- Electronic Supplementary Information -

Three-component dicarbofunctionalization of allylamines via nucleopalladation pathway: unlocking vicinal and geminal selectivity

Nityananda Ballav, Shib Nath Saha, Shailesh Yadav and Mahiuddin Baidya*

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India mbaidya@iitm.ac.in

Table of Contents

1) General information S3
2) Optimization details in vicinal dicarbofunctionalization reaction S4
3) Substrate preparation S7
4) General procedure for three-component vicinal dicarbofunctionalization reaction S8
5) Optimization details in geminal dicarbofunctionalization reaction S9
6) General procedure for geminal dicarbofunctionalization reaction S11
7) Scaled-up for three-component vicinal dicarbofunctionalization reaction S12
8) Scaled-up for geminal dicarbofunctionalization reaction S12
9) Typical procedure for removal of the directing group S13
10) Typical procedure for regioselective alkenylation reaction S13
11) Typical procedure for regioselective aminoalkynylation S14
12) Reaction mechanism S15
13) X-ray crystal data of compound $\mathbf{8 j}$ S16
14) NMR spectroscopic data of synthesized compounds S18
15) NMR spectra of synthesized compounds S48

1. General information:

All reactions, unless mentioned otherwise, were carried out under air in flame-dried glassware and were stirred using a magnetic stir plate. Reactions were performed using commercial-grade solvent unless otherwise noted. $\mathrm{CH}_{3} \mathrm{CN}$ and DCE were dried over calcium hydride. Tetrahydrofuran was freshly distilled over sodium ketyl before use

All reactions were monitored by thin layer chromatography (TLC) on Merck 60 F 254 precoated silica plates and visualized using a UV lamp (366 or 254 nm) or by use of potassium permanganate, $5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3} / 100 \mathrm{~mL}$ water. Products were isolated by column chromatography (Merck silica gel 100-200 $\mu \mathrm{m}$).
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 MHz or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak- $\mathrm{CDCl}_{3} \delta=7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=77.16$ for ${ }^{13} \mathrm{C}$; DMSO- $\mathrm{d}_{6} \delta=2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta$ $=39.50 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$; or calibrated to tetramethylsilane $(\delta=0.00)$. All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s , singlet; d , doublet; t , triplet; q , quartet; h , heptate; m, multiplet; dd, doublet of doublet; dt, doublet of triplet; dq, doublet of quartet; td, triplet of doublet; tt, triplet of triplet; dq, doublet of quartet; br, broad. Mass spectra were recorded by electron spray ionization (ESI) method on a Q-TOF Micro with a lock spray source.

Indole derivatives (2) were prepared following the literature procedure (Org. Lett. 2014, 16, 2958-2961; J. Org. Chem. 2018, 83, 3840-3856).

2. Optimization details in vicinal dicarbofunctionalization reaction

Solvent screening:

Base screening:

		$\xrightarrow[\substack{\text { HFIP }(1.5 \mathrm{M}) \\ 80^{\circ} \mathrm{C}, 24 \mathrm{~h}}]{\mathrm{OAC})_{2}(5 \mathrm{~mol} \%)}$	
S. No	Base		Yield of $\mathbf{4 a}$ (\%)
1	$\mathrm{Li}_{2} \mathrm{CO}_{3}$ (1.0 equiv)		40
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.0 equiv)		45
3	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv)		38
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.0 equiv)		48
5	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (1.0 equiv)		30
6	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (1.0 equiv)		35
7	$\mathrm{K}_{2} \mathrm{HPO}_{4}(1.0$ equiv)		52
9	NaOAc (1.0 equiv)		NR
10	KOAc (1.0 equiv)		NR

11	$\mathrm{K}_{2} \mathrm{HPO}_{4}$ (1.0 equiv) $+\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.0 equiv)	62
12	$\mathrm{K}_{2} \mathrm{HPO}_{4}\left(0.5\right.$ equiv) $+\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv)	64
13	$\mathrm{K}_{2} \mathrm{HPO}_{4}$ (0.5 equiv) $+\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.0 equiv)	61
14	$\mathrm{K}_{2} \mathrm{HPO}_{4}$ (1.0 equiv) $+\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv)	68
15	$\begin{gathered} \mathrm{K}_{2} \mathrm{HPO}_{4}\left(1.0 \text { equiv) }+\mathrm{K}_{3} \mathrm{PO}_{4}\right. \text { (0.5 equiv) } \\ +\mathrm{H}_{2} \mathrm{O} \text { (10 equiv) } \end{gathered}$	78
16		73
17	$\begin{gathered} \mathrm{K}_{2} \mathrm{HPO}_{4}(1.0 \text { equiv })+\mathrm{K}_{3} \mathrm{PO}_{4} \text { (0.5 equiv) } \\ +\mathrm{H}_{2} \mathrm{O} \text { (20 equiv) } \end{gathered}$	74

HFIP amount:

 1a (0.25 mmol)		3a (4.0 equiv)	$\xrightarrow[\substack{\mathrm{K}_{3} \mathrm{PO}_{4}\left(0.5 \text { equiv) } \\ \mathrm{H}_{2} \mathrm{O}(10 \text { equiv }) \\ 80^{\circ} \mathrm{C}, 24 \mathrm{~h} \\ \mathrm{Kd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%) \\ \mathrm{K}_{2} \mathrm{HPO}_{4}(1.0 \text { equiv })\right.}]{\text { HFIP (amount) }}$	
S. No		HFIP(amount)		Yield of $\mathbf{4 a}$ (\%)
1		0.1 M		52
2		0.5 M		54
3		1.0 M		67
4		1.5 M		78
5		2.0 M		75

Temperature screening:

 1a (0.25 mmol)		$+$ 3a (4.0 equiv)	$\xrightarrow[\substack{\mathrm{K}_{3} \mathrm{PO}_{4}(0.5 \text { equiv }) \\ \mathrm{H}_{2} \mathrm{O}(10 \text { equiv }) \\ \mathrm{HFIP}(1.5 \mathrm{M}), 24 \mathrm{~h} \\ \text { Temperature }\left({ }^{\circ} \mathrm{C}\right)}]{\substack{\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%) \\ \mathrm{K}_{2} \mathrm{HPO}_{4}(1.0 \text { equiv })}}$	
S. No		Temperature (${ }^{\circ} \mathrm{C}$)		Yield of $\mathbf{4 a}$ (\%)
1		rt		45
2		60		56
3		80		78
4		100		75
5		120		76

Catalyst screening:

Equivalent of aryl iodide:

Equivalent of nucleophile:

3. Substrate preparation

Synthesis of pharmacophore coupled aryl iodide derivatives (3aa-ag):

GP-1:

Aryl or alkyl carboxylic acid (1.2 equiv) and 4-N,N-dimethylaminopyridine (DMAP, 1.2 equiv) were taken in a 50 mL round bottom flask under nitrogen. Anhydrous DCM (15 mL) was added and the mixture was cooled to $0{ }^{\circ} \mathrm{C} . ~ N-$ (3- dimethylaminopropyl)- N ethylcarbodimide hydrochloride salt ($\mathrm{EDC} \cdot \mathrm{HCl}, 2.5$ equiv) was added under nitrogen and the mixture was stirred for 10 minutes at the same temperature. Then, (4-iodophenyl)methanol (1.5 mmol, 1.0 equiv) was added portion wise and the mixture was stirred at room temperature overnight. Upon completion (TLC monitored), 10% aqueous NaHCO_{3} solution (15 mL) was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} \times 3$ times). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get the pure products 3aa-ag.

4) General procedure for three-component vicinal dicarbofunctionalization reaction:

GP-2:
To an oven-dried screw cap reaction tube, N-allylpicolinamide (1a, $0.25 \mathrm{mmol}, 1.0$ equiv), corresponding indole derivatives 2 (1.1 equiv), aryl iodides $\mathbf{3}$ (4.0 equiv), $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (1.0 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, and $\mathrm{H}_{2} \mathrm{O}$ (10 equiv) were taken. HFIP (0.17 $\mathrm{mL}, 1.5 \mathrm{M}$) was added. Then, the reaction tube was capped and placed in a preheated oil bath at $80^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (monitored by TLC), the crude mixture was diluted with DCM and concentrated on a rotavap. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure products $\mathbf{4 - 5}$.

GP-3:

To an oven-dried screw cap reaction tube, N-allylpicolinamide (1a, $0.25 \mathrm{mmol}, 1.0$ equiv), corresponding indole derivatives 2 (1.1 equiv), styrenyl halides / alkyl iodide / alkynyl iodide 6 (4.0 equiv), $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (1.0 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(5 \mathrm{~mol} \%\right.$), and $\mathrm{H}_{2} \mathrm{O}$ (10 equiv) were taken. HFIP ($0.17 \mathrm{~mL}, 1.5 \mathrm{M}$) was added. Then, the reaction tube was capped and placed in a preheated oil bath at $80^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (monitored by TLC), the crude mixture was diluted with DCM and concentrated on a rotavap. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure products 7 .

5. Optimization details in geminal dicarbofunctionalization reaction

Base screening:

S. No	Base	Yield of 8a (\%)
1	$\mathrm{~K}_{2} \mathrm{HPO}_{4}(1.0$ equiv $)+\mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv $)+\mathrm{H}_{2} \mathrm{O}$	67
2	$(10$ equiv $)$	73
3	$\mathrm{~K}_{3} \mathrm{PO}_{4}(\mathbf{1 . 0}$ equiv)	54
2	$\mathrm{Li}_{2} \mathrm{CO}_{3}(1.0$ equiv)	55
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}(1.0$ equiv)	45
4	$\mathrm{~K}_{2} \mathrm{CO}_{3}(1.0$ equiv)	65
5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.0$ equiv)	35
6	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0$ equiv)	59
7	$\mathrm{Na}_{2} \mathrm{HPO}_{4}(1.0$ equiv $)$	69
9	$\mathrm{~K}_{2} \mathrm{HPO}_{4}(1.0$ equiv)	NR
10	$\mathrm{NaOAc}_{(1.0}$ equiv)	NR

Catalyst screening:

S. No	$\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{~mol} \%)$	Yield of 8a $(\%)$
1	2.5	55
2	5	73
3	10	82
4	15	75

Amount of solvent:

S. No	Solvent amount	Yield of 8a (\%)
1	0.1 M	84
2	$\mathbf{0 . 5 \mathrm { M }}$	85
3	1.0 M	81
4	1.5 M	82
5	2.0 M	78

Temperature screening:

S. No	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield of 8a (\%)
1	rt	56
2	60	92
3	80	85
4	100	75
5	120	77

Oxidant screening:

S. No

Oxidant

Yield of $\mathbf{8 a}$ (\%)9281717565

6. General procedure for geminal dicarbofunctionalization reaction

GP-4:

To an oven-dried screw cap reaction tube, N-allylpicolinamide (1a, $0.25 \mathrm{mmol}, 1.0$ equiv), corresponding indole derivatives 2 (2.5 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol}$ $\%$), MnO_{2} (3.0 equiv) and BQ (0.2 equiv) were taken. $\operatorname{HFIP}(0.5 \mathrm{~mL}, 0.5 \mathrm{M}$) was added. Then, the reaction tube was capped and placed in a preheated oil bath at $60^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (monitored by TLC), the crude mixture was diluted with DCM, filtered through celite pad and the filtrate was concentrated on a rotavap. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure products 8 .

