Formation and Reactivity of a Unique M…C-H Interaction Stabilized by Carborane Cages

Xin-Ran Liu^{†a}, Peng-Fei Cui^{†a}, Yago García-Rodeja^b, Miquel Solà^b, and Guo-Xin Jin^{*a}

a. State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433 (P. R. China).

b. Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain.

Corresponding author: Guo-Xin Jin E-mail: gxjin@fudan.edu.cn

Table of Contents

S1. Materials and Methods Experimental Procedure	res	3
S2. Synthesis and Characterization	2	4
S2.1 Synthesis and Characterization of complex 1	2	4
S2.2 Synthesis and Characterization of complex 2	ç	9
S2.3 Synthesis and Characterization of Ligand 3	14	4
S2.4 Synthesis and Characterization of Ligand 4	18	8
S2.5 Synthesis and Characterization of complex 3	a 22	2
S2.6 Synthesis and Characterization of complex 3	b 28	8
S2.7 Synthesis and Characterization of complex 4	33	3
S2.8 Synthesis and Characterization of complex 5	a 37	7
S2.9 Synthesis and Characterization of complex 5	b 41	1
S2.10 Synthesis and Characterization of complex	6 44	4
S3. Density functional theory (DFT) calculations	49	9
S4. Crystallographic Information	52	2
S5. Cartesian coordinates and Gibbs energies of al	1 the computed systems 62	2
S6. References	75	5

S1. Materials and Methods Experimental Procedures

Materials

All reagents and solvents were purchased from commercial sources (Sigma Aldrich, Chem-extension, Leyan and Energy Chemical) and used as supplied unless otherwise mentioned. The starting material [Cp*IrCl₂]₂^[1] and [Cp*RhCl₂]₂^[1] were prepared by literature method.

Methods

NMR spectra were recorded on Bruker AVANCE I 400 Spectrometers. Spectra were recorded at room temperature and referenced to the residual protonated solvent for NMR spectra. Proton chemical shifts (δ H = 7.26 (CDCl₃)); (δ C = 77.16 (CDCl₃)); (δ H = 3.31 (CD₃OD)) and (δ C = 49.00 (CD₃OD)) are reported relative to the solvent residual peak. Coupling constants are expressed in hertz.

Infrared (IR) spectra of solid samples (KBr tablets) were measured using a Nicolet AVATAR-360IR spectrometer in the wavelength range of $400-4000 \text{ cm}^{-1}$.

UV-vis absorbance of samples was measured using an Agilent Cary 100 UV spectrophotometer with 0.1 mM solutions in dichloromethane.

ESI-MS of samples were measured using a Water G2-xs time-of-flight mass spectrometer using ESI.

Single crystals of L3, L4, complex 3a, complex 3b, complex 4, complex 5a, complex 5b and complex 6 suitable for X-ray diffraction study were obtained at suitable temperature. X-ray intensity data of L3 and complex 6 were collected on a Bruker D8 Venture system (Cu_{Ka}, $\lambda = 1.54178$ Å). X-ray intensity data of the others were collected on a CCD-Bruker SMART APEX system (Ga_{Ka}, $\lambda = 1.34138$ Å).

CCDC number: 2303640 (L3); 2303643 (L4); 2303637 (complex 3a); 2303636 (complex 3b); 2303641 (complex 4); 2303638 (complex 5a); 2303644 (complex 5b); 2303639 (complex 6).

S2. Synthesis and Characterization

S2.1 Synthesis and Characterization of complex 1.

Scheme S1. Synthesis of complex 1.

Ligand **1** (34.85 mg, 0.10 mmol), $[Cp*IrCl_2]_2$ (40.40 mg, 0.05 mmol), AgOTf (51.20 mg, 0.20 mmol) and KMDH (0.05 mL) were added to the CH₂Cl₂ solution (10 mL) at room temperature. The reaction mixture was stirred in the dark for 8 h. Then the mixture was filtrated and the filtrate was concentrated and further purified via silica gel column chromatography (CH₂Cl₂ : MeOH, 30 : 1). Orange solids were obtained and dried under vacuo to give the complex **1**: 60.98 mg 74%. ¹H NMR (400 MHz; CDCl₃, 298K, ppm): δ = 1.64 (s, 15H, Cp*-H); 6.65 (t, 1H, Ar-H); 7.45 (d, 2H, Ar-H); 7.48 (t, 4H, Ar-H); 7.62 (t, 2H, Ar-H); 8.00 (d, 4H, Ar-H). ¹³C{¹H} NMR (101 MHz; CDCl₃, 298K, ppm): δ = 8.17, 93.75 (Cp*-C), 107.98, 119.20, 126.05, 128.95, 129.13, 133.74, 136.33, 143.40 (Ar-C); 190.19 (N-C=S). IR (KBr disk, cm⁻¹): v = 3213.38, 3059.26, 2959.48, 2920.72, 1593.74, 1529.12, 1452.09, 1424.20, 1382.08, 1285.65, 1245.43, 1158.25, 1029.63, 916.53, 880.68, 691.69, 637.18, 516.68. ESI-MS: m/z = 675.1479 (calcd for [M - OTf]⁺ = 675.1456).

Figure S1. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of complex 1.

Figure S2.¹H-¹H COSY NMR (400 MHz, CDCl₃, 298K, ppm) of complex 1.

Figure S3. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298K, ppm) of complex 1.

Figure S4. ¹³C-¹H HMBC NMR (400 MHz, CDCl₃, 298K) of complex 1.

Figure S5. ¹³C-¹H HSQC NMR (400 MHz, CDCl₃, 298K) of complex 1.

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

Figure S6. ¹⁹F NMR (378 MHz, CDCl₃, 298K) of complex 1.

Figure S7. Experimental (bottom) and theoretical (top) ESI-MS of complex 1.

S2.2 Synthesis and Characterization of complex 2.

Ligand **2** (30.85 mg, 0.10 mmol), $[Cp*IrCl_2]_2$ (40.40 mg, 0.05 mmol), AgOTf (51.20 mg, 0.20 mmol) and KMDH (0.05 mL) were added to the CH₂Cl₂ solution (10 mL) at room temperature. The reaction mixture was stirred in the dark for 8 h. Then the mixture was filtrated and the filtrate was concentrated and further purified via silica gel column chromatography (CH₂Cl₂ : MeOH, 10 : 1). Orange solids were obtained and dried under vacuo to give the complex **2**: 54.88 mg 70%. ¹H NMR (400 MHz; CDCl₃, 298K, ppm): δ = 1.52 (s, 15H, Cp*-H); 0.94 (t, 6H, Bu-H); 1.43 (m, 4H, Bu-H); 1.77 (t, 4H, Bu-H); 2.85 (m, 4H, Bu-H); 6.52 (t, 1H, Ar-H); 7.01 (d, 2H, Ar-H); 10.94 (s, 2H, N-H). ¹³C{¹H} NMR (101 MHz; CDCl₃, 298K, ppm): δ = 7.84, 93.32 (Cp*-C), 13.79, 22.35, 31.65, 42.51 (Bu-C); 102.37, 117.80, 125.41, 142.41 (Ar-C); 196.61 (N-C=S). IR (KBr disk, cm⁻¹): v = 3235.20, 2962.96, 2924.42, 2852.87, 2360.30, 1600.41, 1449.93, 1382.42, 1261.69, 1097.10, 1028.25, 864.48, 802.32, 637.20. ESI-MS: m/z = 635.2096 (calcd for [M - OTf]⁺ = 635.2083).

Figure S8. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of complex 2.

Figure S9.¹H-¹H COSY NMR (400 MHz, CDCl₃, 298K, ppm) of complex 2.

Figure S10. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298K, ppm) of complex 2.

Figure S11. ¹³C-¹H HMBC NMR (400 MHz, CDCl₃, 298K) of complex 2.

Figure S12. ¹³C-¹H HSQC NMR (400 MHz, CDCl₃, 298K) of complex 2.

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

Figure S13. ¹⁹F NMR (378 MHz, CDCl₃, 298K) of complex 2.

Figure S14. Experimental (bottom) and theoretical (top) ESI-MS of complex 2.

S2.3 Synthesis and Characterization of Ligand 3.

Scheme S3. Synthesis of Ligand 3.

A suspension of n-BuLi (1.60 mol/L in n-hexane, 1.30 mL, 2.00 mmol) was added to a solution of *o*-carborane (288.00 mg, 2.00 mmol) in ether 10 mL at -78 °C over a period of 2 h, then 1,3-Phenylene di-isothiocyanate (192.20 mg, 1.00 mmol) was added at room temperature and the resulting mixture was stirred for 24 h. The reaction mixture was quenched with dilute HCl and the organic phase was separated and the water phase extracted with diethyl ether (3 × 10 mL). The solvent was then removed under vacuo and the residue was purified by column chromatography on silica gel (petroleum ether : CH₂Cl₂, 4 : 1). Elution with petroleum ether gave Ligand **3** as a yellow solid (yield: 338.80 mg, 70.0%). ¹H NMR (400 MHz; CDCl₃, 298K, ppm): δ = 1.79-2.90 (br, 20H, B-H); 4.92 (s, 2H, C_{cage}-H); 7.51 (s, 3H, Ar-H); 8.15 (s, 1H, Ar-H); 9.09 (s, 2H, N-H). ¹³C{¹H} NMR (101 MHz; CDCl₃, 298K, ppm): δ = 60.76, 78.75 (cage C); 119.04, 123.32, 130.16, 138.56 (Ar-C); 186.62 (N-C=S). ¹¹B NMR (160 MHz, CDCl₃, 298K, ppm): δ = -2.95, -4.10, -8.39, -9.61, -11.37, -12.55, -13.81. IR (KBr disk, cm⁻¹): v = 3275.83, 3043.45, 2962.24, 2573.55, 1601.41, 1541.56, 1440.57, 1388.87, 1261.21, 1193.67, 1010.66, 787.07. ESI-MS: m/z = 482.3756 (calcd for [M + H]⁺ = 482.3754).

Figure S15. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of Ligand 3.

