Supplementary Materials for Amorphous aggregates with a very wide size distribution play a central role in crystal nucleation

Zhiyu Liao,¹ Ankita Das,¹ Christina Glen Robb,² Rebecca Beveridge,² and Klaas Wynne¹ ¹School of Chemistry, University of Glasgow, G12 8QQ, UK ²Dept. of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK

	A ₁	$ au_1$	β1	A_2	$ au_2$	β2	\mathbf{R}^2
20°C	0.617668	2.33869 x 10 ⁻⁶	0.89539	0.112	0.000266301	0.82	0.999915
30°C	0.60059	1.86572 x 10 ⁻⁶	0.895285	0.143	0.000247653	0.86	0.999838
40°C	0.612798	1.41361 x 10 ⁻⁶	0.89475	0.119	0.000164014	0.84	0.999891
50°C	0.667717	1.04892 x 10 ⁻⁶	0.832901	0.0916	0.000139757	0.92	0.999805
60°C	0.670747	8.44093 x 10 ⁻⁷	0.865552	0.052	0.000104783	0.93	0.999585
70°C	0.73944	5.7833 x 10 ⁻⁷	0.817092	0.0176	0.000114066	0.91	0.999589

Table S1. Fitting parameters for the distributions shown in Fig. 1(d) of the main text.

Table S2. Aggregate formation in supersaturated solution. Summary of aggregate formation and laser-induced nucleation in the investigated amino acids and peptides demonstrating the general nature of the formation of aggregates and their role in laser-induced nucleation.

	Solubility in H ₂ O at 298 K ¹	Prepared in D ₂ O/H ₂ O at 293 K (pD/pH) ^a	Aggregate seen under microscope	Laser-induced nucleation
L-histidine	0.0436 g/mL	0.13 g/mL (7.72)	Y	Y
L- phenylalanine	0.028 g/mL	0.05 g/mL (6.23)	Y	Y
L-threonine	0.0979 g/mL	0.2 g/mL (6.20)	Y	Ν
L-arginine	0.1959 g/mL	0.3 g/mL (11.63)	Ν	Ν
L-alanine	0.1663 g/mL	0.18 g/mL (5.74)	Y	Y
L-lysine	0.2466 g/mL	0.5 g/mL (10.72)	Y	Y
L-serine	0.3657 g/mL	0.4 g/mL (6.00)	Y	Y
L-proline	1.3 g/mL	1.7 g/mL (7.44)	Y	Ν
L-glutamic acid	0.0425 g/mL	0.13 g/mL (7.02)	Y	Y
Ala-Ala	0.29 g/mL ²	0.3 g/mL (5.74)	Y	Y
Gly-Gly	0.195 g/mL ²	0.2 g/mL (5.89)	Y	Y
Gly-Gly-Gly	0.061 g/mL ²	0.1 g/mL (5.78)	Y	Y

^aValues of pD/pH are measured at 293 K after preparation of solutions.

 Particle size/nm
 Particle size/nm

 Fig. S1. Intensity weighted size distribution of the intensity correlation functions shown in Fig. 1. (a) Warm up from 20°C to 70°C; (b) Cooling down from 70°C to 20°C. The inset shows the changes in the peak position as a function of temperature.

Fig. S2. Raman spectrum of threonine aggregates in solution compared to the surrounding solution and crystal.

Fig. S3. Amorphous aggregates are essential to laser-induced nucleation in amino acid and peptide solutions. Aggregateassisted laser-induced nucleation from solution: (a) alanine, (b) Gly-Gly and (c) Gly-Gly-Gly. Shown are time-dependent Raman and luminescence spectra on the left, along with phase-contrast microscopy images at selected times on the right (scale bars, 5 μ m). The burst of luminescence in (a) at approximately 4 s and in (c) at approximately 66 s is likely due to crystalloluminescence.³

Fig. S4. Relaxation time vs. particle size distribution. (left) The relaxation-time (τ) distribution corresponding to a stretched exponential with overall relaxation time $\tau_0 = 1$ for stretch parameters $\beta = 0.95$ (red) and $\beta = 0.9$ (blue). The relaxation time is related to the particle size through the Stokes-Einstein law, $r \propto \tau$. (right) Particle size (r) distribution for the same parameter values (see main text for explanation).