7. Scaled-up for three-component vicinal dicarbofunctionalization reaction

TP-1:

To an oven-dried screw cap reaction tube, N-allylpicolinamide ($\mathbf{1 a}, 4.0 \mathrm{mmol}, 1.0$ equiv), indole derivative 2aa (1.1 equiv), styrenyl iodide $\mathbf{6 a}$ (4.0 equiv), $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (1.0 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, and $\mathrm{H}_{2} \mathrm{O}$ (10 equiv) were taken. HFIP ($2.7 \mathrm{~mL}, 1.5$ M) was added. Then, the reaction tube was capped and placed in a preheated oil bath at $80^{\circ} \mathrm{C}$ for 36 h . After completion of the reaction (monitored by TLC), the crude mixture was diluted with DCM and concentrated on a rotavap. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product $\mathbf{7 e}$.

8. Scaled-up for geminal dicarbofunctionalization reaction

TP-2:

To an oven-dried Schlenk reaction tube, N-allylpicolinamide (1a, 4.0 mmol, 1.0 equiv), indole derivatives $\mathbf{2 a}$ (2.5 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(10 \mathrm{~mol} \%\right.$), MnO_{2} (3.0 equiv) and BQ (0.2 equiv) were taken. HFIP ($8.0 \mathrm{~mL}, 0.5 \mathrm{M}$) was added. Then, the reaction tube was capped and placed in a preheated oil bath at $60^{\circ} \mathrm{C}$ for 48 h . After completion of the reaction (monitored by TLC), the crude mixture was diluted with DCM, filtered through celite pad and the filtrate was concentrated on a rotavap. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product $\mathbf{8 a}$.

9. Typical procedure for removal of the directing group

TP-3:

To an oven-dried screw cap reaction tube, 3a ($0.3 \mathrm{mmol}, 1.0$ equiv) and NaOH (5.0 equiv) were taken. $\mathrm{EtOH}(1.5 \mathrm{~mL})$ solvent was added. Then, the reaction mixture was stirred at 125 ${ }^{\circ} \mathrm{C}$ for 48 h . After completion of the reaction (TLC monitored), the reaction mixture was allowed to cool to room temperature, $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was added, and extracted with EtOAc (10 $\mathrm{mL} \times 3$ times). The combined extracts were washed with brine followed by 10% aqueous NaHCO_{3} solution (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to give pure functionally enriched aliphatic amine 9 .

10. Typical procedure for regioselective alkenylation reaction:

TP-4:

To an oven-dried screw cap reaction tube, product 3a ($0.25 \mathrm{mmol}, 1.0$ equiv), (E)-(2iodovinyl)benzene ($\mathbf{6 a}, 2.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{KHCO}_{3}(2.0$ equiv) and biphenyl-2carboxylic acid (0.2 equiv) were taken. DCE $(2.5 \mathrm{~mL}, 0.1 \mathrm{M})$ was added. Then, the reaction tube was capped and placed in a preheated oil bath at $100^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (TLC monitored), the crude mixture was diluted with DCM and concentrated on a rotavap. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product $\mathbf{1 0}$.

11. Typical procedure for regioselective aminoalkynylation

TP-5:

To an oven-dried screw cap reaction tube, product 7 e ($0.15 \mathrm{mmol}, 1.0$ equiv), (iodoethynyl)triisopropylsilane (11, 1.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(10 \mathrm{~mol} \%\right.$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv) were taken. DCE ($1.5 \mathrm{~mL}, 0.1 \mathrm{M}$) was added. Then, the reaction tube was capped and placed in a preheated oil bath at $100^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (TLC monitored), the crude mixture was diluted with DCM and concentrated on a rotavap. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product 12.

12. Reaction Mechanism:

A. Mechanism for three-component vicinal dicarbofunctionalization reaction.

B. Alternative mechanism for geminal dicarbofunctionalization reaction.

13. X-ray crystal data of compound $\mathbf{8 j}$:

Crystallization: Crystals of compound $\mathbf{8 j}$ were obtained through a slow evaporation technique at room temperature from $\mathrm{CDCl}_{3} /$ hexane solvent mixture.

Crystal structure of compound $\mathbf{8 j}$ (CCDC number: 2298509, Ellipsoid Probability 50\%):

Table 1. Crystal data and structure refinement for $\mathbf{8 j}$.

Absorption coefficient	$3.134 \mathrm{~mm}^{\wedge}-1$
$\mathrm{F}(000) 2336$	2336
Crystal size 0.279	$0.279 \times 0.091 \times 0.042 \mathrm{~mm}$
Theta range for data collection	llection 3.260 to 25.057 deg.
Limiting indices -12	$-12<=\mathrm{h}<=12,-23<=\mathrm{k}<=23,-30<=1<=30$
Reflections collected / unique	unique 167455/4609 [$\mathrm{R}(\mathrm{int}$) $=0.1872]$
Completeness to theta $=25.05$	$=25.057 \quad 99.7 \%$
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	ssion $\quad 0.7452$ and 0.5861
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	meters 4609/0/310
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.048
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	ma(I)] $\mathrm{R} 1=0.0531, \mathrm{wR} 2=0.1253$
R indices (all data) \quad R1	$\mathrm{R} 1=0.0903, \mathrm{wR} 2=0.1443$
Extinction coefficient n/	n/a
Largest diff. peak and hole	hole 0.356 and -0.646 e. $\mathrm{A}^{\wedge}-3$

13. NMR spectroscopic data of synthesized compounds:

3aa

$3 a b$

$3 a c$

4-iodobenzyl dodecanoate (3aa): Compound 3aa was synthesized according to GP-1 as a white solid, 95% yield $(0.593 \mathrm{~g})$; Eluent: 2-10\% ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.04(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 16 \mathrm{H})$, $0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,137.8,136.0$, $130.1,93.9,65.4,34.4,32.0,29.7(2 \times C), 29.6,29.5,29.4,29.2,25.1,22.8,14.3$ ppm.

4-iodobenzyl palmitate (3ab): Compound 3ab was synthesized according to GP1 as a white solid, 94% yield $(0.666 \mathrm{~g})$; Eluent: $2-10 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.04$ $(\mathrm{s}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 24 \mathrm{H}), 0.88$ (t, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7$, 137.8, 135.9, 130.1, 93.9, 65.4, 34.4, 32.1, 29.83 (3C), 29.79 ($2 \times$ C), 29.7, 29.6, 29.5, 29.4, 29.2, 25.1, 22.8, 14.3 ppm .

4-iodobenzyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (3ac): Compound 3ac was synthesized according to GP-1 as a white solid, 97% yield (0.704 g); Eluent: $5-15 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dd, $J=8.3,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8,171.1,160.5,140.4,137.7,136.4$, $135.5,135.4,132.9,132.5,130.1,129.5,129.3,127.9,127.5,125.2,121.2,94.1$, 73.6, 66.0, 40.2 ppm .

4-iodobenzyl 2-propylpentanoate (3ad): Compound 3ad was synthesized according to GP-1 as a white solid, 94% yield (0.507 g); Eluent: 2-10\% ethyl acetate in hexane, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ $1.38(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.4,137.7,136.1,130.1,93.8,65.2,45.3,34.7,20.7,14.1 \mathrm{ppm}$.

3ae Compound 3ae was synthesized according to GP-1 as a white solid, 98% yield $(0.685 \mathrm{~g})$; Eluent: $5-15 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.6,157.0,137.8,136.6,136.1,130.4,129.9,123.7,120.9,112.1$, $93.8,68.0,65.6,42.3,37.2,25.3(2 \times C), 21.5,15.9 \mathrm{ppm}$.

4-iodobenzyl 2-(4-isobutylphenyl)propanoate (3af): Compound 3af was synthesized according to GP-1 as a white solid, 95% yield $(0.601 \mathrm{~g})$; Eluent: 5$15 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.04(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.51(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.5,140.8,137.7,137.6,135.9,129.7,129.5,127.3,93.7,65.6,45.2$, $45.1,30.3,22.5,18.4 \mathrm{ppm}$.

4-iodobenzyl 2-(6-methoxynaphthalen-2-yl)propanoate (3ag): Compound 3ag was synthesized according to GP-1 as a white solid, 96% yield $(0.697 \mathrm{~g})$; Eluent: $5-15 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 174.5,157.8,137.7,135.8,135.5,133.8,129.9$, $129.4,129.0,127.3,126.3,126.1,119.2,105.7,93.9,65.8,55.5,45.5,18.6 \mathrm{ppm}$.

\boldsymbol{N}-(2-(1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (4a):

Compound 4a was synthesized according to GP-2 as yellow oil, 78% yield (75 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65$ $-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.3,150.0,147.9,137.5,137.4,137.1,135.5,129.0$ $(2 \times C), 127.3,126.5,126.0,122.3,121.7,119.5,118.9,115.5,109.4,43.5,39.6$, 38.9, 32.8, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{ONa}^{+}$ 406.1890 found 406.1892 .
\boldsymbol{N}-(2-(1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)isoquinoline-1-carboxamide (4a'): Compound 4a' was synthesized according to GP-2 as yellow oil, 69% yield (75 mg); Eluent: $15-25 \%$ ethyl acetate in hexane, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.61-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.98(\mathrm{~m}$, $3 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDC13) $\delta 166.0,148.6,140.1,137.44,137.42,137.2$, $135.5,130.6,129.09,129.05,128.6,128.0,127.3,127.0,126.8,126.6,124.2$, 121.7, 119.5, 118.9, 115.5, 109.5, 43.6, 39.6, 38.9, 32.9, 21.1 ppm ; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{ONa}^{+} 456.2046$ found 456.2040 .
\boldsymbol{N}-(2-(1-methyl-1H-indol-3-yl)-3-phenylpropyl)picolinamide (4b): Compound 4b was synthesized according to GP-2 as brown liquid, 75% yield (69 mg); Eluent: 15-25\% ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H})$, $7.16-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.56$ $(\mathrm{m}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.3,150.0,147.9,140.3,137.5,137.4,129.2,128.3,127.3,126.5$, $126.1(2 \times C), 122.3,121.7,119.5,119.0,115.4,109.5,43.6,40.0,38.9,32.8 \mathrm{ppm}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{ONa}^{+} 392.1733$ found 392.1738.

