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A Code dependencies
Core dependencies include a modi�ed version of Espaloma 0.3.0 release [49] (https://github.com/chodera
lab/espaloma/tree/4c6155b72d00ce0190b3cb551e7e59f0adc33a56), PyTorch 1.1.2 [125], Deep Graph Library
0.9.0 [64], and Open Force Field Toolkit 0.10.6 [126], to re�t and evaluate the espaloma model. A modi�ed
version of Openmmforce�elds 0.11.0 [127] (https://github.com/kntkb/openmmforcefields/tree/6d2c3dcd3
3d9800a32032d28b6b2dca92f348a43) was used to run all the relative alchemical protein-ligand binding free
energy calculations with Perses 0.10.1 infrastructure [110]. Espaloma 0.2.4 release and a modi�ed version
of Espaloma 0.3.0 was used to parametrize small molecules with espaloma-0.2.2 and espaloma-0.3,
respectively. A modi�ed version of Perses 0.10.1 (https://github.com/kntkb/perses/tree/0d069fc1cf31b8cce1a
e7a1482c3fa46bc1382d2) was used to self-consistently parametrize both small molecules and proteins with
espaloma-0.3. A modi�ed version of cinnabar 0.3.0 [128] (https://github.com/kntkb/cinnabar/tree/de7bc
6623fb25d75848aa1c9f538b77cd02a4b01) was used to support arbitrary tick frequency when plotting �G and
��G plots.

B MolSII QCArchive quantum chemical datasets
The Python code used to download the quantum chemical (QC) datasets from the MolSSI QCArchive [80]
is available at https://github.com/choderalab/download-qca-datasets. The QC datasets utilized in this
study were obtained from various work�ows implemented in the QCArchive ecosystem, including Dataset,
OptimizationDataset, and TorsionDriveDataset generated at the B3LYP-D3BJ/DZVP level of theory.
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This level of theory was chosen to maintain consistency with the Open Force Field Consortium [44, 45], and
it is expected to balance computational e�ciency and accuracy in reproducing conformations generated by
higher-level theories [78].

The QC datasets in Table 1 are composed of the following datasets deposited in QCArchive and anno-
tated based on their respective categories.

Small molecules
• SPICE-Pubchem [71] 3 4 5 6 7 8 is a collection of Dataset that contains a comprehensive and diverse
collection of small, drug-like molecules obtained from Pubchem [84]. It includes atoms within the
range of 3 to 50, including hydrogens, and encompasses the elements of Br, C, Cl, F, H, I, N, O, P, and
S.

• SPICE-DES-Monomers [71] 9 is a Dataset, sourced from DES370K [73], consists of small molecules
(up to 22 atoms) chosen to cover a wide range of chemical space, including the elements of Br, C, Cl,
F, H, I, N, O, P, and S.

• Gen2-Opt 10 11 12 13 14 is a collection of OptimizationDataset that contains drug-like molecules
used for the parametrization of the OpenFF 1.2.0 ("Parsley") [44] small molecule force �eld developed
by the Open Force Field Consortium. This dataset is one of the datasets used to generate the �rst
generation espaloma force �eld, espaloma-0.2.2.

3Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-08-QMDataset-pubchem-set

1-single-points

4Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-08-QMDataset-pubchem-set

2-single-points

5Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-09-QMDataset-pubchem-set

3-single-points

6Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-09-QMDataset-pubchem-set

4-single-points

7Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-09-QMDataset-pubchem-set

5-single-points

8Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-09-QMDataset-pubchem-set

6-single-points

9Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-15-QMDataset-DES-monom

ers-single-points

10Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-20-OpenFF-Gen-2-Optimizat

ion-Set-1-Roche

11Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-20-OpenFF-Gen-2-Optimizat

ion-Set-2-Coverage

12Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-20-OpenFF-Gen-2-Optimizat

ion-Set-3-Pfizer-Discrepancy

13Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-20-OpenFF-Gen-2-Optimizat

ion-Set-4-eMolecules-Discrepancy

14Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-20-OpenFF-Gen-2-Optimizat

ion-Set-5-Bayer
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• Gen2-Torsion 15 16 17 18 19 20 21 22 23 24 25 26 is a collection TorsionDriveDataset that contains torsion
scans of drug-like molecules which is part of the dataset used for the parametrization of the OpenFF
2.0.0 ("Sage") [45] small molecule force �eld developed by the Open Force Field Consortium.

Peptides
• SPICE-Dipeptide [71] 27 is aDataset that contains a broad coverage of the possible dipeptides capped
with ACE and NME groups formed by the 20 natural amino acids and their common protonation vari-
ants. This includes two forms of CYS (neutral or negatively charged), two forms of GLU (neutral or
negatively charged), two forms of ASP (neutral or negatively charged), two forms of LYS (neutral or
positively charged), and three forms of HIS (neutral forms with a hydrogen on either ND1 or NE2, and
a positively charged form with hydrogens on both).

• Pepconf-Opt 28 is a OptimizationDataset that contains short peptides, including capped, cyclic,
and disul�de-bonded peptides originally sourced from Prasad et al. [74] and regenerated by the Open
Force Field Consortium. In this study, the default-dlc QC speci�cation was utilized, di�ering from
the one used in the �rst generation espaloma force �eld (espaloma-0.2.2) [49], leading to improved
chemical convergence.

• Protein-torsion 29 30 31 32 is a collection of TorsionDriveDataset that contains various torsion scans
of polypeptides (capped 1-mers and capped 3-mers) generated by the Open Force Field Consortium
for the OpenFF 3.x ("Rosemary") force �eld [75]. These torsion scans cover �1 and �2 angles in the
rotatable side chains, as well as �,  , and ! angles in the backbones.

RNA
• RNA-Diverse 33 is a Dataset that contains comprehensive and diverse collection of experimental RNA
structures. It includes 138 base pair structures and 295 base triple structures sourced from theNucleic
Acid Database [76]. Additionally, the dataset contains 4056 representative trinucleotide structures

15Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-12-OpenFF-Gen-2-Torsion-S

et-1-Roche

16Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-23-OpenFF-Gen-2-Torsion-S

et-1-Roche-2

17Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-12-OpenFF-Gen-2-Torsion-S

et-2-Coverage

18Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-23-OpenFF-Gen-2-Torsion-S

et-2-Coverage-2

19Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-12-OpenFF-Gen-2-Torsion-S

et-3-Pfizer-Discrepancy

20Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-23-OpenFF-Gen-2-Torsion-S

et-3-Pfizer-Discrepancy-2

21Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-12-OpenFF-Gen-2-Torsion-S

et-4-eMolecules-Discrepancy

22Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-23-OpenFF-Gen-2-Torsion-S

et-4-eMolecules-Discrepancy-2

23Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-12-OpenFF-Gen-2-Torsion-S

et-5-Bayer

24Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-26-OpenFF-Gen-2-Torsion-S

et-5-Bayer-2

25Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-12-OpenFF-Gen-2-Torsion-S

et-6-supplemental

26Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-03-26-OpenFF-Gen-2-Torsion-S

et-6-supplemental-2

27Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-08-QMDataset-Dipeptide-sin

gle-points

28Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-10-26-PEPCONF-Optimization

29Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-11-18-OpenFF-Protein-Dipepti

de-2D-TorsionDrive

30Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2022-02-10-OpenFF-Protein-Cappe

d-1-mer-Sidechains

31Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2022-05-30-OpenFF-Protein-Cappe

d-3-mer-Backbones

32Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2023-02-06-OpenFF-Protein-Cappe

d-3-mer-Omega

33Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2022-07-07-RNA-basepair-triplebase-s

ingle-points
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obtained from the RNA Structure Atlas website [77], where the experimentally observed internal and
hairpin loopmotifs, as well as junction loops of representative sets of RNA 3D Structures with an X-ray
resolution cuto� of 2.5 Å, were segmented into all possible trinucleotide permutations, resulting in 64
unique molecules. These trinucleotide structures are capped with O5’ hydroxyl groups at the 5’ end
and clustered to select the representative structures. For the espaloma re�tting experiment, only the
trinucleotides were utilized.