Figure S16. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz, CDCl₃, 298K, ppm) of Ligand 3.

Figure S17. ¹³C-¹H HMBC NMR (400 MHz, CDCl₃, 298K) of Ligand 3.

Figure S18. ¹³C-¹H HSQC NMR (400 MHz, CDCl₃, 298K) of Ligand 3.

Figure S19. ¹¹B NMR (160 MHz, CDCl₃, 298 K, ppm) of Ligand 3.

Figure S20. Experimental (top) and theoretical (bottom) ESI-MS of Ligand 3.

S2.4 Synthesis and Characterization of Ligand 4.

Scheme S4. Synthesis of Ligand 4.

A suspension of *n*-BuLi (1.60 mol/L in n-hexane, 2.10 mL, 3.00 mmol) was added to a solution of *o*-carborane (432.00 mg, 3.00 mmol) in ether 10 mL at -78 °C over a period of 2 h, then 1,3,5-triisothiocyanatobenzene (249.30 mg, 1.00 mmol) was added at room temperature and the resulting mixture was stirred for 24 h. The reaction mixture was quenched with dilute HCl and the organic phase was separated and the water phase extracted with diethyl ether (3×10 mL). The solvent was then removed under vacuo and the residue was purified by column chromatography on silica gel (petroleum ether: CH₂Cl₂, 2 : 1). Elution with petroleum ether gave Ligand **4** as a yellow solid (yield: 391.60 mg, 57.0%). ¹H NMR (400 MHz; CDCl₃, 298K, ppm): $\delta = 1.76-2.95$ (br, 30H, B-H); 4.88 (s, 3H, C_{cage}-H); 7.95 (s, 3H, Ar-H); 9.10 (s, 3H, N-H). ¹³C{¹H} NMR (101 MHz; CDCl₃, 298K, ppm): $\delta = 60.74$, 78.65 (cage C); 118.18, 139.12 (Ar-C); 187.07 (N-C=S). ¹¹B NMR (160 MHz, CDCl₃, 298K, ppm): $\delta = -2.87$, -4.03, -8.33, -9.55, -12.54, -13.72. IR (KBr disk, cm⁻¹): v = 3355.73, 3048.21, 2961.08, 2587.27, 1608.55, 1545.24, 1376.49, 1260.61, 1013.75, 799.44. ESI-MS: m/z = 683.5391 (calcd for [M + H]⁺ = 683.5373).

Figure S21. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of Ligand 4.

Figure S22. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298K, ppm) of Ligand 4.

Figure S23. ¹³C-¹H HMBC NMR (400 MHz, CDCl₃, 298K) of Ligand 4.

Figure S24. ¹³C-¹H HSQC NMR (400 MHz, CDCl₃, 298K) of Ligand 4.

Figure S25. ¹¹B NMR (160 MHz, CDCl₃, 298 K, ppm) of Ligand 4.

Figure S26. Experimental (bottom) and theoretical (top) ESI-MS of Ligand 4.

S2.5 Synthesis and Characterization of complex 3a.

Scheme S5. Synthesis of complex 3a.

Ligand **3** (48.40 mg, 0.10 mmol), $[Cp*IrCl_2]_2$ (40.40 mg, 0.05 mmol), AgOTf (51.20 mg, 0.20 mmol) and KMDH (0.05 mL) were added to the CH₂Cl₂ solution (10 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h. Then the mixture was filtrated and the filtrate was concentrated and further purified via silica gel column chromatography (*n*-Hexane : CH₂Cl₂, 4 : 1). Pink solids were obtained and dried under vacuo to give the complex **3a**: 57.20 mg 71%. ¹H NMR (400 MHz; CDCl₃, 298K, ppm): δ = 2.01-2.58 (br, 20H, B-H); 1.10 (s, 15H, Cp*-H); 4.78 (s, 2H, C_{cage}-H); 5.66 (s, 1H, Ar-H); 6.59 (d, 2H, Ar-H); 8.11 (t, 1H, Ar-H). ¹³C{¹H} NMR (101 MHz; CDCl₃, 298K, ppm): δ = 6.89, 93.08 (Cp*-C), 58.46 (cage C); 41.71, 118.83, 138.10, 159.92 (Ar-C); 168.03 (N=C-S). ¹¹B NMR (160 MHz, CDCl₃, 298K, ppm): δ = -3.20, -4.05, -8.93, -10.00. IR (KBr disk, cm⁻¹): v = 3080.19, 3069.26, 2962.02, 2627.04, 2590.28, 2556.87, 1574.55, 1506.80, 1460.71, 1376.47, 1310.92, 1261.77, 1139.39, 1013.86, 809.33. ESI-MS: m/z = 807.4387 (calcd for [M + H]⁺ = 807.4412).

Figure S27. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of complex 3a.

Figure S28. 1 H- 1 H COSY NMR (400 MHz, CDCl₃, 298K, ppm) of complex 3a.

Figure S29. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298K, ppm) of complex 3a.

Figure S30. ¹³C-¹H HMBC NMR (400 MHz, CDCl₃, 298K) of complex 3a.

Figure S31. ¹³C-¹H HSQC NMR (400 MHz, CDCl₃, 298K) of complex 3a.

Figure S32. ¹¹B NMR (160 MHz, CDCl₃, 298 K, ppm) of complex 3a.

Figure S33. Experimental (bottom) and theoretical (top) ESI-MS of complex 3a.

Figure S34. UV-visible absorption spectra of complex 3a in dichloromethane.

S2.6 Synthesis and Characterization of complex 3b.

Scheme S6. Synthesis of complex 3b.

Ligand **3** (48.40 mg, 0.10 mmol), $[Cp*RhCl_2]_2$ (30.90 mg, 0.05 mmol), AgOTf (51.20 mg, 0.20 mmol) and KMDH (0.05 mL) were added to the CH₂Cl₂ solution (10 mL) at room temperature. The reaction mixture was stirred in the dark for 12 h. Then the mixture was filtrated and the filtrate was concentrated and further purified via silica gel column chromatography (*n*-Hexane : CH₂Cl₂, 3 : 1). Red solids were obtained and dried under vacuo to give the complex **3b**: 62.30 mg 87%. ¹H NMR (400 MHz; CDCl₃, 298K, ppm): δ = 1.96-2.54 (br, 20H, B-H); 1.12 (s, 15H, Cp*-H); 4.75 (s, 2H, C_{cage}-H); 5.91 (s, 1H, Ar-H); 6.65 (d, 2H, Ar-H); 7.92 (t, 1H, Ar-H). ¹³C{¹H} NMR (101 MHz; CDCl₃, 298K, ppm): δ = 7.69, 98.70 (Cp*-C), 58.48 (cage C); 56.57, 119.21, 137.23, 159.91 (Ar-C); 170.79 (N=C-S). ¹¹B NMR (160 MHz, CDCl₃, 298K, ppm): δ = -3.25, -4.12, -10.26, -13.05. IR (KBr disk, cm⁻¹): v = 3071.45, 2961.92, 2924.04, 2855.10, 2576.54, 1515.58, 1465.80, 1261.73, 1139.59, 1110.58, 1016.61, 803.55. ESI-MS: m/z = 718.3834 (calcd for [M + H]⁺ = 718.3834).

Figure S35. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of complex 3b.

Figure S37. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298K, ppm) of complex **3b**.

Figure S38. ¹³C-¹H HMBC NMR (400 MHz, CDCl₃, 298K) of complex 3b.

Figure S39. ¹³C-¹H HSQC NMR (400 MHz, CDCl₃, 298K) of complex 3b.

Figure S40. ¹¹B NMR (160 MHz, CDCl₃, 298 K, ppm) of complex 3b.

Figure S41. Experimental (bottom) and theoretical (top) ESI-MS of complex 3b.

Figure S42. UV-visible absorption spectra of complex 3b in dichloromethane.

S2.7 Synthesis and Characterization of complex 4.

Scheme S7. Synthesis of complex 4.

Ligand **4** (27.40 mg, 0.04 mmol), $[Cp*IrCl_2]_2$ (48.48 mg, 0.06 mmol), AgOTf (61.00 mg, 0.24 mmol) and Et₃N (0.05 mL) were added to the CH₂Cl₂ solution (10 mL) at room temperature. The reaction mixture was stirred in the dark for 18 h. Then the mixture was filtrated and the filtrate was concentrated and further purified via silica gel column chromatography (*n*-Hexane : CH₂Cl₂, 4 : 1). Orange solids were obtained and dried under vacuo to give the complex **4**: 28.54 mg 43%. ¹H NMR (400 MHz; CDCl₃, 298K, ppm): δ = 2.31-2.96 (br, 28H, B-H); 1.20 (s, 15H, Cp*-H); 2.11 (d, 30H, Cp*-H); 4.67 (s, 3H, C_{cage}-H); 5.57 (s, 1H, Ar-H); 5.98 (s, 1H, Ar-H); 6.04 (s, 1H, Ar-H). ¹³C{¹H} NMR (101 MHz; CDCl₃, 298K, ppm): δ = 7.18, 10.41, 10.66, 91.80, 92.20, 93.49 (Cp*-C), 58.48 (cage C); 35.04, 109.91, 128.99, 131.07 (Ar-C); 161.76, 168.12 (N=C-S). ¹¹B NMR (160 MHz, CDCl₃, 298K, ppm): δ = -3.56, -9.67. IR (KBr disk, cm⁻¹): v = 3057.39, 2963.00, 2884.42, 2579.67, 1614.33, 1450.23, 1383.79, 1261.40, 1194.33, 1097.51, 1025.35, 803.59. ESI-MS: m/z = 1659.7423 (calcd for [M + H]⁺ = 1659.7402).

Figure S43. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of complex 4.

Figure S44. ¹H-¹H COSY NMR (400 MHz, CDCl₃, 298K, ppm) of complex 4.

Figure S45. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298K, ppm) of complex 4.

Figure S46. ¹¹B NMR (160 MHz, CDCl₃, 298 K, ppm) of complex 4.

Figure S47. Experimental (bottom) and theoretical (top) ESI-MS of complex 4.
S2.8 Synthesis and Characterization of complex 5a.