N -(3-(4-isopropylphenyl)-2-(1-methyl-1 H -indol-3-yl)propyl)picolinamide

(4c): Compound $\mathbf{4 c}$ was synthesized according to GP-2 as yellow oil, 79% yield (81 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.39(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.11-$ $7.06(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H})$, $3.18-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~h}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 164.4,150.1,148.0,146.6,137.5$, $137.4,137.3,129.1,127.4,126.4(2 \times C), 126.0,122.2,121.7,119.5,118.9,115.6$, 109.4, 43.4, 39.7, 38.7, 33.8, 32.8, 24.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}^{+} 412.2383$ found 412.2393.

\boldsymbol{N}-(3-(4-(tert-butyl)phenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide

 (4d): Compound $\mathbf{4 d}$ was synthesized according to GP-2 as brown oil, 81% yield (86 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.45(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 3.91-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 1 \mathrm{H})$, $3.12-3.06(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3$, $150.0,148.8,147.9,137.4,137.2,128.8,127.4,126.4,126.0,125.2,122.3,121.7$, 119.5, 118.9, 115.7, 109.4, 43.5, 39.6, 38.6, 34.4, 32.8, 31.50, 31.46 ppm; HRMS (ESI-TOF) m/z: [M+Na] Calcd. For $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{ONa}^{+} 448.2359$ found 448.2379.
N -(3-(3-fluorophenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide (4e):

 Compound $\mathbf{4 e}$ was synthesized according to GP-2 as pale yellow liquid, 63% yield (61 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.89-$ $7.85(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{s}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.60(\mathrm{~m}$, $1 \mathrm{H}), 3.25-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,162.9(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 149.8,147.8,142.9(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 137.6,137.5$, $129.7(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 127.2,126.6,126.2,124.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.5,121.8$, $119.4,119.1,116.1(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 114.9,113.0(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 109.5,43.7$, 39.7, 38.9, $32.8 \mathrm{ppm} ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta-114.0 \mathrm{ppm}$; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}^{+} 388.1820$ found 388.1834.N-(3-(4-fluorophenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide (4f):
Compound 4 f was synthesized according to GP-2 as brown liquid, 61% yield (59 $\mathrm{mg})$; Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 3 \mathrm{H}), 3.94-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,161.5(\mathrm{~d}, J=243.5 \mathrm{~Hz}), 149.9,147.9,137.6$, $137.5,135.9(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 127.2,126.6,126.2,122.4$, $121.8,119.4,119.0,115.0(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 114.9,109.5,43.6,39.2,39.1,32.8$ ppm; ${ }^{19}$ F NMR (471 MHz, CDC13) $\delta-117.5 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{ONa}^{+} 410.1639$ found 410.1658.

$4 g$

4h

4h'

N-(3-(4-chlorophenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide (4g):
Compound $\mathbf{4 g}$ was synthesized according to GP-2 as yellow sticky liquid, 63\% yield (64 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ $(\mathrm{s}, 1 \mathrm{H}), 3.93-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.16(\mathrm{~m}$, $1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.3, 149.9, 147.9, 138.7, 137.6, 137.5, 131.8, 130.5, 128.4, 127.2, 126.6, 126.2, 122.4, 121.8, 119.4, 119.1, 114.9, 109.5, 43.7, 39.2, 39.0, 32.9 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. For $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{ONa}^{+} 426.1344$ found 426.1351 .
N-(3-(4-ethoxyphenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide (4h): Compound $\mathbf{4 h}$ was synthesized according to GP-2 as yellow oil, 88% yield (91 mg); Eluent: $\mathbf{2 0 - 3 0 \%}$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97$ $(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.17-$ $3.12(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,157.3,150.1,148.0,137.4,137.3,132.2,130.1,127.3$, $126.5,126.0,122.2,121.7,119.5,118.9,115.4,114.3,109.4,63.4,43.4,39.1$ $(2 \times C), 32.8,15.0 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$ 414.2176 found 414.2179 .

N-(3-(4-ethoxyphenyl)-2-(1-methyl-1H-indol-3-yl)propyl)isoquinoline-1-

 carboxamide (4h'): Compound 4h' was synthesized according to GP-2 as yellow oil, 85% yield (99 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.57$ $(\mathrm{m}, 5 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.85-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.93(\mathrm{~m}$, $2 \mathrm{H}), 1.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,157.2$, $148.5,140.2,137.3(2 \times C), 132.1,130.4,130.1,128.5,127.9,127.2,126.9,126.8$, $126.5,124.1,121.6,119.4,118.9,115.4,114.2,109.4,63.3,43.4,39.1,39.0,32.8$, 14.9 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 464.2333$ found 464.2337.
$4 i$
\boldsymbol{N}-(2-(1-methyl-1H-indol-3-yl)-3-(4-(methylthio)phenyl)propyl)picolinamide (4i): Compound $4 \mathbf{i}$ was synthesized according to GP-2 as yellow sticky liquid, 61% yield (63 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.43-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.78$ $(\mathrm{m}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,150.0,148.1,137.5,137.4,137.3$, 135.6, 129.7, 127.3, 127.0, 126.6, 126.1, 122.2, 121.8, 119.5, 119.0, 115.2, 109.5, 43.6, 39.4, 39.0, 32.9, 16.3 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{OS}^{+} 416.1791$ found 416.1798 .

\boldsymbol{N}-(3-([1,1'-biphenyl]-4-yl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide

 $\mathbf{(4 j} \mathbf{j}$: Compound $\mathbf{4} \mathbf{j}$ was synthesized according to GP-2 as brown oil, 78% yield (87 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$

4j

4k $8.39(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.35-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.80$ $(\mathrm{m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.09(\mathrm{~m}$, 1H) $\mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,150.1,148.1,141.2,139.4,139.0$, $137.5,137.3,129.6,128.8(2 \times \mathrm{C}), 127.3,127.09,127.07,126.6,126.1,122.2$, 121.8, 119.5, 119.0, 115.4, 109.5, 43.6, 39.6, 38.9, 32.9 ppm; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 446.2227$ found 446.2233 .

N-(3-(4-(allyloxy)phenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide

(4k): Compound $\mathbf{4 k}$ was synthesized according to GP-2 as brown sticky liquid, 75% yield (80 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.84-$ $7.80(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 H), 6.12-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.82$ $(\mathrm{m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}$, 1H) $\mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,157.0,150.1,148.0,137.4,137.3$, $133.6,132.5,130.1,127.3,126.5,126.0,122.2,121.7,119.5,118.9,117.5,115.4$, 114.6, 109.4, 68.9, 43.4, $39.1(2 \times C), 32.8 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 426.2176$ found 426.2177 .

4I

4m

4n
\boldsymbol{N}-(3-(4-(benzyloxy)phenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide (41): Compound 41 was synthesized according to GP-2 as brown oil, 79% yield (94 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.45(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H})$, $3.91-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.09$ - $3.03(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,157.3,150.1,148.1$, $137.4,137.34,137.30,132.6,130.2,128.7,128.0,127.6,127.3,126.5,126.0$, $122.2,121.7,119.5,119.0,115.4,114.7,109.5,70.1,43.4,39.1(2 \times \mathrm{C}), 32.8 \mathrm{ppm} ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 476.2333$ found 476.2337.

\boldsymbol{N}-(3-(3,5-dimethylphenyl)-2-(1-methyl-1H-indol-3-yl)propyl)picolinamide

($\mathbf{4 m}$): Compound $\mathbf{4 m}$ was synthesized according to GP-2 as yellow oil, 70% yield (70 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.30(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, $6.72-6.69(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.08$ - $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.3,150.0,147.9,140.2,137.8,137.4,137.3,127.8,127.4,127.0$, $126.3,126.0,122.2,121.7,119.5,118.9,115.8,109.4,43.5,40.3,38.7,32.8,21.4$ ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 398.2227$ found 398.2232.
\boldsymbol{N}-(2-(1-methyl-1H-indol-3-yl)-3-(naphthalen-2-yl)propyl)picolinamide (4n): Compound $\mathbf{4 n}$ was synthesized according to GP-2 as brown sticky liquid, 72% yield (76 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.82-$ $7.77(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31$ $(\mathrm{m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.89(\mathrm{~m}$, $2 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,149.9,147.9,137.9,137.5,137.4,133.6,132.2,127.9$, $127.8,127.6$ (2C), $127.5,127.3,126.6,126.0,125.9,125.2,122.2,121.8,119.5$, 119.0, 115.4, 109.5, 43.8, 40.3, 38.9, 32.8 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. For $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{ONa}^{+} 442.1890$ found 442.1907.

40

$4 p$

$4 q$

4-(2-(1-methyl-1H-indol-3-yl)-3-(picolinamido)propyl)benzyl dodecanoate (40): Compound 40 was synthesized according to GP-2 as yellow oil, 73% yield (106 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.34-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.12-$ $7.00(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.54-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.17(\mathrm{~m}, 16 \mathrm{H}), 0.80(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,164.4,150.0,148.1,140.3,137.4,137.3,133.8,129.3$, $128.3,127.3,126.5,126.1,122.2,121.8,119.4,119.0,115.2,109.5,66.1,43.5$, $39.6,38.8,34.5,32.8,32.0,29.7$ ($2 \times$ C), 29.6, 29.45, 29.36, 29.3, 25.1, 22.8, 14.2 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+} 604.3510$ found 604.3527.

4-(2-(1-methyl-1H-indol-3-yl)-3-(picolinamido)propyl)benzyl palmitate (4p):

 Compound $\mathbf{4 p}$ was synthesized according to GP-2 as yellow oil, 70% yield (112 mg); Eluent: $\mathbf{1 5 - 2 5 \%}$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33$ $(\mathrm{d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.01(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$, $4.95(\mathrm{~s}, 2 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.21-$ $1.18(\mathrm{~m}, 24 \mathrm{H}), 0.80(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9$, $164.4,150.0,148.1,140.3,137.4,137.3,133.8,129.4,128.3,127.3,126.5,126.1$, $122.2,121.8,119.4,119.0,115.2,109.5,66.1,43.5,39.6,38.8,34.5,32.9,32.0$, $29.82(3 \times \mathrm{C}), 29.78(2 \times \mathrm{C}), 29.7,29.6,29.5,29.4,29.3,25.1,22.8,14.3 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+} 660.4136$ found 660.4156.4-(2-(1-methyl-1H-indol-3-yl)-3-(picolinamido)propyl)benzyl 2-(11-oxo-6,11dihydrodibenzo $[b, e]$ oxepin-2-yl)acetate $(\mathbf{4 q})$: Compound $\mathbf{4 q}$ was synthesized according to GP-2 as yellow sticky liquid, 86% yield (140 mg); Eluent: 20-30\% ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}$,

2H), $3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.0,171.4,164.2,160.6,149.8,147.8,140.6,140.5,137.6$, 137.4, 136.5, 135.6, 133.4, 132.9, 132.6, 129.6, 129.38, 129.36, 128.4, 127.9, 127.8, 127.2, 126.6, 126.2, 125.2, 122.4, 121.8, 121.2, 119.4, 119.0, 115.1, 109.5, 73.7, 66.8, 43.6, 40.3, 39.6, 38.8, 32.9 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+} 650.2649$ found 650.2660 .