• RNA-Trinucleotide 34 is a Dataset that provides a broader and more diverse structural coverage of
trinucleotides compared to the RNA-Diverse dataset.

• RNA-Nucleoside 35 is a Dataset that comprises a comprehensive and diverse collection of nucleo-
sides (adenosine, guanosine, cytidine, and uridine) without O5’ hydroxyl atoms. These nucleosides are
generated using 500 K implicit solvent MD and torsion scanning on N-glycosidic bond (� torsion) that
connects the base and sugar, resulting in diverse sugar pucker conformations and extensive coverage
of � torsions.

C Espaloma re�tting experiment
The Python code used to re�t and evaluate espaloma-0.3 is available at https://github.com/choderalab/refit
-espaloma. It should be noted that espaloma-0.3 is no longer compatible with espaloma-0.2.x models
and vice versa.

C.1 Data preparation
The quantum chemical datasets obtained from the QCArchive [70] in SI Section B were preprocessed prior
to the re�tting experiment. Molecules with a gap between the minimum and maximum energy larger than
0.1 Hartree (62.5 kcal/mol) were excluded. Since the van der Waals parameters a�ect the physical property
prediction, which is computationally challenging to optimize, we focus on optimizing the valence parame-
ters and use openff-2.0.0 force �eld [45] for the van der Waals parameters. AM1-BCC [55, 56] ELF10 36

partial charges were pre-computed using the OpenEye Toolkits as reference charges. These charges were
then used to predict the atomic partial charges based on the predicted electronegativity and hardness of
atoms, following the same protocol described in the earlier works by Wang et al. [49]. To ensure that each
molecule was represented only once, duplicate molecules across di�erent datasets were merged, ensuring
that unique molecules were distributed among the train, validate, or test dataset.

C.2 Machine learning experimental details
C.2.1 Input features
One of the improvements made from the previous Espaloma framework [49] is the exclusion of resonance-
sensitive features, such as valences and formal charges, in order to improve the handling of molecules with
atomic resonance, such as guanidinium and carboxylic acid. In this study, the input features of the atoms
included the one-hot encoded element, as well as the hybridization, aromaticity, ringmembership of sizes 3
to 8, atommass, and the degree of the atoms, which is de�ned as the number of directly-bonded neighbors,
all assigned using the RDKit 2023-03-4 release package [130].

C.2.2 Data splitting and augmentation
To handle molecular graphs with varying numbers of conformers, all molecules were divided into sets of
50 conformers during training. If there were fewer than 50 conformers, additional ones were randomly
selected to reach a total of 50 conformers. This enabled mini-batching with randomized molecules, making

34Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2022-10-21-RNA-trinucleotide-singl

e-points

35Source: https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2023-03-09-RNA-nucleoside-single-poi

nts

36ELF10 denotes that the ELF ("electrostatically least-interacting functional groups") conformer selection process was used to generate
10 diverse conformations from the lowest energy 2% of conformers. Electrostatic energies are assessed by computing the sum of all
Coulomb interactions in vacuum using the absolute values of MMFF charges assigned to each atom [129]. AM1-BCC charges [55, 56] are
generated for each conformer and then averaged.
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the training processmore stochastic compared to the previous study [49], where themini-batchwas applied
to set of molecules with the same number of conformers rather than individual molecules.

C.2.3 Hyperparameter optimization
The hyperparameters were brie�y optimized utilizing a subset of data from SI Section B, which included
OpenFF Gen2-Opt, SPICE-Dipeptide, and RNA-Diverse datasets. The data was partitioned into train :
validate : test sets in a 40:30:30 ratio. During the training process, energy and force matching were applied,
along with partial charge �tting using the charge equilibrium approach [49, 69].

L = WenergyLenergy +WforceLforce +WchargeLcharge (3)

Following the protocol speci�ed in Wang et al. [49], we utilized GraphSAGE [131] as the graph neural
network model, the Adam optimizer [132], and the Recti�ed Linear Unit (ReLU) activation function, while
maintaining the energy and charge loss weights to 1 and 1e-3, respectively, throughout the optimization ex-
periment. The hyperparameters subject to optimization included the batch size (32, 64, 128, 256), the depth
of the graph neural network (2, 3, 4, 5), the depth of the Janossy pooling network (2, 3, 4, 5), the learning
rates (1e-3, 1e-4, 5e-5, 1e-5), the number of units per layer (64, 128, 256, 512), and the force weights (1, 1e-1,
1e-2, 1e-3, 1e-4) via grid search on the validation set, and trained for 3000 epochs for each optimization
experiment.

As a result, the optimal con�gurationwasdetermined as follows: For the atomembedding stage (Stage1),
three GraphSAGE layers with 512 units and ReLU activation function were employed. For the symmetry pre-
serving pooling stage (Stage2) and the readout stage (Stage3), we used four feed-forward layers with 512
units and ReLU activation, a learning rate of 1e-4, and a force loss weight of 1.

C.2.4 Production run
The datasets from SI Section B were partitioned into train, validate, and test sets with a distribution of
80:10:10 ratio, respectively, with few exceptions. Notably, the entire RNA-Nucleoside dataset was exclu-
sively utilized for the train set, while the entire RNA-Trinucleoside dataset was allocated for the test set.
This partitioning scheme was designed to incorporate diverse molecular structures and enable a compre-
hensive evaluation of the performance of the espaloma model.

It should be noted that the espalomamodel (espaloma-0.3-rc1), trainedwith the hyperparameters de-
scribed above, reproduced torsion pro�les poorly compared to its quantum chemical reference structures
(SI Figure 3). We found that this problem could be remedied by truncating the improper torsion terms to
only n = 1, 2 periodicities, instead of n = 1, ..., 6 as in the original method [49], and by utilizing regularization
for the proper and improper torsion force constants. Regarding these �ndings, the �nal espaloma model
was trained with the following loss function with all weights set to 1:

L = Wenergy < Lenergy +Wforce < Lforce +Wproper < Lproper +Wimproper < Limproper (4)

To prevent over�tting and ensure optimal model performance, we applied dropouts to the atom embed-
ding stage (Stage 1) and symmetry-preserving stage (Stage 2), as well as implemented an early stopping
mechanism. After 800 epochs, the joint root mean square error (RMSE) loss, which incorporates both ener-
gies and forces, was monitored using the validation set. This approach allowed us to identify the point at
which further training no longer improved the model’s generalization capability.