Fig. S5. Aggregate-assisted laser-induced nucleation of alanine from solution. Averaged Raman spectra are shown on the left, along with microscopy images at selected times on the right. The green spectrum is $5 \times$ magnified from 750 – 2500 cm⁻¹ for comparison with better clarity; dot and star signs indicate the locations where spectra are taken. Scale bar, 5 µm.

Supplementary note Classical nucleation theory (CNT)

The basic Gibbs equation

Homogeneous crystal nucleation begins with the growth of a nucleus with radius r. The free energy is the sum of a term proportional to the surface area and a term proportional to the volume. Thus, the change in free energy for a spherical nucleus is given by⁴

$$\Delta G(r) = \frac{4}{3}\pi r^3 \Delta G_f + 4\pi r^2 \gamma_{sl}, \qquad (S1)$$

Where ΔG_f is the change in Gibbs free energy per unit volume of the solid phase vs. the liquid/solution phase (the free energy of formation) and γ_{sl} the interfacial energy (or surface free energy or interfacial tension). A typical interfacial energy is about 10⁻³ J/m². ΔG_f can be written in terms of the latent heat (heat of fusion) as

$$\Delta G_f = -\frac{\Delta H_f \Delta T}{T_f}, \qquad (S2)$$

where $\Delta T = T_f T$ is the degree of supercooling (supersaturation) and T_f the melting (liquidus) temperature. It can also be written in terms of the supersaturation as

$$\Delta G_f = -\frac{k_B T}{\Omega} \ln S , \qquad (S3)$$

where Ω is the molecular volume in the crystal (volume of 1 mol of substance), and *S* the supersaturation here defined by

$$S \equiv \frac{C}{C_s},\tag{S4}$$

where C is the concentration of the solute and C_S the saturation concentration or solubility. The molecular volume can be calculated from

$$\Omega = \frac{M}{1000\rho N_A} \tag{S5}$$

(in m³/molecule), where *M* is the molar mass (in g/mol), and ρ the density of the crystal (in kg/m³). Thus, when the concentration is equal to the equilibrium concentration (*S* = 1), $\Delta G_f = 0$, whereas in a supersaturated solution (*C* > *C*₀), ΔG_f is negative favouring nucleation.

Hence, the equation for the change in free energy for a spherical nucleus with radius r (Eq. (S1)) can be written in terms of the supersaturation as

$$\Delta G(r) = -k_B T \frac{4\pi r^3}{3\Omega} \ln S + 4\pi r^2 \gamma_{sl} \,. \tag{S6}$$

The number of molecules contained in the nucleus is

$$n_{nucleus} = \frac{4\pi r^3}{3\Omega} \,. \tag{S7}$$

Thus, the change in free energy per nucleus can also be written as

$$\Delta G(n_{nucleus}) = -k_B T n_{nucleus} \ln S + 6^{2/3} \pi^{1/3} (n_{nucleus} \Omega)^{2/3} \gamma_{sl}$$
(S8)

Here, we propose that the free energy of formation can be written as

$$\Delta G_f / \Delta G_f^0 = (1 - \delta) e^{-r/\lambda} + \delta \tag{S9}$$

where λ is the fractal correlation length and δ accounts for the possibility that the free energy of formation decays to a finite value. Using Eq. (S9) with (S3) and (S6) , we get the expression

$$\Delta G(r) = -k_B T \frac{4\pi r^3}{3\Omega} \Big[(1-\delta) e^{-r/\lambda} + \delta \Big] \ln S$$

$$+4\pi r^2 \gamma_{sl}$$
(S10)

Typical parameters for an organic molecule are those of glycine, which has a molecular volume of 0.107 nm³. Typical interfacial tensions range from about 0.1 to 10 mJ/m². A reasonable supersaturation is S=1.1, so a reasonable value for ΔG_f is -3.9 10⁶ J/m³. Some typical average numbers are given in the table below.