4-(2-(1-methyl-1H-indol-3-yl)-3-(picolinamido)propyl)benzyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (4r): Compound $\mathbf{4 r}$ was synthesized according to GP-2 as yellow sticky liquid, 80% yield (126 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34$ $8.32(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 5 \mathrm{H})$, $6.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$ $(\mathrm{s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.12$ $-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.63(\mathrm{~m}$, 4H), 1.14 (s, 6 H) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,164.4,157.0,150.0$, 148.0, 140.2, 137.4, 137.3, 136.5, 134.0, 130.4, 129.3, 127.9, 127.3, 126.5, 126.1, 123.7, 122.2, 121.8, 120.7, 119.4, 119.0, 115.2, 112.0, 109.5, 68.0, 66.1, 43.5, 42.2, 39.6, 38.9, 37.2, 32.8, 25.3, 25.2, 21.5, 15.9 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}^{+} 654.3302$ found 654.3324 .

4-(2-(1-methyl-1H-indol-3-yl)-3-(picolinamido)propyl)benzyl 2-(4-isobutylphenyl)propanoate ($\mathbf{4 s}$): Compound $\mathbf{4 s}$ was synthesized according to GP-2 as brown liquid, 73% yield (107 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96$ (s,
 2 H), $7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.17$ $-7.10(\mathrm{~m}, 6 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 14 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 4.99-4.88(\mathrm{~m}, 4 \mathrm{H}), 3.78-$ $3.70(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.64(\mathrm{~m}, 8 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.01$ $-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 0.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7(2 \times \mathrm{C})$, $164.4(2 \times C), 150.0(2 \times C), 148.1(2 \times C), 140.6(2 \times C), 140.2(2 \times C), 137.8(2 \times C)$, $137.4(2 \times \mathrm{C}), 137.3(2 \times \mathrm{C}), 133.8(2 \times \mathrm{C}), 129.4(2 \times \mathrm{C}), 129.3(2 \times \mathrm{C}), 127.9(2 \times \mathrm{C})$, $127.3(2 \times \mathrm{C}), 127.2(2 \times \mathrm{C}), 126.5(2 \times \mathrm{C}), 126.1(2 \times \mathrm{C}), 122.2(2 \times \mathrm{C}), 121.8(2 \times \mathrm{C})$, $119.4(2 \times \mathrm{C}), 119.0(2 \times \mathrm{C}), 115.2(2 \times \mathrm{C}), 109.5(2 \times \mathrm{C}), 66.3(2 \times \mathrm{C}), 45.2(2 \times \mathrm{C})$, $45.1(2 \times \mathrm{C}), 43.5(2 \times \mathrm{C}), 39.6(2 \times \mathrm{C}), 38.9,38.8,32.8(2 \times \mathrm{C}), 30.3(2 \times \mathrm{C}), 22.5$
$(2 \times C), 18.6(2 \times C) \mathrm{ppm} ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+} 610.3040$ found 610.3059 .

4-(2-(1-methyl-1H-indol-3-yl)-3-(picolinamido)propyl)benzyl
(2S)-2-(6-methoxynaphthalen-2-yl)propanoate (4t): Compound $4 \mathbf{t}$ was synthesized according to GP-2 as yellow sticky liquid, 75% yield (115 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$,

4t $d r=1: 1$

4u $8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}$, $8 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.04-$ $6.99(\mathrm{~m}, 14 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 5.00-4.87(\mathrm{~m}, 4 \mathrm{H}), 3.82-3.78(\mathrm{~m}, 8 \mathrm{H}), 3.74-3.65$ $(\mathrm{m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.94(\mathrm{~m}$, $2 \mathrm{H}), 1.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6(2 \times \mathrm{C})$, $164.4(2 \times \mathrm{C}), 157.7(2 \times \mathrm{C}), 150.0(2 \times \mathrm{C}), 148.0(2 \times \mathrm{C}), 140.2(2 \times \mathrm{C}), 137.4(2 \times \mathrm{C})$, $137.3(2 \times \mathrm{C}), 135.7(2 \times \mathrm{C}), 133.7(2 \times \mathrm{C}), 133.6(2 \times \mathrm{C}), 129.4(2 \times \mathrm{C}), 129.2(2 \times \mathrm{C})$, $129.0(4 \times \mathrm{C}), 128.1(2 \times \mathrm{C}), 127.2(2 \times \mathrm{C}), 126.5(2 \times \mathrm{C}), 126.4(4 \times \mathrm{C}), 126.1(2 \times \mathrm{C})$, $122.2(2 \times \mathrm{C}), 121.7(2 \times \mathrm{C}), 119.4(2 \times \mathrm{C}), 119.02(2 \times \mathrm{C}), 118.95(2 \times \mathrm{C}), 115.1(2 \times \mathrm{C})$, $109.5(2 \times \mathrm{C}), 105.6(2 \times \mathrm{C}), 66.5(2 \times \mathrm{C}), 55.4(2 \times \mathrm{C}), 45.5(2 \times \mathrm{C}), 43.5(2 \times \mathrm{C}), 39.5$ $(2 \times$ C) , 38.81, 38.76, $32.8(2 \times C), 18.6(2 \times C) \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+} 612.2857$ found 612.2860 .

4-(2-(1-methyl-1H-indol-3-yl)-3-(picolinamido)propyl)benzyl 2-propylpenta-

 noate ($\mathbf{4 u}$): Compound $\mathbf{4 u}$ was synthesized according to GP-2 as yellow oil, 82% yield (108 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.80-$ $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.98$ $(\mathrm{m}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.23-$ $1.14(\mathrm{~m}, 4 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6$, $164.4,150.0,148.0,140.2,137.4,137.3,134.0,129.3,128.1,127.3,126.5,126.1$, $122.2,121.8,119.4,119.0,115.2,109.5,65.9,45.4,43.5,39.6,38.9,34.7,32.8$, 20.7, $14.1 \mathrm{ppm} ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+}$ 548.2884 found 548.2901.

5a

5b

N -(2-(1,4-dimethyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5a):

Compound 5a was synthesized according to GP-2 as brown oil, 73\% yield (73 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43$ $-8.42(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.86$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.69(\mathrm{~m}, 5 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 1 \mathrm{H})$, $2.94-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,150.1,148.0,137.5,137.3,136.8,135.6,131.0,129.1(2 \times C), 126.2$, $126.1,126.0,122.2,121.6,121.1,117.0,107.4,43.9,41.3,38.5,33.0,21.1(2 \times \mathrm{C})$ ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 398.2227$ found 398.2239.

\boldsymbol{N}-(2-(4-methoxy-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide

(5b): Compound $\mathbf{5 b}$ was synthesized according to GP-2 as yellow liquid, 75% yield (78 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.35$ $-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.77(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,154.7,150.3,147.9,139.0,137.7,137.2,135.3$, $129.2,129.0,125.8,124.9,122.4,122.2,117.5,116.7,102.8,99.2,55.2,43.9$, 40.5, 39.0, 33.0, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{+} 436.1995$ found 436.2003.

\boldsymbol{N}-(2-(5-methoxy-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide

(5c): Compound 5c was synthesized according to GP-2 as yellow oil, 82% yield (85 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.41(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.90-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.49$ $(\mathrm{m}, 1 \mathrm{H}), 3.16-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,153.7,150.1,148.0,137.3,137.2,135.5,132.7,129.1$, $129.0,127.7,126.9,126.0,122.2,115.1,111.9,110.1,101.3,56.0,43.7,39.5$, 38.8, 33.0, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{+} 436.1995$ found 436.2012.

5d

5e

5f
\boldsymbol{N}-(2-(5-fluoro-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5d): Compound 5d was synthesized according to GP-2 as yellow oil, 65\% yield (65 mg); Eluent: $\mathbf{2 0 - 3 0 \%}$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43$ $-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=7.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01$ $(\mathrm{m}, 4 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.45(\mathrm{~m}$, $1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,157.6(\mathrm{~d}, J=233.9 \mathrm{~Hz}), 150.0,148.1,137.3,136.9,135.6$, $134.0,129.1,129.0,128.0,127.6(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 126.1,122.2,115.5(\mathrm{~d}, J=4.6$ $\mathrm{Hz}), 110.1(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 109.9(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 104.4(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 43.6$, 39.4, 38.9, 33.1, $21.1 \mathrm{ppm} ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-125.5 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{FN}_{3} \mathrm{O}^{+} 402.1976$ found 402.1985 .
N-(2-(5-chloro-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5e): Compound 5e was synthesized according to GP-2 as brown oil, 68% yield (71 $\mathrm{mg})$; Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 5 \mathrm{H})$, $6.87(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.06-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.3,149.9,147.9,137.8,137.5,136.9,135.6,129.1,129.0,127.8,127.1,126.1$, 126.0, 122.3, 120.4, 119.6, 115.9, 109.5, 43.8, 39.5, 38.8, 32.9, 21.1 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{ONa}^{+} 440.1500$ found 440.1519 .
\boldsymbol{N}-(2-(5-bromo-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5f): Compound $\mathbf{5 f}$ was synthesized according to GP-2 as brown oil, 65% yield (75 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42$ $-8.40(\mathrm{~m}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.68$ $(\mathrm{s}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.00$ $(\mathrm{m}, 4 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.51-3.43(\mathrm{~m}$, 1H), 3.09-2.97(m, 2H), $2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4$, $149.9,148.1,137.3,136.8,136.0,135.7,129.13,129.08,129.0,127.6,126.1$, 124.5, 122.2, 122.0, 115.3, 112.4, 110.9, 43.7, 39.6, 38.8, 33.0, 21.1 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}^{+} 462.1176$ found 462.1181 .

