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Table S1. Fitting parameters for the distributions shown in Fig. 1(d) of the main text. 

 A1 τ1 β1 A2 τ2 β2 R2 

20°C 0.617668 2.33869 x 10-6 0.89539 0.112 0.000266301 0.82 0.999915 

30°C 0.60059 1.86572 x 10-6 0.895285 0.143 0.000247653 0.86 0.999838 

40°C 0.612798 1.41361 x 10-6 0.89475 0.119 0.000164014 0.84 0.999891 

50°C 0.667717 1.04892 x 10-6 0.832901 0.0916 0.000139757 0.92 0.999805 

60°C 0.670747 8.44093 x 10-7 0.865552 0.052 0.000104783 0.93 0.999585 

70°C 0.73944 5.7833 x 10-7 0.817092 0.0176 0.000114066 0.91 0.999589 
 

Table S2. Aggregate formation in supersaturated solution. Summary of aggregate formation and laser-induced nucleation in the 
investigated amino acids and peptides demonstrating the general nature of the formation of aggregates and their role in laser-induced 
nucleation. 

 

aValues of pD/pH are measured at 293 K after preparation of solutions. 
 

 Solubility in H2O at 
298 K1 

Prepared in D2O/H2O 
at 293 K (pD/pH)a 

Aggregate seen  
under microscope 

Laser-induced  
nucleation 

L-histidine 0.0436 g/mL 0.13 g/mL (7.72) Y Y 

L- phenylalanine 0.028 g/mL 0.05 g/mL (6.23) Y Y 

L-threonine 0.0979 g/mL 0.2 g/mL (6.20) Y N 

L-arginine 0.1959 g/mL 0.3 g/mL (11.63) N N 

L-alanine 0.1663 g/mL 0.18 g/mL (5.74) Y Y 

L-lysine 0.2466 g/mL 0.5 g/mL (10.72) Y Y 

L-serine 0.3657 g/mL 0.4 g/mL (6.00) Y Y 
L-proline 1.3 g/mL 1.7 g/mL (7.44) Y N 

L-glutamic acid 0.0425 g/mL 0.13 g/mL (7.02) Y Y 

Ala-Ala 0.29 g/mL2 0.3 g/mL (5.74) Y Y 

Gly-Gly 0.195 g/mL2 0.2 g/mL (5.89) Y Y 

Gly-Gly-Gly 0.061 g/mL2 0.1 g/mL (5.78) Y Y 
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Fig. S1. Intensity weighted size distribution of the intensity correlation functions shown in Fig. 1. (a) Warm up from 20°C to 
70°C; (b) Cooling down from 70°C to 20°C. The inset shows the changes in the peak position as a function of temperature. 

 
Fig. S2. Raman spectrum of threonine aggregates in solution compared to the surrounding solution and crystal. 
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Fig. S3. Amorphous aggregates are essential to laser-induced nucleation in amino acid and peptide solutions. Aggregate-
assisted laser-induced nucleation from solution: (a) alanine, (b) Gly-Gly and (c) Gly-Gly-Gly. Shown are time-dependent Raman and 
luminescence spectra on the left, along with phase-contrast microscopy images at selected times on the right (scale bars, 5 µm). 
The burst of luminescence in (a) at approximately 4 s and in (c) at approximately 66 s is likely due to crystalloluminescence.3 
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Fig. S4. Relaxation time vs. particle size distribution. (left) The relaxation-time (τ) distribution corresponding to a stretched 
exponential with overall relaxation time τ0 = 1 for stretch parameters β = 0.95 (red) and β = 0.9 (blue). The relaxation  time is related 
to the particle size through the Stokes-Einstein law, r ∝	τ.	(right) Particle size (r) distribution for the same parameter values (see 
main text for explanation). 

 
Fig. S5. Aggregate-assisted laser-induced nucleation of alanine from solution. Averaged Raman spectra are shown on the 
left, along with microscopy images at selected times on the right. The green spectrum is 5× magnified from 750 – 2500 cm-1 for 
comparison with better clarity; dot and star signs indicate the locations where spectra are taken. Scale bar, 5 µm. 
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Supplementary note 
Classical nucleation theory (CNT) 
The basic Gibbs equation 
Homogeneous crystal nucleation begins with the growth 
of a nucleus with radius r. The free energy is the sum of 
a term proportional to the surface area and a term pro-
portional to the volume. Thus, the change in free energy 
for a spherical nucleus is given by4 

 , (S1) 

Where ΔGf is the change in Gibbs free energy per unit 
volume of the solid phase vs. the liquid/solution phase 
(the free energy of formation) and γsl the interfacial en-
ergy (or surface free energy or interfacial tension). A 
typical interfacial energy is about 10-3 J/m2.  ΔGf  can be 
written in terms of the latent heat (heat of fusion) as 