Т	298 K
Ω	$0.1 \text{ nm}^3 (10^{-28} \text{ m}^3)$
γ	1 mJ/m ² (10 ⁻³ J/m ²)
-⊿G _f	$1 \text{ MJ/m}^3 (10^6 \text{ J/m}^3)$

Reduction of S during crystal growth

When a crystal starts growing, the supersaturation parameter must of course decrease. The number of molecules available in the solution at the start is,

$$n_{solution.0} = C_0 10^3 V N_A \tag{S11}$$

and hence the number of molecules in the (remaining) solution is

$$n_{solution,0} - n_{nucleus} = C_0 10^3 V N_A - \frac{4\pi r^3}{3\Omega}$$
. (S12)

The concentration of the (remaining) solution is

$$C = \frac{n_{solution,0} - n_{nucleus}}{10^3 V N_A} = C_0 - \frac{4\pi r^3}{3000 V N_A \Omega},$$
(S13)

where C_0 is the initial concentration (*C* and C_0 both in M) and *V* the volume (in m³). If the initial supersaturation is

$$S_0 = \frac{C_0}{C_s} \tag{S14}$$

then the *r*-dependent supersaturation is

$$S = S_0 - \frac{4\pi r^3}{3000 V N_A \Omega C_S} \,. \tag{S15}$$

When including this effect, one would expect the free energy to minimise for a crystal of such a size that it has reduced the supersaturation to S=1.

$$1 = S_0 - \frac{4\pi r^3}{3000 V N_A \Omega C_s}, \qquad (S16)$$

which gives

$$r_{S=1} = \sqrt[3]{\left(S_0 - 1\right)C_S \frac{3000VN_A\Omega}{4\pi}}.$$
 (S17)

This turns out to be not quite the case: the minimum always occurs quite a bit before the value predicted by Eq. (S16). However, the free energy has a zero crossing at the value predicted by Eq. (S16). Thus, in Fig. 5, the minimum occurs for a crystal of radius ~0.9 mm where S = 1.049, while the supersaturation only decreases to S1 for r = 1.13 mm. The barrier peaks at the critical radius of ~1 nm.

References

- 1 Michel Fleck, Aram M. Petrosyan, *Salts of amino acids. Crystallization, Structure and Properties,* Cham, Switzerland: Springer International Publishing, 2014.
- 2 H. Tam Do, Y. Zen Chua, J. Habicht, M. Klinksiek, M. Hallermann, D. Zaitsau, C. Schick and C. Held, *RSC Adv.*, 2019, 9, 32722–32734.
- 3 A. J. Alexander, J. Chem. Phys., 2012, 136, 064512.
- 4 S. Karthika, T. K. Radhakrishnan and P. Kalaichelvi, *Cryst. Growth Des.*, 2016, **16**, 6663–6681.

Movie S1.

Aggregate-assisted laser-induced nucleation of alanine from solution (0.18 g/mL in D_2O , 5 days old). Movie S2.

Aggregate-assisted laser-induced nucleation of Gly-Gly from solution (0.2 g/mL in H₂O, 2 days old).

Movie S3.

Aggregate-assisted laser-induced nucleation of Gly-Gly-Gly from solution (0.1 g/mL in D₂O, 1 day old). **Movie S4.**

Aggregate-assisted laser-induced nucleation of Ala-Ala from solution (0.3 g/mL in D₂O, 1 day old). **Movie S5.**

Aggregate-assisted laser-induced nucleation of serine from solution (0.4 g/mL in D_2O , 1 day old).

Movie S6.

Aggregate-assisted laser-induced nucleation of glutamic acid from solution (0.13 g/mL in H₂O, 2 days old). **Movie S7.**

Aggregate-assisted laser-induced nucleation of phenylalanine from solution (0.05 g/mL in H₂O, 2 days old). **Movie S8.**

Aggregate-assisted laser-induced nucleation of lysine from solution (0.5 g/mL in H₂O, 2 days old). **Movie S9.**

Aggregate-assisted laser-induced nucleation of histidine from solution (0.13 g/mL in H₂O, 1 day old).

Movie S10.

Evaporation-driven spontaneous nucleation of Gly-Gly-Gly.

Movie S11.

Evaporation-driven spontaneous homogeneous nucleation of Gly-Gly-Gly (5× speed).

Movie S12.

Evaporation-driven spontaneous nucleation of histidine.

Movie S13.

Evaporation-driven spontaneous nucleation of alanine (5× speed).

Movie S14.

Evaporation-driven spontaneous nucleation of histidine.