5 g

5h

\boldsymbol{N}-(2-(6-methoxy-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide

$\mathbf{(5 g})$: Compound $\mathbf{5 g}$ was synthesized according to GP-2 as brown oil, 85% yield (88 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.43-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.76(\mathrm{~m}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.55-$ $3.48(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.3,156.5,150.1,148.0,138.1,137.3,137.2,135.5$, $129.0(2 \times \mathrm{C}), 126.0,125.3,122.2,121.7,120.1,115.6,108.8,93.1,55.8,43.6$, 39.6, 39.0, 32.8, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 414.2176$ found 414.2187 .
\boldsymbol{N}-(2-(6-fluoro-1-methyl-1 H -indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5h): Compound $\mathbf{5 h}$ was synthesized according to GP-2 as yellow oil, 66% yield (66 mg); Eluent: $\mathbf{2 0 - 3 0 \%}$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42$ $(\mathrm{s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56$ $(\mathrm{m}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.4, $160.0(\mathrm{~d}, ~ J=237.4 \mathrm{~Hz}), 150.0,148.0,137.3(2 \times \mathrm{C}), 137.0,135.6,129.1$, $129.0,126.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 126.1,123.9,122.2,120.2(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 115.9$, $107.6(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 95.8(\mathrm{~d}, J=26.0 \mathrm{~Hz}), 43.7,39.5,38.8,32.9,21.1 \mathrm{ppm} ;{ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl $_{3}$) δ-121.0 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{FN}_{3} \mathrm{O}^{+} 402.1976$ found 402.1983 .
\boldsymbol{N}-(2-(6-chloro-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5i): Compound $\mathbf{5 i}$ was synthesized according to GP-2 as brown oil, 63% yield (66 mg); Eluent: 20-30\% ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41$ (s, $1 \mathrm{H}), 8.15(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.84-$ $3.71(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,149.9,148.1,137.8,137.3,136.9$, $135.6,129.1,129.0,127.8,127.1,126.1,125.9,122.2,120.4,119.6,115.8,109.5$, 43.7, 39.5, 38.8, 32.9, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{ONa}^{+} 440.1500$ found 440.1506 .

5j

5I
\boldsymbol{N}-(2-(6-bromo-1-methyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5j): Compound $\mathbf{5 j}$ was synthesized according to GP-2 as brown oil, 62% yield (72 mg); Eluent: $\mathbf{2 0 - 3 0 \%}$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.56$ - $3.49(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.4,150.0,148.0,138.2,137.4,136.9,135.6,129.1,129.0,127.1$, $126.3,126.1,122.3,122.2,120.7,115.9,115.4,112.5,43.7,39.5,38.8,32.9,21.1$ ppm; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}^{+} 462.1176$ found 462.1185.
\boldsymbol{N}-(2-(1,7-dimethyl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide
Compound $\mathbf{5 k}$ was synthesized according to GP-2 as brown oil, 81% yield (81 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43$ $(\mathrm{d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.98(\mathrm{~m}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.61$ - $3.54(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,150.0,148.0,137.2,137.1,136.1$, $135.5,129.0(2 \times C), 128.4,128.0,126.0,124.4,122.2,121.5,119.2,117.4,115.1$, 43.2, $39.4,38.5,36.7,21.1,19.9 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 398.2227$ found 398.2234.

(E)-N-(2-(1-methyl-5-styryl-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide

(51): Compound $\mathbf{5 1}$ was synthesized according to GP-2 as yellow oil, 84% yield (102 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.17$ $-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,150.0,148.1,138.2,137.3,137.2$, $137.1,135.6,130.2,129.09,129.06,128.7,128.6,127.8,127.00,126.97,126.3$, $126.0,125.9,122.2,120.3,118.5,116.2,109.7,43.9,39.6,38.9,32.9,21.1 \mathrm{ppm} ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}^{+} 486.2540$ found 486.2549.

5m

5n

50 Compound $\mathbf{5 m}$ was synthesized according to GP-2 as brown oil, 81% yield (93 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24$ - 8.23 (m, 1H), $8.08-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H})$, $7.00-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.65(\mathrm{~m}$, $4 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,149.9,148.0,142.6,137.2,137.0$, $136.8,135.5,132.5,129.1,129.0,128.7,128.0,127.4,127.0,126.3,126.0,122.2$, 121.5, 118.0, 116.1, 109.6, 43.9, 39.7, 38.8, 32.9, 21.1 ppm; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{ONa}^{+} 482.2203$ found 482.2210 .

N-(2-(5-(4-ethylphenyl)-1-methyl-1H-indol-3-yl)-3-(p -

tolyl)propyl)picolinamide ($\mathbf{5 n}$): Compound $\mathbf{5 n}$ was synthesized according to GP2 as yellow oil, 85% yield (104 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (s, 1H), $7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, $3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.17(\mathrm{~m}$, $1 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,150.0,148.0,142.4,140.1$, 137.2, 137.1, 136.8, 135.5, 132.5, 129.1, 129.0, 128.2, 127.9, 127.4, 126.9, 126.0, 122.2, 121.5, 117.9, 116.0, 109.6, 43.8, 39.7, 38.9, 32.9, 28.6, 21.1, 15.8 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{33} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}^{+} 488.2696$ found 488.2705.

N-(2-(5-(4-fluorophenyl)-1-methyl-1H-indol-3-yl)-3-(p-

tolyl)propyl)picolinamide (50): Compound $\mathbf{5 0}$ was synthesized according to GP2 as brown oil, 82% yield (98 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (s, 1H), $7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=8.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.90$ $(\mathrm{m}, 1 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}$, 3H) ppm; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,162.0(\mathrm{~d}, J=244.8 \mathrm{~Hz}$), 149.9, 147.9, 138.8 (d, $J=3.2 \mathrm{~Hz}), 137.3,137.1(2 \times \mathrm{C}), 136.8,135.6,131.5,129.1,129.0$, $128.8(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 128.1,127.0,126.0,122.2,121.3,117.9,115.4(\mathrm{~d}, J=21.3$ Hz), 109.7, 44.0, 39.7, 38.8, 32.9, 21.1 ppm ; ${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -
117.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{ONa}^{+} 500.2109$ found 500.2116 .
N-(2-(1-methyl-5-(4-(trifluoromethyl)phenyl)-1H-indol-3-yl)-3-(ptolyl)propyl)picolinamide (5p): Compound 5p was synthesized according to GP2 as brown oil, 80% yield (106 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$

5p NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.79-$ $7.75(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,149.9,148.0,146.2,137.3,137.2$, 137.0, 135.7, 130.9, $129.1(2 \times \mathrm{C}), 128.3(\mathrm{q}, J=32.8 \mathrm{~Hz}), 127.6,127.5,127.2$, $126.0,125.6(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.6(\mathrm{q}, J=271.7 \mathrm{~Hz}), 122.3,121.3,118.5,116.6$, 109.9, 44.2, 39.7, 38.8, 33.0, $21.1 \mathrm{ppm} ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.2$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}^{+} 528.2257$ found 528.2265.

N-(2-(6-(4-fluorophenyl)-1-methyl-1H-indol-3-yl)-3-(p -

tolyl)propyl)picolinamide (5q): Compound 5q was synthesized according to GP2 as brown oil, 81% yield (97 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ $(\mathrm{s}, 1 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.83(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.30$ (s, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,162.2(\mathrm{~d}, J=245.3 \mathrm{~Hz}), 150.0$, $147.9,138.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 137.9,137.3,137.0,135.5,134.3,129.04,129.01$, $128.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 127.3,126.6,126.0,122.2,119.8,118.7,115.6(\mathrm{~d}, J=21.3$ $\mathrm{Hz}), 115.5,107.9,43.6,39.5,38.9,32.8,21.1 \mathrm{ppm} ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.8$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}^{+} 478.2289$ found 478.2287.

5t

N-(2-(1-methyl-6-(p-tolyl)-1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide

(5r): Compound $\mathbf{5 r}$ was synthesized according to GP-2 as yellow oil, 82% yield (97 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.43(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.76$ (m, $2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.63$ $-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,150.0,147.9,139.7,138.0,137.3$, $137.1,136.4,135.5,135.3,129.5,129.0(2 \times C), 127.4,127.1,126.5,126.0,122.2$, 119.7, 118.8, 115.5, 107.8, 43.6, 39.6, 39.0, 32.8, 21.2, 21.1 ppm ; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}^{+} 474.2540$ found 474.2546 .
methyl 4-(1-methyl-3-(1-(picolinamido)-3-(p-tolyl)propan-2-yl)-1H-indol-6yl)benzoate (5 s): Compound 5 s was synthesized according to GP-2 as yellow oil, 86% yield (111 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.08(\mathrm{~m}, 3 \mathrm{H})$, $7.83-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.95$ $(\mathrm{s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.21$ - $3.15(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) $\delta 167.3,164.3,150.0,147.9,147.0,137.9,137.4,137.0,135.6,133.9$, $130.2,129.1,129.0,128.3,127.8,127.4,127.3,126.1,122.3,120.0,118.7,115.7$, 108.3, 52.2, 43.7, 39.5, 39.0, 32.9, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} 518.2438$ found 518.2440.
\boldsymbol{N}-(2-(1-ethyl-1H-indol-3-yl)-3-phenylpropyl)picolinamide (5t): Compound 5t was synthesized according to GP-2 as yellow oil, 68% yield (65 mg); Eluent: 20$30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.8,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 4 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H})$, $3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,150.1,147.9,140.2,137.3,136.5,129.2,128.3,127.4$, $126.05,126.01,124.9,122.2,121.6,119.5,118.9,115.3,109.5,43.2,40.9,39.8$, 39.0, 15.5 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{ONa}^{+}$ 406.1890 found 406.1889 .

5u
\boldsymbol{N}-(2-(1H-indol-3-yl)-3-(p-tolyl)propyl)picolinamide (5u): Compound 5u was synthesized according to GP-2 as yellow oil, 36% yield (33 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.27-8.23(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 4 \mathrm{H}), 3.97-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.28$ $-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.5,150.0,148.1,137.3,137.0,136.7,135.5,129.1,129.0,126.8$, 126.1, 122.2, 122.1, 121.9, 119.45, 119.37, 116.8, 111.4, 43.2, 39.3, 39.0, 21.1 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+} 370.1914$ found 370.1921.

