⁹1-Y,+X-Y,+Z; ¹⁰1+Y-X,1-X,+Z; ¹¹1+Y-X,1-X,-Z; ¹²1-Y,+X-Y,-Z; ¹³+X,+Y,-Z; ¹⁴+X,+Y,-1+Z; ¹⁵-Y,+X-Y,+Z; ¹⁶+Y-X,-X,-Z; ¹⁷+Y-X,-X,+Z; ¹⁸-Y,+X-Y,-Z; ¹⁹-Y,+X-Y,1-Z; ²⁰+X,+Y,1-Z; ²¹+Y-X,-X,1-Z; ²²1+Y-X,1-X,1-Z; ²³+Y-X,1-X,-1+Z; ²⁴+Y-X,1-X,1-Z;

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bal	22.8(9)	22.8(9)	24.9(14)	0	0	11.4(4)
Ba2	23.2(8)	23.2(8)	21.7(13)	0	0	11.6(4)
Ba3	19.0(9)	19.0(9)	23.8(14)	0	0	9.5(4)
Mg1	31(5)	15(4)	14(3)	0	0	12(4)
Mg2	24(4)	22(4)	19(3)	0	0	9(3)
Mg3	32(5)	21(5)	12(3)	0	0	7(4)
Mg4	28(5)	15(4)	31(4)	0	0	11(4)
Mg5	30(4)	20(4)	23(4)	0	0	14(3)
Mg6	25(5)	26(4)	24(4)	0	0	17(4)
Gal	17.6(8)	18.5(9)	16.7(6)	-0.6(8)	1.4(8)	8.9(7)
Ga2	19.0(9)	18.2(8)	17.7(7)	-0.7(8)	-0.5(8)	9.7(6)
Ga3	16.4(7)	18.6(8)	16.2(6)	1.0(7)	-0.7(7)	9.4(7)
Se1	20.1(13)	21.5(12)	16.5(10)	0	0	12.5(10)
Se2	17.8(7)	16.4(7)	18.9(7)	-3.0(8)	-0.2(8)	6.7(6)
Se3	19.2(12)	14.6(11)	16.7(9)	0	0	9.6(9)
Se4	15.8(7)	15.8(7)	17.8(7)	0.0(7)	-1.1(7)	8.5(6)
Se5	19.3(11)	15.4(11)	16.3(10)	0	0	5.1(11)
Se6	23.2(8)	17.4(7)	18.9(8)	-0.3(8)	2.1(7)	10.5(7)
Se7	17.1(11)	19.6(13)	16.1(10)	0	0	7.8(10)
Se8	17.0(6)	16.1(7)	17.9(5)	-0.2(7)	0.7(6)	7.5(5)
Se9	18.0(7)	24.0(8)	20.7(6)	-1.2(8)	-2.5(8)	12.4(7)
Se10	23.4(13)	21.2(13)	16.6(10)	0	0	15.0(11)
Sell	21.7(13)	16.9(12)	17.1(10)	0	0	11.0(10)

Table S13. Anisotropic displacement parameters (Å² × 10³) for BaMg₆Ga₆Se₁₆.

Compounds	Band gaps (eV)			Calculated NLO	Δn (@ 1064			
	Experimental	GGA	HSE06	coefficients (pm/V)	nm)			
CaMg ₆ Ga ₆ Se ₁₆	2.71	1.851	2.568	$d_{11} = -11.05, d_{22} = 3.92$	0.052			
SrMg ₆ Ga ₆ Se ₁₆	2.71	1.866	2.564	$d_{11} = -10.67, d_{22} = 3.93$	0.048			
BaMg ₆ Ga ₆ Se ₁₆	2.69	1.853	2.556	$d_{11} = -10.58, d_{22} = 3.71$	0.044			

Table S14. The optical propertied of $A^{II}Mg_6Ga_6Se_{16}$ ($A^{II} = Ca, Sr, Ba$).

Figure S1. The EDS spectra of (a) $CaMg_6Ga_6Se_{16}$; (b) $SrMg_6Ga_6Se_{16}$; (c) $BaMg_6Ga_6Se_{16}$.

Figure S2. The Raman spectra of $A^{II}Mg_6Ga_6Se_{16}$ ($A^{II} = Ca, Sr, Ba$).

The peaks below 200 cm⁻¹ can be attributed to the vibration of Mg–Se bonding in $[MgSe_6]$.¹³ And the peaks at 212, 232, 264, and 296 cm⁻¹ in CaMg₆Ga₆Se₁₆, 211, 227, 261, and 306 cm⁻¹ in SrMg₆Ga₆Se₁₆, 210, 227, 262, and 308 cm⁻¹ in BaMg₆Ga₆Se₁₆ can be attributed to the vibration of Mg–Se bonding in [GaSe₄].¹³

Figure S3. The XRD patterns of (a) $SrMg_6Ga_6Se_{16}$; (b) $BaMg_6Ga_6Se_{16}$.

Figure S4. The band structures, total and partial density of states of $SrMg_6Ga_6Se_{16}(a,b)$; BaMg₆Ga₆Se₁₆(c,d).

Figure S5. The bonding electron density differences $(\Delta \rho^b)$ of $[A^{II}Se_6]$ triangular prisms, [MgSe₆] octahedra and [GaSe₄] tetrahedra in $A^{II}Mg_6Ga_6Se_{16}$ calculated by REDA method.

Figure S6. SHG density maps of occupied and unoccupied orbitals in the VE process. (a,b) SrMg₆Ga₆Se₁₆; (c,d) BaMg₆Ga₆Se₁₆.

Reference

- 1 J. Z. Zhou, L. A. Wang, Y. Chu, H. S. Wang, S. L. Pan and J. J. Li, *Adv. Opt. Mater.*, 2023, **11**, 2300736.
- 2 L. A. Wang, C. C. Tu, J. Z. Zhou, Y. Chu, Z. H. Yang, S. L. Pan and J. J. Li, *Adv. Opt. Mater.*, 2024, **12**, 2301634.
- 3 M. Mutailipu, M. Zhang, B. B. Zhang, L. Y. Wang, Z. H. Yang, X. Zhou and S. L. Pan, *Angew. Chem. Int. Ed.*, 2018, 57, 6095–6099.
- 4 H. S. Wang, Y. Chu, X. T. Pan, Z. H. Yang, S. L. Pan and J. J. Li, *Mater. Today Phys.*, 2023, **38**, 101243.
- 5 X. F. Wang, Y. Wang, B. B. Zhang, F. F. Zhang, Z. H. Yang and S. L. Pan, *Angew. Chem. Int. Ed.*, 2017, **56**, 14119–14123.
- 6 J. J. Li, Z. Lian, Q. Li, Z. C. Wang, L. F. Liu, F. L. Deepak, Y. P. Liu, B. Li, J. Y. Xu and Z. X. Chen, *Nano Res.*, 2022, **15**, 5933–5939.
- Y. Wang, B. B. Zhang, Z. H. Yang and S. L. Pan, *Angew. Chem. Int. Ed.*, 2018, 57, 2150–2154.
- 8 B. B. Zhang, G. Q. Shi, Z. H. Yang, F. F. Zhang and S. L. Pan, *Angew. Chem. Int. Ed.*, 2017, **56**, 3916–3919.
- 9 Y. Chu, P. Wang, H. Zeng, S. C. Cheng, X. Su, Z. H. Yang, J. J. Li and S. L. Pan, *Chem. Mater.*, 2021, 33, 6514–6521.
- 10 L. A. Wang, C. C. Tu, H. B. Gao, J. Z. Zhou, H. S. Wang, Z. H. Yang, S. L. Pan and J. J. Li, *Sci. China Chem.*, 2023, 66, 1086–1093.
- 11 L. A. Wang, D. D. Chu, D. Q. Yin, C. W. Xie, Z. H. Yang, J. J. Li and S. L. Pan, *Mater. Today Phys.*, 2023, 38, 101245.
- B. H. Lei, Z. H. Yang, H. W. Yu, C. Cao, Z. Li, C. Hu, K. R. Poeppelmeier and S. L. Pan, J. Am. Chem. Soc., 2018, 140, 10726–10733.
- 13 P. Wang, Y. Chu, A. Tudi, C. W. Xie, Z. H. Yang, S. L. Pan and J. J. Li, *Adv. Sci.*, 2022, **9**, 2106120.