D Small molecule geometry optimization
The Python code used to benchmark the small molecule optimization geometries is available at https://gith
ub.com/choderalab/geometry-benchmark-espaloma, which is based on the OpenFF Infrastructures 37 used to
validate and assess OpenFF 2.0.0 (Sage) [45].

37https://github.com/openforcefield/openff-sage/tree/main/inputs-and-results/benchmarks/qc-opt-geo
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TheQM-optimized conformer geometries and energies utilized in this study were obtained from OpenFF

Industry Benchmark Season 1 v1.1 38 [89] deposited in QCArchive, which was generated at B3LYP-
D3BJ/DZVP level of theory. This dataset consists nearly 9847 unique molecules and 76713 conformers of
drug-like molecules with mean molecular weight of 348 Da, and a maximum weight of 1104 Da. It includes
formal charges of [-2, -1, 0, 1, 2] and covers atom elements of [Br, F, P, H, N, S, Cl, O, C]. The �nal bench-
marking set consists 9728 uniquemolecules and 73301 conformers, after �ltering out connectivity changes
during optimization, cases with stereochemistry which cannot be perceived, as well as any calculation fail-
ures due to convergence issues.

TheQM-optimizedmoleculeswereminimized eitherwithespaloma-0.3, espaloma-0.3-rc1, openff-2.0.0,
openff-2.1.0, or gaff-2.11 force �elds using a L-BFGS optimizer implemented in OpenMM 8.0.0 [111]
with a 5.0E-9 kJ/mol/nm convergence tolerance or maximum iteration set to 1500.

The MM-optimized molecules were assessed by measuring the root mean squared deviation (RMSD) in
geometries between MM- and QM-optimized conformers, torsion �ngerprint deviation (TFD), and error in
relative conformer energies (ddE or ��E). The heavy atoms were used to superpose the MM- and QM-
optimized molecules to compute the RMSD value using OpenEye Toolkits. TFD is a weighted metric of
deviations in dihedral angles which overcomes the limitations of RMSD [133], which was computed using
the RDKit package. ��E is the energy di�erence between the MM and QM energies of conformer xi, each
with respect to the QM minimum energy conformer x0,QM:

��Ei = �EMM,i * �EQM,i = [EMM(xi) * EMM(x0,QM)] * [EQM(xi) * EQM(x0,QM)] (5)

E MD simulations of peptides and folded proteins and calculation of NMR scalar
couplings

All code used to setup, run, and analyze the peptide MD simulations—including experimental observables
and model parameters—can be found at https://github.com/openforcefield/proteinbenchmark.

E.1 Peptides
A total of 121 experimental NMR observables are available for �ve homopeptides Ala3, Ala4, Ala5, Gly3, and
Val3 [91] as well as eight 3-mers Gly-X-Gly, where X is Ala, Glu, Phe, Lys, Leu, Met, Ser, or Val [92]. The
initial structure for MD simulations was an extended conformation in which all backbone angles are 180˝,
constructed from the amino acid sequence using the program pmx [134]. Protonation states were assigned
at pH 2, consistent with the pH of the NMR experiments, using the PROPKA algorithm [135] in the program
PDB2PQR 3.6.1 [136]. The peptides were then solvated in a rhombic dodecahedron of TIP3P water [26] with
1.4 nm padding and neutralizing sodium and chloride counterions using the Modeller module in OpenMM
8.0.0 [111]. Monovalent ions were modeled using parameters from Joung and Cheatham [29]. Force �eld
parameters were assigned to the peptides using either Amber �14SB [22] or espaloma-0.3.2, which is
equivalent to espaloma-0.3. For ff14SB, RESP charges for Ala, Gly, and Val residues with protonated C
termini were taken fromNerenberg andHead-Gordon [137]. Hydrogenmass repartitioningwith a hydrogen
mass of 3.0 amu was applied to the solutes. The solvated systems were energy minimized with Cartesian
restraints applied to non-hydrogen solute atoms with an energy constant of 1.0 kcalmol*1 Å*2.

MD simulationswere performedusing the CUDAplatformofOpenMM8.0.0 [111]with a LangevinMiddle
Integrator [138], a Monte Carlo barostat [139], and constraints on covalent hydrogen bond lengths. It is
worth noting that increasing the time step beyond 2 fs, solely using hydrogen bond constraints, potentially
makes the simulation unstable. This leads to higher probability of instabilities as the simulation runs longer
which is due to the limitations of the constraint algorithm itself. Both hydrogen mass repartitioning and
hydrogen bond constraints are required for stable simulations to enable longer time steps [140].

The barostat equilibrium pressure was 1 atm, and the thermostat equilibrium temperature was 300K
for the �ve homopeptides and 298K for the eight Gly-X-Gly 3-mers. During a 1 ns equilibration period, the

38https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2021-06-04-OpenFF-Industry-Benchmark-Sea

son-1-v1.1
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integrator time step was 1 fs, the Langevin collision rate was 5 ps*1, and the barostat frequency was 5 steps.
During a 500 ns production period, the integrator time step was 4 fs, the Langevin collision rate was 1 ps*1,
and the barostat frequency was 25 steps. Each peptide system and solute force �eld was simulated using
three replicas.

Peptide backbone dihedral angles were extracted from trajectories using the program LOOS 4.0.4 [141].
3J

HN,CA scalar couplings were estimated using parameters from Hennig et al. [105].

3J
HN,CA(�i, i*1) = *0.23 cos�i * 0.20 cos i*1 + 0.07 sin�i + 0.08 cos i*1

+ 0.07 cos�i cos i*1 + 0.12 cos�i sin i*1 * 0.08 sin�i cos i*1 * 0.14 sin�i sin i*1 + 0.54 (6)

where �i is the � dihedral angle for the current residue and  i*1 is the  dihedral angle for the previous
residue. For all other scalar couplings, the scalar couplings were estimated using a Karplus model [104].

J (✓) = A cos2(✓ + �) + B cos(✓ + �) + C (7)

where ✓ is the dihedral angle associated with the observable and A, B, C , and � are empirical Karplus
parameters [98, 105–107] summarized in SI Table 3.

Agreement with experiment was quantitatively assessed by computing �2 values

�2 = 1
N

obs

…
obs

�
J
comp

* J
exp

�2

�2
model

(8)

where the summation runs over observables, J
comp

is the computed scalar coupling estimated using
Eq. 7 or Eq. 6 averaged over all replicas, J

exp
is the experimentally measured scalar coupling, and �

model
is

the systematic error in the Karplus model, which is an order of magnitude larger than the uncertainty in
the experimental values [91, 92]. The estimates of the systematic uncertainties in the Karplus models are
provided in SI Table 3.

E.2 Folded proteins
System preparation and equilibration protocol was identical to the small peptides except that folded pro-
teins were simulated using GROMACS 2022.5 [142] using both ff14sb and espaloma-0.3. The c-rescale
barostat [139] was used along with the v-rescale thermostat [143] to establish an equilibrium temperature
of 298K and 1 atm. Hydrogen mass repartitioning was applied with a hydrogen mass of 3.0 amu to enable
the use of a time step of 4 fs.

Backbone and �1 side chain 3J -scalar couplings were estimated using the Karplus model as described
in Eq. 7, similarly to those for peptides, with additional Karplus parameters for the side chains (SI Table 3).
Additionally, inter-residue 3JN ,C® scalar couplings for backbone hydrogen bonds were computed using Eq.12
of Bar�eld [109].

3JN ,C® (R, ✓,') = exp
�
*k

�
R * R0

�� ��
A cos2 ' + B cos' + C

�
sin2 ✓ +D cos2 ✓

�
(9)

where R is the distance between the amide hydrogen of the donor residue and the amide oxygen of
the acceptor residue; ✓ is the angle between the donor hydrogen, the acceptor oxygen, and the acceptor
carbon; and ' is the dihedral angle between the donor hydrogen, acceptor oxygen, acceptor carbon, and
acceptor nitrogen. The other parameters in this expression taken from Bar�eld [109] are: k is 3.2Å*1, R0 is
1.76Å, A is 0.62 Hz, B is 0.92 Hz, C is 0.14 Hz, andD is -1.31 Hz. The estimates of the systematic uncertainties
for inter-residue hydrogen bond scalar couplings in the Karplus models are provided in SI Table 3.

The conformational rigidity of residues in folded proteins leads to signi�cant variance in the range of
scalar coupling values (i.e., dihedral angles) across di�erent coupling types. In contrast, each residue in
short peptides samples essentially all available conformers, and themeasured scalar coupling is an average
over these populations, which does not vary much with sequence position or residue identity. Additionally,
experimental scalar couplings can lie outside the range of the relevant Karplus curves, posing a challenge to
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the reproduction of the experimental observations, regardless of the conformational ensembles sampled
in simulations. To address this issue, the agreement with experimental data was quantitatively assessed by
computing the average normalized error (ANE) values, rather than utilizing �2 values, as described by Maier
et al. [22].

ANE = 1
N

obs

…
obs

J
comp

* J <
exp


max

�
J
obs,Karplus

�
*min

�
J
obs,Karplus

� (10)

where J <
exp

is given by:

J <
exp

=

h
n
n
l
n
nj

min(J
obs,Karplus)3, J

exp
< min(J

obs,Karplus)
max(J

obs,Karplus)3, J
exp

> max(J
obs,Karplus)

J 3
exp

, otherwise

(11)

Here, the deviations J
comp

* J <
exp

 are normalized by the magnitude of the Karplus curve range. The ex-
perimental scalar couplings are adjusted to the values on the Karplus curve that lie closest if they fall outside
the range; otherwise, the experimental value is used as the target. ANE value ranges from 0 to 1, where 0
indicates the best possible agreement and 1 indicates the maximum deviation.

F Protein-ligand benchmark dataset
The protein-ligand benchmark dataset can be found at https://github.com/kntkb/protein-ligand-benchmark-c
ustom. It consists of 4 target systems (Tyk2, Cdk2, P38, and Mcl1) and a total of 76 ligands. This dataset was
curated from the openforce�eld/protein-ligand-benchmark repository (https://github.com/openforcefield/p
rotein-ligand-benchmark/tree/d3387602bbeb0167abf00dfb81753d8936775dd2). Note that one of the ligand from
P38 (ligand_p38a_2ff) was excluded from the dataset because of its ambigous stereochemistry. The
protein structures and ligand poses, as well as the ligand transformations, were manually curated, while
the experimental results were adopted from the original repository. The protein and ligand structures were
prepared using Maestro from Schrodinger 2022-2.

The PDB structure of a protein-ligand complex was imported and processed using the default settings
of prepwizard, along with additional options including �lling in missing side chains and loops using Prime,
capping termini, and deleting waters beyond 5.0 Å from het groups. The tautomer states of the ligand
complexed with the protein were manually inspected, and the most reasonable state was chosen from a
humanperspective. For the protein residues, the protonation and tautomer stateswere optimized using the
default settings of H-bond assignment. Subsequently, a restrained minimization was performed using
the OPLS4 force �eld, with an RMSD convergence threshold of 0.3 Å for the heavy atoms. The minimized
protein structure from the complex served as the initial protein structure, and X-ray water molecules were
retained if necessary, such as buried water molecules in the binding pocket.

For the ligand poses, a �exible ligand alignment approach was applied with respect to the PDB ligand
pose found in the protein-ligand complex structure. The default settings of ligprepwere used to generate
all possible ligand tautomer states, which were then visually inspected to choose themost reasonable state.
Subsequently, ligand alignment was performed by aligning all ligands to the PDB ligand pose found in the
protein-ligand complex structure, using the Ligand Alignment module in Maestro with Bemis-Murcko
sca�old or maximum common sca�old constrain. The ligand poses were manually adjusted, taking into ac-
count the binding site environment, which involved rotating ligand torsions and minimizing selected atoms
to alleviate severe atom clashes and obtain better initial poses.

Finally, the ligand transformation networks were de�ned manually by human experts, creating a out-
ward radial map with the simplest ligand in the center. In the case of P38 and Mcl1, R-group substituent
frommultiple sca�old positions and sca�old hopping were observed. In such cases, ligand transformations
were grouped into categories to resemble di�erent structure-activity relationship purposes while maintain-
ing a simpli�ed ligand transformation network.
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G Alchemical free energy calculations using protein-ligand benchmark dataset
The Python code used to perform the alchemical protein-ligand binding free energy benchmark experi-
ment is available at https://github.com/choderalab/pl-benchmark-espaloma-experiment. We utilized the
Perses 0.10.1 relative alchemical free energy calculation infrastructure [110], which is based on OpenMM
8.0.0 [111], openmmtools 0.22.1 [144], and a modi�ed version of openmmforce�elds 0.11.0 package [127]
(https://github.com/kntkb/openmmforcefields/tree/6d2c3dcd33d9800a32032d28b6b2dca92f348a43) to support
espaloam-0.3.

All systems were solvated with TIP3P water [26] with 9.0 Å bu�er around the protein, and the system
was neutralized with the Joung and Cheatham monovalent counterions [29] with 300 mM NaCl salt con-
centration. The protein was parametrized with Amber �14SB force �eld [22], and the small molecules
were parametrized with openff-2.1.0 [83], espaloma-0.3, or espaloma-0.2.2 [49]. Additionally, the
protein-ligand was self-consistently parametrized with espaloma-0.3, and a modi�ed version of Perses
0.10.1 (https://github.com/kntkb/perses/tree/0d069fc1cf31b8cce1ae7a1482c3fa46bc1382d2) was used to perform
the protein-ligand binding free energy calculations.

Alchemical free energy calculations were simulated with replica exchange among Hamiltonians with
Gibbs sampling [145]. All simulations were performed with 12 alchemical states for 10 ns/replica for Tyk2
and Cdk2, 15 ns/replica for Mcl1, and 20 ns/replica for P38, with replica exchange attempts made every 1
ps. The simulations were performed at 300 K and 1 atm using a Monte Carlo Barostat [139] and Langevin
BAOAB integrator [146] with a collision rate of 1/ps. Bonds to hydrogen were constrained, and hydrogen
atom masses were set to 3.0 amu by transferring the masses connected to the heavy atoms, allowing for
simulations with a 4 fs timestep.

Atom mappings were generated from the provided geometries in the curated benchmark set (see SI
Section F). Atoms within 0.5 Å of the transforming ligand pairs were detected as valid mapping atoms using
the use_given_geometries functionality in Perses.

PyMBAR 3.1.1 [147] was used to compute the relative free energy, while absolute free energies up to an
additive constant were estimated using a least-squares estimation strategy [148] using a modi�ed version
of OpenFE cinnabar 0.3.0 package [128] (https://github.com/kntkb/cinnabar/tree/de7bc6623fb25d75848aa1c9f
538b77cd02a4b01). Both experimental and calculated absolute free energies were shifted to their respective
means before computing the statistics.

H Tyk2 protein-ligand complex MD simulations
The unbiased MD simulation code used in this study, along with initial prepared structures, can be found at
https://github.com/choderalab/vanilla-espaloma-experiment. The initial structures of Tyk2 and ligand #1 shown
in SI Figure13 was taken from the protein-ligand benchmark dataset as described in SI Section F. Two
protein-ligand complexMDsimulationswere performedusingespaloma-0.3 to self-consistently parametrize
both the protein and ligand, andopenff-2.1.0 andAmber�14SB to parametrize the ligand andprotein, re-
spectively. Both systems were solvated with TIP3P water [26] and neutralized with the Joung and Cheatham
monovalent counterions [29] with 150 mM NaCl salt concentration.

All simulations were performed at 300 K and 1 atm using a Monte Carlo Barostat [139] and Langevin
Middle Integrator (a variant splitting of the BAOAB integrator) [138] with a collision rate of 1/ps. Bonds to
hydrogen were constrained, and hydrogen atom masses were set to 3.0 amu allowing for simulations with
a 4 fs timestep. The solvated systems were minimized and subsequently subjected to 3 microsecond of
simulation using OpenMM 8.0.0 [111].

The root-mean square deviation (RMSD) pro�le of the heavy ligand atoms and protein C↵ atoms were
reported over the 3 microsecond MD simulation. The trajectories were aligned with respect to the bind-
ing pocket residues (within 4 Å from the initial ligand pose) before computing the heavy ligand atom RMSD.
Similarly, the protein C↵ atoms excluding the �rst and last 5 residues, were used to align the protein trajecto-
ries before the C↵ RMSD calculation, with the �rst and last 5 residues excluded from the RMSD computation.
The root-mean-square �uctuation (RMSF) pro�le of the protein C↵ atoms was computed relative to the aver-
aged structure. The trajectories were aligned to the C↵ atoms, with the �rst and last �ve residues excluded,
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before the RMSF calculation was performed.
It is worth noting that the experimental RMSF can be related to isotropic B-factors found in X-ray crystal

structures using the following relation:

B = 8⇡2

3 RMSF
2 (12)

Although a crystal structure bound with ligand #1 was not available, we compared the experimental and
computed RMSF derived from simulations to address whether the experimental peaks are recapitulated in
the simulations. The experimental RMSF was derived from the isotropic B-factors of the Tyk2 X-ray crystal
structure (PDB ID: 4GIH) complexed with ligand #8, as shown in SI Figure13, which is topologically highly
similar to ligand #1.

The overall trend of simulated RMSF peaks is similar to experimental RMSF peaks, which were com-
puted from the isotropic B-factors of the Tyk2 X-ray crystal structure (PDB ID: 4GIH) used as the initial
protein structure for the MD simulation. The Pearson correlations are 0.58 and 0.70 for espaloma-0.3
and ff14SB+openff-2.1.0, respectively. However, the RMSF peaks derived from simulations are higher
in �exible regions and underestimated in less �exible regions. This outcome is unsurprising and expected,
as the B-factors include contributions from various sources, such as vibration and static disorder, lattice
defects, and crystal packing e�ects [149, 150].
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Dataset
(QCArchive Work�ow)

Category Mols Confs Split
espaloma-0.3

Energy RMSE (kcal/mol)

Force RMSE (kcal/mol � Å*1)

Repetition
Energy RMSE (kcal/mol)

Force RMSE (kcal/mol � Å*1)

Train (80%) Validate (10%) Test (10%) Train (80%) Validate (10%) Test (10%)

SPICE-Pubchem [71, 84]
(Dataset)

Small
molecule

14110 608436 80:10:10
2.062.072.04
6.226.266.19

2.312.372.25
6.796.956.65

2.302.362.25
6.816.956.68

2.012.031.99
6.186.216.15

2.232.282.19
6.736.946.57

2.252.302.20
6.646.786.51

SPICE-DES-Monomers [71, 73]
(Dataset)

Small
molecule

369 18435 80:10:10
1.391.461.32
5.866.025.69

1.341.601.13
5.636.245.12

1.361.671.13
5.916.425.49

1.361.431.29
5.835.995.66

1.381.681.13
5.565.965.24

1.411.641.20
5.926.575.42

Gen2-Opt
(OptimizationDataset)

Small
molecule

1024 244989 80:10:10
1.361.481.26
3.944.113.79

1.351.561.17
4.224.523.92

1.662.291.21
4.475.403.90

1.311.431.20
3.773.923.64

1.511.931.15
4.766.013.91

1.411.711.16
4.325.093.71

Gen2-Torsion
(TorsionDriveDataset)

Small
molecule

729 25832 80:10:10
1.761.911.61
4.314.444.18

1.972.421.60
5.005.554.49

1.642.011.32
4.715.294.18

1.661.791.52
4.254.384.12

1.912.371.48
4.565.014.12

1.842.261.43
5.407.034.26

SPICE-Dipeptide [71]
(Dataset)

Peptide 677 26279 80:10:10
3.213.263.16
7.988.077.88

3.153.303.01
8.058.347.77

3.093.212.96
7.788.027.55

3.063.113.01
7.817.907.71

3.153.293.02
7.747.977.47

2.943.072.82
7.647.877.39

Pepconf-Opt [74]
(OptimizationDataset)

Peptide 557 166291 80:10:10
2.612.832.43
3.834.093.60

2.823.272.41
3.654.123.29

2.793.132.45
4.014.463.63

2.562.732.40
3.784.023.58

2.873.772.24
3.924.623.43

3.204.172.45
4.295.493.53

Protein-Torsion
(TorsionDriveDataset)

Peptide 62 48999 80:10:10
2.272.502.06
3.944.243.70

1.912.281.36
3.493.972.85

1.932.141.73
3.493.783.22

2.202.392.02
3.854.193.56

2.523.161.85
4.215.003.65

2.463.401.80
4.014.623.55

RNA-Diverse
(Dataset)

RNA 64 3703 80:10:10
4.124.313.95
4.444.474.40

4.514.924.05
4.544.584.50

4.174.523.85
4.414.514.29

4.134.293.95
4.424.464.39

4.575.184.04
4.544.594.50

4.124.713.68
4.474.544.39

RNA-Trinucleotide
(Dataset)

RNA 64 35811 0:0:100
—
—

—
—

3.753.943.59
4.284.394.20

—
—

—
—

3.803.973.64
4.274.374.20

RNA-Nucleoside
(Dataset)

RNA 4 9542 100:0:0
1.321.491.16
4.174.473.86

—
—

—
—

1.261.431.11
4.004.333.67

—
—

—
—

Table S 1. A repeated Espaloma re�tting experiment yields consistent results with espaloma-0.3, capable of
accurately �tting quantum chemical energies and forces. The Espaloma re�tting experiment was conducted using
a di�erent random seed to partition the datasets into train, validate, and test sets. The RMSE metrics of energy and
forces were analyzed similarly to those of espaloma-0.3. The 95% con�dence intervals, annotated in the results, were
calculated by bootstrapping molecule replacement using 1000 replicates.

GB3 BPTI Lysozyme Ubiquitin

�2 ff14sb 4.63 ± 0.62 21.80 ± 6.43 37.97 ± 11.40 12.04 ± 0.84
espaloma-0.3 12.96 ± 1.76 27.64 ± 6.09 54.45 ± 9.66 17.25 ± 2.65

�2
BB

ff14sb 5.19 ± 0.75 10.65 ± 2.87 — 8.71 ± 0.90
espaloma-0.3 10.81 ± 1.38 12.90 ± 2.79 — 9.19 ± 1.05

�2
SC

ff14sb 3.77 ± 1.23 30.05 ± 10.84 37.97 ± 9.4 14.75 ± 3.65
espaloma-0.3 16.27 ± 3.91 38.54 ± 10.10 54.45 ± 9.66 24.08 ± 4.76

ANE
ff14sb 0.091 ± 0.005 0.151 ± 0.019 0.219 ± 0.023 0.126 ± 0.007

espaloma-0.3 0.156 ± 0.009 0.183 ± 0.019 0.282 ± 0.024 0.147 ± 0.008

ANEBB
ff14sb 0.096 ± 0.006 0.119 ± 0.017 — 0.132 ± 0.007

espaloma-0.3 0.143 ± 0.009 0.133 ± 0.018 — 0.133 ± 0.007

ANESC
ff14sb 0.084 ± 0.010 0.176 ± 0.030 0.219 ± 0.023 0.121 ± 0.017

espaloma-0.3 0.176 ± 0.066 0.220 ± 0.030 0.282 ± 0.024 0.159 ± 0.014
Table S 2. The �2 and absolute normalized error (ANE) values quantifying the deviations of simulated NMR scalar
couplings compared to experimental measurements for GB3, BPTI, lysozyme, and ubiquitin using ff14sb and
espaloma-0.3. �2 and ANE values are reported for the entire protein, as well as for the backbone (BB) and side chain
(SC) regions. Themean and 95% CI for eachmetric are reported from the critical values of a Student’s t-distribution based
on three replicates of the 10 µs simulations.
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Observable ✓ � A B C �
model

System Reference

Backbone
1J

N,CA  i 0.0 1.70 *0.98 9.51 0.59 peptide Wirmer and Schwalbe [106]
2J

N,CA  i*1 0.0 *0.66 *1.52 7.85 0.50 peptide Ding and Gronenborn [107]
3J

HA,C® �i 120.0 3.72 *2.18 1.28 0.38a peptide, protein Hu and Bax [102]
3J

HN,CB �i 60.0 3.51 *0.53 0.14 0.25 peptide, protein Vögeli et al. [98]
3J

HN,C® �i 180.0 4.12 *1.10 0.11 0.31 peptide, protein Vögeli et al. [98]
3J

HN,HA �i *60.0 7.97 *1.26 0.63 0.42 peptide, protein Vögeli et al. [98]
3J

HN,CA �i,  i*1 Eq. 6 0.10 peptide Hennig et al. [105]

Side chain
3J

C® ,CG1(Val) �1 *115.0 3.42 *0.59 0.17 0.25 protein Chou et al. [96]
3J

C® ,CG2(Ile) �1 125.0 3.42 *0.59 0.17 0.25 protein Chou et al. [96]
3J

C® ,CG2(Thr) �1 137.0 2.76 *0.67 0.19 0.21 protein Chou et al. [96]
3J

C® ,CG2(Val) �1 5.0 3.42 *0.59 0.17 0.25 protein Chou et al. [96]
3J

N,CG1(Val) �1 6.0 2.64 0.26 *0.22 0.25 protein Chou et al. [96]
3J

N,CG2(Ile) �1 *114.0 2.64 0.26 *0.22 0.25 protein Chou et al. [96]
3J

N,CG2(Thr) �1 *113.0 2.01 0.21 *0.12 0.21 protein Chou et al. [96]
3J

N,CG2(Val) �1 126.0 2.64 0.26 *0.22 0.25 protein Chou et al. [96]
3J

HA,HB(Ile,Val) �1 0.0 7.23 *1.37 1.79 0.40 protein Pérez et al. [108]
3J

HA,HB(Thr) �1 0.0 7.23 *1.37 0.81 0.40 protein Pérez et al. [108]
3J

HA,HB2 �1 *120.0 7.23 *1.37 2.40 0.40 protein Pérez et al. [108]
3J

HA,HB2(Cys) �1 *120.0 7.23 *1.37 1.71 0.40 protein Pérez et al. [108]
3J

HA,HB2(Ser) �1 *120.0 7.23 *1.37 1.42 0.40 protein Pérez et al. [108]
3J

HA,HB3 �1 0.0 7.23 *1.37 2.40 0.40 protein Pérez et al. [108]
3J

HA,HB3(Cys) �1 0.0 7.23 *1.37 1.71 0.40 protein Pérez et al. [108]
3J

HA,HB3(Ser) �1 0.0 7.23 *1.37 1.42 0.40 protein Pérez et al. [108]

H-Bond
3J

N,C® H-bond Eq. 9 0.12 protein Bar�eld [109]
Table S 3. Karplus parameters used to estimate NMR scalar couplings. Empirical Karplus parameters �, A, B, and C
used to estimate scalar couplings via Eq. 7 to estimate �2 and average normalized error (ANE) values via Eq. 8 and Eq. 10,
respectively. The systematic errors in Karplus models � to estimate �2 are also reported. aSystematic error estimate for
the 3J

HA,C® Karplus model taken from Wickstrom et al. [151]

Small molecule
SPICE-Pubchem (Test molecules)

Figure S 1. Espaloma framework can directly �t to quantum chemical energies and forces even in low data
regimes. The espaloma re�tting experiment was conducted with a varying number of molecules in the training set. The
same validation and test sets used to develop espaloma-0.3were maintained consistently throughout this experiment.
The energy and force RMSE values on the test dataset are reported for the SPICE-Pubchem, SPICE-Dipeptide, and
RNA-Trinucleotide datasets to illustrate the outcomes for small molecule, peptide, and RNA chemical series. The 95%
con�dence intervals, as annotated in the results, were calculated by bootstrapping molecule replacement using 1000
replicates.
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Figure S 2. Chemical diversity and high-energy conformers are important for accurately capturing quan-
tum chemical energies and forces with Espaloma. Espaloma re�tting experiments were conducted by excluding
certain quantum chemical datasets during training and validation, following the procedures outlined in deploying
espaloma-0.3. These experiments aimed to investigate how the quantum chemical datasets used for training espaloma
a�ect its ability to accurately reproduce quantum chemical energies and forces. The re�tting experiment was conducted
with two di�erent scenarios: (a) Quantum chemical datasets corresponding to the small molecules, peptides, or RNA
chemical series were excluded from both training and validation; or (b) Quantum chemical datasets generated using
the three distinct QCArchive work�ows (see SI Section B) — Dataset, Optimization Dataset, or TorsionDrive
Dataset—were excluded from both training and validation. The energy and force RMSE metrics for the test molecules,
including the quantum chemical datasets excluded during training and validation, are reported with 95% con�dence in-
tervals. These intervals were calculated by bootstrapping molecule replacement with 1000 replicas and are depicted in
square brackets.
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(a) Deviation statistics from quantum chemical reference

(b) Deviation from QM-optimized valence geometries

Figure S 3. Espaloma trained with regularizations against torsion terms can better preserve quantum chem-
ical energy minima. A benchmark of gas-phase QM-optimized geometries, namely OpenFF Industry Benchmark
Season 1 v1.1 [89] from QCArchive, comprising nearly 9728 unique molecules and 73301 conformers, was used to
compare the structures and energetics of conformers optimized with espaloma-0.3 and espaloma-0.3-rc1 with re-
spect to their QM-optimized goemetries at the B3LYP-D3BJ/DZVP level of theory. espaloma-0.3-rc1 is a model cre-
ated using the hyperparameters determined during its tuning process (see Section C), which does not apply any reg-
ularizations to torsion terms. (a) The cumulative distribution functions of root-mean-square deviation of atomic posi-
tions (RMSD), torsion �ngerprint deviation (TFD) score, and relative energy di�erences (ddE) as described in a previous
work [90] are reported. (b) Distributions of bond, angle, proper torsion, and improper torsion RMSD within each con-
former with respect to its QM-optimized geometries are shown as quartile box plots. Lower values for all metrics indicate
that the MM-optimized geometry is close to the quantum chemical reference structure.
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(a) Molecules from the outliers in bond-angle RMSD box plot

(b) Molecules with sulfonamides within OpenFF Industrial Benchmark Season 1 v1.1 Dataset

(c) Comparion of QM-optimized and MM-optimized molecules of pyrazole- and imidazole-sulfonamides 

(i) Bond outliers (Å) (ii) Angle outlier

MM-optimized
(espaloma-0.3)

MM-optimized
(espaloma-0.3)

QM-optimized

(i) Query molecule (ii) Substructure hit molecules (non-outliers from bond-angle RMSD box plot)

(i) Pyrazole-sulfonamide (ii) Imidazole-sulfonamide

(iii) Pyrazole without sulfonamide substituent

QM (deg.) MM (deg.)

1.71 1.71 
1.69 

1.46 1.46 1.47 

1.49

1.46

1.55

1.56

1.57 

2.10 2.09 2.09

99.99108.31

QM (deg.) MM (deg.)

60.01106.32

QM (deg.) MM (deg.)

99.77105.60
QM (deg.) MM (deg.)

100.07105.22

1.56 1.56

Figure S 4. Molecules containing sulfonamides aremore challenging tomaintain their QM-optimized geometries
when minimized with espaloma-0.3 compared to other molecules. (a) Representative molecular conformers identi-
�ed as outliers in the bond-angle RMSD box plot (Figure 2) are shown, where bond RMSD > 0.1 Å and angle RMSD > 10
degrees were considered as outliers. Three sulfonamide molecules connected to an aliphatic carbon exhibit elongated
bond (S-O and S-N) distances respect to QM-optimized geometries, and a single angle outlier with a deviation of Ì40
degrees deviation from QM-optimized geometry was observed. (b) Molecules containing sulfonamide groups, excluding
the outliers in (a) are shown, with eachmolecular conformer featuring reasonable bond distances within the sulfonamide
group. (c) The nitrogen geometry of pyrazoles and imidazoles substituted with sulfonamides becomes trigonal pyrami-
dal when minimized with espaloma-0.3, rather than preserving a �at ring geometry and losing their sp2 hybridized
features, as observed with QM-optimized geometries.
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Figure S 5. espaloma-0.3 reproduces NMR scalar couplings but slightly less accurately than thewell-established
biomolecular force �eld, ff14sb. The experimental and computed NMR scalar couplings between ff14sb and
espaloma-0.3 are compared for (a) backbone hydrogen bond (H-bond) scalar couplings in the helix, hairpin, inter-
hairpin, and loop regions, which includes both the backbone and side chains, and (b) backbone scalar couplings from the
helix, hairpin, and loop regions. Colors indicate the identity of secondary structures associated with each scalar coupling.
Horizontal error bars represent the estimate of the systematic error in the experimental scalar coupling, and vertical
error bars represent the uncertainty due to the computed estimate (standard error of the mean across 3 replicates) and
the uncertainty due to the experimental value (systematic error) added in quadrature.
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Figure S 6. espaloma-0.3 reproduces experimental NMR scalar couplings of folded globular proteins with a
slightly higher error than the well-established biomolecular force �eld, ff14sb, particularly for the side chains.
The absolute normalized error (ANE) values, quantifying the deviations of simulated NMR scalar couplings from 10 µs
trajectories compared to experimental measurements for GB3, BPTI, lysozyme, and ubiquitin, are depicted for both the
backbone and side chain regions. For lysozyme, the column for backbone scalar couplings is not reported, as there were
no backbone scalar coupling measurements in the dataset used for this study. Error bars represent a 95% con�dence
interval, constructed from the critical values of a Student’s t-distribution and the standard error of the mean across the
NMR observables, based on three replicates of the 10 µs simulation.

(a) Fraction of backbone categories (b) Reference Ramachandran plot de�ning the back-
bone categories

Figure S 7. Simulations with espaloma-0.3 tend to show a greater decrease in the occupancy of de�ned folded
regions, such as the alpha (↵) and beta (�) backbone structures, compared to ff14sb. The populations of di�erent
dihedral clusters, based on Ramachandran angles, were compared. (a) Clusters of backbone dihedral angles simulated
with espaloma-0.3 and ff14sb are depicted for GB3, BPTI, lysozyme, and ubiquitin. In general, occupancy in de�ned
folded regions (e.g., ↵ and �) decreases, while occupancy in non-de�ned ’other’ regions representing any dihedral pair out-
side the de�ned clusters, which are likely to be disordered. Error bars represent a 95% con�dence interval, constructed
from the critical values of a Student’s t-distribution and the standard error of the mean across the NMR observables,
based on three replicates of the 10 µs simulation. (b) A Ramachandran plot is shown to de�ne the backbone dihedral
angle clusters for clarity.
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Figure S 8. espaloma-0.3 exhibits slightly more backbone �exibility compared to ff14sb. The C↵ RMSD for (a)
GB3, (b) BPTI, (c) lysozyme, and (d) ubiquitin with respect to their initial PDB structures is computed.
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(b) ff14SB+espaloma-0.3 (c) espaloma-0.3(a) ff14SB+openff-2.1.0

Tyk2 (10ns/replica) Cdk2 (10ns/replica) Mcl1 (15ns/replica) P38 (20ns/replica)

protein: ff14SB 
ligand: openff-2.1.0

protein: ff14SB
ligand: espaloma-0.3

protein: espaloma-0.3 
ligand: espaloma-0.3

Figure S 9. Alchemical free energy calculations are well-reproduced within 10-20 ns of simulation time. The re-
producibility of alchemical protein-ligand free energy calculations described in Section 6was investigated by conducting
repeated simulations on Tyk2 (10 ns/replica), Cdk2 (10 ns/replica), Mcl1 (15 ns/replica), and P38 (20 ns/replica) using the
same simulation protocols. The small molecules were parametrized either with (a) openff-2.1.0, (b) espaloma-0.3
combined with Amber �14SB for proteins, or (c) by paramterizing both small molecule and protein self-consistently with
espaloma-0.3. The light and dark gray regions depict the con�dence bounds of 0.5 kcal/mol and 1.0 kcal/mol, respec-
tively.
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Figure S 10. The ligands from the protein-ligand binding free energy benchmark dataset signi�cantly di�er from
the quantumchemical (QC) dataset used to train espaloma-0.3. Pairwise Tanimoto similarity scores between the lig-
ands from the protein-ligand binding free energy benchmark dataset and the QC datasets used to deploy espaloma-0.3
were investigated using Morgan Fingerprints implemented in RDKit [130], with a radius of 2 and a bit vector size of 2048.
The maximum Tanimoto similarity score is reported for each target system in the protein-ligand binding free energy
benchmark dataset, along with the molecular pair that achieved the maximum similarity score.
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(a) Problematic ligand transformation (b) Initial binding pose of lig48 (dark blue) and its 
alternative binding pose (cyan) bound to Mcl1

Gexp=-6.12 kcal/mol Gexp=-6.66 kcal/mol
lig27 lig48

View2View1

Figure S 11. The alchemical protein-ligand binding free energy calculation for the outlier Mcl1 ligand can be
improved by adopting an alternative binding pose. (a) Illustration of the problematic Mcl1 ligand transformation
observed as an outlier during the alchemical protein-ligand binding free energy calculation in Figure 5. The transforming
ligand atoms are colored in magenta and purple. (b) The initial complex structure of Mcl1, bound with ligand #48 (in dark
blue), used to simulate the alchemical free energy calculations, is illustrated along with its alternative �ipped binding
pose (in cyan).

(c) ff14SB+espaloma-0.3 (d) ff14SB+openff-2.1.0 (b) ff14SB+espaloma-0.2.2 (a) Cdk2/Cyclin A protein-ligand system
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Figure S 12. Training espaloma-0.3 on an extensive quantum chemical dataset signi�cantly improves protein-
ligand binding a�nity calculations on the Cdk2 system. (a) We show the X-ray structure used for free energy cal-
culation, along with the 2D structures of all ligands in the Cdk2 protein-ligand benchmark dataset. An outward radial
map with ligand #1 in the center was used for the alchemical ligand transformations. We used the Perses 0.10.1 rel-
ative free energy calculation infrastructure [110] to calculate the relative free energy and assess the performance of
(b) espaloma-0.2.2 [49], (c) espaloma-0.3, and (d) openff-2.1.0 [83] by parametrizing the small molecules with
each force �eld. Amber �14SB force �eld [22] was used to parametrize the protein for all cases. espaloma-0.2.2 and
espaloma-0.3 achieves an absolute free energy (�G) RMSE of 1.45 [95% CI: 0.55, 2.33] kcal/mol and 0.56 [95% CI: 0.34,
0.73] kcal/mol, respectively, indicating that espaloma-0.3 trained on extensive quantum chemical dataset signi�cantly
improved protein-ligand binding a�nity calculations on the Cdk2 system.
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(c) ff14SB+espaloma-0.3 (d) ff14SB+openff-2.1.0 (b) ff14SB+espaloma-0.2.2 (a) Tyk2 protein-ligand system
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Figure S 13. Training espaloma-0.3 on an expanded quantum chemical dataset improves protein-ligand bind-
ing a�nity on the Tyk2 system. (a) We show the X-ray structure used for free energy calculation, along with the 2D
structures of all ligands in the Tyk2 protein-ligand benchmark dataset. An outward radial map with ligand #1 in the
center was used for the alchemical ligand transformations. We used the Perses 0.10.1 relative free energy calculation
infrastructure [110] to calculate the relative free energy and assess the performance of (b) espaloma-0.2.2 [49], (c)
espaloma-0.3, and (d) openff-2.1.0 [83] by parametrizing the small molecules with each force �eld. Amber �14SB
force �eld [22] was used to parametrize the protein for all cases. Notably, espaloma-0.2.2 failed to simulate the al-
chemical ligand transformation of ligand #1 to ligand #2; hence one ligand is not reported in (b). espaloma-0.2.2
and espaloma-0.3 achieves an absolute free energy (�G) RMSE of 0.73 [95% CI: 0.34, 1.02] kcal/mol and 0.48
[95% CI: 0.28, 0.64] kcal/mol, respectively, suggesting that espaloma-0.3 tends to show improved performance over
espaloma-0.2.2.
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Figure S 14. espaloma-0.3 is robust and capable of stable long-time MD simulation for the Tyk2 protein-ligand
complex system. Multiple 3microsecond ofMD simulations were conducted on the Tyk2 protein-ligand complex system
to explore the stability of espaloma-0.3. (a) We show the initial structure of Tyk2 complexedwith ligand #1. Two protein-
ligand complex MD simulations were performed using espaloma-0.3 to self-consistently parametrize both the protein
and ligand, and openff-2.1.0 and Amber �14SB to parametrize the ligand and protein, respectively. (b) The root-mean
square deviation (RMSD) pro�le of the heavy ligand atoms and protein C↵ atoms are reported. The trajectories were
aligned with respect to the binding pocket residues (within 4 Å from the initial ligand pose) before computing the ligand
RMSD. Similarly, the protein C↵ atoms excluding the �rst and last 5 residues, were used to align the protein trajectories
before the C↵ RMSD calculation, with the�rst and last 5 residues excluded from theRMSD computation. (c) The root-mean
square �uctuation (RMSF) pro�le of the protein C↵ atoms are reported. The experimental RMSF derived from isotropic
B-factors of Tyk2 X-ray crystal structure (PDB ID: 4GIH) is shown for reference (see SI Section H for more details).
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