1-methyl-3-(1-(picolinamido)-3-(p-tolyl)propan-2-yl)-1H-indol-5-yl \quad 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (5v): Compound $\mathbf{5 v}$ was synthesized according to GP-2 as yellow oil, 75% yield (119 mg); Eluent: 20-30\% ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.19 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}$, $1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.70$ (m, 2H), $4.05-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.58-$ $3.51(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 177.2,164.4,157.1,150.0,148.1,144.2,137.2,136.9(2 \times \mathrm{C}), 136.6,135.5$, 135.2, 130.4, 129.1, 129.0, 127.6, 126.0, 123.7, 122.1, 120.8, 115.9, 115.7, 112.1, 111.3, 109.8, 68.1, 43.5, 42.4, 39.5, 38.7, 37.3, 33.0, 25.43, 25.35, 21.5, 21.1, 15.9 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}^{+} 654.3302$ found 654.3322. propylpentanoate (5w): Compound $\mathbf{5 w}$ was synthesized according to GP-2 as yellow oil, 86% yield (113 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}$, $1 \mathrm{H}), 7.82(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ $7.05(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.74(\mathrm{~m}, 5 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.15$ $-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.76$ $(\mathrm{m}, 2 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.9,164.4,150.0,148.1,144.1,137.3,136.9,135.6,135.2,129.1$, $129.0,127.59,127.56,126.0,122.2,116.0,115.7,111.3,109.8,45.5,43.4,39.6$, 38.8, 34.9, 33.1, 21.1, 20.9, 14.3 ppm ; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$Calcd. For $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} 526.3064$ found 526.3077.

1-methyl-3-(1-(picolinamido)-3-(p-tolyl)propan-2-yl)-1H-indol-5-yl

dodecanoate ($\mathbf{5 x}$): Compound $\mathbf{5 x}$ was synthesized according to GP-2 as yellow oil, 77% yield (112 mg); Eluent: 20-30\% ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H})$, $7.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 16 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,164.4,150.0,148.1$, $144.0,137.3,137.0,135.6,135.3,129.1(2 \times \mathrm{C}), 127.7,127.5,126.0,122.2,116.0$, 115.7, 111.4, 109.8, 43.4, 39.5, 38.9, 34.6, 33.1, 32.0, 29.8 ($2 \times$ C), 29.6, 29.48, 29.45, 29.4, 25.2, 22.8, 21.1, 14.3 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} 582.3690$ found 582.3699.

1-methyl-3-(1-(picolinamido)-3-(4-(($(2-$

propylpentanoyl)oxy)methyl)phenyl)propan-2-yl)-1 H -indol-
5-yl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (5y):

Compound $\mathbf{5 y}$ was synthesized according to GP-2 as yellow oil, 79% yield (153 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$
NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36-8.34(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~s}$, 2H), 3.93 (s, 2H), $3.78-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.48$

$5 z$
$d r=1.2: 1$

N-(2-(1-methyl-1H-indol-3-yl)-1-phenyl-3-(p -

tolyl)propyl)picolinamide (5z): Compound $\mathbf{5 z}$ was synthesized according to GP-2 as yellow oil, 68% yield (78 mg); Eluent: 20$30 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78$ $-8.72(\mathrm{~m}, 2.20 \mathrm{H}), 8.52-8.44(\mathrm{~m}, 2.20 \mathrm{H}), 8.19-8.16(\mathrm{~m}, 2.19 \mathrm{H})$, $7.81-7.77$ (m, 2.20H), 7.55 (d, $J=8.1 \mathrm{~Hz}, 1.22 \mathrm{H}$), $7.41-7.35$ (m, 2.55H), $7.24-7.17(\mathrm{~m}, 6.32 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 10.42 \mathrm{H}), 7.02$ $-6.86(\mathrm{~m}, 11.27 \mathrm{H}), 6.49(\mathrm{~s}, 1.22 \mathrm{H}), 5.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1.20 \mathrm{H})$, $5.56(\mathrm{dd}, J=9.1,3.9 \mathrm{~Hz}, 1.0 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1.23 \mathrm{H}), 3.82-$ $3.77(\mathrm{~m}, 1.02 \mathrm{H}), 3.76(\mathrm{~s}, 3.00 \mathrm{H}), 3.61(\mathrm{~s}, 3.61 \mathrm{H}), 3.23-3.16(\mathrm{~m}$, $2.02 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 2.38 \mathrm{H}), 2.30(\mathrm{~s}, 3.02 \mathrm{H}), 2.23(\mathrm{~s}, 3.60 \mathrm{H})$ ppm; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,163.6,150.2,150.0$, $148.1,148.0,142.1,140.4,137.5,137.4,137.3(2 \times C), 137.0$, $136.9,135.6,135.2,129.18,129.16,128.9,128.8,128.14(2 \times C)$, 128.08, 127.93, 127.89, 127.86, 127.5, 127.2, $126.9(2 \times \mathrm{C}), 126.2$, $126.1,122.4,122.3,121.5,121.3,120.1(2 \times C), 118.79,118.76$, $113.2,113.0,109.1,108.9,57.2,54.6,46.2,44.2,39.0,37.9,32.9$, 32.7, 21.2, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}^{+} 460.2383$ found 460.2387 .

7a
(E)-N-(2-(1-methyl-1H-indol-3-yl)-5-phenylpent-4-en-1-yl)picolinamide (7a): Compound 7a was synthesized according to GP-3 as yellow oil, 92% yield (91 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}), 6.35(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.11(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,149.9,148.0,137.6,137.33,137.29,131.6,128.6,128.4,127.3,126.9$, $126.2,126.1,126.0,122.2,121.7,119.5,118.9,115.3,109.4,43.9,37.4,37.2,32.8$ ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}^{+} 396.2070$ found 396.2077.
(\boldsymbol{E})- N -(2-(1-methyl-1 H -indol-3-yl)-5-phenylpent-4-en-1-yl)isoquinoline-1carboxamide (7a'): Compound 7a' was synthesized according to GP-3 as brown oil, 90% yield (100 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H})$, $7.65-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.18(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.1,148.5,140.1,137.7,137.44,137.37,131.6,130.6,128.7,128.6$, $128.5,128.0,127.4,127.01,126.98,126.8,126.4,126.2,124.2,121.8,119.6$, 119.0, 115.4, 109.4, 44.1, 37.5, 37.3, 32.9 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 446.2227$ found 446.2231 .

(\boldsymbol{E})- N -(2-(6-fluoro-1-methyl-1H-indol-3-yl)-5-phenylpent-4-en-1-

yl)picolinamide (7b): Compound 7b was synthesized according to GP-3 as yellow oil, 70% yield (72 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ $(\mathrm{d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.23(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.48$ - $3.41(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.5,160.0(\mathrm{~d}, J=237.8 \mathrm{~Hz}), 150.0,148.1,137.6,137.38(\mathrm{~d}, J=11.4 \mathrm{~Hz})$, 137.36, 131.7, 128.50, 128.47, 127.1, 126.4 (d, $J=3.7 \mathrm{~Hz}$), 126.2, 126.1, 124.0, $122.2,120.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 115.8,107.7(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 95.8(\mathrm{~d}, J=26.0 \mathrm{~Hz})$,
44.1, $37.4,37.2,33.0 \mathrm{ppm} ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-120.9 \mathrm{ppm} ; \mathbf{H R M S}$ (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FN}_{3} \mathrm{O}^{+} 414.1976$ found 414.1988.

(E)-N-(2-(6-chloro-1-methyl-1H-indol-3-yl)-5-phenylpent-4-en-1-

yl)picolinamide (7c): Compound $\mathbf{7 c}$ was synthesized according to GP-3 as yellow oil, 73% yield (78 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400

7d

7e $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.22-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28-6.21(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H})$, $2.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,149.9,148.1$, 137.7, 137.6, 137.4, 131.8, 128.5, 128.4, 127.9, 127.1, 126.9, 126.2 ($2 \times$ C), 126.0, 122.2, 120.4, 119.6, 115.8, 109.5, 44.1, 37.4, 37.2, 32.9 ppm; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}^{+} 430.1681$ found 430.1687.

(\boldsymbol{E})- N -(2-(6-methoxy-1-methyl-1H-indol-3-yl)-5-phenylpent-4-en-1-

yl)picolinamide (7d): Compound 7d was synthesized according to GP-3 as brown oil, 84% yield (89 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.25(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.83(\mathrm{~m}, 5 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.40$ $(\mathrm{m}, 1 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,156.5$, $150.0,148.0,138.1,137.6,137.3,131.5,128.7,128.4,126.9,126.1,126.0,125.1$, 122.2, 121.7, 120.1, 115.4, 108.9, 92.9, 55.8, 44.0, 37.5, 37.2, 32.8 ppm; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 426.2176$ found 426.2181 .

(E)-N-(2-(1,2-dimethyl-1H-indol-3-yl)-5-phenylpent-4-en-1-yl)picolinamide

(7e): Compound 7e was synthesized according to GP-3 as yellow oil, 96% yield (98 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.27(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13-6.97(\mathrm{~m}, 7 \mathrm{H}), 6.30(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.01(\mathrm{~m}, 1 \mathrm{H})$, $4.13-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.83$ - $2.72(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,150.0$, $148.0,137.7,137.24,137.20,134.3,131.1,129.1,128.4,126.8,126.3,126.1$, $126.0,122.1,120.5,119.3,118.8,110.4,108.9,43.8,38.7,36.6,29.6,10.6 \mathrm{ppm} ;$

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 410.2227$ found 410.2238 .

(E)-N-(2-(7-methoxy-1-methyl-1H-indol-3-yl)-5-phenylpent-4-en-1-

yl)picolinamide (7f): Compound $\mathbf{7 f}$ was synthesized according to GP-3 as brown

