Supplementary Materials

Transient-Absorption Spectroscopy of Dendrimers via Nonadiabatic Excited-State Dynamics Simulations

Royle Perez-Castillo¹, Victor M. Freixas², Shaul Mukamel², Aliezer Martinez-Mesa^{1,3}, Llinersy Uranga-Piña^{1,3}, Sergei Tretiak⁴, Maxim F. Gelin⁵, and Sebastian Fernandez-Alberti^{1*}

¹Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina

²Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States

³DynAMoS (Dynamical processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana, San Lázaro y L, La Habana 10400, Cuba.

⁴Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁵School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China.

*corresponding author: sfalberti@gmail.com

S1. DEDUCTION OF THE ORIENTATIONAL AVERAGING PUMP-PROBE SIGNAL

According to¹

$$C_{abcd} \equiv \overline{(s_1 d_a)(s_2 d_b)(s_3 d_c)(s_4 d_d)} = \frac{1}{30} \{g_1(s)(d_a d_b)(d_c d_d) + g_2(s)(d_a d_c)(d_b d_d) + g_3(s)(d_a d_d)(d_b d_c)\}$$
(S1)

Here s_1 , s_2 , s_3 , s_4 are arbitrary unit vectors in the laboratory frame (in our case, the unit vectors of polarizations), d_a , d_b , d_c , d_d are arbitrary unit vectors in the molecular frame, overbar indicates oritentational averaging, and

$$g_{1}(\mathbf{s}) = 4(\mathbf{s}_{1}\mathbf{s}_{2})(\mathbf{s}_{3}\mathbf{s}_{4}) - (\mathbf{s}_{1}\mathbf{s}_{3})(\mathbf{s}_{2}\mathbf{s}_{4}) - (\mathbf{s}_{1}\mathbf{s}_{4})(\mathbf{s}_{2}\mathbf{s}_{3})$$

$$g_{2}(\mathbf{s}) = 4(\mathbf{s}_{1}\mathbf{s}_{3})(\mathbf{s}_{2}\mathbf{s}_{4}) - (\mathbf{s}_{1}\mathbf{s}_{2})(\mathbf{s}_{3}\mathbf{s}_{4}) - (\mathbf{s}_{1}\mathbf{s}_{4})(\mathbf{s}_{2}\mathbf{s}_{3}) \qquad (S2)$$

$$g_{3}(\mathbf{s}) = 4(\mathbf{s}_{1}\mathbf{s}_{4})(\mathbf{s}_{2}\mathbf{s}_{3}) - (\mathbf{s}_{1}\mathbf{s}_{2})(\mathbf{s}_{3}\mathbf{s}_{4}) - (\mathbf{s}_{1}\mathbf{s}_{3})(\mathbf{s}_{2}\mathbf{s}_{4})$$

If we assume that the *d*-vectors are mutually orthogonal,

$$(\boldsymbol{d}_a \boldsymbol{d}_b) = \delta_{ab} \tag{S3}$$

then

$$C_{abcd} = \frac{1}{30} (g_1(\mathbf{s})\delta_{ab}\delta_{cd} + g_2(\mathbf{s})\delta_{ac}\delta_{bd} + g_3(\mathbf{s})\delta_{ad}\delta_{bc})$$
(S4)

According to², any orientationally averaged four-wave-mixing signal can be evaluated by the formula

$$\bar{S} = \sum_{a,b,c,d=x,y,z} C_{abcd} S_{abcd}$$
(S5)

where S_{abcd} are the signals evaluated according to the following prescriptions: all transition dipole moments responsible for the interaction with the pulse #1, 2, 3, and 4 are dictated along the axis *a*, *b*, *c*, *d* of the molecular frame, respectively. For example, S_{xyyx} corresponds to the signal in which all transition dipole moments responsible for the interaction with pulses #1, and 4 are dictated along the axis *x* of the molecular frame, and all transition dipole moments responsible for the interaction with pulses #2, and 3 are dictated along the axis *y* of the molecular frame.

