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Supplementary figure 1. Chemical structures of the ligands tested for Aqp1 modulation. 

(a) indole-3-acetic acid, an auxin family hormone (b) dTAG-13, TAG-13, a heterobifunctional 

degrader that consists of an FKBP12F36V targeting synthetic ligand (known as AP1687) linked to 

a thalidomide moiety, which recruits the cereblon E3 ubiquitin ligase (c) shield-1, a morpholine-

containing derivative of the FKBP12F36V-directed synthetic ligand, (d) 4-hydroxytamoxifen, and (e) 

trimethoprim. Indole-3-acetic acid and dTAG-13 are capable of inducing the degradation of protein 

targets that have been fused to degradation tags derived from IAA17 and FKBP12F36V, 

respectively. On the other hand, 4-hydroxytamoxifen and trimethoprim are capable of stabilizing 

protein targets that have been fused to destabilizing domains (DDs) derived from the estrogen 

receptor ligand-binding domain and E. coli dihydrofolate reductase (DHFR). Additionally, shield-

1 can either induce the degradation of proteins that are fused to a modified FKBP12F36V domain 

comprising a 19-amino acid cryptic degron or stabilize proteins that are fused to a DD based on 

FKBP12F36V/L106P double mutant. Chemical structures were generated using PubChem Sketcher 

v2.4.
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Supplementary figure 2. Effect of ligand-dependent DDs on Aqp1 diffusivity. Representative 

plots depicting the decrease in diffusion-weighted signal intensity as a function of the effective b-

value in CHO cells engineered to express DDs based on: (a) truncated 68-amino acid form of the 

plant protein, IAA17 (b) estrogen receptor ligand-binding domain (c) E. coli dihydrofolate 

reductase (d) mammalian FKBP12F36V/L106P. Diffusion-weighted measurements were acquired in 

both the absence and presence of treatment with the respective degradation-inducing ligand: 

indole-3-acetic acid (IAA) or stabilizing ligands: 4-hydroxytamoxifen (4HT), trimethoprim (TMP), 

and shield-1. 

Supplementary figure 3: Specificity of shield-1 modulation. Fold-change in diffusivities (D/Do) 

of (a) red blood cells and native CHO cells (b) cells engineered to express DD-free Aqp1 and 

treated with shield-1 (1 µM, 24-hours). Orange dashed line indicates no change relative to vehicle-

treated controls. Error-bars represent the standard deviation (n = 4). Unpaired, 2-sided t-test 

revealed no significant differences in diffusivities between untreated cells and cells treated with 1 

µM shield-1 for 24-hours (P > 0.05).
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Supplementary figure 4. Biochemical modulation of Aqp1-FKBP12-DD in various cell lines. 

Representative plot showing the decrease in diffusion-weighted signal intensity as a function of 

the effective b-value in (a) Jurkat (b) U87 and (c) RAW cells engineered to express Aqp1-

FKBP12-DD. Diffusion-weighted measurements were acquired in both the absence and presence 

of 24-hour treatment with 1 µM shield-1. 

Supplementary figure 5. Expression of the Aqp1-FKBP12-DD transgene. Aqp1-FKBP12-DD 

expression was assayed by qRT-PCR using a forward primer that binds to the FLAG epitope 

sequence incorporated at the N-terminus of Aqp1. Actin was used as the housekeeping gene and 

relative Aqp1 expression was quantified using the  method. Error bars represent the 2
‒ ΔΔ𝐶𝑞

standard deviation. One-way ANOVA followed by Tukey’s HSD test revealed no significant 

differences in gene expression among the four cell types (n = 3, P > 0.05).
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Supplementary figure 6. Expression of Aqp1 harboring FKBP12-DD. The expression of the 

FKBP12-DD-Aqp1 and Aqp1-FKBP12-DD transgenes was assayed by qRT-PCR using primers 

that bind to the FLAG epitope incorporated respectively at the C or N-terminus of Aqp1. Actin was 

used as the housekeeping gene and relative Aqp1 expression was quantified using the  2
‒ ΔΔ𝐶𝑞

method. Error bars represent the standard deviation. Unpaired, 2-sided t-test revealed no 

significant (n.s.) differences in transgene expression between cells expressing Aqp1 harboring 

either N or C-terminal fusions of FKBP12-DD (P > 0.05).

Supplementary figure 7. Western blotting to detect Aqp1-FKBP12-DD expression. Lysates 

were prepared from cells stably transduced to express Aqp1 harboring FKBP12-DD at either the 

C or N-terminus. Aqp1 expression was probed by immunostaining using an anti-FLAG antibody 

in (a) CHO (b) Jurkat and (c) U87 cells. Lanes 1 & 2 contain membrane fractions from cells 

expressing Aqp1 harboring FKBP12-DD at the C-terminus. Lanes 3 & 4 contain membrane 

extracts from cells expressing Aqp1 harboring FKBP12-DD at the N-terminus. The Na+/K+-

ATPase pump (100 kDa) served as a loading control. The detection of FKBP12-DD-Aqp1 in 
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membrane extracts prepared from CHO cells proved to be challenging, as immunoblotting 

consistently led to the appearance of smeared bands.  

Supplementary figure 8. Differential imaging through shield-1 modulation. (a) Images of red 

blood cells and CHO cells expressing DD-free Aqp1 and Aqp1-FKBP12-DD that have undergone 

background subtraction. The difference image was produced by subtracting voxel-wise diffusion-

weighted datasets acquired with and without shield-1 incubation, denoising the resulting image 

using a median filter, and displaying it as a pseudo colored "hotspot." (b) Diffusion maps of CHO 

cells expressing DD-free Aqp1 and Aqp1-FKBP12-DD that have undergone background 

subtraction. The difference map was produced by subtracting voxel-wise diffusivity values 

measured with and without shield-1 incubation, denoising the resulting image using a median 

filter, and displaying it in pseudo color.

Supplementary figure 9. Biochemically-gated imaging of transcriptional activity. (a) Truth 

table for shield-1 gated imaging of promoter activity using Aqp1-FKBP12-DD. TX represents the 

transcriptional activity induced by doxycycline (dox). (b) Difference map showing shield-1 gated 

imaging of promoter activity. The difference map was obtained through voxel-wise subtraction of 
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diffusivity values acquired in the presence of shield-1, doxycycline, or both from the diffusivity 

values measured in their absence. The resulting dataset was subsequently denoised using a 

median filter and presented as a pseudo-colored "hotspot."

Supplementary figure 10: Aqp1-DDs are mutually orthogonal. Fold-change in the diffusion 

coefficients of (a) Aqp1-FKBP12-DD (b) Aqp1-DHFR-DD, and (c) Aqp1-ER-DD following 

treatment with respective non-cognate ligands, including trimethoprim (TMP) or 4-

hydroxytamoxifen (4HT), and shield-1. Orange dashed lines indicate no change relative to 

vehicle-treated controls, viz. D/Do = 1. Unpaired, 2-sided t-test revealed no significant differences 

in diffusivities between untreated and ligand-treated cells (P > 0.05).

Supplementary figure 11. Biochemical modulation of Aqp1-DDs in mixed-cells. 

Representative plot showing the decrease in diffusion-weighted signal intensity as a function of 

the effective b-value in a 1:1 mixture of CHO cell labeled with Aqp1-FKBP12-DD and Aqp1-DHFR-

DD. Diffusion-weighted measurements were acquired in both the absence of any ligand and 

following 24-hour treatment with shield-1 and both shield-1 + trimethoprim. 
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Supplementary figure 12: Biochemical unmixing of Aqp1-DDs for multiplex imaging. (a) 

Ligand-dependent increase in the diffusivity of a mixed population comprising U87 and Jurkat 

cells transduced respectively with Aqp1-FKBP12-DD and Aqp1-ER-DD transgenic reporters. 

Ligand addition permits the modulation of diffusivity in a stepwise manner by stabilizing one or 

both Aqp1-DD constructs. (b) The components of the mixed cell population were resolved through 

difference imaging. Subtraction of diffusion-weighted images of untreated cells from images 

acquired after treatment with shield-1 reveals the U87 population. Subtraction of diffusion-

weighted images of shield-1 treated cells from those obtained after treatment with both shield-1 

+ 4-hydroxytamoxifen (4HT) revealed the Jurkat population. The images were denoised by 

median filtering and pseudo-colored to distinguish the two sub-populations. Error bars represent 

standard deviation (n = 6). P-values were computed using one-way ANOVA followed by Tukey’s 

HSD test. * denotes P < 0.05, *** denotes P < 0.001

Supplementary figure 13. In vivo imaging using background subtraction. Background 

subtracted diffusion maps of transgenic tumors engineered to express Aqp1-FKBP12-DD or DD-

free Aqp1. The difference map was generated by subtracting voxel-wise tumor diffusivity datasets 
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acquired before and after intraperitoneal injection of shield-1 (10 mg/kg). This difference map was 

then overlaid on an anatomical image to provide spatial context.

Supplementary figure 14. Longevity of reporter transgene activity. Shield-1-driven changes 

in the diffusivity of CHO cells transduced to express Aqp1-FKBP12-DD were acquired within 1-2 

weeks of transduction and more than a year after initial transduction. Error bars denote standard 

deviation (n = 4-6). Unpaired, 2-sided t-test revealed no significant differences in shield-1 

triggered diffusivity changes between the two cell batches (P > 0.05).

Supplementary figure 15. Effect of varying diffusion-weighting direction on Aqp1-driven 

diffusivity. Diffusivities of CHO cells engineered to express Aqp1 acquired in the 3 primary axes 

of our vertical-bore MRI: dorsal-ventral (DV), left-right (LR), and anterior-posterior (AP). Axial 

slices of cell pellets are acquired along the AP axis. One-way ANOVA followed by Tukey’s HSD 

test revealed no significant differences in diffusivities between the three cardinal directions (n = 

3, P > 0.05).



10

Table S1. Plasmids engineered and used in this study.

Plasmid Main constructs encoded Notes

pJY22 Flag-Aqp1-IRES-EGFP Constitutive expression of degron-free 

Aqp1 from the EF1α promoter

pJY02 Flag-Aqp1-IAA17-IRES-EGFP Expresses Aqp1 tagged to the auxin-

inducible degron (AID) based on full-length 

IAA17 (228 amino acids)

pJY09 OsTIR1-IRES-mCherry Constitutive expression of OsTIR1, an 

auxin receptor F-box protein that is needed 

to activate AID by recruiting E3 ubiquitin 

ligase

pJY19 Flag-Aqp1-IAA17trunc-IRES-EGFP Expresses Aqp1 tagged to truncated AID 

based on a 68-amino acid segment of 

IAA17

pJY18 AtFB2-IRES-mCherry Constitutive expression of AtFB2, an auxin 

receptor F-box protein needed to activate 

truncated IAA17 by recruiting E3 ubiquitin 

ligase

pJY1 Flag-Aqp1-DHFR-DD-IRES-EGFP Inducible expression of Aqp1-DHFR-DD 

from the minimal CMV promoter

pJY20 Flag-Aqp1-DHFR-IRES-EGFP Constitutive expression of Aqp1-DHFR-

DD from the EF1α promoter

pJY10 Flag-Aqp1-ER-IRES-EGFP Inducible expression of Aqp1-ER-DD from 

the minimal CMV promoter
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pJY21 Flag-Aqp1-ER-IRES-EGFP Constitutive expression of Aqp1-ER-DD, 

from the EF1α promoter

pJY12 Flag-Aqp1-FKBP12-IRES-EGFP Inducible expression of Aqp1-FKBP12-DD 

from the minimal CMV promoter

pJY23 Flag-Aqp1-FKBP12-IRES-EGFP Constitutive expression of Aqp1-FKBP12-

DD from the EF1α promoter

pJY24 Flag-FKBP12-Aqp1 -IRES-EGFP Inducible expression of FKBP12-DD-Aqp1 

(i.e. N-terminal tagged) from the minimal 

CMV promoter

pJY25 Flag-FKBP12-Aqp1 -IRES-EGFP Constitutive expression of FKBP12-DD-

Aqp1 (i.e. N-terminal tagged) from the 

EF1α promoter

pJY00 Flag-Aqp1-IRES-EGFP Inducible expression of degron-free Aqp1 

from the minimal CMV promoter

pJY23_flag7 Aqp1(flag)-FKBP12-IRES-EGFP Constitutive expression of Aqp1 with an 

internal FLAG tag (between Q43 and T44) 

from the EF1α promoter

pPackaging Expresses proteins for lentiviral packaging

pVSV-G Expresses the VSV-G protein for broad 

lentiviral tropism
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Table S2: Oligonucleotide primers for qRT-PCR

Primers/gene Sequence

Aqp1_nFLAG_F TGGACTACAAGGACGACGAC 

Aqp1_nFLAG_R CACCTTCACGTTGTCCTGGA

Aqp1_cFLAG_F TCTACGACTTCATCCTGGCC

Aqp1_cFLAG_R CGTCGTCGTCCTTGTAGTCT

CgACTB_F CCCCATTGAACACGGCATTG

CgCTB_R AGGTCTCAAACATGATCTGGGT

HsACTB_F TTGGCAATGAGCGGTTCC

HsACTB_R GTTGAAGGTAGTTTCGTGGATG