79 oil, 88% yield (94 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88$ (m, 1H), $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-$ $6.12(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H})$, 2.71 - 2.59 (m, 2H) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,150.1,148.1$, 148.0, 137.7, 137.3, 131.6, 129.7, 128.8, 128.5, 127.4, 127.1, 127.0, 126.2, 126.1, 122.3, 119.5, 115.3, 112.3, 102.5, 55.5, 43.9, 37.4, 37.2, 36.6 ppm; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 426.2176$ found 426.2183 .
(E)-1-methyl-3-(5-phenyl-1-(picolinamido)pent-4-en-2-yl)-1H-indol-5-yl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (7g): Compound 7g was synthesized according to GP-3 as yellow oil, 81% yield (130 mg); Eluent: 20-30\% ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.09$ - 8.04 (m, 2H), $7.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.18-$ 7.15 (m, 5H), $7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.89$ (m, 2H), 6.82 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.09(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H})$, $3.82-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,164.5,157.1,150.0,148.1,144.3,137.6,137.3,136.6$, $135.2,131.8,130.4,128.5(2 \times \mathrm{C}), 127.6,127.4,127.0,126.2,126.1,123.7,122.2$, $120.8,116.0,115.6,112.1,111.3,109.8,68.0,43.9,42.4,37.4,37.3$ ($2 \times$ C), 33.1, 25.42, 25.35, 21.5, 16.0 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{41} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+} 644.3483$ found 644.3476 .
(\boldsymbol{E})- N -(2-(1-methyl-1H-indol-3-yl)-1,5-diphenylpent-4-en-1-yl)picolinamide (7h): Compound $\mathbf{7 h}$ was synthesized according to GP-3 as yellow oil, 84% yield (99 mg); Eluent: $20-30 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.72-8.66(\mathrm{~m}, 2.20 \mathrm{H}), 8.37-8.30(\mathrm{~m}, 2.21 \mathrm{H}), 8.08(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2.21 \mathrm{H}), 7.72$ -7.67 (m, 2.29H), 7.47 (d, $J=8.0 \mathrm{~Hz}, 1.40 \mathrm{H}$), $7.29-7.25$ (m, 2.22H), $7.18-7.16$ (m, 4.45H), $7.15-7.11$ (m, 9.34H), $7.10-7.05(\mathrm{~m}, 12.98 \mathrm{H}), 6.93(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1.51 \mathrm{H}), 6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.01 \mathrm{H}), 6.81(\mathrm{~s}, 1.00 \mathrm{H}), 6.52(\mathrm{~s}, 1.20 \mathrm{H}), 6.31(\mathrm{~d}, J=$
$16.0 \mathrm{~Hz}, 2.42 \mathrm{H}), 6.17-6.05(\mathrm{~m}, 2.28 \mathrm{H}), 5.62-5.55(\mathrm{~m}, 2.22 \mathrm{H}), 3.66(\mathrm{~s}, 3.04 \mathrm{H})$, $3.63-3.60(\mathrm{~m}, 2.22 \mathrm{H}), 3.56(\mathrm{~s}, 3.62 \mathrm{H}) ., 2.80-2.71(\mathrm{~m}, 2.02 \mathrm{H}), 2.67-2.59(\mathrm{~m}$, 2.42 H) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,163.6,150.1,149.9,148.11$, $148.09,141.6,140.5,137.7(2 \times C), 137.3(2 \times C), 137.02,136.99,131.9,131.5$, $129.0,128.7,128.5,128.4,128.2,128.1,128.0,127.9,127.8,127.7,127.3,127.2$, $127.14,127.10,127.0,126.9,126.21,126.16(3 \times \mathrm{C}), 122.4(2 \times \mathrm{C}), 121.54,121.48$, $119.9(2 \times \mathrm{C}), 118.88,118.86,113.3,113.1,109.2,109.0,57.2,56.0,44.0,42.9$, 36.6, 36.1, 32.9, 32.8 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}^{+} 472.2383$ found 472.2388 .

N-(2-(6-methoxy-1-methyl-1H-indol-3-yl)-5-(triisopropylsilyl)pent-4-yn-1-

$7 i$
yl)picolinamide (7i): Compound $\mathbf{7 i}$ was synthesized according to GP-3 as brown oil, 46% yield (58 mg); Eluent: $10-20 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}$, $2 \mathrm{H}), 3.99-3.87(\mathrm{~m}, 5 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.69(\mathrm{~m}, 2 \mathrm{H})$, $1.06-0.99(\mathrm{~m}, 21 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,156.5,150.0$, $148.1,137.8,137.4,126.1,125.3,122.3,121.9,120.0,114.8,108.9,106.6,93.0$, 82.8, 55.9, 43.3, 35.8, 32.8, 24.6, 18.7, 11.4 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}^{+} 504.3041$ found 504.3051
\boldsymbol{N}-(2,2-bis(1-methyl-1H-indol-3-yl)propyl)picolinamide (8a): Compound 8a

8a was synthesized according to GP-4 as yellow oil, 92% yield (97 mg); Eluent: 30$40 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$, 1.92 (s, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 164.5,150.1,148.0,137.9$, $137.4,126.8,126.7,126.0,122.4,121.5,121.3,119.9,118.6,109.3,48.1,39.9$, 32.9, 26.3 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$. For $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{ONa}^{+}$ 445.1999 found 445.2020.

8b

8c

8d
N-(2,2-bis(1,5-dimethyl-1H-indol-3-yl)propyl)picolinamide (8b): Compound 8b was synthesized according to GP-4 as black oil, 86% yield (97 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29-8.27(\mathrm{~m}$, $1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H})$, $7.18(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 4.29$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,150.2,148.1,137.2,136.5,127.7,127.4,126.8,125.9$, 123.0, 122.3, 121.4, 119.2, 109.1, 47.9, 40.1, 32.9, 26.0, 21.7 ppm ; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{ONa}^{+} 473.2312$ found 473.2317 .
N-(2,2-bis(1,7-dimethyl-1H-indol-3-yl)propyl)picolinamide (8c): Compound 8c was synthesized according to GP-4 as black oil, 82% yield (92 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42-8.40(\mathrm{~m}, 1 \mathrm{H}), 8.23-$ $8.21(\mathrm{~m}, 1 \mathrm{H}), 8.05-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 6 \mathrm{H}), 2.77(\mathrm{~s}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.5,150.2,148.0,137.2,136.7,128.5,127.8,125.9,124.1,122.3,121.1$, $119.5,119.4,118.8,47.8,39.6,36.9,26.0,19.9 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{ONa}^{+} 473.2312$ found 473.2319 .
\boldsymbol{N}-(2,2-bis(6-methoxy-1-methyl-1H-indol-3-yl)propyl)picolinamide
(8d):
Compound $\mathbf{8 d}$ was synthesized according to GP-4 as black oil, 87% yield (105 mg); Eluent: 30-40\% ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39-8.37$ $(\mathrm{m}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.34-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ $(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 1.86(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,153.1,150.1,148.0,137.2,133.4$, $127.3,127.0,125.9,122.3,119.1,111.2,109.8,103.9,55.8,48.0,39.6,32.9,26.0$ ppm; HRMS (ESI-TOF) m/z: [M+Na] Calcd. For $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}^{+} 505.2210$ found 505.2215.

8 e

$8 f$

Compound 8e was synthesized according to GP-4 as black oil, 92% yield (111 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 6 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,150.1,148.1,147.8,137.2,128.9,127.9,127.6$, 125.9, 122.3, 119.7, 118.9, 114.3, 102.1, 55.4, 47.7, 39.6, 36.7, 26.0 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 483.2391$ found 483.2396.
\boldsymbol{N}-(2,2-bis(5-fluoro-1-methyl-1H-indol-3-yl)propyl)picolinamide (8f): Compound $\mathbf{8 f}$ was synthesized according to GP-4 as yellow oil, 76% yield (87 mg); Eluent: 30$40 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.19-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 1.84$ ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,157.0(\mathrm{~d}, J=232.9 \mathrm{~Hz}), 149.9$, $148.1,137.3,134.5,127.8,126.8(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 126.1,122.3,119.3(\mathrm{~d}, J=4.8 \mathrm{~Hz})$, $109.9,109.8(\mathrm{~d}, J=17.7 \mathrm{~Hz}), 105.9(\mathrm{~d}, J=23.9 \mathrm{~Hz}), 48.2,39.3,33.2,26.2 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{ONa}^{+} 481.1810$ found 481.1812.

\boldsymbol{N}-(2,2-bis(6-fluoro-1-methyl-1H-indol-3-yl)propyl)picolinamide

(8g):

Compound 8 g was synthesized according to GP-4 as yellow oil, 75% yield (86 mg);

8 g Eluent: $30-40 \%$ ethyl acetate in hexane, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.33(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=9.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61$ $-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5,159.7(\mathrm{~d}, J=237.9 \mathrm{~Hz}), 150.0,148.1,137.9(\mathrm{~d}, J=12.0$ $\mathrm{Hz}), 137.3,126.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 126.1,123.2,122.3,122.0(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 120.0$, $107.3(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 95.6(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 48.2,39.6,33.0,26.5 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{ONa}^{+} 481.1810$ found 481.1815 .

\boldsymbol{N}-(2,2-bis(6-chloro-1-methyl-1H-indol-3-yl)propyl)picolinamide
(8h):
Compound $\mathbf{8 h}$ was synthesized according to GP-4 as black oil, 72% yield (88 mg); Eluent: $30-40 \%$ ethyl acetate in hexane, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, \mathrm{~J}=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J$ $=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.69$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 164.5,149.9,148.1,138.2,137.3,127.6,127.0,126.1$, 125.1, 122.3, 122.0, 119.9, 119.3, 109.4, 48.2, 39.6, 33.0, 26.4 ppm; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{ONa}^{+} 513.1219$ found 513.1228.

N -(2,2-bis(6-bromo-1-methyl-1H-indol-3-yl)propyl)picolinamide
Compound $\mathbf{8 i}$ was synthesized according to GP-4 as brown solid, 79% yield (115
 mg); Eluent: $30-40 \%$ ethyl acetate in hexane, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}$, $1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.37$ $-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, 2H), 3.75 (s, 6H), 1.83 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,149.9$, $148.1,138.6,137.3,127.0,126.1,125.4,122.3(2 \times \mathrm{C}), 121.9,119.9,115.3,112.4$, 48.2, 39.6, 33.0, 26.4 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{ONa}^{+} 601.0209$ found 601.0208.
\boldsymbol{N}-(2,2-bis(5-bromo-1-methyl-1H-indol-3-yl)propyl)picolinamide
(8 j):
Compound $\mathbf{8 j}$ was synthesized according to GP-4 as brown solid, 78% yield (113 mg); Eluent: $30-40 \%$ ethyl acetate in hexane, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=7.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 1.86(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,150.0,148.2,137.3,136.6,128.2$, $127.7,126.0,124.4,123.5,122.3,119.2,112.2,111.0,48.4,39.6,33.1,26.4 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{ONa}^{+} 601.0209$ found 601.0195.
\boldsymbol{N}-(2,2-bis(1-ethyl-1H-indol-3-yl)propyl)picolinamide (8k): Compound 8k was
 synthesized according to GP-4 as yellow oil, 74% yield (83 mg); Eluent: 30-40\%
 ethyl acetate in hexane, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ $-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5,150.2,148.0,137.3,136.9,126.8,126.0,125.1,122.3,121.5$, 121.2, 119.9, 118.5, 109.4, 47.7, 41.0, 39.9, 26.2, 15.7 ppm; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{ONa}^{+} 473.2312$ found 473.2311 .

81
\boldsymbol{N}-(2,2-bis(1-methyl-6-phenyl-1H-indol-3-yl)propyl)picolinamide
(81):

Compound $\mathbf{8 l}$ was synthesized according to GP-4 as yellow oil, 81% yield (116 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.64$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.6, 150.2, 148.1, 142.5, 138.5, 137.3, 135.0, $128.8,127.5(2 \times C), 126.7,126.1,126.0,122.4,121.7,119.9,118.6,107.9,48.2,40.0$, 33.0, 26.4 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{ONa}^{+}$ 597.2625 found 597.2628.