 , (S2) 

where ΔT = Tf-T is the degree of supercooling (supersat-
uration) and Tf the melting (liquidus) temperature. It can 
also be written in terms of the supersaturation as 

 ,  (S3) 

where Ω is the molecular volume in the crystal (volume 
of 1 mol of substance), and S the supersaturation here 
defined by 

 , (S4) 

where C is the concentration of the solute and CS the 
saturation concentration or solubility. The molecular 
volume can be calculated from 

  (S5) 

(in m3/molecule), where M is the molar mass (in g/mol), 
and ρ the density of the crystal (in kg/m3). Thus, when 
the concentration is equal to the equilibrium concentra-
tion (S = 1), DGf = 0, whereas in a supersaturated solu-
tion (C > C0), DGf is negative favouring nucleation.  

Hence, the equation for the change in free energy for 
a spherical nucleus with radius r (Eq. (S1)) can be writ-
ten in terms of the supersaturation as 

 . (S6) 

The number of molecules contained in the nucleus is 

 . (S7) 

Thus, the change in free energy per nucleus can also be 
written as 

 . (S8) 

Here, we propose that the free energy of formation 
can be written as 

  (S9) 

where λ is the fractal correlation length and δ accounts 
for the possibility that the free energy of formation de-
cays to a finite value. Using Eq. (S9) with (S3) and (S6)
, we get the expression 

 (S10) 

Typical parameters for an organic molecule are those 
of glycine, which has a molecular volume of 0.107 nm3. 
Typical interfacial tensions range from about 0.1 to 10 
mJ/m2. A reasonable supersaturation is S=1.1, so a rea-
sonable value for ΔGf is -3.9 106 J/m3. Some typical av-
erage numbers are given in the table below. 

 
T 298 K 
Ω  0.1 nm3 (10-28 m3) 
γ  1 mJ/m2 (10-3 J/m2) 
-ΔGf 1 MJ/m3 (106 J/m3) 

 

Reduction of S during crystal growth 
When a crystal starts growing, the supersaturation pa-
rameter must of course decrease. The number of mole-
cules available in the solution at the start is, 

  (S11) 

and hence the number of molecules in the (remaining) 
solution is 

 . (S12) 

The concentration of the (remaining) solution is 

 , (S13) 

where C0 is the initial concentration (C and C0 both in 
M) and V the volume (in m3). If the initial supersatura-
tion is 

  (S14) 

then the r-dependent supersaturation is 
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 . (S15) 

When including this effect, one would expect the free 
energy to minimise for a crystal of such a size that it has 
reduced the supersaturation to S=1.  

 , (S16) 

which gives 

 . (S17) 

This turns out to be not quite the case: the minimum al-
ways occurs quite a bit before the value predicted by Eq. 
(S16). However, the free energy has a zero crossing at 

the value predicted by Eq. (S16). Thus, in Fig. 5, the 
minimum occurs for a crystal of radius ~0.9 mm where 
S = 1.049, while the supersaturation only decreases to 
S1 for r = 1.13 mm. The barrier peaks at the critical ra-
dius of ~1 nm. 
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Movie S1. 
Aggregate-assisted laser-induced nucleation of alanine from solution (0.18 g/mL in D2O, 5 days old). 
Movie S2. 
Aggregate-assisted laser-induced nucleation of Gly-Gly from solution (0.2 g/mL in H2O, 2 days old). 
Movie S3. 
Aggregate-assisted laser-induced nucleation of Gly-Gly-Gly from solution (0.1 g/mL in D2O, 1 day old). 
Movie S4. 
Aggregate-assisted laser-induced nucleation of Ala-Ala from solution (0.3 g/mL in D2O, 1 day old). 
Movie S5. 
 Aggregate-assisted laser-induced nucleation of serine from solution (0.4 g/mL in D2O, 1 day old). 
Movie S6. 
Aggregate-assisted laser-induced nucleation of glutamic acid from solution (0.13 g/mL in H2O, 2 days old). 
Movie S7. 
Aggregate-assisted laser-induced nucleation of phenylalanine from solution (0.05 g/mL in H2O, 2 days old). 
Movie S8. 
Aggregate-assisted laser-induced nucleation of lysine from solution (0.5 g/mL in H2O, 2 days old). 
Movie S9. 
Aggregate-assisted laser-induced nucleation of histidine from solution (0.13 g/mL in H2O, 1 day old). 
Movie S10. 
Evaporation-driven spontaneous nucleation of Gly-Gly-Gly. 
Movie S11. 
Evaporation-driven spontaneous homogeneous nucleation of Gly-Gly-Gly (5× speed). 
Movie S12. 
Evaporation-driven spontaneous nucleation of histidine. 
Movie S13. 
Evaporation-driven spontaneous nucleation of alanine (5× speed). 
Movie S14. 
Evaporation-driven spontaneous nucleation of histidine. 
 