Scheme S8. Synthesis of complex 5a.

The complex **3a** (40.31 mg, 0.05 mmol) was dissolved in the CH₂Cl₂ solution. And HOTf (0.05 mL) was added to the solution at room temperature. The reaction mixture was stirred 10 h. Then the mixture was filtered and the precipitate was washed by Et₂O. Orange solid was obtained and dried under vacuo to give the complex **5a**: 38.25 mg 80%. ¹H NMR (400 MHz; CD₃OD, 298K, ppm): 1.53, 1.58, 1.59 (s, 15H, Cp*-H); 2.89 (s, 2H, C_{cage}-H); 6.78 (s, 3H, Ar-H). ¹³C{¹H} NMR (101 MHz; CD₃OD, 298K, ppm): $\delta = 8.14$, 94.24 (Cp*-C); 108.35, 117.48, 125.84, 144.52 (Ar-C); 199.14 (N-C=S). ¹¹B NMR (160 MHz, CD₃OD, 298K, ppm): $\delta = 18.33$, -9.07, -16.49, -21.65, - 31.21, -32.25, -34.46, -35.42. IR (KBr disk, cm⁻¹): v = 3448.31, 3063.61, 2874.62, 2588.29, 2346.60, 1613.09, 1424.81, 1357.23, 1284.95, 1243.76, 1170.70, 1029.78, 639.90. ESI-MS: m/z = 807.4139 (calcd for [M - OTf]⁺ = 807.4511).

Figure S48. ¹H NMR (400 MHz, CD₃OD, 298K, ppm) of complex 5a.

Figure S49. ¹H-¹H COSY NMR (400 MHz, CD₃OD, 298K, ppm) of complex 5a.

Figure S50. ¹³C{¹H} NMR (101 MHz, CD₃OD, 298K, ppm) of complex 5a.

Figure S51. ¹³C-¹H HMBC NMR (400 MHz, CD₃OD, 298K) of complex 5a.

Figure S52. ¹³C-¹H HSQC NMR (400 MHz, CD₃OD, 298K) of complex 5a.

Figure S53. ¹¹B NMR (160 MHz, CD₃OD, 298 K, ppm) of complex 5a.

Figure S54. Experimental (bottom) and theoretical (top) ESI-MS of complex 5a.

S2.9 Synthesis and Characterization of complex 5b.

Scheme S9. Synthesis of complex 5b.

Complex **3b** (35.84 mg, 0.05 mmol) was dissolved in the CH₂Cl₂ solution. And HOTf (0.05 mL) was added to the solution at room temperature. The reaction mixture was stirred 6 h. Then the mixture was filtered and the precipitate was washed by Et₂O. Orange solid was obtained and dried under vacuo to give the complex **5b**: 37.71 mg 87%. ¹H NMR (400 MHz; CD₃OD, 298K, ppm): 1.47, 1.52 (s, 15H, Cp*-H); 2.96 (s, 2H, C_{cage}-H); 6.90, 6.92, 6.95, 6.96 (3H, Ar-H). ¹¹B NMR (160 MHz, CD₃OD, 298K, ppm): $\delta = 18.33, -7.54, -9.07, -16.43, -21.88, -31.23, -32.19, -34.31, -35.42$. IR (KBr disk, cm⁻¹): v = 3448.41, 3222.36, 3060.20, 2916.95, 2586.59, 1554.33, 1421.83, 1283.98, 1243.38, 1170.27, 1029.34, 636.71. ESI-MS: m/z = 718.3762 (calcd for [M - OTf]⁺ = 718.3943).

Figure S55. ¹H NMR (400 MHz, CD₃OD, 298K, ppm) of complex 5b.

Figure S56. ¹H-¹H COSY NMR (400 MHz, CD₃OD, 298K, ppm) of complex 5b.

Figure S57. 11 B NMR (160 MHz, CD₃OD, 298 K, ppm) of complex 5b.

Figure S58. Experimental (bottom) and theoretical (top) ESI-MS of complex 5b.

S2.10 Synthesis and Characterization of complex 6.

Complex **3b** (35.84 mg, 0.05 mmol) was dissolved in the CH₂Cl₂ solution. And tert-Butyl isocyanide (0.05 mL) was added to the solution at room temperature. The reaction mixture was stirred 10 h. Then the mixture was concentrated and further purified via silica gel column chromatography (n-Hexane : CH₂Cl₂, 2 : 1). Yellow solids were obtained and dried under vacuo to give the complex **6**: 39.80 mg 96%. ¹H NMR (400 MHz; CDCl₃, 298K, ppm): $\delta = 1.83$ -2.82 (br, 20H, B-H); 1.39 (s, 18H, CH₃); 1.60 (s, 9H, CH₃); 4.86 (s, 2H, C_{cage}-H); 7.02 (s, 3H, Ar-H). ¹³C {¹H} NMR (101 MHz; CDCl₃, 298K, ppm): $\delta = 30.22$ (CH₃); 58.77 (C-(CH₃)₃); 79.97 (CN); 58.00 (cage C); 125.24, 125.88, 149.40 (Ar-C); 157.81 (N=C-S). ¹¹B NMR (160 MHz, CDCl₃, 298K, ppm): $\delta = -3.42$, -4.28, -9.66, -10.73. IR (KBr disk, cm⁻¹): v = 2963.44, 2925.99, 2855.17, 2592.56, 2199.45, 2161.92, 1493.50, 1261.85, 1186.51, 1096.74, 1019.22, 800.03. ESI-MS: m/z = 830.4823 (calcd for [M + H]⁺ = 830.4821).

Figure S59. ¹H NMR (400 MHz, CDCl₃, 298K, ppm) of complex 6.

Figure S60.¹H-¹H COSY NMR (400 MHz, CDCl₃, 298K, ppm) of complex 6.

Figure S61. $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃, 298K, ppm) of complex 6.

Figure S62. ¹³C-¹H HMBC NMR (400 MHz, CDCl₃, 298K) of complex 6.

Figure S63. ¹³C-¹H HSQC NMR (400 MHz, CDCl₃, 298K) of complex 6.

Figure S64. ¹¹B NMR (160 MHz, CDCl₃, 298 K, ppm) of complex 6.

Figure S65. Experimental (top) and theoretical (bottom) ESI-MS of complex 6.

S3. Density functional theory (DFT) calculations^[2-6]

Table S1. NPA charges (*in e*) for Ligands **1-3** and R = CN, OH, H. Level of theory: SMD(CH₂Cl₂)-B3LYP-D3/Def2-TZVPP//SMD(CH₂Cl₂)-B3LYP-D3/Def2-SVP.

	Ligand 1	Ligand 2	Ligand 3	R=-CN ^a	$R = -OH^a$	$R = -H^a$
S1	-0.191	-0.221	-0.089	-0.058	-0.263	-0.201
S2	-0.188	-0.221	-0.121	-0.058	-0.270	-0.201
C1	0.109	0.148	0.112	-0.032	0.391	-0.075
C2	0.108	0.148	0.128	-0.032	0.393	-0.075
N1(H)	-0.528 (0.424)	-0.533 (0.420)	-0.515 (0.435)	-0.473 (0.442)	-0.568 (0.421)	-0.513 (0.428)
N2(H)	-0.515 (0.423)	-0.533 (0.420)	-0.511 (0.440)	-0.473 (0.442)	-0.571 (0.422)	-0.513 (0.428)
C(H)	-0.266 (0.273)	-0.266 (0.273)	-0.263 (0.276)	-0.263 (0.271)	-0.234 (0.263)	-0.277 (0.273)
C1b	0.146	0.142	0.144	0.137	0.140	0.137
C2b	0.143	0.142	0.143	0.137	0.141	0.137
R1	0.022	0.034	-0.124	-0.069	-0.245	0.212
R2	0.022	0.034	-0.123	-0.069	-0.244	0.212

^a $R = R_1 = R_2$ in Figure of Table S1.

Table S2. EDDB analysis for the different complexes. Level of theory: $SMD(CH_2Cl_2)$ -B3LYP-D3/Def2-SVP.^a

	Complex 1	Complex 2	Complex 3a	Complex 5a	$R = -CN^b$	$R = -OH^b$	$R = -H^b$
Total population of electrons	36.6266e (6.1044 e/atom)	36.6355e (6.1059 e/atom)	36.6625e (6.1104 e/atom)	36.5920e (6.0987 e/atom)	36.6732e (6.1122 e/atom)	36.7256e (6.1209 e/atom)	36.7294e (6.1216 e/atom)
Total population of delocalized electrons	4.8254 e (0.8042 e/atom)	4.8135 e (0.8023 e/atom)	3.5179 e (0.5863 e/atom)	4.7757 e (0.7959 e/atom)	3.477 e (0.5796 e/atom)	3.4678 e (0.5780 e/atom)	3.4568 e (0.5761 e/atom)

^a For benzene: 37.3361 e (6.2227 e/atom) and 5.5746 e (0.9291 e/atom). ^b $R = R_1 = R_2$ in Figure of Table S1.

Table S3. NICS(1)zz values for the different complexes. Level of theory: SMD(CH₂Cl₂)-B3LYP-D3/Def2-SVP.^a

	Complex 1	Complex 2	Complex 3a	Complex 5a	$R = -CN^b$	$R = -OH^b$	$R = -H^b$
NICS(1)zz (ppm)	-16.7	-18.2	-19.9	-15.3	-22.7	-18.7	-20.7

^a For benzene: -27.70 ppm. ^b $R = R_1 = R_2$ in Figure of Table S1.

Table S4. Metal····C–H interaction analysis by Mayer bond orders and three-centre electron sharing indices (3c-ESI). Level of theory: SMD(CH₂Cl₂)-B3LYP-D3/Def2-SVP (Insert: The structures of complexes: PhCr(CO)₃; AuPhCl₃; H-Bond; Anagostic; Cp*Ir(C₂H₄)₂⁺).

System	Μ	3c-ESI		
	M-C	С-Н	M-H	М…С-Н
Complex 3a	0.500	0.889	0.041	0.017
PhCr(CO) ₃	0.451	0.988	0.002	0.005
AuPhCl ₃ ^a	0.367	0.914	0.019	0.020
H-Bond ^b	0.001	0.796	0.155	-0.002
Anagostic ^c	0.213	0.804	0.166	0.043
$Cp*Ir(C_2H_4)_2^{+d}$	0.299	0.688	0.268	0.098

^a Zwitterionic Wheland intermediate^[6]; ^{b-d} Complexes possessing H-bond, anagostic and agostic interactions, respectively, obtained from ref. 46 of the main text. CCDC for b and c: ZIYJID and BIXFUJ. 3c-ESI referred to $M \cdots H-X$ (X = C or N) instead of $M \cdots C-H$.

Table S5. Gibbs energies (kcal/mol) for reaction (1).^a

System	ΔG
Complex 1	-7.01
Complex 2	-6.04
Complex 3a	12.50
$\mathbf{R} = -\mathbf{C}\mathbf{N}$	11.17
R = -OH	5.01
R = -H	-5.07

^a Complex $n + NEt_3H^+ \rightarrow Complex np + NEt_3$ (1). See Figure S66. ^b $R = R_1 = R_2$ in Figure of Table S1.

Complex n

Complex np

Figure S66. Molecular structures of complexes n and np in Equation (1).

Table S6. QTAIM analysis^[7] of the bond critical point (BCP) Ir…C. Level of theory: SMD(CH₂Cl₂)-B3LYP-D3/Def2-SVP.

	ρ	∇ρ²	3	K
Complex 3a	0.079	0.108	0.113	0.026

Table S7. QTAIM analysis^[7] of the bond critical point (BCP) C–H. Level of theory: SMD(CH₂Cl₂)-B3LYP-D3/Def2-SVP.

	ρ	∇ ρ ²	3	K
Complex 3a	0.279	-1.065	0.027	0.305

S4. Crystallographic Information

CCDC number	2303640	
Identification code	cu_230621b_0m_a	
Empirical formula	C12 H28 B20 N2 S2	
Formula weight	480.68	
Temperature	298(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 31.1627(9) Å	$\alpha = 90^{\circ}$.
	b = 12.4318(3) Å	$\beta = 107.595(2)^{\circ}.$
	c = 14.5172(4) Å	$\gamma = 90^{\circ}$.
Volume	5361.0(3) Å ³	
Ζ	8	
Density (calculated)	1.191 Mg/m ³	
Absorption coefficient	1.823 mm ⁻¹	
F(000)	1968	
Crystal size	0.250 x 0.220 x 0.180 mm ²	3
Theta range for data collection	4.712 to 65.153°.	
Index ranges	-35<=h<=36, -13<=k<=14	, - 15<=l<=17
Reflections collected	26231	
Independent reflections	4556 [R(int) = 0.0721]	
Completeness to theta = 65.153°	99.4 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.753 and 0.576	
Refinement method	Full-matrix least-squares o	n F ²
Data / restraints / parameters	4556 / 14 / 343	
Goodness-of-fit on F ²	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0633, wR2 = 0.179	4
R indices (all data)	R1 = 0.0797, wR2 = 0.193	2
Extinction coefficient	n/a	
Largest diff. peak and hole	0.522 and -0.338 e.Å ⁻³	

 Table S8. Crystal data and structure refinement for Ligand 3.

CCDC number	2303643	
Identification code	platon_sq	
Empirical formula	C17 H43 B30 N3 S3 Cl4	
Formula weight	851.82	
Temperature	193.0 K	
Wavelength	1.34139 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 10.9098(9)Å	$\alpha = 90^{\circ}$.
	b = 25.502(2) Å	$\beta = 90^{\circ}$.
	c = 31.388(3) Å	$\gamma = 90^{\circ}$.
Volume	8732.6(12) Å ³	
Z	8	
Density (calculated)	1.296 Mg/m ³	
Absorption coefficient	2.586 mm ⁻¹	
F(000)	3456.0	
Crystal size	$0.33\times 0.28\times 0.12 mm^3$	
Theta range for data collection	3.255 to 53.499°.	
Index ranges	-13<=h<=12, -30<=k<=30, -	37<=l<=37
Reflections collected	32746	
Independent reflections	7801 [R(int) = 0.1447]	
Completeness to theta = 53.499°	99.1 %	
Absorption correction	Semi-empirical from equival	ents
Max. and min. transmission	0.7510 and 0.4735	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	7801 / 212 / 639	
Goodness-of-fit on F2	1.053	
Final R indices [I>2sigma(I)]	R1 = 0.1440, wR2 = 0.3770	
R indices (all data)	R1 = 0.2144, wR2 = 0.4114	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.386 and -0.570 e.Å ⁻³	

 Table S9. Crystal data and structure refinement for Ligand 4.

CCDC number	2303637
Identification code	230804b_0ma_a
Empirical formula	C17.60 H32.80 B16 Ir0.80 N1.60 S1.60
Formula weight	644.87
Temperature	174(2) K
Wavelength	1.34139 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	$a = 19.1073(6) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 13.3046(4) \text{ Å}$ $\beta = 99.2970(10)^{\circ}.$
	$c = 13.9712(4) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	3505.03(18) Å ³
Z	5
Density (calculated)	1.528 Mg/m ³
Absorption coefficient	5.715 mm ⁻¹
F(000)	1584
Crystal size	0.260 x 0.250 x 0.200 mm ³
Theta range for data collection	3.537 to 52.187°.
Index ranges	-22<=h<=22, -15<=k<=9, -15<=l<=16
Reflections collected	23569
Independent reflections	5958 [R(int) = 0.0354]
Completeness to theta = 66.004°	99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.750 and 0.421
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5958 / 8 / 442
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.1137
R indices (all data)	R1 = 0.0380, wR2 = 0.1171
Extinction coefficient	0.00042(8)
Largest diff. peak and hole	1.673 and -1.847 e.Å ⁻³

Table S10. Crystal data and structure refinement for complex 3a.

- -		
CCDC number	2303636	
Identification code	230802g_0ma_a	
Empirical formula	C22 H41 B20 N2 Rh S2	
Formula weight	716.80	
Temperature	173(2) K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 19.052(2) Å	$\alpha = 90^{\circ}$.
	b = 13.3058(15)) Å	$\beta = 99.388(8)^{\circ}.$
	c = 13.995(2) Å	$\gamma = 90^{\circ}.$
Volume	3500.2(8) Å ³	
Ζ	4	
Density (calculated)	1.360 Mg/m ³	
Absorption coefficient	3.494 mm ⁻¹	
F(000)	1456	
Crystal size	0.250 x 0.220 x 0.180 mm ³	
Theta range for data collection	3.541 to 48.177°.	
Index ranges	-21<=h<=17, -13<=k<=14, -	-15<=1<=15
Reflections collected	17259	
Independent reflections	4930 [R(int) = 0.0708]	
Completeness to theta = 48.177°	98.1 %	
Absorption correction	Semi-empirical from equival	lents
Max. and min. transmission	0.750 and 0.512	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	4930 / 8 / 441	
Goodness-of-fit on F ²	1.099	
Final R indices [I>2sigma(I)]	R1 = 0.0767, wR2 = 0.1908	
R indices (all data)	R1 = 0.1225, wR2 = 0.2238	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.560 and -1.785 e.Å ⁻³	

Table S11. Crystal data and structure refinement for complex 3b.

CCDC number	2303641
Identification code	230218d_0m_a
Empirical formula	C90 H158 B60 Ir6 N6 S6
Formula weight	3318.37
Temperature	173.0 K
Wavelength	1.34139 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 17.6388(6) \text{ Å}$ $\alpha = 91.778(2)^{\circ}.$
	$b = 18.5304(7) \text{ Å}$ $\beta = 91.812(2)^{\circ}.$
	$c = 24.0367(9) \text{ Å}$ $\gamma = 103.9010(10)^{\circ}.$
Volume	7616.5(5) Å ³
Z	2
Density (calculated)	1.447 Mg/m ³
Absorption coefficient	7.552 mm ⁻¹
F(000)	3196
Crystal size	0.18 x 0.15 x 0.12 mm ³
Theta range for data collection	3.736 to 52.299°.
Index ranges	-20<=h<=20, -21<=k<=21, -28<=l<=28
Reflections collected	125456
Independent reflections	26018 [R(int) = 0.0460]
Completeness to theta = 52.299°	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.008 and 0.002
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	26018 / 0 / 1549
Goodness-of-fit on F ²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0395, wR2 = 0.0973
R indices (all data)	R1 = 0.0472, wR2 = 0.1016
Extinction coefficient	n/a
Largest diff. peak and hole	2.618 and -1.691 e.Å ⁻³

Table S12. Crystal data and structure refinement for complex 4.

CCDC number	2303638	
Identification code	230806d_0m_a	
Empirical formula	C23 H42 B20 F3 Ir N2 O3 S3	
Formula weight	956.16	
Temperature	173(2) K	
Wavelength	1.34138 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.6139(5) Å	$\alpha = 98.948(2)^{\circ}.$
	b = 13.1923(6) Å	$\beta = 101.424(2)^{\circ}.$
	c = 13.5261(6) Å	$\gamma = 91.727(2)^{\circ}.$
Volume	2002.63(15) Å ³	
Ζ	2	
Density (calculated)	1.586Mg/m ³	
Absorption coefficient	5.489 mm ⁻¹	
F(000)	940	
Crystal size	$0.280 \ge 0.250 \ge 0.220 \text{ mm}^3$	
Theta range for data collection	3.811 to 52.000°.	
Index ranges	-13<=h<=13, -15<=k<=15, -15<=l<=15	
Reflections collected	25232	
Independent reflections	6539 [R(int) = 0.0448]	
Completeness to theta = 48.514°	96.2 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.750 and 0.439	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6539 / 107 / 584	
Goodness-of-fit on F ²	1.100	
Final R indices [I>2sigma(I)]	R1 = 0.0384, $wR2 = 0.0958$	
R indices (all data)	R1 = 0.0431, $wR2 = 0.100$	0
Extinction coefficient	n/a	
Largest diff. peak and hole	1.342 and -2.189 e.Å ⁻³	

Table S13. Crystal data and structure refinement for complex 5a.

Table S14. Crystal data and structure refinement for complex 5b.

CCDC number	2303644	
Identification code	ga_230808f_a	
Empirical formula	C23 H42 B20 F3 N2 O3 Rh S3	
Formula weight	866.87	
Temperature	173.00 K	
Wavelength	1.34139 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 11.6103(11) Å	$\alpha = 99.204(4)^{\circ}$.
	b = 13.1824(13) Å	$\beta = 101.430(4)^{\circ}.$
	c = 13.5411(13) Å	$\gamma = 91.527(4)^{\circ}.$
Volume	2001.6(3) Å ³	
Ζ	2	
Density (calculated)	1.438 Mg/m ³	
Absorption coefficient	3.495 mm ⁻¹	
F(000)	876	
Crystal size	$0.25 \text{ x} 0.22 \text{ x} 0.18 \text{ mm}^3$	
Theta range for data collection	2.960 to 51.998°.	
Index ranges	-13<=h<=13, -15<=k<=15	, - 15<=l<=15
Reflections collected	13097	
Independent reflections	6632 [R(int) = 0.0284]	
Completeness to theta = 51.998°	97.6%	
Absorption correction	Semi-empirical from equiv	alents
Max. and min. transmission	0.6146 and 0.4633	
Refinement method	Full-matrix least-squares o	n F ²
Data / restraints / parameters	6632 / 135 / 581	
Goodness-of-fit on F ²	1.096	
Final R indices [I>2sigma(I)]	R1 = 0.0438, wR2 = 0.090	6
R indices (all data)	R1 = 0.0595, wR2 = 0.103	6
Extinction coefficient	n/a	
Largest diff. peak and hole	0.717 and -0.805 e.Å ⁻³	

 Table S15. Crystal data and structure refinement for complex 6.

CCDC number	2303639	
Identification code	cu_230824a_a	
Empirical formula	C27 H52 B20 N5 Rh S2	
Formula weight	829.96	
Temperature	173(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 12.1157(11) Å	$\alpha = 102.935(4)^{\circ}$.
	b = 13.1515(12) Å	$\beta = 95.742(5)^{\circ}.$
	c = 15.8884(14) Å	$\gamma = 111.659(4)^{\circ}$.
Volume	2246.1(4) Å ³	
Ζ	2	
Density (calculated)	1.227 Mg/m ³	
Absorption coefficient	4.131 mm ⁻¹	
F(000)	852	
Crystal size	0.180 x 0.120 x 0.110 mm ³	
Theta range for data collection	2.913 to 64.999°.	
Index ranges	-14<=h<=14, -15<=k<=15, -18<=l<=18	
Reflections collected	13869	
Independent reflections	7550 [R(int) = 0.0306]	
Completeness to theta = 64.999°	98.6 %	
Absorption correction	Semi-empirical from equiva	lents
Max. and min. transmission	0.644 and 0.523	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7550 / 8 / 513	
Goodness-of-fit on F ²	1.041	
Final R indices [I>2sigma(I)]	R1 = 0.0291, $wR2 = 0.0685$	
R indices (all data)	R1 = 0.0326, $wR2 = 0.0704$	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.505 and -0.269 e.Å ⁻³	

Figure S67. Crystallographically-derived molecular structure of Ligand **3** (the H atoms have been omitted for clarity). Color code: S, yellow; N, blue; C, grey; B, light pink.

Figure S68. Crystallographically-derived molecular structure of Ligand **4** (the H atoms have been omitted for clarity). Color code: S, yellow; N, blue; C, grey; B, light pink.

Figure S69. Crystallographically-derived molecular structure of complex **3b**. Color code: Rh, dark red; S, yellow; N, blue; C, grey; B, light pink; H, light grey.

Figure S70. Crystallographically-derived molecular structure of complex **5b**. Color code: Rh, dark red; S, yellow; N, blue; C, grey; B, light pink; H, light grey.

S5. Cartesian coordinates and Gibbs energies of all the computed systems

Table S16. Cartesian coordinates (in Å) ZPE corrected electronic and Gibbs energies (in a.u.) of all the stationary points discussed in the text computed at SMD(CH₂Cl₂)-B3LYP-D3/Def2-SVP level of theory.

Com	plex 3a		
Ir	-0.002066	-1.161492	-0.276623
S	1.765088	0.223331	-1.136716
S	-1.722765	0.282591	-1.133539
Ν	2.463218	0.554252	1.496840
Ν	-2.441819	0.565468	1.498803
С	4.031105	1.368907	-0.099929
Ē	4.891169	1.917709	1.170752
Ĥ	4,410599	1.750655	2.132703
B	5 431597	0 494103	0 391574
Ĥ	5 259599	-0 551030	0.935936
R	5.075582	0 794992	-1 323819
Н	4 714181	-0 124894	-1 991322
R	1 266/70	2 372877	-1./58103
н	3 3 5 9 3 2 9	2.572077	-2 217601
D D	<i>J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.</i>	2.521400	-2.217091
ь ц	2 122101	2 601504	0.172007
D	5.152191	5.00150 4 1.740762	0.362094
D	0.33/300	1.749702	1 200000
П	7.238814	1.300290	1.899990
В	0./13390	1.058480	-0.082552
H	/.61/8/3	0.325335	-0.9/1386
В	5.996089	2.224/10	-1.830890
H	6.390900	2.330414	-2.959500
В	5.396679	3.630582	-0.903997
Н	5.356668	4.742032	-1.352453
В	5.750786	3.328224	0.812812
Н	5.889484	4.146174	1.673277
В	6.916542	2.817004	-0.426796
Н	7.984714	3.354671	-0.529610
В	-4.104276	3.091072	0.191425
Η	-3.128978	3.629064	0.613833
В	-4.238896	2.410713	-1.446591
Η	-3.328197	2.574931	-2.198642
В	-5.034878	0.824395	-1.333572
Η	-4.660550	-0.085715	-2.007277
В	-5.399172	0.503228	0.376283
Η	-5.221330	-0.545628	0.911385
В	-5.746608	3.329829	0.823947
Η	-5.898431	4.137839	1.691540
В	-5.383979	3.652613	-0.887472
Н	-5.351236	4.768795	-1.324584
В	-5.964682	2.250831	-1.832430
Н	-6.353032	2.364418	-2.962516
В	-6.679117	1.066815	-0.700554
Н	-7.574783	0.328387	-1.002515
В	-6.539709	1.742929	0.938404
Ĥ	-7 225152	1 483713	1 882774
B	-6 899523	2 820721	-0 428456
Н	-7 971803	3 349823	-0 532874
C	2 702159	0 712923	0 237012
č	1 256902	0 145902	2 013298
č	0.011802	0 451873	1 348016
й	0.015552	1 378761	0 607022
C	1 226055	0 150690	2 012250
U	-1.230033	0.130000	2.012230

С	-1.213782	-0.508713	3.250263
Η	-2.160579	-0.740998	3.741267
С	0.008146	-0.827575	3.849656
Η	0.007088	-1.335245	4.817943
С	1.231304	-0.511343	3.252328
Η	2.176768	-0.748646	3.743492
С	-2.672593	0.744965	0.240289
С	-4.003409	1.395808	-0.097107
С	-4.876341	1.923573	1.173429
Η	-4.400652	1.750739	2.136826
С	-1.171823	-3.031632	-0.011789
С	-0.840788	-2.870912	-1.412480
С	0.592574	-2.873517	-1.540925
С	1.161546	-3.058339	-0.218276
С	0.069705	-3.198726	0.703604
С	-2.547738	-3.151409	0.560184
Η	-2.890142	-4.200997	0.538262
Η	-3.268578	-2.551369	-0.012979
Η	-2.575380	-2.808793	1.603889
С	-1.824442	-2.782802	-2.528782
Η	-1.407447	-2.253336	-3.396516
Η	-2.740720	-2.264369	-2.215008
Η	-2.103247	-3.801241	-2.851048
С	1.371813	-2.794529	-2.809873
Η	1.652559	-3.810355	-3.138342
Η	2.298661	-2.219388	-2.671446
Η	0.788840	-2.324318	-3.613810
С	2.615636	-3.201640	0.095617
Η	2.832215	-2.899857	1.129870
Η	3.228669	-2.582968	-0.574515
Η	2.936727	-4.251053	-0.026511
С	0.191935	-3.576286	2.137048
Η	0.155905	-4.678400	2.207336
Η	-0.634440	-3.179736	2.738994
Η	1.141534	-3.243906	2.573836

Sum of electronic and zero-point Energies = -2369.178520 Sum of electronic and thermal Free Energies = -2369.249408

Complex	1
Ir	-0.0014

45160 0.062750
06361 -1.467465
-1.483087
0.517898
089711 1.017851
73564 0.504854
12496 1.005875
-0.535771
0.898867
0.584715
42644 0.892112
54988 1.602034
33499 1.841116
43385 1.985115
2.545690
43198 1.608703
12712 1.853095
38265 -0.548655
11153 1.466033
58725 2.172553

С	-0.772682	-2.759594	0.476908
С	0.642178	-2.814187	0.437665
С	2.602963	-1.761066	1.826906
Н	2.920124	-2.579110	2.497697
Н	2.791526	-0.810302	2.344325
Н	3.244589	-1.799343	0.935083
С	0.099553	-0.462929	3.366055
Н	-0.766753	0.211701	3.408039
Н	1.012500	0.148265	3.363507
Н	0.100699	-1.068038	4.289279
С	-2.569118	-1.570971	1.982324
Н	-2.886561	-2.341726	2.706919
Н	-3.274516	-1.600821	1.139884
Н	-2.662088	-0.591562	2.471860
С	-1.735331	-3.519624	-0.375977
Н	-2.171978	-4.358175	0.193433
Н	-1.245934	-3.930277	-1.269873
Н	-2.565463	-2.877178	-0.706908
С	1.499246	-3.649458	-0.457195
Н	2.343464	-3.066419	-0.855528
Н	0.928981	-4.048971	-1.307399
Н	1.921804	-4.501732	0.102614
С	4.268104	0.848288	-0.912317
С	5.014887	2.034365	-0.760493
С	4.896402	-0.298243	-1.434372
С	6.362586	2.066389	-1.118389
С	6.245983	-0.261558	-1.784218
С	6.981490	0.918716	-1.627049
Н	4.533130	2.945267	-0.397178
Н	4.321955	-1.218884	-1.546919
Н	6.929386	2.994371	-1.010365
Н	6.727753	-1.160012	-2.177560
Н	8.038350	0.945643	-1.904678
С	-4.251204	0.865307	-0.921867
С	-4.876230	-0.288013	-1.432770
С	-5.002472	2.048870	-0.773838
С	-6.227663	-0.259891	-1.776446
Ċ	-6.351816	2.072282	-1.126092
С	-6.967569	0.918267	-1.624339
Н	-4.298001	-1.207111	-1.539415
Н	-4.522703	2.963588	-0.417398
Н	-6.707341	-1.163345	-2.160777
Н	-6.922666	2.998182	-1.021601
Н	-8.025785	0.938475	-1.897331

Sum of electronic and	l zero-point Energies = -2170.144530
Sum of electronic and	l thermal Free Energies = -2170.209033

Complex 2

Ir	0.024212	-0.370517	0.021362
S	1.861680	-0.085634	-1.495030
S	-1.624039	-0.251220	-1.711998
Ν	2.401550	1.984615	0.122368
Н	3.126886	2.590174	0.505909
Ν	-2.525750	1.819118	-0.258168
Η	-3.336182	2.391147	-0.023062
С	2.841441	1.071307	-0.737860
С	1.079580	2.462184	0.353307
С	-0.068632	1.682090	0.105341
С	-1.291829	2.380493	0.174800
С	-1.382435	3.704333	0.636465

Η	-2.360373	4.189341	0.701043
С	-0.228245	4.399057	0.988686
Н	-0.291303	5.424593	1.358324
С	1.010301	3.787214	0.814172
Н	1.933380	4.336067	1.018440
С	-2.764939	0.865827	-1.153025
Ĉ	1.139087	-1.201444	1.750794
Ĉ	-0.066718	-0.590566	2.238259
Č	-1 184802	-1 271720	1 641681
Č	-0.657392	-2.388304	0.855918
Č	0 757242	-2.344439	0 920775
Č	2 534183	-0.879690	2 181951
н	2 801432	-1 460408	3 082580
Н	2.601132	0 186003	2 424561
н	3 261445	-1 133365	1 398892
C	-0 146889	0 548344	3 201117
н	-1 044649	1 157961	3 029455
н	0 732214	1 202989	3 126305
н	-0 193910	0 161977	4 234110
C	-2 629844	-1.031629	1 940604
н	-2.029044	-1.631818	2 810965
н Н	-2.9+7/47 -3.264005	-1 316000	1 001210
и Ц	-3.20+003	-1.510099	2 1738/1
C	-2.022237	3 303785	0 144523
ч	1 018702	-3.393783	0.144525
и Ц	-1.916792	-4.121462	0.803200
и Ц	-0.920372	2 0115/1	-0.008303
C	-2.332120	2.911341	0.205085
U U	2 571060	-3.2920+0	0.295985
П Ц	2.371909	-2.752961	-0.101303
П Ц	2 145640	-3.904440	-0.461637
C	4 174112	-3.9720+0	1.039072
ч	-4.174112	1 780240	-1.077343
и П	4 128572	0.422800	-1.001/07
п	-4.120373	0.425600	-2./19003
U U	-5.055440	-0.16/511	-0.039127
п	-3.0/9313	0.145260	0.192319
п	-4.391339	-1.10/3/4	-0.802397
U U	-0.460937	-0.273283	-1.400008
п	-0.445265	-0.004030	-2.439911
п	-0.929001	0.754169 1 124772	-1.410290
U U	4.312073	1.124//5	-1.0/1526
п	4.300//0	1.300901	-2.10//04
п	4./912/2	1.002927	-0.450228
с u	J.000327 4.600503	-0.208323	-0.900931
п	4.000303	-0.941903	-1.042330
п	4.950651	-0.010223	1 282672
	0.349010	-0.008311	-1.2820/3
п	/.002142	0.0/4402	-0.00148/
П	0.002090	0.343/44	-2.301009
с u	7.302301	-1.392944	-1.1/4233
H II	1.229032	-1.811940	-0.155892
H II	0.891889	-2.143/03	-1.8/0809
H	8.3/2413	-1.209205	-1.408238
U U	-/.303433	-1.223123	-0.598246
H	-0.952230	-2.249068	-0.59/622
H	-/.443450	-0.899/3/	0.4531/3
Н	-8.384337	-1.2/5298	-1.010982

Sum of electronic and zero-point Energies = -2022.565060Sum of electronic and thermal Free Energies = -2022.632424

Com	plex 5a		
Ir	0.010241	0.857628	0.052441
S	-1.738869	-0.088001	-1.279820
S	1.777112	-0.108765	-1.251408
Ν	-2.488110	-1.106531	1.082804
Н	-3 252447	-1 354122	1 707892
N	2 457133	-1 198304	1 107036
Ц	2.457155	1 561205	1.107030
II C	J.21J/4J	-1.301203	0.525610
C	-4.209323	-0.855575	-0.333019
U U	-5.195//4	-1.953527	0.219277
H	-4./08899	-2.5/1/13	0.9/1169
В	-5.437544	-0.300516	0.623489
Н	-5.026142	0.092640	1.669369
В	-5.203056	0.543722	-0.929353
Η	-4.655921	1.601875	-0.919825
В	-4.771282	-0.662176	-2.164495
Н	-3.952341	-0.406281	-2.988675
В	-4.719460	-2.269041	-1.396276
H	-3 863632	-3 075637	-1 581192
R	-6 790317	-1 434106	0.436382
н	-7 364092	-1 774897	1 426822
D D	6 837035	0 171315	0 333670
и U	7 562612	1.027150	0.0555077
II D	-7.302013	1.05/150	2.050777
В	-0.433057	-0.053436	-2.059775
H	-6.869827	0.665590	-2.914011
В	-6.127789	-1./91063	-2.348105
Н	-6.342961	-2.328636	-3.396699
В	-6.356511	-2.636628	-0.801488
Н	-6.638055	-3.785823	-0.639480
В	-7.416720	-1.273236	-1.218517
Η	-8.578719	-1.449423	-1.455230
В	5.131204	0.510954	-0.882804
Н	4.502675	1.514468	-0.972672
В	5.480043	-0.322496	0.652897
H	5 107841	0 188252	1 665526
R	5 245260	-2 072685	0.408881
н	4 732065	-2 728002	1 265517
D D	4.732005	2.720002	1.203317
и U	2 851250	2.096084	1 500466
II D	6 201260	-3.060964	-1.390400
D	6.502446	-0.004124	-2.092392
п	0.303440	0.041000	-3.032034
В	6.801824	0.208526	-0.409405
H	/.505384	1.129/13	-0.106/46
В	6.877487	-1.388502	0.391910
Н	7.642478	-1.617829	1.286211
В	6.411293	-2.640651	-0.799093
Η	6.834367	-3.760942	-0.772148
В	6.048903	-1.810476	-2.331458
Η	6.098186	-2.272685	-3.431276
В	7.381490	-1.227290	-1.307257
Н	8.522199	-1.336407	-1.659609
С	-2.814401	-0.712776	-0.143225
С	-1.210511	-1.455915	1.607544
Ċ	-0.010958	-0 908364	1 115405
č	1 164544	-1 498852	1 618621
č	1 154612	-2 452356	2 650888
й	2 000001	_2 8575/0	2.000000
C	_0 057120	-2.03/349	3 180011
с ц	0.03/120	2 621006	3.100244
	-0.0/4100	-3.021000 2 100601	J.707J/J J 620670
	-1.2400/0	-2.400084	2.0300/8
п	-2.210080	-2.//3931	3.002621

С	2.811889	-0.774300	-0.097357
С	4.282037	-0.923517	-0.410721
С	4.761444	-0.776039	-1.954476
Η	3.974178	-0.568413	-2.677858
С	-1.153495	2.451463	1.053804
С	-0.018030	2.132878	1.877609
С	1.171436	2.410325	1.118371
С	0.760343	3.006084	-0.154738
С	-0.655070	3.033427	-0.193843
С	-2.587947	2.402114	1.469805
Н	-2.876876	3.352965	1.950772
Н	-2.770049	1.593510	2.190465
Н	-3.250684	2.254973	0.607699
С	-0.065885	1.610289	3.275385
Н	0.767210	0.923777	3.480183
Н	-1.007138	1.080118	3.474368
Н	0.005662	2.450079	3.987939
С	2.578418	2.304788	1.610644
Н	2.888647	3.250529	2.088491
Н	3.275973	2.108309	0.786918
Н	2.685691	1.503242	2.354089
С	1.708041	3.501012	-1.197594
Н	2.127433	4.476527	-0.897138
Η	1.208871	3.626193	-2.168103
Η	2.551538	2.807205	-1.331446
С	-1.528597	3.573386	-1.279058
Η	-2.372552	2.898235	-1.487227
Η	-0.968879	3.722755	-2.212722
Н	-1.952686	4.545729	-0.974793

Sum of electronic and zero-point Energies = -2369.611286 Sum of electronic and thermal Free Energies = -2369.677655

Ligand 1

ธั	2.085435	-1.436835	-1.133546
S	-1.889418	-1.723870	0.283410
Ν	2.479419	1.008967	-0.072316
Η	3.191724	1.676838	0.214524
Ν	-2.469271	0.880242	-0.182002
Η	-3.234288	1.529606	-0.350741
С	2.946514	-0.230981	-0.367511
С	1.205049	1.592224	-0.227982
С	0.016478	0.850130	-0.145771
С	-1.214301	1.512246	-0.265599
С	-1.249515	2.905574	-0.476755
Η	-2.212705	3.412793	-0.579540
С	-0.062369	3.628720	-0.545980
Η	-0.094626	4.709521	-0.703657
С	1.168065	2.982918	-0.419736
Η	2.101887	3.548347	-0.476190
С	-2.870545	-0.389720	0.069399
Η	0.040092	-0.222689	0.007157
С	4.363338	-0.441085	0.061098
С	5.222549	-1.253739	-0.699851
С	4.856175	0.151468	1.239224
С	6.544486	-1.453050	-0.303376
С	6.177318	-0.061470	1.642127
С	7.026834	-0.858935	0.869740
Η	4.834666	-1.722463	-1.606076
Η	4.196160	0.755730	1.866512
Η	7.203849	-2.076738	-0.912777

Η	6.539811	0.391944	2.568429
Η	8.061457	-1.022581	1.182833
С	-4.358576	-0.519932	0.169371
С	-5.002484	-1.672753	-0.314150
С	-5.134990	0.490440	0.768216
С	-6.387675	-1.803233	-0.218192
С	-6.521202	0.350270	0.877048
С	-7.152323	-0.793439	0.379285
Η	-4.399097	-2.461141	-0.767661
Η	-4.653815	1.378817	1.185638
Η	-6.874821	-2.699306	-0.611680
Η	-7.107415	1.135782	1.361101
Η	-8.237144	-0.901557	0.460907

Sum of electronic and zero-point Energies = -1676.691617 Sum of electronic and thermal Free Energies = -1676.743914

Liga	nd 2		
S	1.676150	-1.349303	-1.443096
S	-1.676149	-1.349539	1.442723
Ν	2.410805	1.097382	-0.553740
Н	3.206229	1.721787	-0.434566
Ν	-2.410711	1.097363	0.553851
Н	-3.206110	1.721827	0.434818
С	2.733469	-0.132411	-1.017650
С	1.177704	1.724823	-0.279927
С	0.000053	1.016041	0.000035
С	-1.177613	1.724793	0.280004
С	-1.180261	3.131164	0.267489
Н	-2.105680	3.674674	0.476741
С	0.000028	3.822860	0.000036
Н	0.000012	4.915681	0.000032
С	1.180334	3.131190	-0.267418
Н	2.105748	3.674706	-0.476669
С	-2.733412	-0.132488	1.017573
Н	0.000064	-0.067558	0.000030
С	4.231027	-0.357817	-1.084748
Н	4.438003	-1.047098	-1.915125
Н	4.748226	0.594379	-1.299793
С	4.774509	-0.953900	0.225253
Н	4.235447	-1.894010	0.432242
Н	4.541287	-0.270034	1.060900
С	6.280432	-1.217379	0.178969
Н	6.809525	-0.272904	-0.043412
Н	6.502016	-1.896408	-0.664013
С	-4.230979	-0.357803	1.084774
Н	-4.437945	-1.047032	1.915198
Н	-4.748104	0.594434	1.299818
С	-4.774583	-0.953906	-0.225167
Н	-4.235644	-1.894096	-0.432107
Н	-4.541294	-0.270122	-1.060863
С	-6.280538	-1.217179	-0.178834
Н	-6.809505	-0.272604	0.043424
Н	-6.502213	-1.896071	0.664235
С	6.818546	-1.815432	1.478051
Н	6.639655	-1.141008	2.333145
Н	6.327721	-2.776619	1.707988
Н	7.904053	-1.999828	1.419520
С	-6.818735	-1.815327	-1.477840
Н	-6.639735	-1.141043	-2.333022
Н	-6.328052	-2.776617	-1.707645

Н	-7.904270	-1.999550	-1.419293
11	/./01/	11///200	1.11/2/2

Sum of electronic and zero-point Energies = -1529.114516 Sum of electronic and thermal Free Energies = -1529.171448

Ligan	d 3		
S	-1.956663	-1.533402	0.408179
S	2.032435	-1.448198	-0.682336
Ν	-2.474849	1.063968	-0.079794
Н	-3.218454	1.736432	-0.262535
N	2 488542	1 115508	0.035003
н	3 218586	1 794470	0.245123
C	-1 1210500	-0.3/3/13	_0 00/709
C	-5.376284	0.343413	1 166/13
ч	-1 8/7/05	0.841457	1.100+13
D D	5 375014	1.061446	0.363565
ь ц	-3.373014	2 124501	-0.303303
II D	-4.032319	0.281222	-0.463090
D U	-3.223924	-0.261552	-1.313397
п	-4.334328	-0.122493	-2.48832/
Б	-3.113012	-1./94349	-0.381430
П	-4.38190/	-2.000832	-0.94509/
В	-5.16565/	-1.388503	1.148945
H	-4.4//109	-1.8/64/3	1.984645
В	-6.865242	0.8656/1	0.563615
H	-7.345231	1.844064	1.053373
В	-6.812697	0.459/84	-1.171103
H	-7.364463	1.142556	-1.98/248
В	-6.660949	-1.312883	-1.302996
H	-7.114300	-1.923531	-2.230960
В	-6.615677	-1.995307	0.346785
Н	-7.033466	-3.085181	0.619516
В	-6.739214	-0.640973	1.492340
Н	-7.139900	-0.691135	2.616851
В	-7.672642	-0.602995	-0.021177
Н	-8.869143	-0.689637	-0.009861
В	5.365724	-0.379684	-1.499687
Η	4.762085	-0.422893	-2.524677
В	5.484782	1.063866	-0.467567
Н	4.992573	2.079075	-0.861124
В	5.259327	0.572216	1.225797
Н	4.609516	1.254619	1.959744
В	4.998739	-1.186755	1.273504
Н	4.172276	-1.723679	1.940640
В	6.686509	-1.474969	-1.049192
Н	7.044572	-2.276401	-1.859508
В	6.951428	0.283966	-1.091067
Н	7.615781	0.802190	-1.943551
В	6.890463	0.874571	0.596360
Н	7.516783	1.832133	0.957179
В	6.585557	-0.520737	1.672273
Н	6.988315	-0.580248	2.799604
В	6.462179	-1.968230	0.644482
H	6.670023	-3.099548	0.966991
B	7.637993	-0.699184	0.236536
H	8.817307	-0.895749	0.335237
C	-2.893535	-0.202069	0.103686
č	-1.206672	1.678269	-0.046052
č	0.010113	0 980354	-0 025596
č	1 208654	1 708752	-0.003053
č	1 193651	3 114382	0.008700
й	2 135439	3 668230	0 032690
		2.000220	0.052070

С	-0.023145	3.792218	-0.019496
Η	-0.036270	4.884488	-0.017343
С	-1.222369	3.085455	-0.050892
Η	-2.176153	3.618572	-0.072807
С	2.926330	-0.129450	-0.220849
С	4.441999	-0.226922	-0.048811
С	5.146329	-1.648402	-0.369707
Η	4.453613	-2.427648	-0.687370
Η	0.019856	-0.102545	-0.027990

Sum of electronic and zero-point Energies = -1876.173868	
Sum of electronic and thermal Free Energies = -1876.23106	9

NEt ₃ H			
Ν	0.000920	-0.000241	-0.916755
С	1.424641	-0.401480	-0.577618
Н	1.478187	-1.483593	-0.761514
Н	2.046691	0.097680	-1.334018
С	1.921509	-0.047174	0.812280
Н	1.324935	-0.498781	1.614882
Н	1.968895	1.039750	0.970395
Н	2.948659	-0.435098	0.899033
С	-0.363612	1.433013	-0.577973
Н	0.547688	2.019376	-0.760898
Н	-1.106399	1.722513	-1.334466
С	-0.920735	1.685329	0.811075
Н	-0.232378	1.394122	1.614476
Н	-1.886504	1.182912	0.966941
Н	-1.098420	2.768777	0.897964
С	-1.059541	-1.031401	-0.578619
Н	-2.022017	-0.534690	-0.762662
Н	-0.939957	-1.819679	-1.334888
С	-1.002698	-1.638409	0.811219
Н	-1.089863	-0.894101	1.613051
Н	-0.088148	-2.227922	0.967832
Н	-1.855992	-2.328989	0.900309
Н	0.000802	0.000133	-1.941341

Sum of electronic and zero-point Energies = -292.493122 Sum of electronic and thermal Free Energies = -292.525398

NEt ₃			
Ν	-0.000754	0.000269	-0.789819
С	0.511369	-1.344230	-0.632257
Н	-0.285622	-2.040695	-0.947593
Н	1.345830	-1.493495	-1.346337
С	1.012145	-1.758907	0.761541
Н	0.231924	-1.645454	1.530079
Н	1.881108	-1.155360	1.069964
Н	1.332137	-2.815588	0.752803
С	0.908391	1.115547	-0.632294
Н	1.909298	0.773070	-0.949244
Н	0.620349	1.914014	-1.345068
С	1.019633	1.754045	0.762346
Н	1.312090	1.019656	1.528791
Н	0.063335	2.205001	1.073177
Н	1.775364	2.558930	0.754265
С	-1.421008	0.229635	-0.631329
Н	-1.624939	1.268337	-0.946210
Н	-1.968616	-0.417514	-1.345457

С	-2.030184	0.003778	0.762568
Н	-1.540783	0.622223	1.530898
Η	-1.943311	-1.050621	1.070910
Η	-3.104961	0.256407	0.754312

Sum of electronic and zero-point Energies = -292.043595 Sum of electronic and thermal Free Energies = -292.077466

BIXFU	IJ		
Ti	-0.212640	0.909961	-0.011806
Cl	-2.560305	1.392333	-0.198974
Cl	0.039792	0.717961	-2.321276
Cl	-0.230527	0.764264	2.306453
Р	1.855682	-0.618622	0.013615
Р	-1.182923	-1.481504	0.025409
С	1.436393	2.249453	0.089245
С	0.400107	3.351283	0.141934
С	1.398148	-2.357277	-0.439948
С	0.117913	-2.770908	0.287600
Н	2.061446	2.179137	0.986331
Н	2.043008	2.264685	-0.821702
Н	0.487524	4.067562	-0.690050
Н	0.383575	3.886867	1.102844
Н	-0.661189	2.983011	0.035905
Н	1.249018	-2.368078	-1.531936
Н	2.237483	-3.034364	-0.212267
Н	0.290652	-2.836260	1.374269
Н	-0.247095	-3.754753	-0.048973
С	3.231476	-0.238341	-1.131724
Н	3.942431	-1.078857	-1.163743
Н	2.822272	-0.057717	-2.135760
Н	3.759201	0.664202	-0.791108
С	2.687892	-0.801804	1.635614
Н	1.972956	-1.185077	2.376239
Н	3.545920	-1.487373	1.551052
Н	3.039435	0.182673	1.977761
С	-2.435360	-1.815127	1.313145
Н	-3.289033	-1.142117	1.149064
Н	-2.769476	-2.863894	1.271037
Н	-2.000961	-1.596841	2.298933
С	-2.004088	-1.962868	-1.537963
Η	-1.270620	-1.948812	-2.356065
Η	-2.452852	-2.965007	-1.450766
Н	-2.784234	-1.220191	-1.759554

Sum of electronic and zero-point Energies = - 3229.521586 Sum of electronic and thermal Free Energies = - 3229.571213

PhCr(0	$CO)_3$		
C	1.618282	0.442437	1.338851
С	1.632622	-0.941897	1.061040
С	1.631103	1.390671	0.285460
Η	1.602248	-1.666819	1.875141
Η	1.600034	2.457936	0.506745
С	1.619788	-1.380075	-0.286819
С	1.618473	0.939004	-1.052271
Η	1.578673	-2.448337	-0.506999
Η	1.576377	1.663530	-1.867695
С	1.632286	-0.447389	-1.346782
Η	1.602719	-0.789775	-2.381701
Η	1.575483	0.786126	2.373992

Cr	-0.117480	-0.000242	-0.000417
С	-1.177882	0.605869	1.362046
0	-1.833456	0.993690	2.236105
С	-1.178196	-1.483172	-0.156244
0	-1.833850	-2.434053	-0.256526
С	-1.178859	0.876342	-1.205817
0	-1.835408	1.439413	-1.977858

Sum of electronic and zero-point Energies = -1616.184076Sum of electronic and thermal Free Energies = -1616.223470

Cp*Ir	$(C_2H_4)_2^+$		
Ir	0.517506	-0.061658	-0.170937
С	-1.126512	1.366224	0.413360
С	-1.695527	0.656773	-0.720645
С	-1.736511	-0.724443	-0.415177
С	-1.158107	-0.900880	0.913427
С	-0.862864	0.412112	1.458831
С	2.066127	1.233161	0.356338
Н	1.685407	2.168350	0.782553
Н	2.883804	0.816585	0.952739
С	2.277164	1.249482	-1.125360
Н	2.104846	2.222283	-1.606940
Н	1.485701	0.593382	-1.700375
Н	3.214254	0.782611	-1.459918
С	1.952528	-1.643577	0.265919
Н	2.985014	-1.283045	0.245459
Н	1.668154	-2.155380	1.190023
С	1.297726	-1.944951	-0.950002
Н	1.821574	-1.799305	-1.900019
Н	0.488343	-2.680023	-0.978220
С	-0.456643	0.713584	2.864626
Н	-1.355403	0.833102	3.494923
Н	0.147478	-0.098867	3.291676
Н	0.123015	1.644949	2.925649
С	-1.022590	2.854261	0.519237
Н	-0.644101	3.299120	-0.413286
Н	-2.016845	3.292127	0.713808
Н	-0.359072	3.155087	1.341263
С	-2.157434	1.305448	-1.982535
Η	-1.514108	2.153955	-2.257636
Η	-2.182154	0.594774	-2.820337
Н	-3.178951	1.702016	-1.846128
С	-2.306967	-1.816889	-1.259021
Η	-3.381694	-1.940099	-1.036671
Η	-2.211319	-1.597928	-2.332244
Н	-1.821189	-2.781906	-1.057071
С	-1.132102	-2.191182	1.666970
Н	-2.145683	-2.421006	2.038163
Н	-0.816493	-3.027516	1.026345
Н	-0.458245	-2.140315	2.532552

Sum of electronic and zero-point Energies = -651.582713 Sum of electronic and thermal Free Energies = -651.627844

PhAuCl ₃					
С	3.467555	-0.257704	0.507900		
С	3.225674	-0.212315	-0.881698		
С	2.689367	0.474165	1.407891		
Н	3.857635	-0.790237	-1.559335		
Н	2.897496	0.432958	2.478760		
С	2.190985	0.558203	-1.376084		
----	-----------	-----------	-----------		
С	1.652562	1.272828	0.925140		
Н	1.990398	0.613314	-2.448195		
Н	1.066941	1.901762	1.599440		
С	1.366563	1.298397	-0.476540		
Н	0.752220	2.108138	-0.875912		
Н	4.286890	-0.874993	0.885735		
Au	-0.523121	-0.017953	-0.043438		
Cl	0.633042	-2.050407	0.014478		
Cl	-2.533376	-1.195498	0.161849		
Cl	-1.692679	2.023899	-0.016830		

Sum of electronic and zero-point Energies = -1748.097808	
Sum of electronic and thermal Free Energies $= -1748.1385$	61

ZIYJID)		
C	0.243511	-0.161690	2.058133
Č	-0.255438	0.727906	3.031853
Ĥ	-0.841235	1.589698	2.721913
C	-0.028264	0.542181	4.394505
Ĥ	-0.438928	1.256995	5.111123
C	0.721102	-0 550343	4 833803
н	0.907571	-0 709092	5 898247
C	1 238982	-1 443415	3 898284
н	1.831285	-2 298793	4 228700
C	1.005542	-1 247885	2 535742
C	3 095281	-2 264654	1 667412
н	3 422504	-2 653934	2 638522
н	3 444751	-2 918399	0.858142
Н	3 464425	-1 243003	1 519601
C	0.992726	-3 598013	1 750537
н	-0.093621	-3 499135	1.637072
H	1 401630	-4 228530	0.950844
и Ц	1 2/1015	-4.01/872	2 733067
C II	1.082052	0 500683	0.118451
C	-1.982032	0.500085	0.063011
с ц	2 3 3 5 6 0 8	1 585472	0.505511
и П	-2.333008	-1.383+72	2.028017
II C	-2.439101	-0.408230	2.028017
С U	4.214369	1 262881	1 404662
II C	-4.091109	-1.202001	1.404002
с ц	2.373492	0.267292	1 705563
и П	1 877/02	1 031102	2 007346
II C	-1.0//492	1.031192	-2.00/340
С U	4.008847	2 085885	0.362444 0.714207
II C	4.333100	2.903003	1.002021
С U	-4.381074	1.770900	-1.093021
и П	-3.4/2/43	2 561115	-1.223197
II C	2 001520	2.301113	-1./14003
С U	-3.901339	0.390320	-1.541010
II C	-4.139033	1 000501	-2.000147
С U	2.477723	2 672040	0.075267
п u	-2.000079	2.0/2949	-0.073207
п	-2.221410	2.110623	0.601464
	-4.301000	-0.0941//	-0.091404
11 11	-3.070224	-0.043934	-0.019/01
п	-4.230364	-1.094495	-1.024426
U U	-4.0029/3	1.059272	1.244903
п U	-4.430930 5 770451	1.0383/3	2.308431
п	-3.//9431	0.703037	1.133200
C	0.700/33	1.033929	-0.140/81
U	3.100861	2.000072	-1.956123

Η	3.812650	3.434556	-2.287599
Η	3.207575	1.802151	-2.641473
С	1.854087	3.969988	0.367917
Η	1.745538	4.825754	1.054380
С	0.675690	2.107498	-1.585832
Η	-0.351407	2.496485	-1.643230
Η	0.741258	1.243435	-2.267997
С	3.425803	2.228605	-0.516381
Η	4.450641	1.825006	-0.468902
С	0.875545	2.864362	0.813060
Η	1.123694	2.558983	1.839577
Η	-0.149290	3.258622	0.820190
С	1.664717	3.205391	-2.015348
Η	1.423146	3.510352	-3.046667
С	3.293049	3.433743	0.428370
Η	3.542566	3.135368	1.460965
Η	4.004464	4.223879	0.135139
С	2.444731	1.124353	-0.084917
Η	2.548419	0.252836	-0.751332
Η	2.681678	0.789421	0.938234
С	1.525754	4.408959	-1.068466
Η	2.208131	5.217204	-1.380813
Η	0.499293	4.810927	-1.116717
Au	0.416922	-1.503947	-1.189834
Cl	0.980206	-3.192049	-2.722798
Ν	1.601567	-2.237251	1.619680
Р	-0.119241	0.198736	0.276150
Η	1.354368	-1.932752	0.648459

Sum of electronic and zero-point Energies = -2082.353943 Sum of electronic and thermal Free Energies = -2082.412967

S6. References

- 1. C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29, 228-234.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Montgomery, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.
- E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales,
 P. Karafiloglou, C. R. Landis and F. Weinhold, NBO 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.
- 4. E. Matito, ESI-3D: Electron Sharing Indices Program for 3D Molecular Space Partitioning;
- Institute of Computational chemistry and Catalysis (IQCC), University of Girona, Catalonia, Spain, 2006; http://iqc.udg.es/ eduard/ESI, 2014.
- 5. E. Matito, M. Solà, P. Salvador and M. Duran, Faraday Discuss., 2007, 135, 325-345.
- (a) L. Rocchigiani, J. Fernadez-Cestau, P. H. M. Budzelaar and M. Bochmann, *Chem. Commun.* 2017, 53, 4358–4361;
 (b) M. S. Kharasch and H. S. Isbell, *J. Am. Chem. Soc.*, 1931, 53, 3053–3059;
 (c) Y. Fuchita, Y. Utsunomiys and M. Yasutake, *J. Chem. Soc.*, *Dalton Trans.*, 2001, 2330–2334.
- AIMAll (Version 19.10.12), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com)