Supplemental Information for

Late-Stage Peptide Modification and Macrocyclization Enabled by Tertiary

Amine Catalyzed Tryptophan Allylation

Yuyang Liu, ^{a,b,c,}† Guofeng Li,^{c,}† Wen Ma,^b Guangjun Bao,^{a,b} Yiping Li,^{a,b} Zeyuan He,^b Zhaoqing Xu,^{b,*} Rui Wang,^{a,b,c,*} Wangsheng Sun ^{a,b,*}

^a Research Unit of Peptide Science (2019RU066) and Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

^{b.} Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.

^{c.} School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.

* Correspondence to be addressed to: sunws@lzu.edu.cn, wangrui@lzu.edu.cn, zqxu@lzu.edu.cn

Table of Contents:

1. General information	. s1
2. Experimental Section	. s2
2.1 Procedure for Synthesis of Protected Tryptophan and Tryptophan-containing Peptides	s2
2.2 Procedure for Synthesis of MBH Carbonates	s9
2.3 Condition Screening for N-Allylation of Trp Reaction	s21
2.4 Investigation of chemoselectivity of N-allylation of Tryptophan	s23
2.5 General Procedure for N-allylation of Trp-containing peptide	s25
2.6 General Procedure for Peptide-peptide conjugate	s26
2.7 HPLC Spectra and MS/MS Spectra for the products of solid support allylation	s49
2.8 LC-MS Spectra of peptide-peptide conjugate	s55
3. References	s57
4. NMR spectra	s58

1. General information

Unless stated otherwise, all reactions were carried out in flame-dried glassware. All solvents were purified and dried according to standard methods prior to use. All chemical reagents were purchased from Energy Chemical and GL Biochem and were used without further purification. peptides and MBH-Carbonates were prepared according to literature. Solid phase peptide synthesis was performed on Rink Amind-MBHA Resin (100-200 mesh, 0.42 mmol/g) and 2-Chlorotrityl Chloride Resin (100-200 mesh, 0.97 mmol/g) in a 20 mL filtration tube. ¹H and ¹³C NMR spectra were recorded on a Bruker instrument (300 MHz and 75 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet or unresolved, dd = doublet of doublet, td = triplet of doublets, dt = doublet of triplets, coupling constant(s) in Hz, integration). Data for ¹³C NMR were reported in terms of chemical shift (δ , ppm). High resolution mass spectra (HRMS) were obtained by quadrupole mass spectrometer with ESI ionization sources. Semi-preparative HPLC was performed on a Waters 2996 using a Dubhe C18 (10 µm, 20 × 250 mm) preparative column. Linear gradients using A: MeCN (0.1% CF₃COOH) and B: H₂O (0.1% CF₃COOH) were run over varying periods of time. Purity analysis was performed on Waters e2695/2998 using a XBridge® Peptide BEH C18 (10 µm, 4.6 mm x 250 mm) Column. LC-MS/MS spectra were performed on Agilent 6100 LC/MS using an Agilent 5 HC-C18 (2) (250 x 4.6 mm) column.

2. Experimental Section

2.1 Procedure for Synthesis of Protected Tryptophan and Tryptophan-containing Peptides

General Procedure A for Synthesis of N-protected Tryptophan

To a 100 mL round-bottom flask, Trp-OMe·HCI (5.08 g, 20 mmol) was dissolved in 40 mL DCM at room temperature, Et₃N (13.9 mL, 60 mmol) was added slowly via syringe and stirred for 5 min. Then (Boc)₂O (6.55 g, 30 mmol) was added dropwise into the mixture. The reaction was stirred at room temperature for 5 h. Upon completion as indicated by TLC, the reaction mixture was added to water and extracted with DCM, and washed with brine twice. The combined organic layer was dried with anhydrous Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel using hexanes/EtOAc (4/1) as the eluent giving the pure product as a white solid (6.23 g, 98% yield).

methyl (tert-butoxycarbonyl)-L-tryptophanate (1a):

¹**H NMR** (300 MHz, CDCl₃) δ 8.26 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.15 (dt, J = 22.2, 7.2 Hz, 2H), 6.97 (s, 1H), 5.09 (d, J = 7.5 Hz, 1H), 4.65 (q, J = 6.6 Hz, 1H), 3.67 (s, 3H), 3.28 (d, J = 4.8 Hz, 2H), 1.43 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ 172.8, 155.3, 136.1, 127.7, 122.8, 122.2, 119.6, 118.7, 111.2, 110.1, 79.9, 54.2, 52.3, 28.3, 28.0. **HRMS**(ESI) m/z [M+Na]⁺ : Calcd for C₁₇H₂₂N₂O₄Na⁺ 341.1472, Found: 341.1462_o

The synthetic procedure of tryptophan-containing peptides was prepared following the reported procedure ¹.

General Procedure B for Synthesis of Tryptophan-containing peptides (1b-1m, 1o) via LPPS

Tryptophan-containing peptide derivatives were obtained by LPPS strategies. Synthesis of all peptides has been accomplished by performing the active ester reaction.

To a 100 mL round-bottom flask, Boc-*L*- amino acids (5.0 mmol, 1.0 equiv.), EDCI (6.0 mmol, 1.2 equiv.), and HOBt (6.0 mmol, 1.2 equiv.) were dissolved in 30 mL DCM at 0 °C, DIEA (15.0 mmol, 3.0 equiv) was added and stirred for 10 min. Corresponding amino acid (1.2 equiv.) or oligopeptide was added. The reaction mixture maintained the temperature for 30 min and then

warmed to room temperature and stirred overnight. After the reaction was completed, the reaction mixture was extracted with DCM and washed with 5% Citric acid (30 mL), saturated NaHCO₃ (30 mL), and brine (2 x 40 mL), the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography and the desired product **1** was obtained.

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-phenylalaninate (1b)

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 2.21 g, 95% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.37 (s, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.08 (m, 5H), 6.98 (s, 1H), 6.79 (d, *J* = 6.6 Hz, 2H), 6.25 (s, 1H), 5.14 (s, 1H), 4.72 (d, *J* = 5.7 Hz, 1H), 4.44 (s, 1H), 3.60 (s, 3H), 3.30 (d, *J* = 12.0 Hz, 1H), 3.13 (dd, *J* = 14.4, 6.9 Hz, 1H), 2.92 (d, *J* = 5.4 Hz, 2H), 1.41 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 155.4, 136.3, 135.6, 129.2, 128.5, 127.5, 127.0, 123.4, 122.2, 119.7, 118.9, 111.3, 110.3, 80.1, 55.2, 53.2, 52.3, 37.9, 28.3. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₂₆H₃₁N₅O₃Na⁺ 488.2156, Found: 488.2141.

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-leucinate (1c):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 1.98 g, 92% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.44 (s, 1H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.18 (t, 7.2 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.06 (s, 1H), 6.29 (d, *J* = 8.1 Hz, 1H), 5.22 (s, 1H), 4.56 - 3.38 (m, 2H), 3.63 (s, 3H), 3.35 - 3.14 (m, 2H), 1.43 (s, 12H), 0.84 (t, *J* = 4.2 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 171.5, 155.5, 136.3, 127.5, 123.4, 122.1, 119.6, 118.8, 111.2, 110.4, 80.1, 55.1, 52.2, 50.8, 41.5, 28.3, 24.6, 22.7, 21.9. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₂₃H₃₃N₃O₅Na⁺ 454.2312, Found: 454.2300.

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-alaninate (1d):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 1.81 g, 93% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.1

Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.8 Hz, 2H), 6.39 (d, J = 6.9 Hz, 1H), 5.20 (s, 1H), 4.45 (t, J = 6.3 Hz, 2H), 3.64 (s, 3H), 3.32 (d, J = 11.1 Hz, 1H), 3.18 (dd, J = 14.1, 7.2 Hz, 1H), 1.43 (s, 9H), 1.26 (s, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 172.8, 171.2, 155.4, 136.2, 123.3, 122.2, 119.7, 118.9, 111.2, 110.5, 80.1, 77.2, 52.4, 48.1, 28.3, 18.3. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₂₀H₂₇N₃O₅Na⁺ 412.1843, Found: 412.1833

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-methioninate (1e):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 2.02 g, 90% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.41 (s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 1.52 (dt, *J* = 22.3, 6.9 Hz, 2H), 7.07 (s, 1H), 6.52 (s, 1H), 5.20 (s, 1H), 4.58 (q, *J* = 6.6 Hz, 1H), 4.47 (s, 1H), 3.64 (s, 3H), 3.34 (dd, *J* = 14.1, 4.5 Hz, 1H), 3.17 (dd, *J* = 14.4, 7.2 Hz, 1H), 2.26 (s, 2H), 1.99 (s, 4H), 1.91 - 1.75 (m, 1H), 1.44 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 155.5, 136.3, 127.5, 123.4, 122.2, 119.7, 118.7, 111.3, 110.2, 80.2, 55.34, 52.5, 51.6, 31.4, 29.5, 28.3, 15.3. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₂₂H₃₁N₃O₅SNa⁺ 472.1877, Found: 472.1862.

methyl ((S)-3-(4-(tert-butoxy)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)-Ltryptophanate (1f):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 2.44 g, 91% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.18 (s, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 7.06 (t, *J* = 6.3 Hz, 3H), 6.85 (d, *J* = 8.1 Hz, 2H), 6.78 (s, 1H), 6.26 (d, *J* = 6.9 Hz, 1H), 4.98 (d, *J* = 6.6 Hz, 1H), 4.83 (q, *J* = 6.6 Hz, 1H), 4.31 (d, *J* = 5.7 Hz, 1H), 3.63 (s, 3H), 3.36 – 3.11 (m, 2H), 2.95 (d, *J* = 6.0 Hz, 2H), 1.37 (s, 9H), 1.32 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 170.8, 154.2, 136.0, 131.5, 129.9, 127.4, 124.4, 122.8, 122.2, 119.6, 118.5, 111.3, 109.6, 78.5, 77.2, 52.8, 52.3, 37.8, 28.8, 28.2, 27.5. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₃₀H₃₉N₃O₆Na⁺ 560.2742, Found: 560.2718.

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-leucyl-L-alaninate (1g):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 1.96 g, 78% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.50 (s, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.22 – 7.10 (m, 2H), 7.09 (s, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.50 (d, *J* = 6.3 Hz, 1H), 5.03 (d, *J* = 6.0 Hz, 1H), 4.76 (q, *J* = 6.8 Hz, 1H), 4.57 – 4.32 (m, 1H), 4.12 (t, *J* = 6.0 Hz, 1H), 3.64 (s, 3H), 3.37 (d, *J* = 13.2 Hz, 1H), 3.16 (dd, *J* = 14.7, 7.5 Hz, 1H), 1.60 – 1.43 (m, 2H), 1.32 (s, 13H), 0.83 (t, *J* = 4.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.8, 172.0, 171.0,155.5, 136.3, 127.3, 127.5, 123.6, 122.2, 119.7, 118.8, 113.3, 115.2, 80.2, 53.7, 52.2, 51.0, 41.1, 28.2, 24.6, 22.6, 21.9, 18.3. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₂₆H₃₈N₄O₆Na⁺ 525.2684, Found: 525.2671.

tert-butyl N², N⁶-bis(tert-butoxycarbonyl)-L-lysyl-L-tryptophylglycinate (1h):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 2.10 g, 65% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.87 (s, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 7.21 – 7.07 (m, 3H), 6.95 (s, 1H), 6.73 (d, *J* = 7.2 Hz, 1H), 5.23 (s, 1H), 4.89 – 4.62 (m, 2H), 3.95 (s, 1H), 3.91 – 3.71 (m, 2H), 3.30 (d, *J* = 6.0 Hz, 2H), 3.01 (d, *J* = 5.7 Hz, 2H), 1.45 (d, *J* = 7.5 Hz, 21H), 1.36 (s, 10H), 1.08 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 171.6, 168.5, 136.2, 127.6, 123.5, 122.0, 119.5, 118.5, 111.4, 111.0, 81.9, 80.4, 79.3, 55.3, 53.6, 42.1, 39.61, 31.18, 29.8, 28.5, 28.2, 28.0, 27.4, 22.0. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₃H₅₂N₅O₈⁺ 646.3810, Found: 646.3797.

methyl (tert-butoxycarbonyl)-L-leucyl-L-tryptophyl-L-phenylalaninate (1i):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 2.27 g,

75% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.22 (s, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.24 – 7.05 (m, 5H), 7.03 (s, 1H), 6.80 (d, *J* = 7.0 Hz, 3H), 6.23 (d, *J* = 7.6 Hz, 1H), 4.88 (d, *J* = 7.5 Hz, 1H), 4.80 – 4.65 (m, 2H), 4.09 (s, 1H), 3.61 (s, 3H), 3.35 (dd, *J* = 14.3, 4.9 Hz, 1H), 3.22 – 3.02 (m, 1H), 2.99 – 2.78 (m, 2H), 1.66 – 1.51 (m, 2H), 1.41 (s, 10H), 0.87 (t, *J* = 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.6, 155.6, 136.2, 135.6, 129.1, 128.5, 127.4, 127.0, 123.6, 122.3, 119.8, 118.9, 111.3, 110.3, 80.1, 53.6, 53.4, 52.2, 41.3, 37.7, 28.2, 24.7, 22.9, 21.8. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₂H₄₃N₄O₆⁺ 579.3177, Found: 579.3163.

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-leucyl-L-phenylalanyl-L-alaninate (1j):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:2), 1.65 g, 51% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.73 (s, 1H), 7.64 (d, *J* = 7.2 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.09 (m, 5H), 6.99 (d, *J* = 5.7 Hz, 3H), 6.60 (d, *J* = 8.1 Hz, 1H), 6.25 (d, *J* = 6.6 Hz, 1H), 5.24 (d, *J* = 6.9 Hz, 1H), 4.71 (q, *J* = 8.1Hz, 1H), 4.46 (t, *J* = 7.8 Hz, 1H), 4.39 (d, *J* = 6.6 Hz, 1H), 4.37 – 4.24 (m, 1H), 3.71 (s, 3H), 3.19 (d, *J* = 6.6 Hz, 3H), 2.86 – 2.70 (m, 2H), 1.50 – 1.22 (m, 14H), 1.12 (t, *J* = 9.0 Hz, 1H), 0.75 (t, *J* = 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 172.5, 171.9, 170.7, 155.9, 136.8, 136.3, 129.1, 128.4, 127.2, 126.7, 123.5, 122.3, 119.7, 118.6, 111.6, 109.9, 80.5, 55.5, 53.8, 52.4, 48.4, 40.6, 37.2, 28.3, 27.9, 24.4, 22.8, 21.7, 17.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₅H₄₈N₅O₇+650.3548, Found: 650.3543.

methyl ((S)-3-(4-(tert-butoxy)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)-L-prolyl-L-tryptophyl-L-phenylalaninate, (1k):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 2.11 g, 53% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.15 (s, 1H), 7.67 (t, *J* = 10.1 Hz, 1H), 7.20 (d, *J* = 4.6 Hz, 4H), 7.15 – 6.99 (m, 4H), 6.95 (q, *J* = 5.0, 4.5 Hz, 3H), 6.91 – 6.77 (m, 3H), 6.51 (d, *J* = 7.7 Hz, 1H), 5.16 (d, *J* = 8.7 Hz, 1H), 4.77 (p, *J* = 6.8 Hz, 2H), 4.45 (dt, *J* = 19.6, 8.1 Hz, 2H), 3.65 (d, *J* = 1.9 Hz, 3H), 3.41 (dt, *J* = 20.1, 12.2 Hz, 2H), 3.16 (dd, *J* = 14.5, 7.1 Hz, 1H), 3.02 (dt, *J* = 6.4, 3.9 Hz, 2H), 2.98 – 2.75 (m, 2H), 2.51 – 2.27 (m, 1H), 2.14 – 2.06 (m, 1H), 1.98 – 1.77 (m, 3H), 1.46 (d, *J* = 1.7 Hz, 2H), 1.35 (s, 7H), 1.30 (t, *J* = 2.0 Hz, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 171.5, 170.9, 170.7, 155.1, 154.2, 136.1, 131.1, 129.9, 129.2, 129.1, 128.5, 128.4, 127.5, 126.9, 124.4, 124.2, 123.6, 122.3, 119.8, 118.7, 111.5, 110.1, 79.7, 78.4, 60.6,

53.8, 53.3, 52.3, 47.2, 37.6, 38.2, 37.6, 28.8, 28.5, 28.3, 28.1, 27.3, 25.0. HRMS(ESI) m/z $[M+H]^+$: Calcd for C₄₄H₅₆N₅O₈⁺ 782.4123, Found: 782.4123 $_{\circ}$

methyl N-((tert-butoxycarbonyl)-L-valyl)-O-(tert-butyl)-L-seryl-L-tryptophyl-L-leucinate (11):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:2), 1.51 g, 45% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.33 (s, 1H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 7.24 – 7.08 (m, 3H), 7.07 (s, 1H), 6.91 (s, 1H), 6.63 (s, 1H), 5.03 (d, *J* = 6.9 Hz, 1H), 4.88 (q, *J* = 6.9 Hz, 1H), 4.60 – 4.45 (m, 1H), 4.43 – 4.31 (m, 1H), 3.92 (t, *J* = 7.0 Hz, 1H), 3.87 – 3.79 (m, 1H), 3.65 (s, 3H), 3.47 – 3.30 (m, 2H), 3.22 (dd, *J* = 15.0, 6.0 Hz, 1H), 2.06 – 1.90 (m, 1H), 1.42 (d, *J* = 17.9 Hz, 12H), 1.17 (s, 2H), 1.09 (s, 7H), 0.94 – 0.74 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 171.9, 170.9, 169.7, 156.1, 136.2, 127.6, 123.1, 122.2, 119.7, 118.9, 111.2, 110.5, 80.3, 74.3, 74.2, 61.0, 59.9, 53.6, 52.2, 50.7, 41.2, 30.6, 28.3, 28.2, 27.6, 27.4, 27.2, 24.5, 22.8, 21.8, 19.3, 17.3. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₅H₅₆N₅O₈⁺ 674.4123, Found: 674.4111.

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-phenylalanyl-L-valyl-L-leucyl-L-alaninate (1m):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:2), 1.41 g, 43% yield. ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.78 (s, 1H), 8.32 (d, *J* = 6.6 Hz, 1H), 8.17 – 7.84 (m, 3H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 7.2 Hz, 1H), 7.22 (s, 5H), 7.11 – 7.01 (m, 2H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.84 (d, *J* = 8.1 Hz, 1H), 4.69 (s, 1H), 4.37 (q, *J* = 7.5 Hz, 1H), 4.23 (s, 2H), 4.11 (s, 1H), 3.60 (s, 3H), 3.13 – 2.89 (m, 2H), 2.89 – 2.72 (m, 2H), 2.07 – 1.86 (m, 1H), 1.74 – 1.58 (m, 1H), 1.46 (t, *J* = 7.2 Hz, 2H), 1.26 (s, 10H), 1.05 (s, 2H), 0.95 – 0.75 (m, 12H). ¹³C NMR (75 MHz, DMSO-d₆) δ 172.9, 171.7, 170.6, 170.5, 155.0, 137.5, 136.0, 129.3, 127.9, 126.2, 120.8, 118.1, 110.3, 78.0, 57.5, 55.4, 51.8, 50.5, 47.5, 40.8, 37.5, 30.7, 28.0, 24.1, 23.0, 21.6, 19.1, 18.1, 16.8. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₀H₅₇N₆O₈⁺ 749.4232, Found: 749.4239.

methyl (tert-butoxycarbonyl)-L-tryptophyl-L-phenylalanyl-L-leucyl-L-tryptophanate (1o):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 1.52 g, 65% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.71 (s, 2H), 7.58 (t, *J* = 6.6 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.22-7.06 (m, 8H), 7.01 (s, 1H), 6.81(d, *J* = 3.9 Hz, 2H), 6.61 (s, 1H), 6.21 (d, *J* = 6.6 Hz, 1H), 6.07 (d, *J* = 7.2 Hz, 1H), 5.05 (d, *J* = 5.1 Hz, 1H), 4.89 (q, *J* = 7.5 Hz, 1H), 4.64 (q, *J* = 6.3 Hz, 1H), 4.48 (t, *J* = 8.7 Hz, 1H), 4.11 (q, *J* = 6.9 Hz, 1H), 3.69 (s, 3H), 3.42 (dd, *J* = 14.7, 3.9 Hz, 1H), 3.33-2.97 (m, 4H), 2.52 (dd, *J* = 13.5,4.5 Hz, 1H), 1.65-1.47 (m, 1H), 1.33 (s, 9H), 1.26 – 1.05 (m, 2H), 0.75 (dd, *J* = 23.4, 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 172.2, 171.5, 170.6, 155.7, 136.1, 136.1, 135.5, 129.1, 128.7, 127.4, 127.2, 127.0, 123.4, 123.3, 122.4, 121.9, 119.8, 119.3, 118.5, 118.4, 111.6, 111.4, 109.9, 109.4, 80.6, 55.9, 53.8, 52.7, 52.4, 51.5, 39.4, 36.6, 28.2, 27.6, 24.3, 22.7, 21.6. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₃H₅₃N₆O₇⁺ 765.3970, Found: 765.3956.

General Procedure C for Synthesis of Tryptophan-containing peptides (1n) via SPPS

Peptide **1n-1** (1.0 mmol) was prepared via a standard solid-phase peptide synthesis procedure. After cleavage from the resin, the crude peptide **1n-2** was concentrated in vacuo and purified by column chromatography to give the pure product.

To a 10 mL round-bottom flask, the polypeptide **1n-2** (1 equiv) and K_2CO_3 (1.5 equiv) was dissolved in DMF (10 mL), MeI (1.5 equiv) was added dropwise into the mixture. The reaction mixture was stirred at room temperature for 12 h. Upon completion as indicated by TLC, the reaction mixture was poured into water, and extracted with EtOAc (3 x 40 mL). The combined organic layer was washed with brine, and dried with anhydrous Na₂SO₄. The mixture was concentrated under reduced pressure and purified by column chromatography using DCM and MeOH as the eluent giving the pure product **1n** as a white solid.

methyl (3R)-3-(tert-butoxy)-2-((S)-2-((S)-1-((6S,9S,12S,15S)-15-(4-(tert-butoxy)benzyl)-6-

isobutyl-9,12-diisopropyl-2,2-dimethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14tetraazahexadecan-16-oyl)pyrrolidine-2-carboxamido)-3-(1*H*-indol-3yl)propanamido)butanoate (1n):

White solid was obtained by silica gel column chromatography (eluent: DCM / MeOH = 20:1), 0.33 g, 30% yield after 15 steps. ¹H NMR (300 MHz, CDCl₃) δ 8.90 (s, 1H), 7.70 (dd, *J* = 15.4, 7.5 Hz, 2H), 7.54 (s, 1H), 7.40 (d, *J* = 8.3 Hz, 1H), 7.32 – 7.21 (m, 2H), 7.20 – 7.02 (m, 4H), 6.98 (d, *J* = 7.9 Hz, 2H), 6.89 (d, *J* = 8.3 Hz, 1H), 6.75 (dd, *J* = 18.7, 7.9 Hz, 2H), 6.59 (d, *J* = 8.9 Hz, 1H), 5.54 (d, *J* = 38.0 Hz, 1H), 4.88 (d, *J* = 7.4 Hz, 1H), 4.75 (d, *J* = 6.6 Hz, 1H), 4.63 (s, 2H), 4.47 (d, *J* = 8.8 Hz, 1H), 4.44 – 4.22 (m, 2H), 4.21 – 4.04 (m, 1H), 3.69 (s, 1H), 3.65 (d, *J* = 1.8 Hz, 3H), 3.48 (d, *J* = 8.1 Hz, 1H), 3.40 – 3.06 (m, 3H), 2.99 – 2.85 (m, 1H), 2.80 (s, 2H), 2.28 (s, 1H), 2.15 (dq, *J* = 19.9, 7.0 Hz, 3H), 1.78 (d, *J* = 31.1 Hz, 3H), 1.70 – 1.51 (m, 3H), 1.43 (s, 9H), 1.32 – 1.17 (m, 11H), 1.06 (q, *J* = 5.4, 4.5 Hz, 14H), 0.89 (dt, *J* = 15.1, 7.9 Hz, 19H). ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 171.1, 170.7, 166.2, 154.2, 136.3, 136.2, 130.1, 128.2, 126.2, 124.2, 121.9, 119.4, 119.3, 110.1, 78.2, 74.0, 67.3, 60.1, 57.9, 57.8, 54.0, 52.1, 52.0, 47.4, 28.8, 28.3, 28.2, 24.9, 24.7, 23.0, 20.6, 19.4, 19.2, 18.2, 17.9. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₅₉H₉₁N₈O₁₂⁺ 1103.6751, Found: 1103.6754.

2.2 Procedure for Synthesis of MBH Carbonates.

The synthetic procedure of MBH-carbonates was prepared following the reported procedure 2 . General Procedure D for Synthesis of MBH Carbonates of 2a - 2n, 2v - 2x

To a 100 mL round-bottom flask, diethylphosphoacetic acid (1.0 equiv.) and alkyl alcohols (1.25 equiv.) were dissolved in DCM (40 mL), DCC (1.1 equiv.) was added slowly in portions, the reaction was stirred at room temperature for 20 min. Upon completion as indicated by TLC, the precipitate was filtered and washed wish DCM (2 x 10 mL). The filtrate was concentrated in vacuo and the residue was used for the next step without further purification.

The crude esterification product was dissolved in THF with 4.0 equiv. of a 30% solution of formaldehyde. Then a saturated solution of K_2CO_3 (2.0 equiv.) was added slowly. At the end of the exothermic addition, the reaction mixture was stirred at room temperature. When the reaction was completion detected by TLC, a saturated solution of ammonium chloride was added and the organic phase was extracted with EtOAc (2 x 40 mL). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, the mixture was concentrated under reduced pressure and purified by column chromatography using ethyl acetate and petroleum ether as the eluent giving the desired product.

The corresponding allyl alcohol (1.0 equiv.) was dissolved in DCM (40 mL), and (Boc)₂O was added slowly into the mixture, then a catalytic amount of DMAP (0.05 equiv.) was added in one portion. The reaction was stirred at room temperature overnight. Upon completion as indicated by TLC, the reaction mixture was extracted with water and DCM, and the combined layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography using ethyl acetate and petroleum ether as the eluent giving the desired product.

methyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2a):

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.03 g, 95% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.38 (s, 1H), 5.89 (s, 1H), 4.80 (s, 2H), 3.79 (s, 3H), 1.50 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.5, 153.0, 135.1, 127.7, 82.5, 64.7, 52.0, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₀H₁₇O₅⁺ 217.1071, Found: 217.1067. ethyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2b):

2b

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 0.77 g, 71% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.37 (s, 1H), 5.87 (s, 1H), 4.81 (s, 2H), 4.24 (q, *J* = 6.9 Hz, 3H), 1.50 (s, 9H), 1.32 (t, *J* =6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.1, 153.1, 135.3, 127.2, 82.4, 64.7, 60.9, 27.7, 14.1. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₀H₁₇O_{5⁺} 217.1071, Found: 217.1067.

tert-butyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2c):

Boc O 2c

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 0.90 g, 70% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.27 (s, 1H), 5.78 (s, 1H), 4.77 (s, 2H), 1.50 (s, 18H). ¹³C NMR (75 MHz, CDCl₃) δ 164.2, 153.1, 136.7, 125.9, 82.3, 81.3, 64.8, 28.0, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₃H₂₃O₅⁺ 259.1540, Found: 259.1537.

hexyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2d):

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 0.95 g, 67% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.37 (s, 1H), 5.87 (s, 1H), 4.80 (s, 2H), 4.17 (t, *J* = 6.6 Hz, 2H), 1.70 – 1.62 (m, 2H), 1.50 (s, 9H), 1.33 (s, 6H), 0.89 (t, *J* = 3.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.2, 153.1, 135.3, 127.2, 82.4, 65.2, 64.8, 31.4, 28.5, 27.7, 25.6, 22.5,

14.0. **HRMS**(ESI) m/z $[M+H]^+$: Calcd for C₁₅H₂₇O₅+ 287.1853, Found: 287.1848. **benzyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2e):**

Colourless oil was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.08 g, 74.5% yield after 3 steps. ¹H NMR (300 MHz, CDCI3) δ 7.36 (s, 5H), 6.42 (s, 1H), 5.91 (s, 1H), 5.22 (s, 2H), 4.82 (s, 2H), 1.48 (s, 9H). ¹³C NMR (75 MHz, CDCI3) δ 164.9, 153.1, 135.6, 135.1, 128.6, 128.3, 128.1, 127.9, 82.5, 66.7, 64.7, 27.7. HRMS(ESI) m/z [M+H]+ : Calcd for C10H17O5+ 293.1384, Found: 293.1375.

pent-4-yn-1-yl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2f):

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 0.93 g, 69% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.39 (d, *J* = 1.0 Hz, 1H), 5.89 (d, *J* = 1.2 Hz, 1H), 4.80 (s, 2H), 4.29 (t, *J* = 6.2 Hz, 2H), 2.32 (td, *J* = 7.0, 2.6 Hz, 2H), 1.98 (t, *J* = 2.7 Hz, 1H), 1.91 (p, *J* = 6.6 Hz, 2H), 1.50 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 153.0, 135.1, 127.7, 82.9, 82.5, 69.1, 64.7, 63.5, 27.7, 27.5, 15.2. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₄H₂₁O₅⁺ 269.1384, Found: 269.1375.

benzo[d][1,3]dioxol-5-ylmethyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2g):

2g

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 0.84 g, 50% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.85 (d, *J* = 7.5 Hz, 2H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.40 (s, 1H), 5.96 (s, 2H), 5.90 (s, 1H), 5.11 (s, 2H), 4.81 (s, 2H), 1.49 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 164.9, 153.0, 147.8, 147.7, 135.1, 129.3, 127.8, 122.3, 109.0, 108.2, 101.2, 82.5, 66.7, 64.7, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₇H₂₁O₇⁺ 337.1282, Found: 337.1274.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2h):

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 0.82 g, 48% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.35 (s, 1H), 5.84 (s, 1H), 4.92 – 4.70 (m, 3H), 2.04

(d, J = 12.0 Hz, 1H), 1.95 - 1.81 (m, 1H), 1.69 (d, J = 10.8 Hz, 2H), 1.50 (s, 10H), 1.41 (d, J = 11.7 Hz, 1H), 1.15 - 0.98 (m, 2H), 0.90 (dd, J = 6.6, 4.0 Hz, 7H), 0.76 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 164.7, 153.1, 135.6, 126.8, 82.4, 64.8, 47.0, 40.8, 34.2, 31.4, 27.8, 26.3, 23.4, 22.0, 20.8, 16.3. **HRMS**(ESI) m/z [M+H]⁺ : Calcd for C₁₉H₃₃O₅⁺ 341.2323, Found: 341.2316.

(1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl butoxycarbonyl)oxy)methyl)acrylate (2i):

2-(((tert-

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 0.76 g, 45% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.38 (s, 1H), 5.86 (s, 1H), 4.96 (d, *J* = 9.9 Hz, 1H), 4.82 (s, 2H), 2.46 – 2.33 (m, 1H), 2.03 – 1.87 (m, 1H), 1.83 – 1.73 (m, 1H), 1.71 (t, *J* = 6.0 Hz, 1H), 1.50 (s, 9H), 1.40 – 1.20 (m, 2H), 1.03 (dd, *J* = 14.0, 3.3 Hz, 1H), 0.92 (s, 3H), 0.89 (s, 3H), 0.86 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.3, 153.1, 135.6, 127.1, 82.4, 80.7, 64.9, 49.0, 47.8, 44.9, 36.8, 28.0, 27.8, 27.4, 27.3, 19.7, 18.9, 13.5. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₉H₃₁O_{5⁺} 339.2166, Found: 339.2160.

((3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2j):

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 0.99 g, 45% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.40 (s, 1H), 5.90 (s, 1H), 5.53 (d, *J* = 4.8 Hz, 1H), 4.80 (s, 2H), 4.63 (d, *J* = 1.5 Hz, 1H), 4.43 – 4.23 (m, 4H), 4.15 – 4.03 (m, 1H), 1.53 – 1.43 (m, 15H), 1.34 (d, *J* = 3.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 164.9, 153.0, 134.9, 127.8, 109.7, 108.8, 96.3, 82.4, 71.0, 70.7, 70.5, 65.9, 64.6, 63.8, 27.7, 26.0, 25.9, 25.0, 24.5. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₁H₃₃O₁₀⁺ 445.2068, Found: 445.2057.

4-((2-(((tert-butoxycarbonyl)oxy)methyl)acryloyl)oxy)butyl 6-(diethylamino)-2-oxo-2*H*-chromene-3-carboxylate (2k):

Yellow solid was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 0.91 g, 35% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.42 (s, 1H), 7.37 (d, *J* = 9.0 Hz, 1H), 6.62 (d, *J* = 9.0 Hz, 1H), 6.46 (s, 1H), 6.39 (s, 1H), 5.89 (s, 1H), 4.81 (s, 2H), 4.35 (s, 2H), 4.26 (s, 2H), 3.45 (q, *J* = 6.9 Hz, 4H), 1.87 (s, 4H), 1.49 (s, 9H), 1.24 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 165.1, 164.2, 158.5, 153.0, 152.9, 149.2, 135.2, 131.1, 127.5, 109.5, 108.7, 107.7, 96.7, 82.5, 64.7, 64.6, 64.5, 45.1, 27.7, 25.4, 25.3, 12.4. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₇H₃₆NO₉⁺ 518.2385, Found: 518.2372.

2,5,8,11-tetraoxatridecan-13-yl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2I):

Colorless oil was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 0.88 g, 45% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.40 (s, 1H), 5.90 (s, 1H), 4.81 (s, 2H), 4.34 (d, *J* = 4.2 Hz, 2H), 3.74 (t, *J* = 3.9 Hz, 2H), 3.66 (s, 10H), 3.53 (t, *J* = 3.0 Hz, 2H), 3.38 (s, 3H), 1.49 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 153.0, 135.0, 127.7, 82.5, 71.9, 70.6, 70.5, 69.0, 64.7, 64.1, 59.0, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₈H₃₃O₉⁺ 393.2119, Found: 393.2109. (3S,8R,9S,10S,13S,14S)-10,13-dimethyl-17-oxohexadecahydro-1H-

cyclopenta[a]phenanthren-3-yl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2m):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 0.59 g, 25% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.34 (s, 1H), 5.84 (s, 1H), 4.79 (s, 3H), 2.44 (dd, *J* = 19.2, 9.0 Hz, 1H), 2.15 – 1.99 (m, 1H), 1.99 – 1.87 (m, 2H), 1.80 (d, *J* = 11.3 Hz, 3H), 1.74 – 1.56 (m, 5H), 1.50 (s, 10H), 1.42 (d, *J* = 12.1 Hz, 1H), 1.38 – 1.18 (m, 7H), 0.86 (s, 6H), 0.78 – 0.66 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 153.1, 135.6, 126.8, 82.4, 64.8, 54.3, 51.4, 47.8, 44.6, 36.7, 35.8, 35.7, 35.0, 33.9, 31.5, 30.8, 28.3, 27.8, 27.4, 21.8, 20.5, 13.8, 12.2. HRMS(ESI) m/z [M+H]+ : Calcd for C₂₈H₄₃O₆+ 475.3054, Found: 475.3042.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2n):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 0.57 g, 20% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.36 (s, 1H), 5.85 (s, 1H), 5.39 (d, *J* = 5.0 Hz, 1H), 4.80 (s, 2H), 4.79 – 4.63 (m, 1H), 2.36 (d, *J* = 7.9 Hz, 2H), 2.02 (d, *J* = 9.0 Hz, 2H), 1.93 – 1.77 (m, 3H), 1.72 – 1.54 (m, 4H), 1.53 (s, 2H), 1.50 (s, 10H), 1.46 – 1.26 (m, 5H), 1.24 – 1.08 (m, 7H), 1.03 (s, 5H), 0.92 (d, *J* = 6.4 Hz, 3H), 0.88 (s, 3H), 0.86 (s, 3H), 0.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.5, 153.1, 139.5, 135.6, 126.9, 122.8, 82.5, 64.8, 56.7, 56.1, 50.0, 42.3, 39.7, 39.5, 38.0, 37.0, 36.6, 36.2, 35.8, 31.9, 31.8, 28.2, 28.0, 27.8, 27.4, 24.3, 23.8, 22.8, 22.6, 21.0, 19.3, 18.7, 11.9. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₆H₅₉O₅⁺ 571.4357, Found: 571.4346. butane-1,4-diyl bis(2-(((tert-butoxycarbonyl)oxy)methyl)acrylate) (2v):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 1.25 g, 27% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.38 (s, 2H), 5.90 (s, 2H), 4.80 (s, 4H), 4.22 (s, 4H), 1.79 (s, 4H), 1.50(s, 18 H). ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 153.1, 135.1, 127.7, 82.5, 64.7, 64.4, 27.7, 25.2. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₂H₃₅O₁₀⁺ 459.2225, Found: 459.2219. hexane-1,6-diyl bis(2-(((tert-butoxycarbonyl)oxy)methyl)acrylate) (2w):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 1.44 g, 30% yield. ¹H NMR (300 MHz, CDCl₃) δ 6.37 (s, 2H), 5.88 (s, 2H), 4.80 (s, 4H), 4.18 (t, *J* = 6.3 Hz, 4H), 1.69 (t, *J* = 6.0 Hz, 4H), 1.50 (s, 18H), 1.42 (s, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 165.1, 153.1, 135.2, 127.4, 82.5, 64.9, 64.7, 28.4, 27.7, 25.6. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₄H₃₉O_{10⁺} 487.2538, Found: 487.2531.

octane-1,8-diyl bis(2-(((tert-butoxycarbonyl)oxy)methyl)acrylate) (2x):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 10:1), 2.29 g, 44% yield. ¹H NMR (300 MHz, CDCl₃) δ 6. 37 (s, 2H), 5.87 (s, 2H), 4.80 (s, 4H), 4.17 (t, *J* = 6.6 Hz, 4H), 1.67 (t, *J* = 6.3 Hz, 4H), 1.50 (s, 18H), 1.34 (s, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 165.2, 153.1, 135.3, 127.3, 82.5, 65.1, 64.8, 29.1, 28.5, 27.7, 25.9. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₆H₄₃O₁₀⁺ 515.2851, Found: 515.2853.

General Procedure E for Synthesis of MBH Carbonates of 20 – 2u

To a 100 mL round-bottom flask equipped with a magnetic stir bar was charged with benzaldehyde (1.0 equiv.), methyl acrylate (3.0 equiv.) and DABCO (1.0 equiv.). The reaction mixture was stirred at room temperature. Upon completion as indicated by TLC, the reaction mixture was diluted with DCM and washed with 1N aq. HCl, saturated aq. NaHCO₃ and brine. Then the combined organic layers were dried over anhydrous Na₂SO₄, concentrated under reduced pressure. The residue was purified by column chromatography using ethyl acetate and petroleum ether as the eluent giving the desired product.

The corresponding allyl alcohol (1.0 equiv.) was dissolved in DCM (40 mL), and (Boc)₂O was added slowly into the mixture at 0 $^{\circ}$ C, then a catalytic amount of DMAP (0.05 equiv.) was added in one portion. The reaction was warmed to room temperature and stirred overnight. Upon

completion as indicated by TLC, the reaction mixture was extracted with water and DCM, and the combined layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography using ethyl acetate and petroleum ether as the eluent giving the desired product.

methyl 2-(((tert-butoxycarbonyl)oxy)(phenyl)methyl)acrylate (2o):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.10 g, 80% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.29 (m, 5H), 6.49 (s, 1H), 6.40 (s, 1H), 5.92 (s, 1H), 3.70 (s, 3H), 1.46 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 152.4, 139.7, 137.5, 128.47, 128.45, 127.6, 125.9, 82.6, 75.8, 52.0, 27.8. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₆H₂₁O₅⁺ 293.1384, Found: 293.1372.

methyl 2-(((tert-butoxycarbonyl)oxy)(4-fluorophenyl)methyl)acrylate (2p):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.24 g, 80% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.4, 5.4 Hz, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 6.45 (s, 1H), 6.41 (s, 1H), 5.95 (s, 1H), 3.71 (s, 3H), 1.46 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.3, 152.3, 139.5, 129.6, 129.5, 125.6, 115.5, 115.3, 82.8, 75.1, 52.0, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₆H₂₀O₅F⁺ 311.1289, Found: 311.1277.

methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2q):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.14 g, 76% yield. ¹H NMR (300 MHz, CDCI₃) δ 7.33 (dd, *J* = 11.7, 8.7 Hz, 4H), 6.44 (s, 1H), 6.41 (s, 1H), 5.95 (s, 1H), 1.46 (s, 9H). ¹³C NMR (75 MHz, CDCI₃) δ 165.2,152.2, 139.3, 136.2, 134.3, 129.1, 128.7, 125.9, 82.9, 75.1, 52.1, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₆H₂₀O₅Cl⁺ 327.0994, Found: 327.0985.

methyl 2-((4-bromophenyl)((tert-butoxycarbonyl)oxy)methyl)acrylate (2r):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.41 g, 76% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.42 (s, 2H), 5.94 (s, 1H), 3.71 (s, 3H), 1.46 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.2, 152.2, 139.2, 136.7, 131.6, 129.4, 126.0, 122.6, 82.9, 75.1, 52.1, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₆H₂₀O₅Br⁺ 371.0489, Found: 371.0477.

methyl 2-(((tert-butoxycarbonyl)oxy)(naphthalen-2-yl)methyl)acrylate (2s):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.11 g, 65% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 1H), 7.83 (t, *J* = 9.0 Hz, 2H), 7.56 (d, *J* = 6.9 Hz, 1H), 7.46 (td, *J* = 17.4, 8.4 Hz, 3H), 7.34 (s, 1H), 6.48 (s, 1H), 5.74 (s, 1H), 3.72 (s, 3H), 1.47 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 152.6, 139.1, 133.9, 133.2, 130.9, 129.3, 128.8, 128.1, 126.6, 125.9, 125.2, 123.5, 82.8, 72.4, 52.2, 27.8. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₀H₂₃O₅⁺ 343.1540, Found: 343.1533.

methyl 2-(((tert-butoxycarbonyl)oxy)(2-nitrophenyl)methyl)acrylate (2t):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 0.93 g, 55% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 1H), 7.66 (s, 2H), 7.58 – 7.46 (m, 1H), 7.18 (s, 1H), 6.45 (s, 1H), 5.58 (s, 1H), 3.78 (s, 3H), 1.48 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.1, 152.0, 147.9, 138.5, 133.6, 133.3, 129.3, 128.6, 128.2, 125.1, 83.3, 71.2, 52.3, 27.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₆H₂₀NO7⁺ 338.1234, Found: 338.1225.

methyl 2-(((tert-butoxycarbonyl)oxy)(p-tolyl)methyl)acrylate (2u):

Boc 2u

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 20:1), 1.21 g, 79% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.28(d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 6.45 (s, 1H), 6.39 (s, 1H), 5.92 (s, 1H), 3.70 (s, 3H), 2.33 (s, 3), 1.48 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.5, 152.5, 139.7, 138.3, 134.5, 129.2, 127.7, 125.6, 82.6, 75.3, 52.0, 27.8, 21.2. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₁₇H₂₃O₅⁺ 307.1540, Found: 307.1534.

General Procedure F for Synthesis of MBH Carbonates of 2y - 2aa

The corresponding allyl alcohol (1.0 equiv) prepared by Procedure B and Procedure D was added to a suspension of di-tert-butyl decarbonate (1.1 equiv.) and Zn(OAc)₂ (0.1 equiv.) in DCM. The reaction mixture was allowed to reflux at 50 °C for 5 h with an oil bath. Upon the completion detected by TLC, the reaction mixture was cooled to room temperature and diluted with water. Then the mixture was extracted twice with DCM, the combined organic layers was dried by anhydrous Na₂SO₄. The residue was concentrated in vacuo and purified by column chromatography using ethyl acetate and petroleum ether as the eluent giving the desired product.

(S)-6-(2-((tert-butoxycarbonyl)amino)-3-(1*H*-indol-3-yl)propanamido)hexyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2y):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 1.85 g, 63% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.53 (s, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.15 (dt, *J* = 21.3, 6.9 Hz, 2H), 7.05 (s, 1H), 6.39 (s, 1H), 5.90 (s, 1H), 5.61 (s, 1H), 5.24 (s, 1H), 4.81 (s, 2H), 4.41 (d, *J* = 4.5, 1H), 4.13 (t, *J* = 2.3 Hz, 2H) 3.33 (dd, *J* = 14.4, 4.8 Hz, 1H), 3.18 – 2.97 (m, 3H), 1.56 (q, *J* = 7.2 Hz, 2H), 1.49 (s, 9H), 1.44 (s, 9H), 1.29 – 1.20 (m, 4H), 1.12 – 1.01 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 165.3, 155.5, 153.1, 136.3, 135.2, 127.6, 127.4, 123.3, 122.1, 119.6, 118.9, 111.3, 110.6, 82.6, 80.0, 65.0, 64.8, 55.3, 39.3, 34.0, 29.0, 28.7, 28.27, 28.33, 27.8, 26.1, 25.4. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₁H₄₆N₃O₈⁺ 588.3279, Found: 588.3266.

(6S,9S)-6-((1*H*-indol-3-yl)methyl)-9-isopropyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11triazaheptadecan-17-yl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2z):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 0.68 g, 18% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.70(s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J* = 7.2 Hz, 1H), 7.11(t, *J* = 7.5 Hz, 1H), 7.06 (s, 1H), 6.53(d, *J* = 7.8 Hz, 2H), 6.36 (s, 1H), 5.87 (s, 1H), 5.23 (d, *J* = 6.3Hz, 1H), 4.80 (s, 2H), 4.52 – 4.36 (m, 1H), 4.25 – 4.17 (m, 1H), 4.13 (t, *J* = 6.6 Hz, 2H), 3.34 – 3.11(m, 3H), 3.10 – 2.95 (m, 1H), 2.28 – 2.11 (m, 1H), 1.63 (t, *J* = 6.6 Hz, 2H), 1.49(s, 9H), 1.42(s, 10H), 1.31(s, 5H), 0.79 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 170.6, 165.2, 153.1, 136.3, 135.2, 127.4, 123.3, 122.2, 119.7, 118.7, 111.4, 109.9, 82.5, 80.5, 65.0, 64.7, 58.7, 55.8, 39.3, 30.1, 29.3, 28.4, 28.3, 27.7, 26.4, 25.5, 19.2. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₆H₅₅N₄O₉⁺ 687.3964, Found: 687.3951.

(6S,9S,12S)-6-((1*H*-indol-3-yl)methyl)-9-isopropyl-2,2,12-trimethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14-tetraazaicosan-20-yl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate (2aa):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 0.99 g, 22% yield. ¹H NMR (300 MHz, CDCl₃) δ 9.25 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.00 (m, 4H), 6.72(s, 1H), 6.36 (s, 1H), 5.86 (s, 1H), 5.47(s, 1H), 4.80 (s, 2H), 4.66 – 4.50 (m, 1H), 4.41 (d, *J* = 3.6 Hz, 1H), 4.22 – 4.01 (m, 3H), 3.43 – 3.00 (m, 4H), 2.27 – 2.08 (m, 1H), 1.72 – 1.53 (m, 4H), 1.49 (s, 9H), 1.38 (d, *J* = 8.0 Hz, 14H), 1.26 (t, *J* = 6.3 Hz, 2H), 0.73 (dd, *J* = 31.1, 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 172.3, 170.5, 165.2, 156.5, 153.1, 136.5, 135.2, 127.3, 127.2, 123.3, 122.5, 120.0, 118.5, 111.5, 109.4, 82.6, 81.3, 65.1, 64.8, 59.4, 56.5, 49.0, 39.5, 29.2, 29.0, 28.5, 28.2, 27.8, 26.4, 25.6, 19.0, 17.6, 16.9. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₉H₆₀N₅O₁₀⁺ 758.4335, Found: 758.4317.

General Procedure G for Synthesis of MBH Carbonates of 2ab - 2ae

The protected allyl alcohol (1.0 equiv.) prepared via Procedure B was dissolved in THF (10 mL), TBAF (1.05 equiv.) was added slowly and stirred at room temperature for 1 h. Upon the completion detected by TLC, the reaction mixture was extracted with water and EtOAc. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄. The residue was

concentrated in vacuo and purified by column chromatography using ethyl acetate and petroleum ether as the eluent giving the desired product.

After removed the protection group, the corresponding allyl alcohol was performed with Procedure F to prepare the corresponding MBH carbonates.

(6S,9S,12S,15S)-6-((1*H*-indol-3-yl)methyl)-15-benzyl-9-isopropyl-2,2,12-trimethyl-4,7,10,13,16-pentaoxo-3-oxa-5,8,11,14,17-pentaazatricosan-23-yl 2-(((tertbutoxycarbonyl)oxy)methyl)acrylate (2ab):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1). 0.82 g, 29% yield. ¹H NMR (300 MHz, CDCl₃) δ 9.29 (s, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.29 (t, *J* = 6.9 Hz, 3H), 7.25 – 7.11 (m, 5H), 7.06 (t, *J* = 7.2 Hz, 2H), 6.35 (s, 1H), 5.86 (s, 1H), 5.41 (s, 1H), 4.79 (s, 2H), 4.49 – 4.20 (m, 1H), 4.14 (t, *J* = 6.0 Hz, 3H), 3.92 (s, 1H), 3.53 (s, 1H), 3.45 – 3.15 (m, 3H), 3.07 (t, *J* = 11.4 Hz, 1H), 2.05 (s, 1H), 1.79 – 1.55 (m, 4H), 1.49 (s, 9H), 1.42 (s, 14H), 0.80 (dd, *J* = 18.6, 5.9 Hz, 10H), 0.62(d, *J* = 5.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 172.5, 172.1, 171.5, 165.2, 156.7, 153.1, 138.4, 136.7, 135.2, 129.3, 128.2, 127.3, 127.1, 126.3, 123.7, 122.4, 119.7, 118.4, 111.7, 82.5, 82.2, 65.1, 64.7, 60.3, 56.5, 54.8, 53.2, 39.6, 37.5, 29.0, 28.5, 28.1, 27.8, 26.5, 25.6, 24.7, 23.0, 20.8, 18.9, 18.8, 17.4. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₈H₆₉N₆O₁₁⁺ 905.5019, Found: 905.5024

6-((R)-2-((R)-2-((R)-1-(((6R,9R,12R)-6-((1*H*-indol-3-yl)methyl)-12-(tert-butoxymethyl)-9isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oyl)-Dprolyl)pyrrolidine-2-carboxamido)-3-phenylpropanamido)propanamido)hexyl 2-(((tertbutoxycarbonyl)oxy)methyl)acrylate (2ac):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:2). 0.62 g, 49% yield after 16 steps. ¹H NMR (300 MHz, CDCl₃) δ 9.56 (s, 1H), 8.02 (d, *J* = 7.2Hz, 1H), 7.60 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.46 (s, 1H), 7.34 (d, *J* = 20.1 Hz, 3H), 7.33 – 7.20 (m, 5H), 7.17 (t, *J* = 6.3 Hz, 2H), 7.11 – 6.99 (m, 2H), 6.35 (d, *J* = 3.9 Hz, 1H), 5.85 (s, 1H), 5.31 – 5.19 (m, 1H), 4.78 (s, 2H), 4.71 (s, 2H), 4.66 – 4.38 (m, 5H), 4.11 (q, *J* = 6.6 Hz, 3H), 3.91 (s, 1H), 3.80 (s, 2H), 3.61 – 3.47 (m, 2H), 3.44 – 3.21 (m, 4H), 3.20 – 3.01 (m, 3H), 2.21 (t, *J* = 6.0 Hz, 2H), 2.02 – 1.77 (m, 3H), 1.74 – 1.56 (m, 4H), 1.49 (s, 12H), 1.41 (s, 9H), 1.40 – 1.23 (m, 8H), 1.17 (s, 9H), 0.84 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 172.0, 171.4, 170.7, 170.0, 165.1, 155.5, 153.1, 129.4, 129.1, 128.3, 127.2, 126.6, 122.6, 121.8, 119.1, 118.6, 111.1, 109.8, 82.5, 80.1, 73.5, 65.0, 64.7, 62.3, 60.6, 58.5, 55.0, 54.7, 52.7, 51.7, 48.7, 47.7, 47.2, 41.3, 39.4, 36.3, 29.5, 29.3, 28.6, 28.4, 28.3, 27.7, 27.4, 26.6, 25.6, 25.5, 24.8, 23.1, 22.9,

22.3, 19.6. HRMS(ESI) m/z $[M+H]^+$: Calcd for C₆₆H₉₈N₉O₁₅+ 1256.7177, Found: 1256.7179. tert-butyl N²-(tert-butoxycarbonyl)-L-tryptophyl-L-valyl-L-leucyl-L-phenylalanyl-N⁵-(6-((2-(((tert-butoxycarbonyl)oxy)methyl)acryloyl)oxy)hexyl)-L-glutaminate (2ad):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:2). 0.17 g, 30% yield. ¹H NMR (300 MHz, CDCl₃) δ 9.26 (s, 1H), 7.55(d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 8.4 Hz, 2H), 7.28 (s, 3H), 7.25 – 7.13 (m, 7H), 7.05 (d, *J* = 7.2 Hz, 2H), 6.36 (s, 1H), 6.21 (s, 1H), 5.86 (s, 1H), 5.28 (s, 1H), 4.78 (s, 2H), 4.74 – 4.68(m, 1H), 4.47 (t, *J* = 8.4 Hz, 1H), 4.31 (d, *J* = 6.9 Hz, 1H), 4.13 (d, *J* = 6.6 Hz, 4H), 3.84 (s, 1H), 3.50 (dd, J = 14.1, 2.7 Hz, 1H), 3.36 – 2.93 (m, 6H), 2.41 – 2.15 (m, 4H), 2.04 – 1.89 (m, 2H), 1.63 (t, *J* = 7.5 Hz, 3H), 1.49 (s, 9H), 1.46 (s, 8H), 1.43 (s, 8H), 1.34 (s, 5H), 1.08 – 0.92 (m, 1H), 0.82 (dd, *J* = 19.8, 6.8 Hz, 7H), 0.73 (d, J = 6.9 Hz, 2H), 0.55 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 172.8, 172.5, 171.9, 171.2, 170.7, 165.1, 156.8, 153.0, 138.2, 136.6, 135.1, 129.3, 128.2, 127.3, 127.0, 126.3, 123.8, 118.3, 111.7, 82.6, 81.8, 81.5, 65.0, 64.7, 60.3, 56.7, 54.0, 52.7, 52.3, 39.4, 35.7, 32.5, 29.6, 28.7, 28.4, 28.0, 27.9, 27.7, 26.6, 25.6, 24.6, 23.2, 20.3, 18.7, 17.0. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₆₀H₉₀N₇O₁₄⁺ 1131.6540, Found: 1132.6562.

2.3 Condition Screening for N-Allylation of Trp Reaction

Supplemental Table 1. Optimization studies.

BocHN	$ \begin{array}{c} & & \\ $	t, Solvent, r.t. ➤ BocHN	
Entry	Cat (10 mol%)	Solvent	Yield (%) ^[a]
1	DABCO	DCE	96
2	TEA	DCE	48
3	DIEA	DCE	n.r.
4	DBU	DCE	<5
5	NaHCO ₃	DCE	n.r.
6	K ₂ CO ₃	DCE	n.r.
7	TBAF	DCE	<5
8	PPh₃	DCE	n.r.
9	PBu₃	DCE	<5
10	DABCO	DCM	99
11	DABCO	Tol	99
12	DABCO	MeOH	n.r.
13	DABCO	DMF	99
14	DABCO	EtOAc	99
15	DABCO	DMSO	25
16	DABCO	THF	99
17	DABCO	MeCN	79
18 ^[b]	DABCO	DCM	99

Unless otherwise stated, the reaction was carried out with 1a (0.1 mmol), 2a (0.2 mmol, 2 eq.), catalyst (0.01 mmol, 10 mol%) in 1 mL solvent at room temperature overnight.

[a] Isolated yield.

[b] Reaction was carried out with 1a (0.1 mmol), 2a (0.2 mmol, 2 eq.), catalyst (0.02 mmol, 20 mol%) in 1 mL solvent at room temperature for 1 hour.

The Optimized condition for N-alkylation of tryptophan-containing peptides is: tryptophan-containing peptide 1 (0.1 mmol, 1.0 equiv.), MBH carbonates 2 (0.2 mmol, 2.0 equiv.) and DABCO (0.02 mmol, 20 mol%) was dissolved in 1 mL DCM at room temperature for 1 hour.

Supplemental Table 2. Optimization studies.

BocHN 0 1a	NH + BocO Ph O Cat. (20 n DCM, r.t., o 20	nol%) overnignt BocHN 0 4a	Ph N O COOMe
Entry	Cat (20 mol%)	Yield (%) ^[a]	d.r. ^[b]
1 ^[c]	DABCO	99	1:1
2	β-ICD	98	7.1:1
3	Hydroquinine	-	-
4	O-Desmethyl Quinine	-	-
5	Cinchonine	-	-
6	(8α,9R)- 9-(9- phenanthrenyloxy)- Cinchonan-6'-ol	-	-
7	BzQD	-	-
8	(DHQD)2PHAL	49	1:6.5
9	(DHQD) ₂ PYR	60	1:6.5
10	(DHQD)2AQN	47	1:2.8
11	(DHQ)2PHAL	50	5:1
12	(DHQ)2AQN	55	2:1

Unless otherwise stated, the reaction was carried out with 1a (0.1 mmol), 2a (0.2 mmol, 2 eq.), catalyst (0.02 mmol, 20 mol%) in 1 mL solvent at room temperature overnight.

[a] Isolated yield.

[b] d.r. was determined by ¹H NMR.

[c] The reaction was carried out for 1h.

 $DABCO = 1,4-diazabicyclo[2.2.2]octane; \beta-ICD = beta-Isocupreidine; BzQD = 9-quinidinyl benzoate; (DHQD)_2PHAL = hydroquinidine 1,4-phthalazinediyl diether; (DHQD)_2PYR = hydroquinidine-2,5-diphenyl-4,6-pyrimidinediyl diether; (DHQD)_2AQN = hydroquinidine (anthraquinone-1,4-diyl) diether; (DHQ)_2PHAL = hydroquinine 1,4-phthalazinediyl diether; (DHQ)_2AQN = hydroquinine (anthraquinone-1,4-diyl) diether; (DHQ)_2PHAL = hydroquinine 1,4-phthalazinediyl diether; (DHQ)_2AQN = hydroquinine (anthraquinone-1,4-diyl) diether; (DHQ)_2PHAL = hydroquinine 1,4-phthalazinediyl diether; (DHQ)_2AQN = hydroquinine (anthraquinone-1,4-diyl) diether; (DHQ)_2PHAL = hydroquinine 1,4-phthalazinediyl diether; (DHQ)_2AQN = hydroquinine (anthraquinone-1,4-diyl) diether.$

The Optimized condition for N-alkylation of tryptophan-containing peptides is: tryptophan-containing peptide 1 (0.1 mmol, 1.0 equiv.), MBH carbonates 2 (0.2 mmol, 2.0

equiv.) and β -ICD (0.02 mmol, 20 mol%) was dissolved in 1 mL DCM at room temperature for 12 hours. To confirm the absolute configuration, we perform the 1H-1H NOESY and ROESY assay of **4ao**. Combining the results of our experiments with the work reported by Chen group,³ the absolute configuration was assigned as *(R)*-configuration.

Supplemental Table 3. Optimization studies.

Unless otherwise stated, the reaction was carried out with **1a** (0.1 mmol), catalyst (0.02 mmol, 20 mol%) in DCM at room temperature. [a] Isolated yield.

The Optimized condition for intramolecular macrocyclization of tryptophan-containing peptides is: tryptophan-containing peptide 1 (0.1 mmol, 1.0 equiv.), MBH carbonates 2 (0.2 mmol, 2.0 equiv.) and β -ICD (0.02 mmol, 20 mol%) was dissolved in 1 mL DCM at room temperature for 12 hours.

2.4 Investigation of chemoselectivity of N-allylation of Tryptophan

In order to investigation the chemoselectivity of this *N*-allylation of tryptophan reaction, a series of competitive experiments between Boc-Trp-OMe and amounts of nucleophilic competitors (Tyr, Lys, Arg, His, Ser, Cys) were conducted (Figure S1). The results revealed that different nucleophilic competitors had inconsistent impact on the N-allylation of tryptophan reaction, while the addition of Tyr and His led to slight decrease (<10%) in this assay. In contrast, the addition of Lys, Arg, Ser and Cys led to significant decrease in competitive experiments, while the addition of Lys had led to complete disappearance of the target product. To our surprise, the addition of Cys did not lead to the complete disappearance of the target product, but it led to the formation of a complex reaction system.

Figure S1. Investigation of the chemoselectivity of the N-allylation of tryptophan reaction. Conditions: Boc-Trp-OMe (0.1 mmol), MBH carbonates (0.2 mmol) and specific competitor (0.1 mmol) was dissolved in 2 mL DCM at room temperature for 1 hour. The yield was determined by 1H NMR with 1,3,5-trimethoxybenzene as an internal standard.

Figure S2. Zoomed spectrum of ¹H NMR analysis.

Figure S3. Chemoselectivity study between nucleophilic amino acids and MBH carbonates by ¹H NMR analysis.

2.5 General Procedure for N-allylation of Trp-containing peptide

General condition A (Peptide ligation):

To an oven-dried 10 mL glass test tube with a stirring bar was added peptides derivative **1** (0.1 mmol), MBH carbonate derivative **2** (0.2 mmol) followed by addition of DABCO or β -ICD (0.02 mmol). DCM (1 mL) was added by syringe and the mixture was stirred at room temperature for 1 h or overnight. After the completion of the reaction monitored by TLC, the solvent was removed by reduced pressure and purified by column chromatography to afford product **3** or **4**. **General condition B (Intramolecular Macrocyclization):**

To an oven-dried 10 mL glass test tube with a stirring bar was added MBH carbonate derivative 2 (0.1 mmol) followed by addition of DABCO (0.02 mmol). DCM (10 mL) was added by syringe and the mixture was stirred at room temperature for 1 h. After the completion of the reaction monitored by TLC, the solvent was removed by reduced pressure and purified by column chromatography to afford product **5**.

General condition C (Peptide Stapling):

To an oven-dried 10 mL glass test tube with a stirring bar was added peptides derivative **1** (0.1 mmol), MBH carbonate derivative **2** (0.12 mmol) followed by addition of DABCO (0.02 mmol). DCM (10 mL) was added by syringe and the mixture was stirred at room temperature for 1 h, After the completion of the reaction monitored by TLC, the solvent was removed by reduced pressure and purified by column chromatography to afford product **5**.

General condition D (N-allylation of Trp-containing peptide on Resin):

A mixture of linear peptide loaded on Rink Amide MBHA Resin (0.2 mmol, 1.0 equiv.), MBH carbonates **2** (0.2 mmol, 1.0 equiv.) was added followed by addition of DABCO (0.02 mmol, 20 mol%) in a 20 mL filtration tube with Luer adapter. DCM (5 mL) was added and shaken for 1 h. Then the mixture was drained and washed with DCM (10 ml x 3). Repeated above procedure once, then the resin was washed with MeOH (10 mL x 3) and drained to dry.

A cleavage solution (10 mL, TAF: Tris: $H_2O = 95$: 2.5: 2.5) was added to the dry resin, the mixture was shaken for 3 h. The reaction mixture was washed with TFA, and combined mixture was concentrated under reduced pressure to afford the crude peptide. The crude peptide was extracted with cold diethyl ether and deionized water, the combined aqueous phase was freeze dried and purified by semi-preparative HPLC and lyophilized to afford the product.

2.6 General Procedure for Peptide-peptide conjugate.

A solution of 0.1 mL of **6** (0.01 M, Tris·HCl pH = 8.35) and 0.1 mL of **p-10** (0.001 M, Tris·HCl pH = 8.35) were pipetted into a 10 ml reaction tube, and added 0.8 ml of Tris·HCl buffer to bring the total volume to 1 ml. The mixture was stirred at 37 °C with an oil bath for 1 h. 100 uL reaction mixture was collected and detected by LC-MS at the initial and final time.

methyl (S)-2-((3-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-1*H*-indol-1yl)methyl)acrylate (3a):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 4:1), 41.2 mg, 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.20 (dd, *J* = 13.2, 7.5 Hz, 2H), 7.10 (td, *J* = 8.1, 2.1 Hz, 1H), 6.90 (s, 1H), 6.22 (s, 1H), 5.10 (s, 1H), 5.08 (s, 1H), 4.94 (s, 2H), 4.64 (t, *J* = 5.4 Hz, 1H), 3.80 (s, 3H), 3.66 (s, 3H), 3.37 – 3.11 (m, 2H), 1.43 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 166.0, 155.2, 136.3, 136.2, 128.3, 127.0, 126.1, 122.1, 119.5, 119.1, 109.7, 109.6, 54.4, 52.2, 52.1, 46.7, 28.3, 28.0. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₂H₂₉N₂O₆⁺ 417.2020, Found: 417.2010.

methyl 2-((3-((S)-2-((tert-butoxycarbonyl)amino)-3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-3-oxopropyl)-1*H*-indol-1-yl)methyl)acrylate (3b):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 4:1), 54.0 mg, 96% yield. ¹H NMR (300 MHz, CDCI₃) δ 7.65 (d, *J* = 7.5Hz, 1H), 7.26 – 7.18 (m, 2H), 7.18 – 7.03 (m, 4H), 6.97 (s, 1H), 6.82 (d, *J* = 6.6 Hz, 2H), 6.26 (d, *J* = 6.6 Hz, 1H), 6.21 (s, 1H), 5.13 (s, 2H), 4.91 (s, 2H), 4.73 (q, *J* = 5.7 Hz, 1H), 4.42 (d, *J* = 4.5 Hz, 1H), 3.78 (s, 3H), 3.61 (s, 3H), 3.36 – 3.22 (m, 1H), 3.14 (dd, *J* = 14.1, 6.9 Hz, 1H), 2.96 (d, *J* = 5.4 Hz, 2H), 1.41 (s, 9H). ¹³C NMR (75 MHz, CDCI₃) δ 171.3, 171.1, 166.0, 155.4, 136.4, 136.1, 135.6, 129.2, 128.5, 128.1, 127.5, 127.1, 126.3, 122.2, 119.7, 119.2, 110.0, 109.6, 80.1, 55.1, 53.2, 52.2, 52.2, 46.7, 37.9, 28.3. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₁H₃₈N₃O7⁺ 564.2704, Found: 564.2692. **methyl** N^a-(tert-butoxycarbonyl)-1-(2-(methoxycarbonyl)allyl)-L-tryptophyl-L-leucinate

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 4:1), 52.4 mg, 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, *J* = 7.8 Hz, 1H), 7.20 (dd, *J* = 12.9, 7.5 Hz, 2H), 7.11 (td, *J* = 8.2, 2.1 Hz, 1H), 7.00 (s, 1H), 6.30 (d, *J* = 8.4 Hz, 1H), 6.22 (s, 1H), 5.16 (s, 1H), 5.13 (s, 1H), 4.93 (s, 2H), 4.58 – 4.48 (m, 1H), 4.44 (d, *J* = 6.3 Hz, 1H), 3.80 (s, 3H), 3.65

(s, 3H), 3.32 - 3.13 (m, 2H), 1.42 (s, 12H), 0.86(t, J = 2.1 Hz, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ 172.8, 171.3, 166.0, 155.4, 136.3, 136.1, 128.1, 127.4, 126.1, 122.0, 119.5, 119.1, 110.0, 109.5, 80.0, 52.12, 52.05, 50.7, 46.6, 41.5, 28.2, 27.9, 24.6, 22.6, 21.8. **HRMS**(ESI) m/z [M+H]⁺ : Calcd for C₂₈H₄₀N₃O₇+ 530.2861, Found: 530.2849.

methyl 2-((3-((S)-2-((tert-butoxycarbonyl)amino)-3-(((S)-1-methoxy-1-oxopropan-2-yl)amino)-3-oxopropyl)-1H-indol-1-yl)methyl)acrylate (3d):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 4:1), 48.1 mg, 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.20 (dd, *J* = 15.0, 8.4 Hz, 2H), 7.11 (t, *J* = 7.8 Hz, 1H), 7.00 (s, 1H), 6.50 (d, *J* = 6.6 Hz, 1H), 6.22 (s, 1H), 5.21 (s, 1H), 5.15 (s, 1H), 4.93 (s, 2H), 4.48 (q, *J* = 6.9 Hz, 2H), 3.80 (s, 3H), 3.66 (s, 3H), 3.35 – 3.11 (m, 2H), 1.42 (s, 9H), 1.27 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 171.2, 166.0, 155.4, 136.3, 136.2, 128.2, 127.5, 126.3, 122.1, 119.6, 119.2, 110.0, 109.6, 80.0, 55.1, 52.4, 52.1, 48.1, 46.6, 28.3, 18.4. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₅H₃₄N₃O₇⁺ 488.2391, Found: 488.2381.

methyl N^a-(tert-butoxycarbonyl)-1-(2-(methoxycarbonyl)allyl)-L-tryptophyl-Lmethioninate (3e):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 4:1), 53.6 mg, 98% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 7.8 Hz, 1H), 7.20 (dd, *J* = 15.3, 8.1 Hz, 2H), 7.11 (t, *J* = 7.8 Hz, 1H), 7.00 (s, 1H), 6.61 (d, *J* = 7.8 Hz, 1H), 6.22 (s, 1H), 5.20 (s, 1H), 5.15 (s, 1H), 4.94 (s, 2H), 4.59 (q, *J* = 6.9 Hz, 1H), 4.44 (d, *J* = 6.0 Hz, 1H), 3.80 (s, 3H), 3.66 (s, 3H), 3.33 - 3.13 (m, 2H), 2.33 (s, 2H), 2.05 (d, *J* = 7.2 Hz, 1H), 2.00 (s, 3H), 1.93 - 1.80 (m, 1H), 1.42 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 171.6, 166.0, 155.4, 136.3, 136.2, 128.1, 127.5, 126.3, 122.1, 119.6, 119.1, 109.9, 109.6, 80.1, 55.1, 52.4, 52.1, 51.5, 46.7, 31.5, 29.6, 28.3, 28.0, 15.3. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₇H₃₈N₃O₇S⁺ 548.2425, Found: 548.2416. methyl 2-(((S)-2-((S)-3-(4-(tert-butoxy)phenyl))-2-((tert-butoxycarbonyl)amino)propanamido)-3-methoxy-3-oxopropyl)-1*H*-indol-1-yl)methyl)acrylate (3f):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 60.3 mg, 95% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 7.7 Hz, 1H), 7.19 (t, *J* = 7.2 Hz, 2H), 7.09 (q, *J* = 8.1 Hz, 3H), 6.88 (d, *J* = 7.8 Hz, 2H), 6.79 (s, 1H), 6.46 (d, *J* = 7.5 Hz, 1H), 6.21 (s, 1H), 5.11 (s, 1H), 5.07 – 5.00 (m, 1H), 4.92 (s, 2H), 4.84 (d, *J* = 6.3 Hz, 1H), 4.34 (s, 1H), 3.78 (s, 3H), 3.66 (s, 1H), 3.61 (s, 2H), 3.24 (d, *J* = 5.1 Hz, 2H), 3.10 – 2.74 (m, 2H), 1.35 (s, 9H), 1.31 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 170.8, 166.0, 155.3, 154.3, 136.3, 131.4, 130.1, 129.8, 128.2, 127.4, 126.2, 124.3, 122.1, 119.5, 118.8, 109.7, 109.0, 80.0, 78.3, 55.3, 53.0, 52.3, 52.1, 46.8, 37.6, 28.8, 28.2, 27.6. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₅H₄₆N₃O₈⁺ 636.3279 Found: 636.3266.

methyl (6S,9S,12S)-9-isobutyl-6-((1-(2-(methoxycarbonyl)allyl)-1*H*-indol-3-yl)methyl)-2,2,12-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3g):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 60.3 mg, 95% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 7.9 Hz, 1H), 7.26 – 7.15 (m, 2H), 7.15 – 7.08 (m, 1H), 6.99 (s, 1H), 6.88 (d, *J* = 7.4 Hz, 1H), 6.54 (d, *J* = 8.1 Hz, 1H), 6.21 (s, 1H), 5.17 (d, *J* = 7.7 Hz, 1H), 5.13 (s, 1H), 4.93 (s, 2H), 4.54 – 4.36 (m, 3H), 3.80 (s, 3H), 3.73 (s, 2H), 3.70 (s, 1H), 3.24 (d, *J* = 6.2 Hz, 2H), 1.65 – 1.47 (m, 2H), 1.41 – 1.30 (m, 12H), 0.86 (dd, *J* = 6.2, 3.7 Hz, 5H), 0.78 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 171.7, 171.2, 165.9, 155.6, 136.1, 128.1, 127.3, 126.2, 122.1, 119.5, 119.1, 109.8, 109.6,80.2, 52.3, 52.1, 51.6, 48.0, 46.6, 41.0, 28.2, 24.5, 22.7, 22.0, 17.9. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₃₁H₄₄N₄O₈Na⁺ 623.3051, Found: 623.3057.

tert-butyl (10S,13S)-10-((tert-butoxycarbonyl)amino)-13-((1-(2-(methoxycarbonyl)allyl)-1*H*-indol-3-yl)methyl)-2,2-dimethyl-4,11,14-trioxo-3-oxa-5,12,15-triazaheptadecan-17oate (3h):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 73.4 mg, 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 7.5 Hz, 1H), 7.26 – 7.11 (m, 3H), 7.08 (s, 1H), 6.88 (s, 1H), 6.80 (d, *J* = 7.2 Hz, 1H), 6.22 (s, 1H), 5.37 (s, 1H), 5.18 (s, 1H), 4.94 (s, 2H), 4.81 (d, *J* = 5.4 Hz, 2H), 3.99 (s, 1H), 3.87 (dd, *J* = 18.3, 5.1 Hz, 1H), 3.79 (s, 3H), 3.70 (d, *J* = 16.2 Hz, 1H), 3.36 (dd, *J* = 14.4, 4.8 Hz, 1H), 3.22 (dd, *J* = 14.4, 6.0 Hz, 1H), 3.06 (d, *J* = 5.1 Hz, 2H), 1.76 (q, *J* = 8.4 Hz, 1H), 1.43 (s, 22H), 1.32 (s, 8H), 1.26 (t, *J* = 6.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 172.0, 171.3, 168.4, 166.0, 156.4, 156.2, 136.22, 136.16, 128.2, 127.9, 126.4, 122.0, 119.6, 118.9, 109.7, 109.5, 81.8, 80.2, 79.1, 55.2, 53.6, 52.1, 46.7, 41.9, 39.4, 29.7, 28.5, 28.3, 28.2, 28.0, 22.2. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₃₈H₅₈N₅O₁₀⁺ 744.4178, Found: 744.4163.

methyl (6S,9S,12S)-12-benzyl-6-isobutyl-9-((1-(2-(methoxycarbonyl)allyl)-1*H*-indol-3-yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3i):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 66.2 mg, 98% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 6.9 Hz, 2H), 7.18 – 7.08 (m, 4H), 7.00 (s, 1H), 6.89 – 6.82 (m, 2H), 6.79 (d, *J* = 7.2 Hz, 1H), 6.22 (d, *J* = 7.4 Hz, 2H), 5.17 (s, 1H), 4.89 (s, 3H), 4.67 (q, *J* = 7.2 Hz 2H), 4.09 (s, 1H), 3.77 (s, 3H), 3.61 (s, 3H), 3.31 (dd, *J* = 14.7, 5.1 Hz, 1H), 3.11 (dd, *J* = 14.4, 7.5 Hz, 1H), 3.01 - 2.85 (m, 2H), 1.71 - 1.51 (m, 2H), 1.40 (s, 10H), 0.89 (t, *J* = 5.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 170.7, 170.0, 165.5, 155.1, 135.8, 135.6, 135.1, 128.6, 128.0, 127.6, 127.2, 126.6, 126.0, 121.7, 119.2, 118.7, 109.3, 109.2, 79.6, 53.2, 52.9, 51.7, 51.6, 46.2, 40.8, 37.3, 27.8, 27.6, 24.2, 22.5, 21.3. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₃₇H₄₈N₄O₈Na⁺ 699.3364, Found: 699.3389. methyl (6S,9S,12S,15S)-12-benzyl-9-isobutyl-6-((1-(2-(methoxycarbonyl)allyl)-1H-indol-

3-yl)methyl)-2,2,15-trimethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14-tetraazahexadecan-16-oate (3j):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 43.3 mg, 58% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, *J* = 7.8 Hz, 1H), 7.26 - 7.10 (m, 6H), 7.09 - 6.83 (m, 5H), 6.60 (s, 1H), 6.22 (s, 1H), 5.18 (s, 1H), 4.90 (d, *J* = 11.2 Hz, 3H), 4.73 (d, *J* = 7.0 Hz, 1H), 4.64 (d, *J* = 6.3 Hz, 1H), 4.56 - 4.38 (m, 1H), 4.03 (s, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 3.26 - 3.09 (m, 2H), 3.08 - 2.98 (m, 1H), 2.82 (dd, *J* = 15.1, 7.5 Hz, 1H), 1.67 - 1.52 (m, 1H), 1.48 - 1.23 (m, 14H), 0.84 (dd, *J* = 11.1, 6.3 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.8, 172.2, 171.7, 170.5, 166.0, 136.8, 136.4, 136.2, 129.2, 128.4, 128.0, 127.4, 126.7, 126.3, 122.3, 119.7, 119.1, 109.7, 80.5, 55.4, 53.9, 52.4, 52.1, 48.2, 46.7, 40.9, 37.7, 29.7, 28.3, 27.7, 24.6, 22.8, 22.0, 17.9. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₀H₅₄N₅O₉+ 748.3916, Found: 744.748.3017. methyl 2-(((S)-2-((S)-1-((S)-3-(4-(tert-butoxy)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)pyrrolidine-2-carboxamido)-3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-3-oxopropyl)-1*H*-indol-1-yl)methyl)acrylate (3k):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 87 mg, 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.73 – 7.63 (m, 1H), 7.26 – 7.15 (m, 4H), 7.15 (s, 3H), 7.00 (d, *J* = 3.6 Hz, 2H), 6.99 – 6.88 (m, 5H), 6.86 (d, *J* = 2.4 Hz, 1H), 6.47 (d, *J* = 7.6 Hz, 1H), 6.18 (d, *J* = 6.5 Hz, 1H), 5.21 (d, *J* = 8.7 Hz, 1H), 5.10 (s, 1H), 4.93 – 4.67 (m, 4H), 4.52 – 4.39 (m, 2H), 3.78 (s, 1H), 3.76 (s, 2H), 3.63 (s, 3H), 3.49 (q, *J* = 7.7 Hz, 1H), 3.37 (dd, *J* = 14.7, 5.2 Hz, 1H), 3.17 (dd, *J* = 14.5, 7.3 Hz, 1H), 3.01 (d, *J* = 6.1 Hz, 2H), 2.97 – 2.89 (m, 1H), 2.49 (d, *J* = 7.0 Hz, 1H), 2.18 – 2.04 (m, 1H), 1.99 – 1.76 (m, 3H), 1.46 (s, 2H), 1.36 (s, 7H), 1.31 (s, 2H), 1.28 (s, 7H). ¹³C NMR (75 MHz, CDCl₃) δ 172.0, 171.3, 170.7, 165.9, 155.0, 154.2, 136.2, 136.0, 135.9, 131.0, 129.9, 129.0, 128.4, 128.1, 127.7, 126.8, 126.3, 124.1, 122.0, 119.5, 119.0, 109.7, 79.6, 78.3, 60.4, 53.8, 53.3, 53.2, 52.1, 52.0, 47.2, 46.5, 38.2, 37.6, 28.7, 28.4, 28.2, 27.9, 27.3, 25.0. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₄₉H₆₁N₅O₁₀Na⁺ 902.4311, Found: 902.4316.

methyl N^a-(N-((tert-butoxycarbonyl)-L-valyl)-O-(tert-butyl)-L-seryl)-1-(2-(methoxycarbonyl)allyl)-L-tryptophyl-L-leucinate (3l):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1). 87 mg, 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 4.2 Hz, 1H), 7.16 m, 4H), 7.04 – 6.92 (m, 2H), 6.63 (d, *J* = 7.8 Hz, 1H), 6.21 (d, *J* = 3.5 Hz, 1H), 5.25 – 5.06 (m, 2H), 4.89 (s, 3H), 4.64 – 4.46 (m, 1H), 4.46 – 4.38 (m, 1H), 3.95 (q, 5.7 Hz, 1H), 3.79 (d, *J* = 7.7 Hz, 4H), 3.65 (d, *J* = 7.5 Hz, 3H), 3.44 – 3.18 (m, 3H), 1.94 (q, *J* = 6.5 Hz, 1H), 1.55 – 1.48 (m, 2H), 1.42 (d, *J* = 11.7 Hz, 9H), 1.19 (s, 2H), 1.09 (s, 7H), 0.94 – 0.69 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 172.8, 171.8, 170.8, 169.8, 166.0, 156.0, 136.4, 136.1, 128.3, 127.5, 126.2, 122.1, 119.6, 119.2, 110.0, 109.7, 80.0, 74.4, 61.1, 59.7, 53.9, 53.5, 52.2, 50.2, 46.6, 41.3, 31.0, 28.3, 27.2, 24.6, 22.8, 21.8, 19.3, 17.4. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₄₀H₆₁N₅O₁₀Na⁺ 794.4311, Found: 794.4324.

methyl (6S,9S,12S,15S,18S)-9-benzyl-15-isobutyl-12-isopropyl-6-((1-(2-(methoxycarbonyl)allyl)-1H-indol-3-yl)methyl)-2,2,18-trimethyl-4,7,10,13,16-pentaoxo-3oxa-5,8,11,14,17-pentaazanonadecan-19-oate (3m):

3m

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:2). 65 mg, 77% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.56 – 7.96 (m, 2H), 7.51 (s, 1H), 7.11 (s, 2H), 7.03 (s, 3H), 6.97 (s, 3H), 6.86 (s, 1H), 6.10 (s, 1H), 6.00 – 5.66 (m, 1H), 5.27 – 5.06 (m, 1H), 4.97 (s, 1H), 4.75 (s, 4H), 4.59 (s, 3H), 3.73 (s, 3H), 3.69 (s, 3H), 3.07 (s, 2H), 2.97 – 2.83 (m, 2H), 2.04 (s, 1H), 1.88 (s, 1H), 1.72 (s, 1H), 1.57 (s, 1H), 1.27 (s, 13H), 0.91 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 172.4, 171.8, 171.4, 166.0, 155.6, 136.5, 136.2, 136.1, 129.6, 128.1, 127.0, 126.4, 125.9, 121.7, 119.3, 110.8, 109.3, 79.1, 58.2, 54.3, 52.3, 52.0, 47.8, 46.3, 41.4, 38.7, 31.8, 29.7, 28.4, 24.9, 23.2, 22.3, 19.0, 18.7, 17.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₅H₆₃N₆O₁₀⁺ 847.4600, Found: 847.4602.

methyl (3R)-3-(tert-butoxy)-2-((S)-2-((S)-1-((6S,9S,12S,15S)-15-(4-(tert-butoxy)benzyl)-6-isobutyl-9,12-diisopropyl-2,2-dimethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14-

tetraazahexadecan-16-oyl)pyrrolidine-2-carboxamido)-3-(1-(2-(methoxycarbonyl)allyl)-1*H*-indol-3-yl)propanamido)butanoate (3n):

White solid was obtained by silica gel column chromatography (eluent: DCM / MeOH = 20:1), 115.2 mg, 96% yield, ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 7.0 Hz, 1H), 7.47 (s, 1H), 7.21 – 6.99 (m, 7H), 6.82 (d, *J* = 8.0 Hz, 3H), 6.43 (d, *J* = 8.9 Hz, 1H), 6.19 (s, 1H), 5.34 (s, 1H), 5.11 (s, 1H), 4.92 (s, 3H), 4.80 (q, *J* = 6.9 Hz, 1H), 4.68 – 4.50 (m, 2H), 4.46 (d, 1H), 4.37 – 4.16 (m, 2H), 4.18 – 4.06 (m, 1H), 3.80 (s, 3H), 3.64 (d, *J* = 15.3 Hz, 3H), 3.52 (d, *J* = 9.6 Hz, 1H), 3.25 (d, *J* = 7.5 Hz, 1H), 3.04 (s, 1H), 2.85 (d, *J* = 6.0 Hz, 2H), 2.22 – 2.07 (m, 2H), 2.04 (s, 2H), 1.96 – 1.75 (m, 3H), 1.68 – 1.50 (m, 3H), 1.44 (s, 9H), 1.30 (s, 1H), 1.23 (s, 9H), 1.04 (d, *J* = 8.0 Hz, 12H), 0.95 – 0.81 (m, 18H).¹³C NMR (75 MHz, CDCl₃) δ 171.4, 171.1, 170.7, 170.5, 166.2, 154.2, 136.3, 136.2, 131.0, 130.1, 128.2, 127.8, 124.2, 121.9, 119.4, 119.3, 110.1, 109.4, 78.2, 74.0, 67.3, 60.1, 57.9, 57.8, 54.0, 52.1, 52.0, 47.4, 46.5, 31.2, 28.8, 28.3, 28.2, 24.9, 24.7, 23.0, 22.1, 20.6, 19.4, 19.2, 18.2, 18.0.3 HRMS(ESI) m/z [M+H]⁺ : Calcd for C₆₄H₉₇N₈O₁₄⁺ 1201.7119, Found: 1201.7137.

methyl (6S,9S,12S)-12-benzyl-9-((1-(2-(ethoxycarbonyl)allyl)-1*H*-indol-3-yl)methyl)-6isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4a):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 50.6 mg, 73% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.7 Hz, 1H), 7.22 (t, *J* = 8.1 Hz, 6H), 6.99 (s, 1H), 6.90 - 6.83 (m, 2H) 6.79 (d, *J* = 7.2Hz, 1H), 6.23 (s, 1H), 6.20 (s, 1H), 5.15 (s, 1H), 4.89 (s, 3H), 4.67 (q, *J* = 6.0 Hz, 2H), 4.23 (q, *J* = 6.9 Hz, 2H), 4.10 (s, 1H), 3.61 (s, 3H), 3.31 (dd, *J* = 14.4, 5.1 Hz, 1H), 3.11 (dd, *J* = 14.4, 7.8 Hz, 1H), 3.02 - 2.85 (m, 2H), 1.69-1.52 (m, 2H), 1.40 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 4H), 0.89 (t, 5.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 165.6, 155.6, 136.40, 136.37, 135.6, 129.1, 128.5, 128.1, 127.7, 127.1, 126.2, 122.2, 119.7, 119.2, 109.7, 80.1, 61.1, 53.7, 53.4, 52.2, 46.7, 41.3, 37.8, 28.3, 28.1, 24.7, 23.0, 21.8, 14.2. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₃₈H₅₀N₄O₈Na⁺ 713.3521, Found: 713.3515. methyl (6S,9S,12S)-12-benzyl-9-((1-(2-(tert-butoxycarbonyl)allyl)-1*H*-indol-3-yl)methyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4b):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 51.7 mg, 72% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.7 Hz, 1H), 7.21 (t, *J* = 8.1 Hz, 2H), 7.17 – 7.08 (m, 4H), 6.97 (s, 1H), 6.90 – 6.82 (m, 2H), 6.79 (d, *J* = 7.2 Hz, 1H), 6.24 (d, *J* = 6.0 Hz, 1H), 6.08 (s, 1H), 4.97 (s, 1H), 4.85 (s, 3H), 4.68 (q, *J* = 6.9 Hz, 2H), 4.09 (s, 1H), 3.61 (s, 3H), 3.31 (dd, *J* = 14.4, 8.1 Hz, 1H), 3.11 (dd, *J* = 14.4, 7.8 Hz, 1H), 3.02 - 2.85 (m, 2H), 1.67 – 1.54 (m, 2H), 1.49 (s, 9H), 1.41 (s, 10H), 0.89 (t, J = 5.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 164.8, 155.6, 137.8, 136.4, 135.6, 129.1, 128.5, 128.0, 127.6, 127.1, 124.9, 122.1, 119.6, 119.2, 109.8, 109.7, 81.5, 80.1, 53.8, 53.4, 52.2, 46.6, 41.3, 37.8, 28.3, 28.1, 24.7, 23.0, 21.8. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₄₀H₅₄N₄O₈Na⁺ 741.3834, Found: 741.3833. methyl (6S,9S,12S)-12-benzyl-9-((1-(2-((benzyloxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4c):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 60.6 mg, 81% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 7.8 Hz, 1H), 7.35 (s, 5H), 7.20 (t, *J* = 7.5 Hz, 2H), 7.17 – 7.08 (m, 4H), 6.97 (s, 1H), 6.90 – 6.82 (m, 2H), 6.79 (d, *J* = 7.2 Hz, 1H), 6.25 (s, 1H), 6.21 (s, 1H), 5.20 (s, 2H), 5.17 (s, 1H), 4.90 (s, 2H), 4.85 (s, 1H), 4.67 (q, *J* = 6.3 Hz, 2H), 4.09 (s, 1H), 3.59 (s, 3H), 3.30 (dd, *J* = 14.7, 5.1 Hz, 1H), 3.09 (dd, *J* = 14.4, 7.8 Hz, 1H), 3.03 – 2.85 (m, 2H), 1.71 – 1.51 (m, 2H), 1.39 (s, 10H), 0.88 (t, *J* = 5.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.1, 170.4, 165.4, 155.6, 136.3, 136.2, 135.6, 135.5, 129.1, 128.6, 128.5, 128.4, 128.3, 128.1, 127.7, 127.0, 126.7, 122.2, 119.7, 119.2, 109.8, 109.7, 80.1, 66.8, 53.7, 53.4, 52.2, 46.7, 41.3, 37.8, 28.2, 28.1, 24.7, 23.0, 21.8. HRMS(ESI) m/z [M+H]+ : Calcd for C43H53N4O8+ 753.3858, Found: 753.3845.

methyl (6S,9S,12S)-12-benzyl-9-((1-(2-((hexyloxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-6isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4d):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 62.6 mg, 84% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 2H), 7.17 – 7.08 (m, 4H), 6.99 (s, 1H), 6.89 – 6.81 (m, 2H), 6.80 (d, *J* = 7.5 Hz, 1H), 6.25 (d, *J* = 6.3 Hz, 1H), 6.20 (s, 1H), 5.13 (s, 1H), 4.89 (s, 3H), 4.68 (q, *J* = 6.0 Hz, 2H), 4.16 (t, *J* = 6.9 Hz, 2H), 4.10 (s, 1H), 3.61 (s, 3H), 3.31 (dd, *J* = 14.7, 5.1 Hz, 1H), 3.11 (dd, *J* = 14.7, 7.8 Hz, 1H), 3.05 – 2.86 (m, 2H), 1.70 – 1.51 (m, 4H), 1.40 (s, 10H), 1.31 (s, 6H), 0.89 (t, *J* = 6.3 Hz, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 165.7, 155.6, 136.41, 136.37, 135.6, 129.1, 128.5, 128.1, 127.7, 127.1, 126.1, 122.2, 119.7, 119.2, 109.75, 109.72, 80.1, 65.3, 53.7, 53.4, 53.3, 52.2, 46.7, 41.3, 37.8, 31.4, 28.5, 28.3, 25.6, 24.7, 23.0, 22.5, 21.8, 14.0. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₄₂H₅₈N4O₈Na⁺ 769.4147, Found: 769.4147.

methyl (6S,9S,12S)-12-benzyl-6-isobutyl-2,2-dimethyl-9-((1-(16-methylene-15-oxo-2,5,8,11,14-pentaoxaheptadecan-17-yl)-1*H*-indol-3-yl)methyl)-4,7,10-trioxo-3-oxa-5,8,11triazatridecan-13-oate (4e):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 55.6 mg, 65% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.8 Hz, 1H), 7.27 – 7.08 (m, 6H), 7.00 (s, 1H), 6.92 – 6.76 (m, 3H), 6.24 (s, 2H), 5.18 (s, 1H), 4.90 (s, 3H), 4.78 – 4.63 (m, 2H), 4.32 (t, *J* = 4.8 Hz, 2H), 4.09 (s, 1H), 3.72 (t, *J* = 4.8 Hz, 2H), 3.68 – 3.57 (s, 13H), 3.56 – 3.49 (m, 2H), 3.36 (s, 3H), 3.30 (dd, *J* = 14.7, 5.4 Hz, 1H), 3.11 (dd, *J* = 14.7, 7.8 Hz, 1H), 3.01 – 2.85 (m, 2H), 1.70 – 1.51 (m, 2H), 1.40 (s, 10H), 0.89 (t, *J* = 5.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.1, 170.5, 165.5, 155.6, 136.4, 136. 1, 135.6, 129.2, 129.1, 128.5, 128.1, 127.7, 127.0, 126.7, 122.2, 119.7, 119.2, 109.8, 109.7, 80.0, 71.9, 70.6, 70.5, 68.9, 64.2, 59.0, 53.7, 53.4, 52.2, 46.7, 41.3, 37.8, 28.3, 24.7, 23.0, 21.8. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₄₅H₆₄N₄O₁₂Na⁺ 875.4413, Found: 875.4432.

methyl N^a-((tert-butoxycarbonyl)-L-leucyl)-1-(2-oxo-2-(pent-4-yn-1-yloxy)ethyl)-Ltryptophyl-L-phenylalaninate (4f):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 64.8 mg, 94% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 6.6 Hz, 2H), 7.18 – 7.09 (m, 4H), 6.99 (s, 1H), 6.90 – 6.75 (m, 3H), 6.25 (s, 1H), 6.21 (s, 1H), 5.16 (s, 1H), 4.89 (s, 3H), 4.67 (q, *J* = 6.0 Hz, 2H), 4.28 (t, *J* = 6.3 Hz, 2H), 4.13 (s, 1H), 3.61 (s, 3H), 3.30 (dd, *J* = 14.4, 5.1 Hz, 1H), 3.11 (dd, *J* = 14.7, 7.8 Hz, 1H), 3.02 – 2.84 (m, 2H), 2.28 (td, *J* = 6.9, 2.4 Hz, 2H), 1.99 (t, *J* = 2.7 Hz, 1H), 1.96 –1.81 (m, 2H), 1.70 – 1.51 (m, 2H), 1.40 (s, 10H), 0.89 (t, *J* = 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 165.5, 155.6, 136.4, 136.2, 135.6, 129.1, 128.5, 128.1, 127.7, 127.1, 126.5, 122.2, 119.7, 119.2, 109.8, 109.7, 82.8, 80.1, 69.3, 63.6, 53.7, 53.4, 52.2, 46.7, 41.3, 37.8, 28.3, 28.1, 27.4, 24.7, 23.0, 21.8, 15.3. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₄₁H₅₂N₄O₈Na⁺ 751.3677, Found: 751.3678.

4-((2-((3-((S)-2-((tert-butoxycarbonyl)amino)-3-(((S)-1-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-oxopropyl)-1*H*-indol-1-yl)methyl)acryloyl)oxy)butyl 6-(diethylamino)-2-oxo-2*H*-chromene-3-carboxylate (4g):

Yellow solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 67.0 mg, 68% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.42 (s, 1H), 7.69 (d, *J* = 7.5Hz, 1H), 7.36 (dd, *J* = 9.0, 4.5 Hz, 1H), 7.27 – 7.08 (m, 6H), 7.00 (s, 1H), 6.89 – 6.83 (m, 2H), 6.60 (d, *J* = 1.8 Hz, 1H), 6.45 (s, 1H), 6.29 (d, *J* = 7.2 Hz, 1H), 6.22 (s, 1H), 5.16 (s, 1H), 4.90 (s, 3H), 4.76 – 4.63 (m, 2H), 4.34 (d, *J* = 5.4 Hz, 2H), 4.24 (s, 2H), 4.10 (s, 1H), 3.61 (s, 3H), 3.44 (q, *J* = 6.9 Hz, 4H), 3.31 (dd, *J* = 14.4, 5.1 Hz, 1H), 3.12 (dd, *J* = 14.7, 7.5 Hz, 1H), 3.03 – 2.87 (m, 2H), 1.85 (s, 3H), 1.68 – 1.51 (m, 2H), 1.39 (s, 9H), 1.23 (t, *J* = 7.5 Hz, 9H), 0.89 (t, *J* = 4.5 Hz, 6H).¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 165.6, 164.4, 158.5, 158.3, 155.6, 153.0, 149.4, 136.4, 136.3, 135.6, 131.2, 129.1, 128.5, 128.0, 127.7, 127.0, 126.4, 122.1, 119.6, 119.2, 109.8, 109.7, 109.6, 108.5, 107.6, 96.7, 80.0, 64.7, 64.5, 53.7, 53.4, 52.2, 46.7, 45.1, 41.3, 37.8, 29.7, 28.3, 25.4, 25.3, 24.7, 23.0, 21.8, 12.4. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₅₄H₆₇N₅O₁₂Na⁺ 1000.4684, Found: 1000.4692.

methyl (6S,9S,12S)-12-benzyl-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-9-((1-(2-((((3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-b:4',5'd]pyran-5-yl)methoxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-3-oxa-5,8,11-triazatridecan-13-oate (4h):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 75.6 mg, 83% yield. The reaction was carried out for 24 h. ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 2H), 7.18 – 7.08 (m, 4H), 7.00 (s, 1H), 6.84 (dd, *J* = 7.5, 2.4 Hz, 2H), 6.77 (d, *J* = 7.5 Hz, 1H), 6.24 (s, 1H), 6.16 (d, *J* = 6.3 Hz, 1H), 5.54 (d, *J* = 5.1 Hz, 1H), 5.15 (s, 1H), 4.90 (s, 2H), 4.82 (d, *J* = 6.6 Hz, 1H), 4.71 – 4.55 (m, 3H), 4.39 – 4.28 (m, 3H), 4.20 (dd, *J* = 7.8, 1.8 Hz, 1H), 4.15 – 3.98 (m, 2H), 3.61 (s, 3H), 3.32 (dd, *J* = 14.4, 5.1 Hz, 1H), 3.09 (dd, *J* = 14.7, 8.1 Hz, 1H), 3.01 – 2.84 (m, 2H), 1.75 (d, *J* = 7.5 Hz, 1H), 1.67 – 1.52 (m, 2H), 1.47 (d, *J* = 7.8 Hz, 6H), 1.40 (s, 9H), 1.33 (s, 7H), 0.89 (t, *J* = 5.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 171.1, 170.4, 165.4, 155.6, 136.3, 136.0, 135.6, 129.1, 128.5, 128.0, 127.7, 127.1, 126.8, 119.7, 119.2, 109.8, 109.7, 108.8, 96.3, 80.1, 66.0, 64.1, 53.7, 53.4, 52.2, 46.6, 41.3, 37.7, 28.2, 26.0, 25.9, 25.0, 24.7, 24.4, 23.0, 21.8. HRMS(ESI) m/z [M+Na]⁺: Calcd for C₄₈H₆₄N₄O₁₃Na⁺ 927.4362, Found: 927.4359.

methyl (6S,9S,12S)-9-((1-(2-((benzo[d][1,3]dioxol-5-ylmethoxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-12-benzyl-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4i):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 56.9 mg, 72% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 6.3 Hz, 2H), 7.17 – 7.07 (m, 4H), 6.97 (s, 1H), 6.91 – 6.70 (m, 6H), 6.23 (s, 2H), 5.96 (s, 2H), 5.17 (s, 1H), 5.09 (s, 2H), 4.88 (s, 3H), 4.67 (q, *J* = 6.3 Hz, 2H), 4.11 (t, *J* = 7.2 Hz, 1H), 3.60 (s, 3H), 3.30 (dd, *J* = 14.7, 5.1 Hz, 1H), 3.09 (dd, *J* = 14.4, 7.8 Hz, 1H), 3.01 – 2.85 (m, 2H), 1.70 – 1.52 (m, 2H), 1.40 (s, 10H), 0.88 (t, *J* = 5.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 155.6, 147.84, 147.79, 136.4, 136.2, 135.6, 129.2, 129.1, 128.5, 128.1, 127.6, 127.1, 126.8, 122.4, 122.2, 119.7, 119.2, 109.8, 109.1, 108.3, 101.2, 80.1, 66.9, 53.7, 53.4, 52.2, 46.7, 41.3, 37.8, 28.3, 28.1, 24.74, 23.0, 21.8. HRMS(ESI) m/z [M+Na]⁺ : Calcd for C₄₄H₅₂N₄O₁₀Na⁺ 829.3589, Found: 819.3588.

methyl (6S,9S,12S)-12-benzyl-6-isobutyl-9-((1-(2-((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-

oxa-5,8,11-triazatridecan-13-oate (4j):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 65.0 mg, 81% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 7.5 Hz, 1H), 7.20 (d, *J* = 6.6 Hz, 2H), 7.19 – 7.07 (m, 4H), 6.98 (s, 1H), 6.95 – 6.73 (m, 3H), 6.27 (s, 1H), 6.17 (s, 1H), 5.06 (s, 1H), 4.88 (s, 3H), 4.84 – 4.73 (m, 1H), 4.68 (q, *J* = 6.0 Hz, 2H), 4.19 – 3.98 (m, 1H), 3.61 (s, 3H), 3.30 (dd, *J* = 14.4, 4.8 Hz, 1H), 3.11 (dd, *J* = 14.4, 7.5 Hz, 1H), 3.02 – 2.85 (m, 2H), 2.03 – 1.94 (m, 1H), 1.83 – 1.73 (m, 1H), 1.73 – 1.53 (m, 4H), 1.41 (s, 12H), 1.13 – 0.95 (m, 2H), 0.95 – 0.83 (m, 13H), 0.75 (d, *J* = 6.9 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 165.1, 155.6, 136.8, 136.4, 135.6, 129.1, 128.5, 128.0, 127.6, 127.1, 125.6, 122.1, 119.7, 119.2, 109.8, 109.7, 80.0, 75.1, 53.8, 53.4, 52.2, 47.0, 46.7, 41.3, 40.8, 37.8, 34.2, 31.4, 28.3, 26.4, 24.7, 23.5, 23.0, 22.0, 21.8, 20.8, 16.4. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₆H₆₅N₄O₈⁺: 801.4797, Found: 801.4786.

methyl (6S,9S,12S)-12-benzyl-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-9-((1-(2-((((1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-3-oxa-5,8,11-triazatridecan-13-oate (4k):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 48.2 mg, 61% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.22 (d, 2H), 7.19 – 7.10 (m, 4H), 6.99 (s, 1H), 6.91 – 6.83 (m, 2H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.18 (s, 2H), 5.07 (s, 1H), 4.97 (d, *J* = 8.7 Hz, 1H), 4.90 (d, *J* = 6.9 Hz, 2H), 4.85 – 4.76 (m, 1H), 4.75 – 4.61 (m, 2H), 4.17 – 3.98 (m, 1H), 3.61 (s, 3H), 3.31 (dd, *J* = 14.4, 4.8 Hz, 1H), 3.10 (dd, *J* = 14.4, 7.8 Hz, 1H), 3.05 – 2.85 (m, 2H), 2.47 – 2.33 (m, 1H), 1.98 – 1.85 (m, 1H), 1.81 – 1.75 (m, 1H), 1.72 (d, *J* = 4.2 Hz, 1H), 1.66 – 1.52 (m, 2H), 1.40 (s, 10H), 1.31 – 1.16 (m, 2H), 1.01 (dd, *J* = 13.8, 3.3 Hz, 1H), 0.96 – 0.81 (m, 15H).¹³C NMR (75 MHz, CDCl₃) δ 172.3, 171.1, 170.4, 165.8, 155.5, 136.7, 136.4, 135.5, 129.0, 128.5, 128.0, 127.6, 127.0, 125.6, 122.2, 119.7, 119.2, 109.8, 109.7, 80.8, 80.1, 53.7, 53.3, 52.2, 49.0, 47.8, 46.6, 44.8, 41.3, 37.7, 36.7, 28.2, 28.0, 27.2, 24.7, 22.9, 21.7, 19.6, 18.8, 13.5. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₆H₆₃N₄O₈⁺ 799.4640, Found: 799.4624. methyl (6S,9S,12S)-12-benzyl-9-((1-(2-((((3S,8R,9S,10S,13S,14S)-10,13-dimethyl-17-oxohexadecahydro-1*H*-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4I):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 63.4 mg, 68% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 7.5 Hz, 1H), 7.26 – 7.09 (m, 6H), 6.99 (s, 1H), 6.84 (d, *J* = 6.3 Hz, 2H), 6.75 (d, *J* = 6.9 Hz, 1H), 6.16 (s, 2H), 5.12 (s, 1H), 4.88 (s, 2H), 4.85 – 4.71 (m, 2H), 4.66 (d, *J* = 6.9 Hz, 2H), 4.09 (s, 1H), 3.62 (s, 3H), 3.31 (dd, *J* = 14.1, 4.5 Hz, 1H), 3.09 (dd, *J* = 14.4, 7.8 Hz, 1H), 3.02 – 2.84 (m, 2H), 2.45 (dd, *J* = 19.5, 9.0 Hz, 1H), 2.15 – 2.01 (m, 1H), 1.85 – 1.75 (m, 3H), 1.71 – 1.56 (m, 5H), 1.56 – 1.46 (m, 3H), 1.40 (s, 10H), 1.36 – 1.18 (m, 9H), 1.12 – 0.96 (m, 2H), 0.94 – 0.81 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.1, 170.4, 165.1, 136.8, 136.4, 135.6, 129.1, 128.5, 128.0, 127.6, 127.1, 126.0, 122.2, 119.7, 119.2, 109.8, 80.1. 74.4, 54.3, 53.7, 53.4, 52.2, 51.3, 47.8, 46.7, 44.6, 37.8, 36.6, 35.9, 35.6, 35.0, 33.8, 31.5, 30.8, 28.3, 27.3, 24.7, 23.0, 21.8, 20.5, 13.8, 12.2. HRMS(ESI) m/z [M+H]⁺: Calcd for C₅₅H₇₅N₄O₉⁺ 935.5529, Found: 935.5534.

methyl (6S,9S,12S)-12-benzyl-9-((1-(2-((((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)allyl)-1*H*-indol-3-yl)methyl)-6-isobutyl-2,2dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4m):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 90.0 mg, 87% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 7.5 Hz, 1H), 7.32 – 7.09 (m, 6H), 6.98 (s, 1H), 6.93 – 6.82 (m, 2H), 6.79 (d, *J* = 6.9 Hz, 1H), 6.21 (s, 2H), 5.38 (s, 1H), 5.12 (s, 1H), 4.88 (s, 3H), 4.67 (d, *J* = 6.0 Hz, 3H), 4.11 (s, 1H), 3.61 (s, 3H), 3.31 (dd, *J* = 14.7, 4.5 Hz, 1H), 3.10 (dd, *J* = 14.4, 7.5 Hz, 1H), 3.02 – 2.83 (m, 2H), 2.33 (d, *J* = 6.6 Hz, 2H), 1.99 (t, *J* = 11.4 Hz, 2H), 1.87 (d, *J* = 10.8 Hz, 3H), 1.71 – 1.46 (m, 9H), 1.40 (s, 13H), 1.26 (s, 2H), 1.13 (q, *J* = 6.9 Hz, 6H), 1.02 (s, 6H), 0.88 (t, *J* = 7.7 Hz, 15H), 0.68 (s, 3H). ¹³C NMR (75 MHz,CDCl₃) δ 172.4, 171.2, 170.5, 139.4, 136.8, 136.4, 135.6, 129.1, 128.5, 128.0, 127.7, 127.1, 126.0, 122.9, 122.1, 119.7, 119.2, 109.8, 80.1, 74.9, 56.7, 56.1, 53.7, 53.4, 52.2, 50.0, 46.7, 42.3, 41.3, 39.7, 39.5, 38.0, 37.8, 36.9, 36.6, 36.2, 35.8, 31.9, 31.8, 28.3, 28.0, 27.7, 24.7, 24.3, 23.8, 23.0, 22.9, 22.6, 21.8, 21.0, 19.3, 18.7, 11.9. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₆₃H₉₁N₄O₈⁺ 1031.6831, Found: 1031.6844.

methyl 2-((R)-(3-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-1H-indol-1yl)(phenyl)methyl)acrylate (4ao):

4ao

White Solid was obtained by silica gel column chromatography (eluent: PE / EA = 4:1), 48.2 mg, 98 % yield. d. r.= 7.1:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 7.5 Hz, 1H), 7.37 (d, *J* = 6.0 Hz, 3H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.28 – 7.18 (m, 3H), 7.14 (q, *J* = 7.5Hz, 1H), 6.68 (s, 1H), 6.59 (s, 1H), 6.44 (s, 1H), 5.11 (d, *J* = 7.5 Hz, 1H), 5.03 (d, *J* = 7.8Hz, 1H), 4.58 (d, *J* = 6.9 Hz, 1H), 3.73 (s, 3H), 3.60 (s, 2.63H), 3.47(s, 0.37H) 3.31-3.09 (m, 2H), 1.41 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 172,6, 166.0, 155.0, 139.7, 137.3, 136.3, 128.9, 128.5, 128.3, 128.0, 122.1, 119.8, 119.1, 110.0, 109.4, 79.7., 59.3, 54.5, 52.4, 52.1, 28.3, 28.1. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₂₈H₃₃N₂O₆⁺ 493.2333, Found: 493.2322

methyl (6S,9S,12S)-12-benzyl-6-isobutyl-9-((1-((R)-2-(methoxycarbonyl)-1-phenylallyl)-1H-indol-3-yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4n):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 87.8 mg, 99% yield, d. r. = 5.3:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 7.5 Hz, 1H), 7.40 – 7.31 (m, 4H), 7.28 – 7.20 (m, 2H), 7.20 – 7.03 (m, 5H), 6.90 – 6.80 (m, 2H), 6.78 (s, 1H), 6.72 (d, *J* = 7.5 Hz, 1H), 6.65 (s, 1H), 6.43 (s, 1H), 6.17 (d, = 5.1 Hz, 1H), 5.16 (s, 1H), 4.71 – 4.49 (m, 3H), 4.02 (s, 1H), 3.70 (s, 0.47H), 3.68 (s, 2.51H), 3.55 (s, 3H), 3.22 (dd, *J* = 14.7, 5.7 Hz, 1H), 3.08 (dd, *J* = 14.4, 7.5 Hz, 1H), 3.03 – 2.70 (m, 2H), 1.74 – 1.46 (m, 2H), 1.39 (d, *J* = 9.9 Hz, 9H), 1.29 – 1.17 (m, 1H), 0.86 (t, *J* = 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 171.0, 170.4, 166.1, 155.5, 139.4, 137.4, 136.5, 135.6, 129.2, 129.1, 129.0, 128.5, 128.4, 128.3, 128.2, 127.0, 125.3, 122.3, 120.0, 119.3, 110.1, 109.9, 80.1, 59.6, 53.6, 53.5, 52.3, 52.2, 41.0, 37.7, 28.3, 28.2, 24.7, 23.0, 21.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C_{43H53}N₄O₈⁺753.3858, Found: 753.3847.

methyl (6S,9S,12S)-12-benzyl-9-((1-((R)-1-(4-fluorophenyl)-2-(methoxycarbonyl)allyl)-1Hindol-3-yl)methyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13oate (4o):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 63.8 mg, 81% yield, d. r.= 4.2:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, *J* = 7.5 Hz, 1H), 7.37 – 7.24 (m, 2H), 7.22 – 7.09 (m, 5H), 7.07 – 6.90 (m, 3H), 6.89 – 6.79 (m, 3H), 6.77 (d, *J* = 6.0 Hz, 1H), 6.64 (s, 1H), 6.46 (s, 1H), 6.22 (d, *J* = 5.1 Hz, 1H), 5.22 (s, 1H), 4.78 (d, *J* = 7.5 Hz, 1H), 4.73 – 4.55 (m, 2H), 4.06 (s, 1H), 3.71 (s, 0.58H), 3.69 (s, 2.42H), 3.57 (s, 3H), 3.23 (dd, *J* = 14.7, 5.2 Hz, 1H), 3.09 (dd, *J* = 14.4, 5.1 Hz, 1H), 3.03 – 2.80 (m, 2H), 1.68 – 1.47 (m, 2H), 1.39 (d, *J* = 6.3 Hz, 9H), 1.31 – 1.21 (m, 1H), 0.86 (t, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 171.1, 170.4, 166.0, 164.2, 160.9, 155.5, 139.4, 136.4, 135.6, 133.20, 133.16, 130.2, 130.1, 129.1, 128.5, 128.3, 127.1, 125.1, 122.3, 120.1, 119.3, 116.1, 115.7, 110.1, 80.1, 58.9, 53.6, 53.5, 52.3, 52.2, 41.2, 37.8, 28.2, 24.7, 23.0, 21.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C_{43H52}N₄O₈F⁺771.3764, Found: 771.3748.

methyl (6S,9S,12S)-12-benzyl-9-((1-((R)-1-(4-chlorophenyl)-2-(methoxycarbonyl)allyl)-1H-indol-3-yl)methyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4p):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 46.2 mg, 58% yield, d. r.= 6.1:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, *J* = 7.5 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.24 – 7.08 (m, 7H), 7.03 (t, *J* = 8.4 Hz, 2H), 6.90 – 6.82 (m, 2H), 6.77 (s, 2H), 6.63 (s, 1H), 6.42 (s, 1H), 6.22 (d, *J* = 5.7 Hz, 1H), 5.15 (s, 1H), 4.75 (d, *J* = 7.8 Hz, 1H), 4.70 – 4.53 (m, 2H), 4.15 – 3.91 (m, 1H), 3.71 (s, 0.42H), 3.69 (s, 2.56H), 3.56 (s, 3H), 3.29 – 3.02 (m, 2H), 3.02 – 2.74 (m, 2H), 1.71 – 1.47 (m, 2H), 1.40 (d, *J* = 6.0 Hz, 9H), 1.33 – 1.23 (m, 1H), 0.87 (t, *J* = 6.6 Hz, 6H).¹³C NMR (75 MHz, CDCl₃) δ 172.4, 171.1, 170.4, 165.9, 155.5, 139.1, 136.4, 136.0, 135.6, 134.3, 129.7, 129.6, 129.2, 129.1, 128.5, 127.1, 125.1, 122.4, 120.2, 119.4, 119.2, 110.2, 110.0, 80.1, 58.9, 53.5, 52.3, 52.2, 41.2, 37.8, 28.3, 24.7, 23.0, 21.7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₃H₅₂N₄O₈Cl⁺ 787.3468, Found: 787.3453. methyl (6S,9S,12S)-12-benzyl-9-(((1-((R)-1-(4-bromophenyl)-2-(methoxycarbonyl)allyl)-1H-indol-3-yl)methyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4q):

White solid, 68.1 mg, 82% yield, d. r. = 10.1:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 7. 2Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.23 – 6.92 (m, 8H), 6.81 – 6.72 (m, 3H), 6.68 (d, *J* = 7.8 Hz, 1H), 6.52 (s, 1H), 6.37 (s, 1H), 6.07 (d, *J* = 6.3 Hz, 1H), 5.11 (d, *J* = 0.9 Hz, 1H), 4.73 – 4.46 (m, 3H), 3.95 (s, 1H), 3.64 (s, 0.27H), 3.62 (s, 2.73H), 3.51 (s, 2.70H), 3.49 (s, 0.31H), 3.13 (dd, *J* = 14.7, 5.7 Hz, 1H), 3.02 (dd, *J* = 14.4, 7.5 Hz, 1H), 2.89 (dd, *J* = 13.8, 6.0 Hz, 1H), 2.75 (dd, *J* = 13.8, 6.0 Hz, 1H), 1.60-1.39 (m, 2H), 1.32 (s, 9H), 1.27 – 1.14 (m, 1H), 0.79 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 170.0, 169.3, 164.9, 154.5, 138.0, 135.5, 135.4, 134.5, 131.1, 129.0, 128.1, 128.1, 127.6, 127.5, 126.0, 124.0, 121.5, 121.4, 119.2, 118.4, 109.2, 109.0, 79.1, 57.9, 52.6, 52.5, 51.3, 51.2, 40.1, 36.7, 27.2, 23.7, 21.9, 20.7. HRMS(ESI) m/z [M+H]⁺: Calcd for C₄₃H₅₂N₄O₈Br⁺ 831.2963, Found: 831.2951.

methyl (6S,9S,12S)-12-benzyl-6-isobutyl-9-((1-((R)-2-(methoxycarbonyl)-1-(2nitrophenyl)allyl)-1H-indol-3-yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11triazatridecan-13-oate (4r):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 42.2 mg, 53% yield, d. r.= 3.3:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, *J* = 27.9, 6.3 Hz, 2H), 7.61 (t, *J* = 6.4 Hz, 1H), 7.53 – 7.37 (m, 2H), 7.08 (t, *J* = 5.2 Hz, 5H), 6.87 – 6.64 (m, 5H), 6.47 (s, 1H), 6.14 (s, 1H), 5.22 (s, 1H), 4.79 (d, *J* = 6.2 Hz, 1H), 4.68 – 4.39 (m, 2H), 3.98 (s, 1H), 3.73 – 3.59 (m, 3H), 3.51 (s, 0.70H), 3.49 (s, 2.31H), 3.27 – 2.96 (m, 2H), 2.96 – 2.73 (m, 2H), 1.65 – 1.40 (m, 2H), 1.33 (q, *J* = 2.9 Hz, 9H), 1.26 – 1.17 (m, 2H), 0.79 (t, *J* = 4.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 170.1, 169.3, 164.7, 154.5, 147.61, 147.56, 139.0, 137.5, 135.4, 134.5, 133.2, 129.0, 128.6, 128.1, 127.6, 126.1, 126.0, 123.9, 123.8, 122.4, 122.1, 121.6, 119.4, 118.5, 109.7, 108.8, 79.0, 57.7, 52.6, 52.4, 51.5, 51.1, 40.3, 36.7, 27.2, 23.7, 21.9, 20.7. HRMS(ESI) m/z [M+H]*: Calcd for C₄₃H₅₂N₅O₁₀+ 798.3709, Found: 798.3699. methyl (6S,9S,12S)-12-benzyl-6-isobutyl-9-((1-((R)-2-(methoxycarbonyl)-1-(p-tolyl)allyl)-1H-indol-3-yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4s):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 65.8 mg, 86% yield, d. r.= 6.3:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.13 – 7.00 (m, 9H), 6.84 – 6.73 (m, 2H), 6.74 – 6.61 (m, 2H), 6.53 (s, 1H), 6.32 (s, 1H), 6.13 (d, *J* = 5.7 Hz, 1H), 5.05 (s, 1H), 4.68 – 4.38 (m, 3H), 3.98 (s, 1H), 3.62 (s, 0.41H), 3.60 (s, 2.58H), 3.47 (s, 3H), 3.14 (dd, *J* = 14.4, 5.4 Hz, 1H), 2.99 (dd, *J* = 14.7, 7.5 Hz, 1H), 2.88 (dd, *J* = 13.5, 6.0 Hz, 1H), 2.74 (dd, *J* = 13.5, 6.0 Hz, 1H), 2.27 (s, 2.59H), 2.24 (s, 0.41H), 1.58 – 1.38 (m, 2H), 1.31 (d, *J* = 9.6 Hz, 9H), 1.20 – 1.10 (m, 1H), 0.79 (t, *J* = 6.3 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 170.0, 169.4, 165.1, 154.5, 138.7, 138.5, 137.2, 135.4, 134.7, 133.2, 128.6, 128.14, 128.06, 127.5, 127.4, 127.3, 126.7, 126.0, 124.3, 121.1, 118.9, 118.2, 118.0, 109.1, 108.7, 79.1, 58.3, 52.6, 51.2, 51.1, 40.1, 36.7, 27.2, 23.7, 21.9, 20.7, 20.1. HRMS(ESI) m/z [M+H]⁺: Calcd for C₄₄H₅₅N₄O₈⁺ 767.4014, Found: 767.4000. methyl (6S,9S,12S)-12-benzyl-6-isobutyl-9-((1-((R)-2-(methoxycarbonyl)-1-(naphthalen-2-yl)allyl)-1H-indol-3-yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (4t):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 59.9 mg, 73% yield, d. r.= 10:1 determined by ¹H NMR. ¹H NMR (300 MHz,CDCl₃) δ 7.88 – 7.76 (m, 3H), 7.69 (d, *J* = 6.9 Hz, 2H), 7.56 – 7.45 (m, 2H), 7.45 – 7.29 (m, 2H), 7.20 (t, *J* = 6.9 Hz, 1H), 7.14 (s, 4H), 6.83 (s, 4H), 6.74 (d, *J* = 7.7 Hz, 1H), 6.48 (s, 1H), 6.17 (s, 1H), 5.22 (s, 1H), 4.73 – 4.44 (m, 3H), 3.99 (s, 1H), 3.68 (s, 3H), 3.49 (s, 0.27H), 3.45 (s, 2.7H), 3.21 (dd, *J* = 14.6, 5.6 Hz, 1H), 3.07 (dd, *J* = 14.6, 7.4 Hz, 1H), 2.90 (dd, *J* = 13.8, 6.1 Hz, 1H), 2.76 (d, *J* = 12.9Hz, 2H), 1.36 (s, 9H), 1.16 – 0.96 (m, 1H), 0.79 (dd, *J* = 13.6, 5.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 171.0, 170.5, 166.1, 155.5, 139.4, 136.6, 135.7, 134.8, 133.3, 133.1, 129.1, 128.8, 128.5, 128.3, 127.7, 127.4, 126.64, 126.59, 126.3, 125.4, 122.3, 120.1, 119.4, 110.1, 110.0, 80.1, 59.7, 53.7, 53.4, 53.1, 52.3, 52.1, 40.9, 37.7, 28.2, 24.6, 22.9, 21,7. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₄₇H₅₅N₄O₈⁺ 803.4014, Found: 803.4002

tert-butyl ((14S,Z)-3-methylene-4,13-dioxo-1¹*H*-5-oxa-12-aza-1(1,3)indolacyclopentadecaphane-14-yl)carbamate (5a):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 55.8 mg, 77% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 1H)7.13 (t, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.96 (s, 1H), 6.39 (s, 1H), 5.97 (s, 1H), 5.41 (d, *J* = 7.2 Hz, 1H), 5.06 (s, 1H), 4.80 (d, *J* = 14.1 Hz, 2H), 4.32 – 4.19 (m, 1H), 4.18 – 4.00 (m, 2H), 3.27 (d, *J* = 13.2 Hz, 1H), 2.90 (dd, *J* = 13.8, 10.5 Hz, 2H), 2.83 – 2.65 (m, 1H), 1.40 (s, 11H), 1.08 – 0.90 (m, 1H), 0.86 – 0.59 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 165.5, 136.5, 136.3, 130.0, 128.3, 126.2, 122.0, 119.6, 119.3, 110.4, 110.0,79.8, 64.0, 55.8, 47.5, 38.5, 29.3, 28.4, 27.8, 27.6, 24.7, 24.5. HRMS(ESI) m/z [M+H]⁺: Calcd for C₂₆H₃₆N₃O₅⁺ 470.2650, Found: 470.2640.

tert-butyl ((3S,6S,Z)-6-isopropyl-17-methylene-4,7,16-trioxo-1¹*H*-15-oxa-5,8-diaza-1(3,1)indolacyclooctadecaphane-3-yl)carbamate (5b):

5b

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 34.6 mg, 61% yield. ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.90 (s, 2H), 7.54 (d, *J* = 6.9Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 11.7 Hz, 2H), 6.48 (d, *J* = 7.2 Hz, 1H), 6.11 (s, 1H), 5.30 (s, 1H), 5.00 (s, 2H), 4.28 (s, 1H), 4.10 (d, *J* = 19.2 Hz, 3H), 3.30 – 3.06 (m, 2H), 2.93 (d, *J* = 10.2 Hz, 2H), 1.90 (d, *J* = 6.0 Hz 1H), 1.60 (s, 2H), 1.37 (s, 15H), 0.83 (d, *J* = 5.7 Hz, 6H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 171.6, 170.5, 166.9, 155.0, 137.3, 137.0, 136.0, 129.4, 129.1, 128.1, 127.9, 127.3, 126.4, 126.2, 123.4, 120.8, 118.4, 118.1, 111.2, 110.3, 78.0, 63.0, 55.3, 53.2, 51.6, 37.7, 28.1, 27.5. HRMS(ESI) m/z [M+H]⁺: Calcd for C₃₁H₄₅N₄O₆⁺ 569.3334, Found: 569.3322.

tert-butyl ((3S,6S,9S,Z)-6-isopropyl-9-methyl-20-methylene-4,7,10,19-tetraoxo-1¹*H*-18-oxa-5,8,11-triaza-1(3,1)-indolacyclohenicosaphane-3-yl)carbamate (5c):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 38.3 mg, 60% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, *J* = 6.8 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.23 (d, *J* = 7.8Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.13 (s, 1H), 6.85 (s, 1H), 6.56 (d, *J* = 5.9 Hz, 1H), 6.43 (s, 1H), 5.89 (s, 1H), 5.43 – 5.19 (m, 1H), 4.96 (s, 2H), 4.65 – 4.49 (m, 1H), 4.35 – 4.19 (m, 2H), 4.19 – 4.02 (m, 3H), 3.64 – 3.48 (m, 1H), 3.32 (dd, *J* = 15.3, 4.3 Hz, 1H), 3.12 – 2.94 (m, 2H), 2.48 – 2.26 (m, 1H), 1.77 – 1.49 (m, 4H), 1.41 (s, 15H), 1.26 (s, 1H), 0.98 (d, *J* = 6.9 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 172.0, 170.2, 165.6, 156.9, 136.2, 136.1, 129.8, 128.3, 126.9, 122.2, 119.8, 118.2, 109.9, 109.2, 81.6, 77.3, 65.5, 59.8, 58.6, 48.6, 47.8, 39.3, 29.7, 29.1, 29.0, 28.6, 28.1, 27.2, 26.4, 25.8, 19.4, 17.9, 17.0. HRMS(ESI) m/z [M+H]⁺: Calcd for C₃₄H₅₀N₅O₇⁺ 640.3705, Found: 640.3695.

tert-butyl ((3S,6S,9S,12S,Z)-12-benzyl-6-isopropyl-9-methyl-23-methylene-4,7,10,13,22-pentaoxo-1¹*H*-21-oxa-5,8,11,14-tetraaza-1(3,1)-indolacyclotetracosaphane-3-yl)carbamate (5d):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 50.3 mg, 64% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.34 – 7.16 (m, 8H), 7.10 (d, *J* = 9.9 Hz, 2H), 7.00 – 6.88 (m, 2H), 6.45 (s, 1H), 6.35 (d, *J* = 3.9 Hz, 1H), 5.97 (s, 1H), 5.18 (s, 1H), 4.90 (s, 2H), 4.78 (t, *J* = 9.0 Hz 1H), 4.26 (s, 1H), 4.23 – 4.10 (m, 3H), 4.00 (s, 1H), 3.86 – 3.70 (m, 1H), 3.61 (d, *J* = 14.1 Hz, 1H), 3.44 (d, *J* = 15.3 Hz, 1H), 3.25 (dd, *J* = 15.3, 5.1 Hz, 1H), 2.97 (t, *J* = 12.9 Hz, 2H), 2.32 – 2.11 (m, 2H), 1.80 – 1.67 (m, 2H), 1.65 – 1.48 (m, 6H), 1.43 (s, 10H), 0.90 – 0.76 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 172.0, 172.0, 171.1, 165.4, 156.7, 138.5, 136.0, 135.7, 130.6, 129.4, 128.8, 128.2, 127.7, 126.3, 122.4, 120.3, 117.7, 110.1, 107.1, 81.6, 66.0, 60.8, 58.0, 54.1, 53.5, 47.5, 39.4, 37.5, 29.4, 28.9, 28.6, 28.0, 26.7, 26.5, 25.5, 24.6, 23.1, 20.6, 19.5, 17.1. HRMS(ESI) m/z [M+H]⁺: Calcd for C₄₆H₆₅N₆O₈+ 829.4858, Found: 829.4846

tert-butyl (3S,6S,9S,12S,15S,Z)-12-benzyl-3-((tert-butoxycarbonyl)amino)-9-isobutyl-6isopropyl-28-methylene-4,7,10,13,18,27-hexaoxo- $1^{1}H$ -26-oxa-5,8,11,14,19-pentaaza-1(3,1)-indolacyclononacosaphane-15-carboxylate (5e):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:1), 49.6 mg, 49% yield. ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.80 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 6.6 Hz, 2H), 7.55 (d, *J* = 7.2 Hz, 1H), 7.44 (s, 1H), 7.31 (d, *J* = 7.5Hz, 1H), 7.14 (d, *J* = 8.1 Hz, 1H), 6.98 (s, 5H), 6.88 (d, *J* = 6.9 Hz, 1H), 6.83 (d, *J* = 5.7 Hz, 1H), 6.75 (t, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 7.5 Hz, 1H), 5.93 (s, 1H), 5.25 (s, 1H), 4.72 (s, 2H), 4.31 – 4.16 (m, 1H), 4.13 – 4.02 (m, 1H), 3.97 (d, *J* = 7.1 Hz, 1H), 3.93 – 3.78 (m, 5H), 2.92 – 2.62 (m, 7H), 2.00 – 1.82 (m, 3H), 1.81 – 1.65 (m, 3H), 1.66 – 1.46 (m, 2H), 1.16 (s, 15H), 1.11 (s, 9H), 0.58 – 0.49 (m, 12H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 172.1, 171.6, 171.0, 170.8, 170.7, 165.1, 155.2, 137.7, 136.6, 135.8, 129.0, 128.0, 127.2, 126.2, 118.8, 118.5, 109.9, 80.6, 78.3, 64.4, 51.3, 31.5, 29.0, 28.0, 27.6, 27.2, 25.9, 25.1, 24.0, 22.8, 21.4, 19.0, 17.8. HRMS(ESI) m/z [M+H]⁺: Calcd for C₅₅H₈₀N₇O₁₁⁺ 1014.5910, Found: 1014.5926.

tert-butyl ((1^2 S, 3^2 R,5S,8S,11S,26S,29S,Z)-29-benzyl-5-(tert-butoxymethyl)-8-isobutyl-26methyl-15-methylene-2,4,7,10,16,25,28,31-octaoxo-13¹*H*-17-oxa-6,9,24,27,30-pentaaza-13(3,1)-indola-1(1,2),3(2,1)-dipyrrolidinacyclohentriacontaphane-11-yl)carbamate (5f):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 1:2), 69.3 mg, 61% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.58 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.79 (s, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.44 – 7.30 (m, 3H), 7.27 – 7.20 (m, 4H), 7.19 – 7.04 (m, 4H), 7.02 (s, 1H), 6.43 (s, 1H), 5.96 (s, 1H), 5.08 (s, 1H), 4.91 (s, 4H), 4.69 – 4.61 (m, 1H), 4.58 – 4.50 (m, 2H), 4.45 (s, 1H), 4.19 – 4.09 (m, 2H), 3.87 – 3.75 (m, 3H), 3.69 – 3.60 (m, 1H), 3.59 – 3.52 (m, 1H), 3.39 – 3.27 (m, 4H), 3.16 – 3.05 (m, 3H), 2.28 – 2.19 (m, 1H), 2.15 – 2.06 (m, 1H), 2.06 – 1.86 (m, 4H), 1.85 – 1.71 (m, 2H), 1.69 – 1.55 (m, 5H), 1.54 – 1.50 (m, 2H), 1.49 – 1.45 (m, 3H), 1.37 (s, 10H), 1.16 (s, 12H), 0.93(s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 172.3, 171.4, 171.2, 171.0, 170.7, 169.4, 165.7, 155.6, 137.9, 136.3, 136.2, 129.8, 129.5, 128.6, 128.2, 127.0, 126.5, 121.9, 119.4, 118.8, 109.8, 109.4, 80.3, 73.3, 65.1, 61.8, 60.3, 58.0, 54.7, 51.9, 51.1, 48.6, 47.9, 47.5, 46.8, 43.2, 39.6, 37.2, 29.7, 29.3, 29.2, 28.4, 28.3, 28.1, 27.7, 27.5, 27.4, 26.6, 25.8, 25.4, 24.8, 23.0, 22.8, 19.9. HRMS(ESI) m/z [M+H]⁺ : Calcd for C₆₁H₈₈N₉O₁₂⁺: 1138.6547, Found: 1138.6567.

methyl $(1^2Z, 14^2Z, 3R, 6S, 9S, 12S)$ -9-benzyl-12-((tert-butoxycarbonyl)amino)-6-isobutyl-16,25-dimethylene-5,8,11,17,24-pentaoxo-1¹*H*,14¹*H*-18,23-dioxa-4,7,10-triaza-1,14(3,1)diindolacyclohexacosaphane-3-carboxylate (5g):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 36 mg, 36% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.18 – 7.05 (m, 7H), 7.05 – 6.94 (m, 2H), 6.93 (s, 3H), 6.65 (d, *J* = 6.6 Hz, 1H), 6.37 (s, 2H), 5.98 (s, 1H), 5.61 (s, 1H), 4.97 (s, 1H), 4.95 – 4.85 (m, 4H), 4.81 (dd, *J* = 12.0, 6.0 Hz, 1H), 4.66 – 4.42 (m, 2H), 4.26 – 3.95 (m, 5H), 3.71 (s, 3H), 3.47 – 3.32 (m, 2H), 3.28 – 3.11 (m, 2H), 3.01 (dd, *J* = 15.0, 7.8 Hz, 1H), 2.78 (dd, *J* = 13.2, 5.4 Hz, 1H), 1.69 (s, 1H), 1.64 – 1.50 (m, 3H), 1.47 – 1.34 (m, 3H), 1.26 (s, 9H), 0.85 (dd, *J* = 13.8, 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 172.0, 171.9, 170.3, 165.43, 165.35, 156.1, 136.6, 136.3, 136.2, 136.0, 135.7, 129.1, 128.8, 128.4, 128.2, 127.73, 127.65, 127.3, 126.9, 125.9, 122.4, 121.8, 119.8, 119.3, 118.9, 118.8, 109.9, 109.8, 109.5, 109.1, 80.8, 76.6, 64.6, 64.4, 56.0, 54.2, 53.1, 52.4, 51.9, 47.2, 46.5, 40.1, 36.6, 28.1, 27.7, 26.9, 25.1, 25.0, 24.4, 23.0, 21.4. HRMS(ESI) m/z [M+H]⁺: Calcd for C₅₅H₆₇N₆O₁₁⁺ 987.4862, Found: 987.4870. methyl (1²Z.14²Z.3R.6S.9S.12S)-9-benzyl-12-((tert-butoxycarbonyl)amino)-6-isobutyl-

methyl $(1^2Z, 14^2Z, 3R, 6S, 9S, 12S)$ -9-benzyl-12-((tert-butoxycarbonyl)amino)-6-isobutyl-16,27-dimethylene-5,8,11,17,26-pentaoxo-1¹*H*,14¹*H*-18,25-dioxa-4,7,10-triaza-1,14(3,1)diindolacyclooctacosaphane-3-carboxylate (5h):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 33 mg, 33% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (dd, *J* = 15.0, 7.5 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.15 (s, 5H), 7.12 – 6.97 (m, 4H), 6.91 – 6.78 (m, 3H), 6.59 (d, *J* = 8.0 Hz, 1H), 6.32 (s, 2H), 6.15 (s, 1H), 5.47 (s, 1H), 5.01 (s, 1H), 4.92 (d, *J* = 10.2 Hz, 4H), 4.81 (dd, *J* = 12.0, 6.3 Hz, 1H), 4.61 – 4.38 (m, 2H), 4.25 – 4.06 (m, 5H), 3.69 (s, 3H), 3.46 – 3.27 (m, 2H), 3.27 – 3.14 (m, 1H), 3.14 – 2.91 (m, 2H), 2.59 (dd, *J* = 14.0, 6.1 Hz, 1H), 1.75 – 1.66(m, 1H), 1.59 – 1.50 (m, 3H), 1.37 (d, *J* = 11.4 Hz, 2H), 1.26 (s, 14H), 0.84 (dd, *J* = 12.6, 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 172.0, 171.7, 170.4, 165.6, 165.5, 136.5, 136.4, 136.1, 135.7, 129.1, 128.8, 128.2, 127.9, 127.7, 127.5, 127.3, 126.9, 125.9, 122.4, 121.8, 119.8, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9, 54.0, 53.1, 52.3, 51.7, 47.1, 46.5, 119.3, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 64.9, 64.6, 55.9,

40.0, 36.4, 29.7, 28.3, 28.1, 27.5, 27.2, 25.3, 24.4, 23.0, 21.4. **HRMS**(ESI) m/z [M+H]⁺ : Calcd for C₅₇H₇₁N₆O₁₁⁺: 1015.5175, Found: 1015.5185.

methyl (1²Z,14²Z,3R,6S,9S,12S)-9-benzyl-12-((tert-butoxycarbonyl)amino)-6-isobutyl-16,29-dimethylene-5,8,11,17,28-pentaoxo-1¹H,14¹H-18,27-dioxa-4,7,10-triaza-1,14(3,1)diindolacyclotriacontaphane-3-carboxylate (5i):

White solid was obtained by silica gel column chromatography (eluent: PE / EA = 2:1), 40 mg, 38% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.56 (dd, *J* = 13.2, 5.4 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.17 (s, 5H), 7.13 – 6.98 (m, 4H), 6.90 (s, 3H), 6.64 (d, *J* = 6.9 Hz, 1H), 6.37 (d, *J* = 4.8 Hz, 1H), 6.30 (s, 1H), 6.15 (s, 1H), 5.40 (s, 1H), 5.03 (s, 1H), 4.93 (d, *J* = 8.4 Hz, 4H), 4.81 (dd, *J* = 12.0, 6.9Hz, 1H), 4.61 – 4.41 (m, 2H), 4.17 (m, 5H), 3.69 (s, 3H), 3.45 – 3.26 (m, 2H), 3.26 – 3.00 (m, 3H), 2.63 (dd, *J* = 14.1, 6.0 Hz, 1H), 1.76 – 1.51 (m, 6H), 1.41 – 1.30 (m, 4H), 1.24 (d, *J* = 7.2 Hz, 14H), 0.85 (dd, *J* = 15.3, 6.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 172.1, 171.6, 165.7, 165.5, 156.1, 136.5, 136.4, 136.1, 135.8, 129.1, 128.8, 128.2, 127.9, 127.4, 127.3, 127.0, 126.0, 122.4, 121.8, 119.8, 118.9, 109.8, 109.5, 109.1, 80.8, 77.3, 65.0, 64.9, 56.1, 54.1, 53.0, 52.3, 51.7, 47.1, 46.6, 40.0, 36.4, 28.6, 28.3, 28.2, 28.1, 27.7, 27.5, 27.3, 25.8, 25.61, 25.55, 24.4, 23.0, 21.4. HRMS(ESI) m/z [M+H]⁺: Calcd for C₅₉H₇₅N₆O₁₁⁺ 1043.5488, Found: 1043.5492.

2.7 HPLC Spectra and MS/MS Spectra for the products of solid support allylation.

6a: White solid, 15.3 mg, 7% yield, 92.6% purity, **HRMS**(ESI) m/z [M+H]⁺: Calcd for C₄₈H₇₅O₁₄N₁₂S 1075.5241, Found 1075.5227.

HPLC spectrum of 6a

6b: White solid, 58.8 mg, 42% yield, 97.6% purity, **HRMS**(ESI) m/z $[M+H]^+$: Calcd for C₃₉H₄₅0₇N₆ 709.3344, Found 709.3341.

	time (Min)			5	51
1	16.344	29387224	97.64	1941059	bb
2	18.817	709131	2.36	27177	bb

HPLC spectrum of 6b

MS/MS spectrum of 6b

6c: White solid, 48.1 mg, 18% yield, 97.9% purity, **HRMS**(ESI) m/z [M+H]⁺: Calcd for C₅₄H₇₉O₁₃N₁₂S 1135.5605, Found 1135.56

HPLC spectrum of 6c

2.12

20062

bb

378106

2

18.838

6d: White solid, 35.6 mg, 15% yield, 94.3% purity, **HRMS**(ESI) m/z [M+H]⁺: Calcd for C₅₈H₈₃O₁₃N₁₂S 1187.5918, Found 1187.5928.

	time (Min)	Area	% Area	Height	Туре
1	17.154	19742042	94.34	1444256	bv
2	17.459	650407	3.11	74796	vb
3	18.816	534407	2.55	23812	bb

MS/MS spectrum of 6d

6e: White solid, 68.2 mg, 34% yield, 95.6% purity, **HRMS**(ESI) m/z [M+H]⁺: Calcd for C₅₁H₆₉O₁₂N₁₀ 1013.5091, Found 1013.5081.

HPLC spectrum of 6e

6f: White solid, 66.0 mg, 30% yield, 97.2% purity, **HRMS**(ESI) m/z [M+H]⁺: Calcd for C₅₅H₇₃O₁₂N₁₂ 1065.5404, Found 1065.5392.

	time (Min)	Area	% Area	Height	Туре
1	15.488	21688620	97.15	1587898	bb
2	18.815	635836	2.85	24902	bb

HPLC spectrum of 6f

MS/MS spectrum of 6f

2.8 LC-MS Spectra of peptide-peptide conjugate.

*MSD1 SPC, time=4.738 of lyyome-0h. ES-API, Pos, Scan, Frag: 70

*MSD1 SPC, time=4.737 of lyyome-1h. ES-API, Pos, Scan, Frag: 70

LC-MS trace of 1 h

MS/MS spectrum of 7

3. References

- (1) a) K-J. Xiao, D. W. Lin, M. Miura, R-Y. Zhu, W. Gong, Masayuki Wasa, and J-Q. Yu. *J. Am. Chem. Soc.* 2014, *136*, 8138 8142; b) Y. Wang, Y-H. Xing, X. Liu, H. Ji, M. Kai, Z-Y Chen, J. Yu, D-P. Zhao, H. Ren, R. Wang. *J. Med. Chem.* 2012, *55*, 6224 6236; c) Y. Liu, Z. He, W. Ma, G. Bao, Y. Li, C. Yu, J. Li, R. E, Z. Xu, R. Wang, W. Sun. Org. Lett. 2022, *24*, 9248–9253. d) M. Wang, C. Wang, Y. Huo, H. Xue, L. Liu, H. Chai, X. Xie, Z. Li, D. Lu, Z. Xu. Nat Commun., 2021, *12*, 6873. e) S. J. McCarver, J. X. Qiao, J. Carpenter, R. Borzilleri, M. A. Poss, M. D. Eastgate, M. M. Miller, D. W. C. MacMillan. Angew. Chem. Int. Ed. 2017, 56,7 28–732.
- (2) a) C. Pautigny, S. Jeulin, S. T. Ayad, T. Z. Zhang, J. -P. Genêt, V. Ratovelomanana-Vidal. *Adv. Synth. Catal.* 2008, 350, 2525 2532. b) W. Sun, X. Ma, L. Hong, R. Wang. *J. Org. Chem.* 2011, 76, 7826–7833. c) G. Zhu, J. Yang, G. Bao, M. Zhang, J. Li, Y. Li, W. Sun, L. Hong, R. Wang. *Chem. Commun.*, 2016, *52*, 7882-7885. c) G. Bartoli, M. Bosco, A. Carlone, R. Dalpozzo, M. Locatelli, P. Melchiorre, P. Palazzi, Sambri. L. *Synlett.* 2006, *13*, 2104–2108. d) H. Liu, L. Ge, D. -X. Wang, N. Chen, Feng. C. *Angew. Chem. Int. Ed.* 2019, *58*, 3918–3922.
- (3) H.-I. Cui, X. Feng, J. Peng, J. Lei, K. Jiang, Y.-C. Chen. Angew. Chem. Int. Ed. 2009, 48, 5737 –5740.

4. NMR spectra

¹³C NMR (75 MHz, CDCl₃) spectrum of **1a**

¹³C NMR (75 MHz, CDCl₃) spectrum of 1b

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 1e

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 1f

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 1h

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 1i

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 1k

¹³C NMR (75 MHz, DMSO-d₆) spectrum of 1m

¹³C NMR (75 MHz, CDCl₃) spectrum of 2a

¹³C NMR (75 MHz, CDCl₃) spectrum of 2f

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 2g

¹³C NMR (75 MHz, CDCl₃) spectrum of 2h

¹³C NMR (75 MHz, CDCl₃) spectrum of 2j

¹³C NMR (75 MHz, CDCl₃) spectrum of **2I** S84

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 2n

S88

¹³C NMR (75 MHz, CDCl₃) spectrum of 2r

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 2s

9.25

¹³C NMR (75 MHz, CDCI₃) spectrum of 2aa

S100

9.34

¹³C NMR (75 MHz, CDCI₃) spectrum of 2ad

¹H NMR (300 MHz, CDCI₃) spectrum of 2ae

¹³C NMR (75 MHz, CDCl₃) spectrum of 3a

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 3c

¹³C NMR (75 MHz, CDCl₃) spectrum of 3d
0.00

¹³C NMR (75 MHz, CDCl₃) spectrum of **3e**

¹³C NMR (75 MHz, CDCl₃) spectrum of 3f

¹³C NMR (75 MHz, CDCl₃) spectrum of 3g

¹³C NMR (75 MHz, CDCl₃) spectrum of **3h**

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 3i

S114

¹³C NMR (75 MHz, CDCl₃) spectrum of 3I

1 1 1 1 1 1 1 1 2

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 3m

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 3n

¹³C NMR (75 MHz, CDCl₃) spectrum of 4a

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 4c

S124

¹³C NMR (75 MHz, CDCl₃) spectrum of 4i

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 4k

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) spectrum of 4I

S130

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ (ppm)

¹³C NMR (75 MHz, CDCl₃) spectrum of 4ao

180

S132

¹³C NMR (75 MHz, CDCl₃) spectrum of 4n

¹³C NMR (75 MHz, CDCl₃) spectrum of **4p**

100 90 δ (ppm)

¹³C NMR (75 MHz, CDCl₃) spectrum of 5a

S141

¹H NMR (300 MHz, DMSO-d₆) spectrum of **5b**

¹H NMR (300 MHz, CDCl₃) spectrum of **5c**

¹³C NMR (75 MHz, CDCl₃) spectrum of 5d

 ^1H NMR (300 MHz, CDCl_3) spectrum of 5f

 $\frac{1}{20}$

δ (ppm)