Explicitly, eqs. (S4) and (S5) yields:

$$\bar{S} = \frac{1}{30} \sum_{ab} (g_1(\mathbf{s}) S_{aabb} + g_2(\mathbf{s}) S_{abab} + g_3(\mathbf{s}) S_{abba})$$

$$= \frac{1}{30} g_1(\mathbf{s}) (S_{xxxx} + S_{yyxx} + S_{zzxx} + S_{xxyy} + S_{yyyy} + S_{zzyy} + S_{xxzz} + S_{yyzz} + S_{zzzz})$$

$$+ \frac{1}{30} g_2(\mathbf{s}) (S_{xxxx} + S_{yxyx} + S_{zxzx} + S_{xyyy} + S_{yyyy} + S_{zyzy} + S_{xzxz} + S_{yzyz} + S_{zzzz})$$

$$+ \frac{1}{30} g_3(\mathbf{s}) (S_{xxxx} + S_{yxxy} + S_{zxxz} + S_{xyyx} + S_{yyyy} + S_{zyyz} + S_{xzzx} + S_{yzzy} + S_{zzzz})$$

$$= \frac{1}{30} (g_1(\mathbf{s}) + g_2(\mathbf{s}) + g_3(\mathbf{s})) (S_{xxxx} + S_{yyyy} + S_{zzyz})$$

$$+ \frac{1}{30} g_1(\mathbf{s}) (S_{yyxx} + S_{zzxx} + S_{xxyy} + S_{zzyy} + S_{xzzz} + S_{yyzz})$$

$$+ \frac{1}{30} g_2(\mathbf{s}) (S_{yxyx} + S_{zxxx} + S_{xyyy} + S_{zyzy} + S_{xzzx} + S_{yyzz})$$

That is, in general we need 21 components of S_{abcd} .

For pump-probe, S_{abcd} is symmetric with respect to the perturbation of the indexes within first and second pair. It means that

$$S_{yxyx} = S_{xyxy} = S_{yxxy} = S_{xyyx},$$

$$S_{zxzx} = S_{xzxz} = S_{zxxz} = S_{xzzx},$$

$$S_{zyzy} = S_{yzyz} = S_{zyyz} = S_{yzzy},$$

We thus have

$$\bar{S} = \frac{1}{30} (g_1(\mathbf{s}) + g_2(\mathbf{s}) + g_3(\mathbf{s})) (S_{xxxx} + S_{yyyy} + S_{zzzz}) + \frac{1}{30} g_1(\mathbf{s}) (S_{yyxx} + S_{zzxx} + S_{xxyy} + S_{zzyy} + S_{xxzz} + S_{yyzz}) + \frac{1}{15} (g_2(\mathbf{s}) + g_3(\mathbf{s})) (S_{yxyx} + S_{zxzx} + S_{zyzy})$$

In addition,

 $s_1 = s_2 = s_{pu}$ and $s_3 = s_4 = s_{pr}$, so that

$$g_1(\mathbf{s}) = 4 - 2(\mathbf{s}_{pu}\mathbf{s}_{pr})^2$$
$$g_2(\mathbf{s}) = g_3(\mathbf{s}) = 3(\mathbf{s}_{pu}\mathbf{s}_{pr})^2 - 1$$

Hence we obtain eq. (15).

S2. FRENKEL EXCITON HAMILTONIAN MODEL

We consider the Frenkel exciton model of a system given by a central unit with energy E_0 and four equivalent branches with energy E_1 . We denote the coupling between the core and the branches as V_0 , the coupling between two adjacent branches V_1 , and the coupling between opposed branches as V_2 . The corresponding Hamiltonian is given by:

$$H = \begin{pmatrix} E_0 & V_0 & V_0 & V_0 & V_0 \\ V_0 & E_1 & V_1 & V_2 & V_1 \\ V_0 & V_1 & E_1 & V_1 & V_2 \\ V_0 & V_2 & V_1 & E_1 & V_1 \\ V_0 & V_1 & V_2 & V_1 & E_1 \end{pmatrix}, \quad (S6)$$

The corresponding eigenvalues are given by:

$$\begin{pmatrix} E_{S_1} \\ E_{S_2} \\ E_{S_3} \\ E_{S_4} \\ E_{S_5} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \left(E_0 + E_1 + 2V_1 + V_2 - \sqrt{16V_0^2 + (E_1 - E_0 + 2V_1 + V_2)^2} \right) \\ E_1 - 2V_1 + V_2 \\ E_1 - V_2 \\ E_1 - V_2 \\ E_1 - V_2 \\ \frac{1}{2} \left(E_0 + E_1 + 2V_1 + V_2 + \sqrt{16V_0^2 + (E_1 - E_0 + 2V_1 + V_2)^2} \right) \end{pmatrix},$$
 (S7)

And the corresponding eigenvectors are given by:

$$\begin{pmatrix} \boldsymbol{X}_{S_1} \\ \boldsymbol{X}_{S_2} \\ \boldsymbol{X}_{S_3} \\ \boldsymbol{X}_{S_4} \\ \boldsymbol{X}_{S_5} \end{pmatrix} = \begin{pmatrix} \frac{E_0 - E_1 - 2V_1 - \sqrt{16V_0^2 + (E_1 - E_0 + 2V_1)^2}}{2V_0} & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -1 & 1 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ \frac{E_0 - E_1 - 2V_1 + \sqrt{16V_0^2 + (E_1 - E_0 + 2V_1)^2}}{2V_0} & 1 & 1 & 1 \end{pmatrix}, \quad (S8)$$

Here, it results convenient to note that the S_1 localization depends on the relative magnitudes of energies and couplings. In particular, S_1 is localized in the central core when:

$$\frac{\left|\frac{E_0 - E_1 - 2V_1 - \sqrt{16V_0^2 + (E_1 - E_0 + 2V_1)^2}}{2V_0}\right| \gg 1, \quad (S9)$$

S3. SUPORTING INFORMATION FIGURES

Figure S1. Chemical structure of the dendrimer T1 indicating the x,y,z directions of the body-fixed reference frame.

Figure S2. Evolution at short times of average populations of electronic states calculated from the fraction of trajectories in a particular state at a given time after the initial laser excitation.

Figure S3. Evolution of the average fraction of the transition densities $\delta^{\alpha}_{carbazole}(t)$, $\delta^{\alpha}_{fluorene}(t)$, and $\delta^{\alpha}_{pyrene}(t)$.

Figure S4. Evolution at short times of GSB, SE, and ESA contributions to $\overline{S_{int,\parallel}}$ using the orientational averaging total pump-probe signal with parallel pulses, i.e., $s_{pu} = s_{pr}$.

Figure S5. Evolution at short times of GSB, SE, and ESA contributions to $\overline{S_{int,\perp}}$ using the orientational averaging total pump-probe signal with orthogonal pulses, i.e., $s_{pu} \perp s_{pr}$.

Figure S6. GSB, SE, ESA and $\overline{S_{int,\parallel}}$ signals at two different times with parallel pulses, i.e., $s_{pu} = s_{pr}$.

Figure S7. GSB, SE, ESA and $\overline{S_{int,\perp}}$ signals at two different times with orthogonal pulses, i.e., $s_{pu} \perp s_{pr}$.

Hole

 S_2 Weight = 0.699593

Particle

Hole v

Figure S8. Hole-electron pairs calculated for the first 5 excited states.

Figure S9. Spatial distributions of electronic transition densities indicating the orientation of their corresponding transition dipole moments (μ) for the five lowest energy electronic states.

Figure S10. Singular value decomposition for the non-adiabatic coupling vectors from $S_{3/4}$ to S_2 . The four bigger contributions are represented from (a) to (d), while (e) shows the corresponding weights.