\boldsymbol{N}-(2,2-bis(1-methyl-6-(p-tolyl)-1H-indol-3-yl)propyl)picolinamide

(8m):

Compound 8m was synthesized according to GP-4 as black oil, 85% yield (128 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26-8.24$ $(\mathrm{m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (d, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 4 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}$, 6 H), $1.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,150.0,148.0,139.6$, $138.5,137.3,136.3,134.9,129.5,127.34,127.27,126.0,125.8,122.3,121.6,119.8$, 118.5, 107.6, 48.1, 39.9, 32.9, 26.3, 21.2 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}^{+} 603.3118$ found 603.3124 .

9

Compound $\mathbf{8 n}$ was synthesized according to GP-4 as yellow oil, 75% yield (115 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, \mathrm{~J}=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.55$ $(\mathrm{m}, 4 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 8 \mathrm{H})$, $4.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 164.6,162.1(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 150.2,148.1,138.6(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 138.5,137.3$, 134.0, 128.9 (d, $J=7.8 \mathrm{~Hz}$), 127.5, 126.1, 126.0, 122.4, 121.7, 119.9, 118.5, 115.6 $(\mathrm{d}, J=21.3 \mathrm{~Hz}), 107.8,48.2,39.9,33.0,26.4 \mathrm{ppm} ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. For $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}^{+} 611.2617$ found 611.2622 .

N -(2,2-bis(5-(4-ethylphenyl)-1-methyl-1H-indol-3-yl)propyl)picolinamide (80): Compound 80 was synthesized according to GP-4 as yellow oil, 87% yield (137 mg); Eluent: $30-40 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, \mathrm{~J}=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.49$ (s, 2H), 7.28 (dd, $J=8.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.07$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 2.54(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 164.6,150.2,148.1,142.1,140.2,137.5,137.1,132.1,128.1,127.43,127.37,127.2$, $125.9,122.3,121.3,120.3,119.9,109.5,48.5,40.1,32.9,28.5,26.5,15.7 \mathrm{ppm} ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. For $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{ONa}^{+} 653.3251$ found 653.3256.

2-(1-methyl-1H-indol-3-yl)-3-(p-tolyl)propan-1-amine (9): Compound 9 was synthesized according to TP-3 as yellow oil, 97% yield (81 mg); ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.03-$ $6.98(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 1 \mathrm{H})$, $2.98-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $137.7,137.4,135.3,129.0,128.9,127.4,126.7,121.6,119.5,118.8,115.8,109.4$, 45.8, 42.3, 39.4, 32.7, 21.1 ppm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+} 279.1856$ found 279.1868.

Compound 10 was synthesized according to TP-4 as yellow oil, 62% yield (75 mg); Eluent: $15-25 \%$ ethyl acetate in hexane; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}$,

10 $d r=4: 1$
 $3.96 \mathrm{H}), 8.17(\mathrm{~s}, 1.01 \mathrm{H}), 8.06-7.99(\mathrm{~m}, 3.92 \mathrm{H}), 7.98-7.90(\mathrm{~m}, 2.99 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1.14 \mathrm{H}), 7.84-7.72(\mathrm{~m}, 5.01 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 4.94 \mathrm{H}), 7.26-7.12(\mathrm{~m}$, $36.03 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 5.18 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 4.26 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 15.45 \mathrm{H})$, $6.82-6.76(\mathrm{~m}, 4.07 \mathrm{H}), 6.77-6.69(\mathrm{~m}, 6.29 \mathrm{H}), 6.63(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 0.93 \mathrm{H}), 6.30-$ $6.17(\mathrm{~m}, 4.99 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 4.0 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1.0 \mathrm{H}), 3.74-3.63(\mathrm{~m}, 4.07 \mathrm{H})$, $3.59(\mathrm{~s}, 12.0 \mathrm{H}), 3.59-3.49(\mathrm{~m}, 4.02 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 1.01 \mathrm{H}), 3.25-3.10(\mathrm{~m}$, 12.10 H), $3.09-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 12 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.33(2 \times \mathrm{C}), 150.02,149.97,147.95(2 \times \mathrm{C}), 139.47,139.16,138.34$, $138.03,137.59,137.46,137.31,137.19,137.13,137.01,136.82,136.55,135.61$, $135.32,135.24,135.19,134.49,129.02,128.93,128.86,128.71,128.68,128.35$, 128.32 , $127.96,127.75,126.49,126.33,125.97,122.23,121.93,121.40,120.46$, $120.15,119.29,119.20,118.81,117.16,113.44,112.32,109.85,109.58,43.87$, 43.48, 40.81, 40.43, 38.89, 38.70, 31.05, 30.48, 21.09, 21.05 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}^{+} 486.2540$ found 486.2544 .

(4-(1,2-dimethyl-1H-indol-3-yl)-2-(1-phenyl-3-(triisopropylsilyl)prop-2-yn-1-

yl)pyrrolidin-1-yl)(pyridin-2-yl)methanone (12): Compound 12 was synthesized according to TP-5 as yellow oil, 65% yield (58 mg); Eluent: $10-20 \%$ ethyl acetate in hexane; ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1.01 \mathrm{H}), 8.40(\mathrm{~s}, 2.46 \mathrm{H})$, $8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.98 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 3.63 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2.97 \mathrm{H}), 7.53$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 6.20 \mathrm{H}), 7.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2.37 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 17.08 \mathrm{H}), 7.19-$ $7.18(\mathrm{~m}, 2.06 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 4.29 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 4.03 \mathrm{H}), 6.92-6.89(\mathrm{~m}$, $3.99 \mathrm{H}), 5.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.00 \mathrm{H}), 5.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3.00 \mathrm{H}), 4.94(\mathrm{~s}, 2.98 \mathrm{H}), 4.30$ $(\mathrm{s}, 1.00 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1.03 \mathrm{H}), 3.72(\mathrm{t}, J=11.0 \mathrm{~Hz}, 3.02 \mathrm{H}), 3.64(\mathrm{t}, J=10.2 \mathrm{~Hz}$, $2.99 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1.44 \mathrm{H}), 3.46(\mathrm{~s}, 2.99 \mathrm{H}), 3.43(\mathrm{~s}, 9.01 \mathrm{H}), 2.64-2.58(\mathrm{~m}$, $1.05 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 3.02 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 4.35 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 4.31 \mathrm{H}), 1.88$ $(\mathrm{s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 9 \mathrm{H}), 1.02-1.01(\mathrm{~m}, 62.98 \mathrm{H}), 1.00-0.98(\mathrm{~m}, 21.05 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,166.4,154.9,154.3,148.2,148.1,138.1(2 \times \mathrm{C})$, $137.6,137.3,137.1,137.0,136.8,133.6,133.4,129.4,129.0,128.7,128.5,127.6$, $127.4,125.6,125.5,125.1,124.8,124.6,123.7,120.7$ ($2 \times$ C), 118.9, 118.8 ($3 \times \mathrm{C}$), $109.6,109.1,109.0,107.9,107.6,85.3,85.1,64.2,64.0,54.4,53.3,43.7,39.4,34.9$, 34.8, 32.1, 31.7, $29.5(2 \times$ C), 18.9, 18.8, 11.5, 11.4, 10.1, 10.0 ppm; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{OSi}^{+} 590.3561$ found 590.3569.

15. NMR spectra of synthesized compounds:

3aa
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$3 a c$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

N

3ac
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

「

3ag
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3ag
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4a
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ํ.
Nペ N
둔

4a
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4a'
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4b
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

-

4b
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

䯣

4c
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$471 \mathrm{MHz}, \mathrm{CDCl}_{3}$

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (pp	m)										

F \ddagger

4f
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4f
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$4 f$
$471 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]

4g
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

49
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{\text { N®N }} \underset{\sim}{\text { No }}$

$\stackrel{i}{\stackrel{i}{i}}$

4h
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4h'
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4h'
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$4 i$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

:

$4 i$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

4j
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4k
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

	$\stackrel{\sim}{n} \stackrel{\sim}{N}$	
	「近	¢ 1

4k
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4I
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

41
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4m
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ペ~~

4m
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4n
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4n $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

40
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4p
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4p
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

4q
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4q
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$4 r$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

No

$\underbrace{\text { º N }}$

4r
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4s
$d r=1: 1$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\begin{array}{llllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

4t
$d r=1: 1$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4u $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

مُ

4u
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5a
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5b $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5c
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5c
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5d
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5e
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

U

5e
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$5 f$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\Gamma}{\bar{i}}$

5f
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5g
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5h
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5h
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

I

$\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

5k
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Abstract

$\stackrel{\text { I }}{\text { U }}$

5k $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

51
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underset{1}{\text { UQ }}$

51
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5n

Gool
 Cl?

5n

50
$471 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5p $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$471 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^1]

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underset{1}{\oplus}$

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100
 $\mathrm{f} 1(\mathrm{ppm})$ | $\mathbf{8 0}$ | $\mathbf{7 0}$ | $\mathbf{6 0}$ | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

l

5t
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$5 u$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5u
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5v
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5w

5y
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$5 z$
$\mathrm{dr}=1.2: 1$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$5 z$
$\mathrm{dr}=1.2: 1$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7a
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7a
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7a'

-

7a'
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

耳~N N
1 い

ill
-

 웅

7d
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7e
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ஸ்
・バって
$\stackrel{\bullet}{-}$

7e
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7 g
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7h
$\mathrm{dr}=1.2: 1$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7h
$\mathrm{dr}=1.2: 1$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

No No

7i
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$7 i$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{\infty}$

8a
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

M

-

8a
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\sim}{\sim}$
$\stackrel{\stackrel{N}{N}}{\stackrel{+}{\infty}}$

\circ
0
i

તペ（ポ

8c

$\underbrace{\substack{\infty \\ \infty \\ \infty}}$

8d
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

8e
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

-

8e
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\underbrace{n}
Nั

$8 f$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 ~~

8g
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\infty}{\dot{\sim}} \stackrel{0}{\dot{J}} \stackrel{\bullet}{\bullet}$
$\stackrel{ \pm}{\stackrel{+}{+}}$

\circ

il

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

8j
$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

8k
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

N
$\stackrel{\sim}{\wedge}$ Nic

8k
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]

犬N゚ Ni
N

[^3]

8n
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\underbrace{n} \underbrace{\sim}$

なりハ
$\underset{\bar{i}}{\bar{i}}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	－10
											pm）										

\%

10
$d r=4: 1$
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

12
$d r=3: 1$
$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^4]
[^0]:

[^1]: | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -1 | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | | | | | | | | | | | | | | |

[^2]: $\begin{array}{llllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130\end{array}$ 1 (ppm)

[^3]: $\begin{array}{lllllllllllllllllllllllllllllllll}100 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ f(\mathrm{ppm})\end{array}$

[^4]:

