Supporting Information

Highly stereoselective α-glycosylation with GalN $\mathbf{3}_{3}$ donors enabled collective synthesis of mucin-related tumor associated carbohydrates antigens

Kunxiu Shou ${ }^{\text {a+ }}$, Yunqin Zhang ${ }^{\text {a+ }}$, Yujie Ji ${ }^{\text {b+ }}$, Bin Liu ${ }^{\text {a }}$, Qingli Zhou ${ }^{\text {a }}$, Qiang Tan ${ }^{\text {a }}$, Fuying Li^{c}, Xiufang Wang ${ }^{\text {c }}$, Gang Lu ${ }^{\text {b }}$, Guozhi Xiao ${ }^{\text {a }}$ *
${ }^{\text {a }}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
${ }^{\mathrm{b}}$ School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
${ }^{\text {c }}$ Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
+ these authors contributed equally

*Correspondence: xiaoguozhi@mail.kib.ac.cn; ganglu@sdu.edu.cn

Table of Contents

General Methods 2
General Experimental Procedures. 3
Experimental procedures 4
Optimization of the reaction 4
Reaction scope of GalN $\mathbf{3}_{3}$ PTFAI donors 15
Reaction Scope of acceptors 34
Preparation of the common intermediate 16 59
Synthesis of T_{N} antigen (1) 62
Preparation of donors 32-34 and acceptors 39 and S32 64
Synthesis of core 1 mucin-type O-glycan (2) 69
Synthesis of core 3 mucin-type O-glycan (4) 71
Synthesis of core 5 mucin-type \boldsymbol{O}-glycan (6) 74
Synthesis of core 8 mucin-type \boldsymbol{O}-glycan (9) 76
Synthesis of core ST $_{\mathrm{N}}$ antigen (10) 78
Synthesis of core 6 mucin-type O-glycan (7) 80
Synthesis of core 7 mucin-type O-glycan (8) 83
Synthesis of core 2 mucin-type \boldsymbol{O}-glycan (3) 85
Synthesis of core 4 mucin-type \boldsymbol{O}-glycan (5) 88
Synthesis of 2,6 STF antigen (11) 91
Synthesis of 2,3 STF antigen (12) 93
Synthesis of glycophorin (13) 96
Mechanistic studies 97
Computational studies 100
References 105
Cartesian coordinates (\AA) and energies of optimized structures 107
Spectroscopic Data 143

General Methods

All reactions were carried out under an argon atmosphere with anhydrous solvents under anhydrous conditions, unless otherwise noted. All glycosylation reactions were performed in the presence of $3 \AA$ or $4 \AA$ molecular sieves, which were flame-dried immediately before use in the reaction under high vacuum. Tetrahydrofuran (THF) was distilled immediately before use from sodium-benzophenoneketyl. Methylene chloride (DCM) was distilled from calcium hydride and stored under an argon atmosphere. Toluene was distilled immediately from calcium chloride before use. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on TLC Silica gel $60 \mathrm{~F}_{254}$ or TLC Silica gel 60 RP-18 F 254 S (EMD Millipore Corporation) using UV light (254 nm) as visualizing agent and $10 \% \mathrm{PMA} / \mathrm{EtOH}$ solution or $10 \% \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{EtOH}$ solution as developing agent. Flash column chromatography was performed on silica gel, LiChroprep ${ }^{\circledR}$ RP-18 (EMD Millipore Corporation) or Sephadex ${ }^{\text {TM }}$ LH-20 (GE Healthcare).

The ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, H-H COSY and HSQC spectra were measured by a Brucker AVANCE III 400 MHz spectrometer, Brucker Avance III 600 MHz spectrometer or Brucker AV 800 MHz spectrometer by using CDCl_{3} or $\mathrm{D}_{2} \mathrm{O}$ as internal references: $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $\left.\delta=77.16 \mathrm{ppm}\right)$ or $\mathrm{D}_{2} \mathrm{O}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta=4.79 \mathrm{ppm})$. The following abbreviations are used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Electron spray ionization (ESI) and high-resolution electron spray ionization (HRESI) were obtained on an Agilent 1290 spectrometer. MALDI-TOF spectra were recorded on a new ultrafleXtreme. The specific rotation was obtained on a Jasco P-1020, using CHCl_{3} or $\mathrm{H}_{2} \mathrm{O}$ as solvent.

General Experimental Procedures

A mixture of glycosyl PTFAI donor (1.5 equiv) and the acceptor (1.0 equiv) was co-evaporated with anhydrous toluene for three times. Then the mixture together with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ (6.0 equiv to the donor) were dissolved in dry $\mathrm{DCM}(0.1 \mathrm{M})$ and stirred over fresh-dried $3 \AA$ molecular sieves under argon at room temperature for 15 min . Subsequently, TMSI (1.0 equiv to the donor) was added dropwise. The reaction was stirred at room temperature. Upon completion, the solution was diluted with DCM and the reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The products were purified by flash column chromatography.

Experimental procedures

Optimization of the reaction

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 2-azido-3,4,6-tri- O-benzyl-2-deoxy -D-galactopyranoside (19b)

Compound $\mathbf{S 1}{ }^{1}$ (104.1 mg, 0.22 mmol) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ${ }^{2}$ ($54.5 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in acetone (1 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(45.5$ $\mathrm{mg}, 0.33 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 12 h , then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 17b ($131 \mathrm{mg}, 93 \%$) (Compound 17b was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedures at $30^{\circ} \mathrm{C}$ for 27 h , using donor $\mathbf{1 7 b}$ ($129 \mathrm{mg}, 0.20 \mathrm{mmol}$), acceptor 18 (98 $\mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{DCM}(2 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(333.1 \mathrm{mg}, 1.20 \mathrm{mmol})$ and TMSI $(29 \mu \mathrm{~L}$, 0.20 mmol). The product was purified by silica gel column chromatography (PE-EA, 6:1) to afford 19b ($138.4 \mathrm{mg}, 89 \%, \alpha / \beta=1.7: 1$) as a yellowish syrup. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.11(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ar}), 5.21-5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.91-4.83$ (m, 2H, H-1 $\left.\alpha, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.74-4.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.59-4.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, 4.15 (s, H-1ß), 4.02 ($\mathrm{s}, 1 \mathrm{H}$), 3.93 ($\mathrm{s}, 1 \mathrm{H}$), 3.87 - 3.77 (m, 2H), 3.65 - 3.51 (m, 2H), $3.50-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.62-1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.29$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,156.1,138.3,137.95,137.89$, 137.8, 137.7, 137.6, 136.9, 128.52, 128.49, 128.46, 128.43, 128.41, 128.3, 128.2, 128.1, 127.9, 127.87, 127.82, 127.78, 127.7, 127.6, 127.2, 102.4 (C-1 β), 98.2 ($\mathrm{C}-1 \alpha$), $80.6,77.3,74.8,74.6,73.5,72.5,72.3,72.2,69.6,68.8,68.5,68.1,67.1,63.4,59.8$, $50.5,50.2,47.1,46.2,31.9,29.7,29.4,29.2,29.1,27.9,27.5,23.4,23.2,22.7$. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 802.4174$, found 802.4183.

Phenyl 2-azido-3,4-di- O-benzyl-2-deoxy-6-O-levulinoyl-1-seleno- α-D-galactopyranoside (S3)

The $\mathbf{S 2}^{2}$ ($244 \mathrm{mg}, 0.32 \mathrm{mmol}$) was dissolved in anhydrous THF (1 mL), and $\mathrm{HF} /$ pyridine $(70 \%, 0.29 \mathrm{~mL}, 3.20 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred for 6 h at room temperature, the reaction mixture was then quenched with $\mathrm{Et}_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 4:1) to give the intermediate ($121.6 \mathrm{mg}, 73 \%$). To a solution of the above intermediate (121.6 mg , $0.23 \mathrm{mmol})$ and levulinic acid (LevOH) ($53.8 \mathrm{mg}, 0.46 \mathrm{mmol}$) in anhydrous DCM (1 mL) was added 4-dimethylaminopyridine (DMAP) ($5.7 \mathrm{mg}, 0.046 \mathrm{mmol}$), N-(3-dimethylamino- propyl)- N '-ethylcarbodiimide hydrochloride (EDCI) (133.3 mg , $0.70 \mathrm{mmol})$ and N, N-diisopropylethylamine (DIPEA) ($0.11 \mathrm{~mL}, 0.70 \mathrm{mmol}$). The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 3.5:1) to afford $\mathbf{S 3}$ (143 mg , 99%) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+321.5\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.62 - 7.55 (m, 2H, Ar), 7.47 - 7.24 (m, 13H, Ar), 5.96 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.92 (d, $\left.J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.57(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}-Bn), 4.41 - 4.33 (m, 2H, H-2), 4.16 - 4.08 (m, 2H), 3.96 (s, 1H, H-4), 3.73 (dd, J $=10.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.66\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.46-2.40(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}-Lev), 2.14 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Lev). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.5,172.4,137.9$, $137.3,134.53,134.48,129.1,128.7,128.5,128.3,128.21,128.18,128.0,127.9,85.2$ (C-1), 80.2, 74.8, 72.8, 72.7, 71.0, 63.2, 60.9, 37.9, 29.9, 27.7. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}$640.1486, found 640.1475.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 2-azido-3,4-di- O-benzyl-2-deoxy-

 6-O-levulinoyl-D-galactopyranoside (19c)

To a solution of compound $\mathbf{S 3}(143 \mathrm{mg}, 0.23 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL} / 1.1$ mL) was added Trichloroisocyanuric acid (TCCA) ($53.3 \mathrm{mg}, 0.23 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed gradually to room temperature and stirred for 5.5 h . Then EtOAc was added to this mixture and washed sequentially with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The organic phase was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (petroleum ether-EtOAc, $2: 1$ to $1.5: 1$) afforded hemiacetal intermediate ($97.8 \mathrm{mg}, 88 \%$). The above intermediate ($97.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($50.4 \mathrm{mg}, 0.24 \mathrm{mmol}$) was dissolved in acetone (0.5 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($42 \mathrm{mg}, 0.30$ mmol) was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 6:1 to 3:1, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 17c (118 mg, 89\%) (Compound 17c was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedures at rt for 3 d , using donor $\mathbf{1 7 c}$ ($118 \mathrm{mg}, 0.18 \mathrm{mmol}$), acceptor 18 ($89.6 \mathrm{mg}, 0.27 \mathrm{mmol}), \mathrm{DCM}(1.8 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(304.7 \mathrm{mg}, 1.10 \mathrm{mmol})$ and TMSI $(26 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$. The product was purified by silica gel column chromatography (PE-EA, 2.5:1) to afford 19c ($122.4 \mathrm{mg}, 85 \%, \alpha / \beta=1.3: 1$) as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.24$ (m, 19H, Ar), 7.19-7.15 (m, 1H, Ar), $5.24-5.11$ (m, 2H, CH2 ${ }_{2}$-Cbz), $4.96-4.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.89-$ 4.85 (m, 1H, H-1 α), $4.80-4.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.62\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Bn} \beta\right.$), $4.57\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn} \alpha\right) 4.52-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=11.1,6.3 \mathrm{~Hz})$, $4.19-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.55(\mathrm{~m}, 1 \mathrm{H})$,
$3.52-3.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.74-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.54-2.42(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}-Lev), 2.17 (s, 1H, CH3-Lev β), 2.16 (s, $2 \mathrm{H}, \mathrm{CH}_{3}$-Lev α), 1.64 - 1.47 ($\mathrm{m}, 4 \mathrm{H}$, CH_{2}), 1.39 - $1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.4,206.3,172.4$, $172.3,156.7,156.2,138.1,138.03,137.99,137.6,137.5,136.9,128.59,128.56$, 128.54, 128.47, 128.4, 128.33, 128.29, 128.0, 127.95, 127.92, 127.89, 127.84, 127.83, $127.80,127.3,102.4(\mathrm{C}-1 \beta), 98.2(\mathrm{C}-1 \alpha), 80.6,77.3,74.7,74.5,73.1,72.7,72.4,72.0$, $71.8,69.8,68.6,68.2,67.2,63.4,63.3,62.9,59.7,53.5,50.5,50.3,47.2,46.2,37.9$, 37.8, 29.8, 29.7, 29.4, 29.2, 29.1, 27.82, 27.78, 27.5, 23.4, 23.2, 22.7. HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$810.4073, found 810.4074.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 2-azido-3,4-di- O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-D-galactopyranoside (19d)

The glycosylation reaction was carried out according to General Experimental Procedures at $30{ }^{\circ} \mathrm{C}$ for 27 h , using donor $\mathbf{1 7 d}^{3}(103 \mathrm{mg}, 0.13 \mathrm{mmol}$) (Compound $\mathbf{1 7 d}$ was used directly without further structural characterization), acceptor 18 (63.6 mg , $0.19 \mathrm{mmol})$, $\mathrm{DCM} 1.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(216.4 \mathrm{mg}, 0.78 \mathrm{mmol})$ and TMSI $(19 \mu \mathrm{~L}, 0.13$ mmol). The product was purified by silica gel column chromatography (PE-EA, 10:1 to $7: 1$) to afford $\mathbf{1 9 d}(114.5 \mathrm{mg}, 95 \%, \alpha / \beta=1.5: 1)$ as a yellowish syrup. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.57(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.44-7.11(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ar}), 5.21-5.12(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}-Cbz), $4.90\left(\mathrm{t}, \mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 4.76-4.67(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.58\left(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.53-4.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.09(\mathrm{~s}$, $\mathrm{H}-1 \beta$), 4.03 (s), $3.97-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.68(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2 \alpha, \mathrm{H}-2 \beta), 3.56-3.44(\mathrm{~m}$, $1 \mathrm{H}), 3.38-3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61-1.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-1.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.54,138.46,138.0,137.9$, $137.8,136.9,135.62,135.59,133.35,133.25,129.9,128.63,128.61,128.58,128.52$, $128.3,128.2,128.1,128.03,128.96,127.92,127.91,127.85,127.81,127.7,127.6$,
127.3, 102.5 (C-1 β), 98.1 (C-1 α), 80.6, 77.4, 75.0, 74.9, 74.8, 73.6, 72.7, 72.6, 72.4, $71.2,69.7,67.9,67.3,67.2,63.5,62.7,62.3,60.0,50.6,50.3,47.2,46.3,29.8,29.3$, 29.2, 27.0, 23.5, 23.3, 19.3. HRMS (ESI) calcd for $\mathrm{C}_{56} \mathrm{H}_{68} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 950.4883, found 950.4888.

Phenyl 2-azido-4- O-benzoyl-3,6-di- O-benzyl-2-deoxy-1-seleno- α-D-galactopyranoside (S5)

To a solution of the $\mathbf{S} \boldsymbol{4}^{1}$ ($110.7 \mathrm{mg}, 0.21 \mathrm{mmol}$) in new-distilled DCM (1 mL) was stirred over fresh-dried $4 \AA$ molecular sieves under argon at room temperature for 15 min . Then the solution was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{SiH}(0.34 \mathrm{~mL}, 2.12 \mathrm{mmol})$ and trifluoroacetic acid (TFA) ($0.16 \mathrm{~mL}, 2.12 \mathrm{mmol}$) was added respectively. The resulting mixture was allowed to warm to room temperature and stirred for 5 h . Upon completion, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=6: 1)$ to afford the intermediate ($103.4 \mathrm{mg}, 93 \%$). The above intermediate ($103 \mathrm{mg}, 0.20 \mathrm{mmol}$) was dissolved in anhydrous pyridine (1 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$, DMAP ($24 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added, then $\mathrm{BzCl}(0.03 \mathrm{~mL}, 0.29$ mmol) was added slowly. The resulting mixture was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction mixture was diluted in EA, washed with 3 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=10: 1$) to afford $\mathbf{S 5}$ ($110.4 \mathrm{mg}, 87 \%$) as colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{23}=+226.6\left(\mathrm{c} 0.23, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.43$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.36$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.32-7.16$ (m, 11H, Ar), 6.00 (d,

```
J=5.4 Hz, 1H, H-1), 5.94(d, J = 3.2 Hz, 1H, H-4), 4.90 (d, J = 10.7 Hz, 1H,
CH2-Bn), 4.71 (t, J=6.4 Hz, 1H, H-5), 4.56 (d, J= 10.8 Hz, 1H, CH2-Bn), 4.47-
4.33(m, 2H, CH2-Bn), 4.23 (dd, J=10.3, 5.4 Hz, 1H, H-2), 3.86 (dd, J=10.2, 3.2 Hz,
1H, H-3), 3.62 - 3.42 (m, 2H, H-6). ' }\mp@subsup{}{}{13}\textrm{C}\mathrm{ NMR (101 MHz, CDCl ) § 165.6, 137.6, 137.0, 135.14, 135.08, 133.4, 129.9, 129.7, 129.2, 128.6, 128.5, 128.4, 128.3, 128.13, 128.09, 128.05, 127.9, 127.8, 85.3 (C-1), 77.4, 73.7, 71.8, 70.9, 68.3, 66.9, 60.8. HRMS (ESI) calcd for \(\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Se}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\)641.1827, found 641.1821.
```


N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 2-azido-4-O-benzoyl-3,6-di- O -benzyl-2-deoxy-D-galactopyranoside (19e)

To a solution of compound $\mathbf{S 5}(153 \mathrm{mg}, 0.24 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(4.9 \mathrm{~mL} / 1.2$ mL) was added TCCA ($56.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed gradually to room temperature and stirred for 4 h . Then EtOAc was added to this mixture and washed sequentially with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The organic phase was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (petroleum ether-EtOAc, 10:1 to 5:1) afforded hemiacetal intermediate ($102.9 \mathrm{mg}, 86 \%$). The above intermediate ($102.9 \mathrm{mg}, 0.21 \mathrm{mmol}$) and 2 , 2, 2-trifluoro- N-phenylacetimidoyl chloride ($52.4 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in acetone (0.5 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(43.8 \mathrm{mg}, 0.32 \mathrm{mmol})$ was added. The reaction was stirred at room temperature for 4 h , then filtered and concentered in vacuo. The residue was purified by flash column chromatography (petroleum ether containing 2\% $\mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 e}$ ($101.6 \mathrm{mg}, 73 \%$) (Compound $\mathbf{1 7 e}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedures at room temperature for 40 h , using donor 17e ($101.6 \mathrm{mg}, 0.15 \mathrm{mmol}$), acceptor 18 ($75.1 \mathrm{mg}, 0.23 \mathrm{mmol}$), $\mathrm{DCM}(1.5 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ ($255.3 \mathrm{mg}, 0.92 \mathrm{mmol}$) and TMSI ($22 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$). The product was purified by
silica gel column chromatography (PE-EA, 10:1 to 5:1) to afford 19e (111.2 mg, 90\%, $\alpha / \beta=9: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+105.1\left(\mathrm{c} 0.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta 8.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58$ - 7.15 (m, 23H, Ar), 5.92 (s, $1 \mathrm{H}, \mathrm{H}-4 \alpha$), $5.80(\mathrm{~s}, \mathrm{H}-4 \beta), 5.23-5.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 4.92-4.76(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.59-4.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \alpha), 3.79$ - 3.35 (m, 5H, H-2 α), 3.27 - 3.20 (m, 2H, CH2), 1.68 - 1.47 (m, 4H, CH_{2}), 1.42 $1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.7, 156.8, 156.3, 138.0, 137.7, 137.2, 136.9, 133.3, 130.1, 129.9, 129.8, 129.6, 128.62, 128.60, 128.5, 128.4, 128.3, $128.00,127.95,127.91,127.89,127.8,127.4,102.5(\mathrm{C}-1 \beta), 98.2(\mathrm{C}-1 \alpha), 77.4,74.4$, $73.8,73.7,72.7,71.8,71.7,68.6,68.4,68.2,67.4,67.2,66.2,63.1,59.6,50.6,50.3$, 47.2, 46.2, 29.8, 29.1, 27.9, 27.5, 23.4, 23.2. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{8}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 816.3967$, found 816.3968 .

Phenyl 2-azido-3- O-benzoyl-4,6-di- O-benzyl-2-deoxy-1-seleno- α-D-galacto-

 pyranoside (S7)

To a solution of compound $\mathbf{S 6}^{3}(93.4 \mathrm{mg}, 0.18 \mathrm{mmol})$ in anhydrous pyridine (1.3 mL) was cooled to $0^{\circ} \mathrm{C}$, DMAP ($21.8 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added, then $\mathrm{BzCl}(0.04$ $\mathrm{mL}, 0.36 \mathrm{mmol}$) was added slowly. The resulting mixture was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction mixture was diluted in EA, washed with 4 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=20: 1)$ to afford $\mathbf{S 7}(98.8 \mathrm{mg}, 89 \%)$ as colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{23}=+318.5\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.35$ - 7.13 (m, 13H, Ar), 6.01 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.29 (dd, $J=10.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 4.65-4.55\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.51-4.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$-Bn, $), 4.28$ (d,

$$
\begin{aligned}
& J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.61(\mathrm{dd}, J=9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.48(\mathrm{dd}, J=9.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \\
& \mathrm{H}-6) .{ }^{13} \mathrm{C} \text { NMR }\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,137.9,137.7,135.0,133.7,130.0,129.20, \\
& \text { 129.16, 128.7, 128.5, 128.4, 128.2, 128.05, 128.03, 127.96, 127.91, 127.87, 127.85, } \\
& 85.1(\mathrm{C}-1), 75.4,74.7,74.3,73.5,71.7,68.1,60.0 . \mathrm{HRMS} \text { (ESI) calcd for } \\
& \mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+} 646.1381 \text {, found 646.1385. }
\end{aligned}
$$

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl
 2-azido-3-O-benzoyl-4,6-di- O -benzyl-2-deoxy-D-galactopyranoside (19f)

To a solution of $\mathbf{S T}^{3}(300 \mathrm{mg}, 0.48 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(9.6 \mathrm{~mL} / 2.4 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and TCCA ($166 \mathrm{mg}, 0.72 \mathrm{mmol}$) was added. The resulting mixture was stirred overnight at room temperature. The solution was diluted with EtOAc, washed with saturated NaHCO_{3}, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to give the intermediate (180 mg , $77 \%)$. The above intermediate ($180 \mathrm{mg}, 0.37 \mathrm{mmol}$) and 2,2,2-trifluoro- N phenylacetimidoyl chloride ($114 \mathrm{mg}, 0.55 \mathrm{mmol}$) was dissolved in acetone (3 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(76 \mathrm{mg}, 0.55 \mathrm{mmol})$ was added. The reaction was stirred 1 d at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 f}$ (190 $\mathrm{mg}, 80 \%$) (Compound $\mathbf{1 7 f}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedures at rt for 49 h , using donor $\mathbf{1 7 f}$ ($170 \mathrm{mg}, 0.26 \mathrm{mmol}$), acceptor $\mathbf{1 8}(126 \mathrm{mg}, 0.39 \mathrm{mmol})$ with $\mathrm{DCM}(2.6 \mathrm{~mL}), \mathrm{Ph}{ }_{3} \mathrm{P}=\mathrm{O}(429 \mathrm{mg}, 1.54 \mathrm{mmol})$ and TMSI ($36 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 5:1) to afford $19 \mathrm{f}(172 \mathrm{mg}, 85 \%, \alpha / \beta=4: 1)$ as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{Ar}), 7.45$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40-7.14$ (m, 20H, Ar), 5.55 (dd, $J=11.1,2.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.17 (d, $\left.J=11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.53-4.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.37-4.29(\mathrm{~m}, \mathrm{H}-1 \beta), 4.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4)$, $4.16-4.08$ (m, 1H, H-5), 3.93 (dd, $J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.74-3.63$ (m, 1H, $\left.\mathrm{CH}_{2}\right), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 3.48-3.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.31-3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.64-1.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.8,156.8,156.2,138.0,137.85,137.81,136.9,133.5,130.0,129.4,128.6,128.5$, 128.5, 128.4, 128.3, 128.2, 128.04, 128.96, 127.91, 127.87, 127.83, 127.78, 127.3, 102.4 (C-1 β), 98.3 (C-1 α), 77.4, 75.3, 75.2, 74.9, 74.4, 73.6, 73.5, 73.4, 71.8, 70.0, $69.3,68.5,68.2,67.2,61.8,60.4,58.4,50.6,50.3,47.2,46.3,41.4,31.6,29.2,28.0$, 27.7, 27.6, 23.4, 23.2, 22.72, 22.70. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 821.3521, found 821.3522.

Phenyl 2-azido-3,4-di- O-benzoyl-6-O-benzyl-2-deoxy-1-seleno- α-D-galacto-

 pyranoside (S10)

To a solution of the $\mathbf{S 8}^{3}$ ($5.88 \mathrm{~g}, 13.60 \mathrm{mmol}$) in new-distilled DCM (67 mL) was stirred over fresh-dried $4 \AA$ molecular sieves under argon at room temperature for 15 min . Then the solution was cooled to $0^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{SiH}(21.7 \mathrm{~mL}, 135.96 \mathrm{mmol})$ and TFA ($10.5 \mathrm{~mL}, 135.96 \mathrm{mmol}$) was added respectively. The resulting mixture was allowed to warm to room temperature and stirred for 3 h . Upon completion, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2.5: 1$) to afford the intermediate $\mathbf{S 9}(4.99 \mathrm{~g}, 85 \%)$. The above intermediate ($5.56 \mathrm{~g}, 12.80 \mathrm{mmol}$) was dissolved in anhydrous pyridine (42 mL). The solution was cooled to $0^{\circ} \mathrm{C}$, DMAP ($1.56 \mathrm{~g}, 12.80 \mathrm{mmol}$) was added, then $\mathrm{BzCl}(4.5 \mathrm{~mL}, 38.40 \mathrm{mmol})$ was added slowly. The resulting mixture was allowed to warm to room temperature and stirred
overnight. Upon completion, the reaction mixture was diluted in EA, washed with 3 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE:EA $=10: 1$) to afford $\mathbf{S 1 0}(7.50 \mathrm{~g}, 85 \%)$ as white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=+182.4$ (c $0.20, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}$), $7.92-7.86$ (m, 2H, Ar), 7.69 - 7.63 (m, 2H, Ar), 7.59 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 7.44 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, 7.25 - 7.17 (m, 7H, Ar), 6.12 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.96 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.48 (dd, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.90 (t, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.51 (dd, $J=10.8$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.46-4.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.63-3.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,165.3,137.6,135.3,133.6,133.5,129.9,129.3,128.7$, 128.5, 128.4, 128.3, 127.84, 127.79, 84.9 (C-1), 73.6, 72.2, 70.7, 68.5, 68.1, 59.9. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SeK}[\mathrm{M}+\mathrm{K}]^{+}$676.0913, found 676.0904.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl

2-azido-3,4-di-O-benzoyl-6-O-benzyl-2-deoxy-D-galactopyranoside (19a)

Compound S10 (1.02 g, 1.59 mmol$)$ was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL} / 1.4$ mL), then N-iodosuccinimide (NIS) ($537.4 \mathrm{mg}, 2.39 \mathrm{mmol}$) was added. The resulting mixture was allowed to warm to room temperature and stirred overnight. The solution was diluted with EtOAc , washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to give the intermediate ($637.8 \mathrm{mg}, ~ 80 \%$). The above intermediate ($637.8 \mathrm{mg}, 1.27 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($289.2 \mathrm{mg}, 1.39 \mathrm{mmol}$) was dissolved in acetone (2 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(262.5 \mathrm{mg}, 1.90 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The
residue was purified by flash column chromatography (petroleum ether, containing 2\% $\mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 a}$ ($843 \mathrm{mg}, 99 \%$) (Compound 17a was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at $25^{\circ} \mathrm{C}$ for 23 h , using acceptor 18 (120.2 mg, 0.37 mmol) with $\mathbf{1 7 a}$ ($165.1 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{DCM}(2.4 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(408.6 \mathrm{mg}$, $1.47 \mathrm{mmol})$ and TMSI ($35 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford 19a ($188.5 \mathrm{mg}, 95 \%, \alpha / \beta>20: 1$) as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{23}=+137.0\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.88$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.51$ - 7.40 (m, 3H, Ar), 7.39 - 7.12 (m, 17H, Ar), 5.93 (s, 1H, H-4), 5.78 - 5.73 (m, 1H, $\mathrm{H}-3$), $5.23-5.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}, \mathrm{H}-1\right), 4.50\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.42-$ 4.33 (m, 2H, CH2-Bn, H-5), 3.87 - 3.70 (m, 2H, H-2, CH2), 3.64 - 3.40 (m, 3H, H-6, $\left.\mathrm{CH}_{2}\right), 3.35-3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73-1.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45-1.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,156.8,156.3,138.0,137.6,136.9,133.4,133.3$, 129.9, 129.83, 129.80, 129.5, 129.3, 128.6, 128.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.71, 127.67, 127.3, 102.6 (C-1ß), 98.4 (C-1 α), 77.4, 73.6, 69.1, 69.0, 68.6, 68.31, 68.27, 67.2, 58.3, 50.6, 50.4, 47.2, 46.2, 29.7, 29.1, 27.9, 27.6, 23.4. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{~N}_{5} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 830.3760$, found 830.3763.

Glycosylation between 17a and 18 using TMSI only

A mixture of donor $\mathbf{1 7 a}(165 \mathrm{mg}, 0.24 \mathrm{mmol})$ and acceptor N-(benzyl) benzyloxycarbonyl-5-aminopentanol 18 ($120.1 \mathrm{mg}, 0.37 \mathrm{mmol}$) was co-evaporated with dry toluene for three times. Then the mixture was dissolved in new distilled DCM (2.4 mL) and stirred over fresh-dried $3 \AA$ molecular sieves under argon at room temperature for 15 min , then TMSI ($35 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) was added dropwise to the mixture. After being stirred for another 23 h at room temperature, the reaction was
quenched with $\mathrm{NaS}_{2} \mathrm{O}_{3}$ aq. The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The products were purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to afford 19a $(42.3 \mathrm{mg}, 21 \%, \alpha / \beta=10: 1)$ as a syrup.

Glycosylation between 17 a and 18 using TMSOTf instead of $\mathbf{T M S I}$ and $\mathrm{Ph}_{3} \mathbf{P O}$

A mixture of donor $\mathbf{1 7 a}(132.5 \mathrm{mg}, 0.20 \mathrm{mmol})$ and acceptor 18 N -(benzyl) benzyloxycarbonyl-5-aminopentanol ($96.5 \mathrm{mg}, 0.29 \mathrm{mmol}$) was co-evaporated with anhydrous toluene for three times. Then the mixture was dissolved in new distilled DCM (2.0 mL) and stirred over fresh-dried $3 \AA$ molecular sieves under argon at room temperature for 15 min , then cooled to $0^{\circ} \mathrm{C}$, trimethylsilyl trifluoromethanesulfonate (TMSOTf) ($7 \mu \mathrm{~L}, 0.039 \mathrm{mmol}$) was added dropwise to the mixture. After being stirred for another 2.5 h , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and filtered. The filtrates were concentrated in vacuo to give a residue, which was purified by flash column chromatography (petroleum ether-EtOAc, 3.5:1) to afford 19a (148.4 mg, $93 \%, \alpha / \beta=$ 2.8:1) as a syrup.

Reaction scope of GalN \mathbf{N}_{3} PTFAI donors

Phenyl 2-azido-3,4-di- O-benzoyl-2-deoxy-6-O-levulinoyl-1-seleno- α-D-galactopyranoside (S14)

Compound S11 ${ }^{3}$ ($2.17 \mathrm{~g}, 3.73 \mathrm{mmol}$) was dissolved in anhydrous pyridine (12 mL). The solution was cooled to $0^{\circ} \mathrm{C}$, DMAP ($456.0 \mathrm{mg}, 3.73 \mathrm{mmol}$) was added, then $\mathrm{BzCl}(1.3 \mathrm{~mL}, 11.20 \mathrm{mmol})$ was added slowly. The resulting mixture was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction mixture was diluted in EA, washed with 3 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE:EA $=10: 1)$ to afford $\mathbf{S 1 2}(2.71 \mathrm{~g}$, $92 \%) \cdot[\alpha]_{\mathrm{D}}{ }^{24}=+271.6\left(\mathrm{c} 0.22, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.92$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.62$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}), 7.56$ (d, $J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.47-7.32(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 7.24(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.12(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4), 6.05(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.57(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.74(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.48(\mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.71(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 3.55 (dd, $J=10.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 0.98 (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,165.2,135.6,135.54,135.50,135.2,133.44,133.40,132.9$, $132.5,129.92,129.87,129.8,129.74,129.67,129.29,129.26,128.7,128.5,128.2$, 127.91, 127.88, 127.8, 127.7, 84.7 (C-1), 72.2, 71.7, 67.7, 61.0, 60.0, 26.8, 19.1. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SeSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$803.2328, found 803.2325.

The $\mathbf{S 1 2}$ ($1.48 \mathrm{~g}, 1.89 \mathrm{mmol}$) was then dissolved in anhydrous THF (6.0 mL), and $\mathrm{HF} /$ pyridine $(70 \%, 1.7 \mathrm{~mL}, 18.68 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred overnight at room temperature, the reaction mixture was then quenched with $\mathrm{Et}_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue
was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1$) to give $\mathbf{S 1 3}$ $(913.4 \mathrm{mg}, 88 \%$,) To a solution of $\mathbf{S} 13(460 \mathrm{mg}, 0.83 \mathrm{mmol})$ and levulinic acid (145 $\mathrm{mg}, 1.25 \mathrm{mmol}$) in anhydrous DCM (8.3 mL) was added 4-dimethylaminopyridine (DMAP) ($101.7 \mathrm{mg}, 0.83 \mathrm{mmol}$), N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride (EDCI) ($287.3 \mathrm{mg}, 1.50 \mathrm{mmol}$) and N, N-diisopropylethylamine (DIPEA) ($0.41 \mathrm{~mL}, 2.50 \mathrm{mmol}$). The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 5:1) to afford $\mathbf{S 1 4}(522.8 \mathrm{mg}, 97 \%) .[\alpha]_{\mathrm{D}}{ }^{21}=+376.2\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.38 - 7.30 (m, 5H, Ar), 6.16 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.90 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.47 (dd, $J=10.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.53(\mathrm{dd}, J=10.8$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.25-4.11$ (m, 2H, H-6), 2.66 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.47 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Lev), $2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-Lev). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $206.2,172.2,165.34,165.32,134.9,133.8,133.6,129.92,129.90,129.4,129.2,129.1$, 128.8, 128.5, 128.4, 127.8, 84.5 (C-1), 71.9, 69.6, 68.0, 62.1, 59.7, 37.9, 29.9, 29.8, 27.8. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+} 668.1072$, found 668.1067 .

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 2-azido-3,4-di-O-benzoyl-2-deoxy -6-O-levulinoyl-D-galactopyranoside (19g)

To a solution of $\mathbf{S 1 4}(522.8 \mathrm{mg}, 0.80 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL} / 4 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and TCCA ($186.8 \mathrm{mg}, 0.80 \mathrm{mmol}$) was added. The resulting mixture was stirred overnight at room temperature. The solution was diluted with EtOAc, washed with saturated NaHCO_{3}, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column
chromatography (petroleum ether-EtOAc, 2.5:1 to 1:1) to give the intermediate (306.2 $\mathrm{mg}, 75 \%$). The above intermediate ($306.0 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 2,2,2-trifluoro- N phenylacetimidoyl chloride ($149.0 \mathrm{mg}, 0.72 \mathrm{mmol}$) was dissolved in acetone (1.0 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(124.0 \mathrm{mg}, 0.90 \mathrm{mmol})$ was added. The reaction was stirred for 5 h at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 10:1 to 3.2:1, containing 2% $\mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 g}$ ($395.3 \mathbf{m g}, 97 \%$) (Compound $\mathbf{1 7} \mathbf{g}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at $30^{\circ} \mathrm{C}$ for 25 h , using donor $\mathbf{1 7 g}$ ($195.5 \mathrm{mg}, 0.29$ $\mathrm{mmol})$, acceptor $18(140.7 \mathrm{mg}, 0.43 \mathrm{mmol})$ with $\mathrm{DCM}(2.8 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(478.2 \mathrm{mg}$, $1.72 \mathrm{mmol})$ and TMSI ($41 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 2:1) to afford $\mathbf{1 9 g}(179.0 \mathrm{mg}, 76 \%, \alpha / \beta>20: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+174.6\left(\mathrm{c} 0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.87$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53$ - 7.42 (m, 3H, Ar), 7.42 - 7.15 (m, 12H, Ar), 5.86 (s, 1H, H-4), 5.74 (d, J = 10.8 Hz , $1 \mathrm{H}, \mathrm{H}-3$), $5.26-5.05$ (m, 3H, CH2-Cbz, H-1), $4.57-4.48$ (m, 2H, CH $\mathrm{CH}_{2}-\mathrm{Bn}$), $4.45-$ $4.33(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$, $\left.\mathrm{CH}_{2}\right), 3.60-3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35-3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.68(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}-Lev), 2.52 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Lev), $1.75-1.50$ (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), $1.47-1.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 206.7, 206.2, 172.1, 165.32, 165.27, 156.6, 156.1, 149.7, 137.9, 136.8, 135.9, 133.5, 133.3, 129.7, 129.1, 129.0, 128.6, 128.5, 128.41, 128.38, 128.3, 127.85, 127.77, 127.2, 123.7, 98.3 (C-1), 68.7, 68.4, 67.1, 66.9, 62.1, 58.0, 53.5, 50.5, 50.3, 47.1, 46.2, 37.7, 30.8, 29.6, 29.0, 27.9, 27.8, 27.7, 27.5, 23.3. HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{~N}_{5} \mathrm{O}_{11}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 838.3658, found 838.3668.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 2-azido-3,4-di-O-benzoyl-6-O-tert-butyldiphenylsilyl-2-deoxy-D-galactopyranoside (19h)

To a solution of $\mathbf{S 1 2}(628.8 \mathrm{mg}, 0.80 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL} / 4 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$, and TCCA ($184.8 \mathrm{mg}, 0.80 \mathrm{mmol}$) was added. The resulting mixture was stirred overnight at room temperature. The solution was diluted with EtOAc, washed with saturated NaHCO_{3}, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to give the intermediate (466.0 mg , 90%). The above intermediate ($466 \mathrm{mg}, 0.72 \mathrm{mmol}$) and 2,2,2-trifluoro- N -phenylacetimidoyl chloride ($178.1 \mathrm{mg}, 0.86 \mathrm{mmol}$) was dissolved in acetone (1 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(148.2 \mathrm{mg}, 1.07 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 50:1, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 h}$ ($414 \mathrm{mg}, 70 \%$) (Compound $\mathbf{1 7 h}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at $30^{\circ} \mathrm{C}$ for 29 h , using acceptor 18 ($121.8 \mathrm{mg}, 0.37 \mathrm{mmol}$) with $\mathbf{1 7 h}(204 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{DCM}(2.5 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(413.9 \mathrm{mg}, 1.49 \mathrm{mmol})$ and TMSI ($35 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 6:1) to afford $\mathbf{1 9 h}(215.5 \mathrm{mg}, 90 \%, \alpha / \beta>20: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+115.1\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.65$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59$ - 7.18 (m, 22H, Ar), $7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.04(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.82$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.20-5.07(\mathrm{~m}, 3 \mathrm{H}), 4.52(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.20$ (m, 1H), 3.80 (dd, $J=11.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.77-3.62$ (m, 3H), $3.52-3.36$ (m, $1 \mathrm{H}), 3.35-3.18(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.01(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 165.4, 165.2, 156.7, 156.2, 137.9, $136.8,135.5,135.4,133.3,133.2,132.9,132.7,129.81,129.78,129.73,129.68,129.6$, 129.3, 128.5, 128.4, 128.2, 127.9, 127.81, 127.77, 127.74, 127.6, 127.3, 127.2, 98.3 (C-1), 77.2, 69.5, 69.1, 68.4, 67.2, 61.7, 58.3, 50.6, 50.3, 47.1, 46.2, 29.1, 27.9, 27.5,
26.7, 23.4, 19.0. HRMS (ESI) calcd for $\mathrm{C}_{56} \mathrm{H}_{64} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 978.4468$, found 978.4469.

Phenyl 6-O-acetyl-2-azido-3,4-di- O-benzoyl-2-deoxy-1-seleno- α-D-galactopyranoside (S15)

Compound $\mathbf{S 1 3}$ ($757 \mathrm{mg}, 1.37 \mathrm{mmol}$) was dissolved in anhydrous pyridine (2.6 $\mathrm{mL})$, then $\mathrm{Ac}_{2} \mathrm{O}(0.26 \mathrm{~mL}, 2.74 \mathrm{mmol})$ was added slowly. The resulting mixture was stirred overnight at room temperature. Upon completion, the reaction mixture was diluted in EA, washed with 4 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE:EA = 5:1) to afford $\mathbf{S 1 5}(760.9 \mathrm{mg}, 93 \%)$ as white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=+443.6$ (c $0.14, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-$ 7.96 (m, 2H, Ar), 7.89 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.67$ (dd, $J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.61$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.38$ 7.30 (m, 5H, Ar), 6.18 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.93 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.49$ (dd, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.55(\mathrm{dd}, J=10.8,5.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.23-4.10$ (m, 2H, H-6), 1.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 170.4,165.4,165.3,135.0,133.8,133.6,129.90,129.86,129.4,129.0$, 128.9, 128.8, 128.5, 128.4, 127.7, 84.3 (C-1), 72.0, 69.5, 68.0, 62.0, 59.6, 20.7. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}$612.0809, found 612.0817.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl \quad 6- O-acetyl-2-azido-3,4-di- O -

 benzoyl-2-deoxy-D-galactopyranoside (19i)

Compound S15 (701 mg, 1.18 mmol$)$ was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} / 1$ mL) and NIS ($397.9 \mathrm{mg}, 1.77 \mathrm{mmol}$) was added. The resulting mixture was stirred for 6.5 h . The solution was diluted with EtOAc, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 2:1) to give the intermediate ($524 \mathrm{mg}, 97 \%$). The above intermediate ($391 \mathrm{mg}, 0.86 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($160.4 \mathrm{mg}, 0.77 \mathrm{mmol}$) was dissolved in acetone (1 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(177.9 \mathrm{mg}, 1.29 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 i}(435.7 \mathrm{mg}, 90 \%)$ (Compound 17i was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at $30^{\circ} \mathrm{C}$ for 26 h , using acceptor 18 ($158.9 \mathrm{mg}, 0.49 \mathrm{mmol}$) with $\mathbf{1 7 i}(202.0 \mathrm{mg}, 0.32 \mathrm{mmol})$, $\mathrm{DCM}(3.2 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ ($540.2 \mathrm{mg}, 1.94 \mathrm{mmol}$) and TMSI ($46 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 3:1) to afford 19i (193.4 mg, 78\%, $\alpha / \beta>20: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+176.1\left(\mathrm{c} 0.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1H, Ar), 7.51 - 7.41 (m, 3H, Ar), $7.40-7.17$ (m, 12H, Ar), 5.89 (s, 1H, H-4), 5.75 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.24-5.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.43-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=11.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.81-3.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.59-3.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35-3.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 1.75-1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.3,165.4,156.7,156.2,137.9,136.8,133.6,133.3,129.9$, 129.8, 129.2, 129.1, 128.6, 128.53, 128.45, 128.4, 128.3, 127.9, 127.8, 127.3, 98.4 (C-1), 68.8, 68.7, 68.5, 67.2, 67.0, 62.1, 58.1, 50.6, 50.3, 47.1, 46.2, 29.1, 27.9, 27.5, 23.4, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 765.3130$, found 765.3135 .

Compound $\mathbf{S 1 6}^{4}$ ($592.8 \mathrm{mg}, 1.15 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($261.6 \mathrm{mg}, 1.26 \mathrm{mmol}$) was dissolved in acetone (2 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (238.3 $\mathrm{mg}, 1.72 \mathrm{mmol}$) was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 j}$ ($774.5 \mathrm{mg}, 98 \%$) (Compound 17 \mathbf{j} was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at $30^{\circ} \mathrm{C}$ for 31 h , using acceptor $\mathbf{1 8}(158.7 \mathrm{mg}, 0.48 \mathrm{mmol})$ with $\mathbf{1 7 j}$ (222.5 $\mathrm{mg}, 0.32 \mathrm{mmol})$, $\mathrm{DCM} 3.2 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(539.5 \mathrm{mg}, 1.94 \mathrm{mmol})$ and TMSI $(47 \mu \mathrm{~L}$, 0.32 mmol). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford $\mathbf{1 9 j}(223.1 \mathrm{mg}, 83 \%, \alpha / \beta>20: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+136.3$ (c $0.28, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (m, 4H, Ar), $7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, 2H, Ar), $7.60-7.53$ (m, 1H, Ar), 7.51 - 7.40 (m, 4H, Ar), $7.40-7.15$ (m, 14H, Ar), 6.01 (s, 1H, H-4), 5.82 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.25-5.11$ (m, 3H, CH 2 -Cbz, H-1), 4.62 - 4.45 (m, 4H, CH 2 -Bn), $4.36(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.82-3.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.58-3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.33-3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.74-1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.9,165.33,165.27,156.6,156.1,137.9,136.8,133.5,133.3,133.2,129.9,129.8$, $129.73,129.65,129.6,129.4,129.1,129.0,128.6,128.5,128.4,128.3,127.8,127.2$, 98.3 (C-1), 68.8, 68.7, 68.6, 67.1, 67.1, 62.5, 58.1, 50.5, 50.2, 47.0, 46.1, 29.6, 29.0, 27.8, 27.4, 23.3. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$844.3552, found 844.3560 .

Phenyl 3,4-di- O-acetyl-2-azido-6-O-benzyl-2-deoxy-1-seleno- α-D-galactopyranoside (S17)

Compound $\mathbf{S 9}$ ($839 \mathrm{mg}, 1.93 \mathrm{mmol}$) was dissolved in anhydrous pyridine (3.8 $\mathrm{mL})$, then $\mathrm{Ac}_{2} \mathrm{O}(0.73 \mathrm{~mL}, 7.73 \mathrm{mmol})$ was added slowly. The resulting mixture was stirred overnight at room temperature. Upon completion, the reaction mixture was diluted in EA, washed with 4 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=6: 1)$ to afford $\mathbf{S 1 7}(820 \mathrm{mg}, 85 \%)$ as white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=+27.7\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.36-7.22(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.96(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.54$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.11$ (dd, $J=10.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $4.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.47\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.38(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), 4.24 (dd, $J=10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.49-3.38$ (m, 2H, H-6), $2.22-$ $1.93\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,169.6,137.6,135.1$, 129.2, 128.5, 128.2, 127.91, 127.88, 127.8, 84.6 (C-1), 73.5, 71.4, 70.2, 67.8, 67.7, 59.1, 20.74, 20.69. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}$536.0860, found 536.0863.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl benzyl-2-deoxy-D-galactopyranoside (19k)

3,4-di- O-acetyl-2-azido-6-O-

Compound $\mathbf{S 1 7}(820 \mathrm{mg}, 1.58 \mathrm{mmol})$ was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL} / 1.4$ mL), then NIS ($533.8 \mathrm{mg}, 2.37 \mathrm{mmol}$) was added. The resulting mixture was stirred for 6 h. The solution was diluted with EtOAc, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 2:1)
to give the intermediate ($539 \mathrm{mg}, 90 \%$). The above intermediate ($539 \mathrm{mg}, 1.42 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($294.9 \mathrm{mg}, 1.42 \mathrm{mmol}$) was dissolved in acetone (1.4 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(294.5 \mathrm{mg}, 2.13 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 k}$ ($671.6 \mathrm{mg}, 86 \%$) (Compound $\mathbf{1 7 k}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at rt for 11 d, using acceptor 18 ($128.3 \mathrm{mg}, 0.39 \mathrm{mmol}$) with $\mathbf{1 7 k}(143.8 \mathrm{mg}, 0.26 \mathrm{mmol})$, $\mathrm{DCM} 2.6 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ ($436.1 \mathrm{mg}, 1.57 \mathrm{mmol}$) and TMSI ($37 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford 19k ($143.9 \mathrm{mg}, 82 \%, \alpha / \beta$ $=15: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+98.9\left(\mathrm{c} 0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.32$ - 6.99 (m, 15H, Ar), $5.42(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \alpha), 5.28$ (dd, $J=11.1$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \alpha$), 5.09 (d, $J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}$), 4.86 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1 \alpha$), 4.68 (dd, $J=10.9,3.3 \mathrm{~Hz}, \mathrm{H}-3 \beta), 4.48-4.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.11-4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \alpha)$, $3.66-3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49$ (dd, $\left.J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \alpha\right), 3.43-3.25(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-6 \alpha, \mathrm{CH}_{2}$), $3.22-3.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 1.58-1.36(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), 1.32 - $1.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,169.8,156.7$, 156.2, 138.0, 137.6, 136.9, 128.6, 128.5, 128.4, 127.92, 127.88, 127.82, 127.80, 127.3, 102.4 (C-1 β), 98.1 (C-1 α), 73.6, 73.5, 72.1, 71.2, 70.3, 68.5, 68.4, 68.2, 67.9, 67.8, $67.5,67.2,67.0,61.2,57.6,50.6,50.3,47.1,46.2,29.4,29.2,29.0,27.9,27.5,23.4$, 23.2, 22.7, 20.70, 20.66, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 706.3447, found 706.3449.

Phenyl 3,4-di- O-acetyl-2-azido-6-O-tert-butyldiphenylsilyl-2-deoxy-1-seleno- α-Dgalactopyranoside (S18)

Compound $\mathbf{S 1 1}$ ($1.58 \mathrm{~g}, 2.71 \mathrm{mmol}$) was dissolved in anhydrous pyridine (5.4 $\mathrm{mL})$, then $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 10.84 \mathrm{mmol})$ was added slowly. The resulting mixture was stirred overnight at room temperature. Upon completion, the reaction mixture was diluted in EA, washed with 4 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=10: 1$) to afford $\mathbf{S 1 8}(1.68 \mathrm{~g}, 93 \%)$ as yellow solid. $[\alpha]_{\mathrm{D}}{ }^{23}=+184.2\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-$ 7.57 (m, 4H, Ar), 7.52 - 7.47 (m, 2H, Ar), 7.44 - 7.33 (m, 6H, Ar), 7.26 - 7.21 (m, 1H, $\mathrm{Ar}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.89(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.68-5.64(\mathrm{~m}, 1 \mathrm{H}$, H-4), 5.16 (dd, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.51$ (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.21$ (dd, $J=$ $10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.57$ (dd, $J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.49 (dd, $J=10.0,5.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$), 2.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$), 1.02 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}$). ${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,169.6,135.6,135.5,135.0,132.9,132.7,129.9$, 129.1, 128.1, 127.80, 127.78, 127.7, 84.5 (C-1), 71.4, 71.2, 67.0, 60.9, 59.1, 26.7, 20.7, 20.5, 19.1. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SeSiK}[\mathrm{M}+\mathrm{K}]^{+} 700.1308$, found 700.1308 .

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 3,4-di-O-acetyl-2-azido-6-O-tert-butyldiphenylsilyl-2-deoxy-D-galactopyranoside (191)

Compound S18 ($470 \mathrm{mg}, 0.70 \mathrm{mmol}$) was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(6.4 \mathrm{~mL} / 0.6$ mL), then NIS ($212.8 \mathrm{mg}, 0.95 \mathrm{mmol}$) was added. The resulting mixture was stirred for 6.5 h . The solution was diluted with EtOAc , washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 6:1) to give the intermediate ($282.3 \mathrm{mg}, 76 \%$). The above intermediate ($220.3 \mathrm{mg}, 0.42$ mmol) and 2,2,2-trifluoro- N -phenylacetimidoyl chloride ($103.9 \mathrm{mg}, 0.50 \mathrm{mmol}$) was
dissolved in acetone (1.0 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(86.4 \mathrm{mg}, 0.63 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 1}$ ($280 \mathrm{mg}, 96 \%$) (Compound 171 was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at $30^{\circ} \mathrm{C}$ for 29 h , using acceptor 18 ($93.3 \mathrm{mg}, 0.28 \mathrm{mmol}$) with $171(132.7 \mathrm{mg}, 0.19 \mathrm{mmol})$, $\mathrm{DCM}(1.9 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ ($317.1 \mathrm{mg}, 1.14 \mathrm{mmol}$) and TMSI ($27 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford 191 ($120.8 \mathrm{mg}, 76 \%, \alpha / \beta$ $=12: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+62.5\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.43-7.15(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}), 5.59(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4 \alpha$), $5.52(\mathrm{~d}, J=3.3 \mathrm{~Hz}, \mathrm{H}-4 \beta) 5.40(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \alpha), 5.18(\mathrm{~d}, J$ $\left.=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 4.50\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.10$ - 4.02 (m, 1H, H-5 $), 3.73$ - 3.59 (m, 3H, H- $6 \alpha, \mathrm{CH}_{2}$), 3.55 (dd, $J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.42-3.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04$ (s, 3H, $\mathrm{CH}_{3}-\mathrm{Ac}$), 2.00 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$), $1.65-$ $1.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.84,169.80,156.7,156.2,137.9,136.8,135.6,135.5,133.0,132.9$, 129.9, 129.8, 128.52, 128.50, 128.4, 127.84, 127.81, 127.77, 127.74, 127.3, 102.3 (C-1 β), $98.0(\mathrm{C}-1 \alpha), 73.2,69.1,68.4,68.3,67.7,67.1,66.4,61.6,61.2,57.6,53.4$, $50.6,50.3,47.1,46.2,29.0,27.9,27.5,26.7,23.3,20.7,20.6,19.0$. HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$854.4155, found 854.4156.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 3,4,6-tri- O-acetyl-2-azido-2-deoxy-

D-galactopyranoside (19m)

The compound $\mathbf{S 1 9}^{1}$ ($285.7 \mathrm{mg}, 0.86 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($214.8 \mathrm{mg}, 1.03 \mathrm{mmol}$) was dissolved in acetone (1.5 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(178.7 \mathrm{mg}, 1.29 \mathrm{mmol})$ was added. The reaction was stirred overnight at room
temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 12:1 to 4:1, containing 1% $\mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 m}$ ($368 \mathrm{mg}, 85 \%$) (Compound $\mathbf{1 7} \mathbf{m}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to

General Experimental Procedure at rt for 5 d , using acceptor 18 ($196.5 \mathrm{mg}, 0.60$ mmol) with $\mathbf{1 7 m}(201 \mathrm{mg}, 0.40 \mathrm{mmol})$, $\mathrm{DCM}(4.4 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(668.1 \mathrm{mg}, 2.40$ $\mathrm{mmol})$ and TMSI ($57 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford $\mathbf{1 9 m}(167 \mathrm{mg}, 68 \%, \alpha / \beta=10: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}=+95.1\left(\mathrm{c} 0.46, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.04(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}), 5.36$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4 \alpha$), 5.27 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \alpha$), 5.08 (d, $J=12.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$-Cbz), 4.86 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1 \alpha$), 4.69 (d, $J=11.0 \mathrm{~Hz}, \mathrm{H}-3 \beta$), $4.47-4.35(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.15-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.64-3.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \alpha), 3.43-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ 3.10 (m, 2H, CH 2), 2.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$), 1.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$), 1.92 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$), $1.59-1.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.1, 169.92, 169.89, 169.6, 156.6, 156.1, 137.9, 136.8, 128.4, 128.3, 127.84, 127.81, 127.7, 127.2, 102.2 (C-1ß), 98.0 (C-1 α), 70.9, 70.5, 70.2, 68.5, 68.1, 67.6, 67.0, 66.5, $66.3,61.6,61.2,60.9,57.3,50.5,50.3,47.0,46.1,29.6,29.0,28.9,27.8,27.4,23.2$, 23.0, 20.51, 20.46. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$641.2817, found 641.2810.

Phenyl 2-azido-4- O-benzoyl-6- O-benzyl-3- O-levulinoyl-2-deoxy-1-seleno- α-Dgalactopyranoside (S21)

Compound $\mathbf{S 9}$ ($152 \mathrm{mg}, 0.35 \mathrm{mmol}$) was stirred with trimethyl orthobenzoate $(0.52 \mathrm{~mL}, 2.80 \mathrm{mmol})$ in acetonitrile $(1.7 \mathrm{~mL})$ at room temperature for some time. Then 10-camphorsulfonic acid (CSA) ($24.4 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added, and the reaction mixture was stirred at room temperature for 3 h . The solvent was then removed under reduced pressure, and the temperature was brought down to $0^{\circ} \mathrm{C}, 80 \%$
aq acetic acid $(1.7 \mathrm{~mL})$ was then added, and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was quenched carefully with saturated NaHCO_{3}. The product was extracted with dichloromethane ($25 \mathrm{~mL} \times 3$), and the combined organic layer was washed with distilled water ($100 \mathrm{~mL} \times 1$). The organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 8:1) to afford the intermediate $\mathbf{S 2 0}$ ($135.5 \mathrm{mg}, \mathbf{7 2 \%}$). To a solution of the above intermediate ($56.1 \mathrm{mg}, 0.10 \mathrm{mmol}$) and levulinic acid ($18.1 \mathrm{mg}, 0.16 \mathrm{mmol}$) in anhydrous DCM (1 mL) was added DMAP ($12.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), EDCI ($36.0 \mathrm{mg}, 0.19 \mathrm{mmol}$) and DIPEA ($0.051 \mathrm{~mL}, 0.31 \mathrm{mmol}$). The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 4.3:1) to afford $\mathbf{S} 21(55.8 \mathrm{mg}, 84 \%) .[\alpha]_{\mathrm{D}}{ }^{24}=+210.3\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ - $8.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.66-7.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2H, Ar), 7.30 - 7.15 (m, 8H, Ar), 6.05 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.78 (d, $J=3.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4), 5.22$ (dd, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.42(\mathrm{~d}$, $\left.J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.37-4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.57-3.45(\mathrm{~m}, 2 \mathrm{H}$, H-6), 2.87 - 2.77 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.75 - $2.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.65-2.55(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.53 - 2.44 (m, 1H, CH2-Lev), 2.15 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-Lev). ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.1,171.7,165.6,137.6,135.2,133.7,129.9,129.4,129.3,128.8$, 128.4, 128.3, 127.82, 127.80, 84.7 (C-1), 73.5, 71.9, 70.5, 68.3, 67.9, 59.4, 37.9, 29.8, 28.0. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+} 654.1279$, found 654.1281 .

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 2-azido-4- O-benzoyl-6- O-benzyl-3-O-levulinoyl-2-deoxy-D-galactopyranoside (19n)

Compound S21 (524 mg, 0.82 mmol) was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(7.4 \mathrm{~mL} / 0.7$
mL), then NIS ($278 \mathrm{mg}, 1.24 \mathrm{mmol}$) was added. The resulting mixture was stirred for 10 h . The solution was diluted with EtOAc, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 2:1) to give the intermediate ($387 \mathrm{mg}, 95 \%$). The above intermediate ($280 \mathrm{mg}, 0.56 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($116 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in acetone (5.6 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(116 \mathrm{mg}, 0.85 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 20:1 to $10: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 n}(309 \mathrm{mg}, 82 \%)$ (Compound $\mathbf{1 7 n}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at rt for 4.5 d, using acceptor 18 ($250 \mathrm{mg}, 0.67 \mathrm{mmol}$) with $\mathbf{1 7 n}(300 \mathrm{mg}, 0.45 \mathrm{mmol})$, DCM 4.5 mL , $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(748 \mathrm{mg}, 2.69 \mathrm{mmol})$ and TMSI ($64 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 3:1) to afford 19n (225 mg , $85 \%, \alpha / \beta>20: 1)$ as a colorless syrup. $[\alpha]_{D}{ }^{24}=+107.3\left(c \quad 0.24, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.39(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.33-7.06(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 5.67(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.39(\mathrm{dd}, J=$ 11.2, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.11 (d, $\left.J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.95$ (s, 1H, H-1), $4.46-$ $4.38\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.29\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.24-4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $3.69-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{CH}_{2}\right), 3.49-3.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{CH}_{2}\right), 3.25-3.06(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.77-2.66 (m, 1H, CH 2 -Lev), $2.65-2.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.56-2.45(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.44 - 2.34 (m, 1H, CH ${ }_{2}$-Lev), 2.05 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-Lev), 1.61 - 1.41 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), $1.32-1.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.0, 171.7, 165.6, 156.7, 156.2, 138.0, 137.5, 136.9, 133.5, 129.9, 129.8, 129.4, 128.7, 128.62, 128.56, 128.5, 128.3, 127.94, 127.88, 127.8, 127.7, 127.6, 127.3, 98.3 (C-1), 77.4, $73.5,68.84,68.76,68.6,68.1,67.2,57.9,53.5,50.6,50.4,47.1,46.2,37.9,29.7,29.1$, 28.0, 23.4. HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 824.3865$, found 824.3872 .

Phenyl 3-O-acetyl-2-azido-4-O-benzoyl-6-O-benzyl-2-deoxy-1-seleno- α-D-galacto-

 pyranoside (S24)

Compound S20 ($404 \mathrm{mg}, 0.82 \mathrm{mmol}$) was dissolved in anhydrous pyridine (3 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$, DMAP ($100 \mathrm{mg}, 0.82 \mathrm{mmol}$) was added, then $\mathrm{Ac}_{2} \mathrm{O}(0.11 \mathrm{~mL}, 1.22 \mathrm{mmol})$ was added slowly. The resulting mixture was stirred overnight at room temperature. Upon completion, the reaction mixture was diluted in EA, washed with 3 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}-\mathrm{EA}=8: 1$) to afford $\mathbf{S} 24(403 \mathrm{mg}, 85 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{24}=+199.8\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.66-7.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.30-7.15(\mathrm{~m}, 8 \mathrm{H}$, Ar), 6.05 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $5.80(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.22(\mathrm{dd}, J=10.9$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.80(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.42\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, 4.38 - 4.30 (m, 2H, H-2, CH2-Bn), 3.59 - 3.45 (m, 2H, H-6), 2.03 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}$). ${ }^{13}{ }^{1}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,165.5,137.6,135.2,133.6,129.9,129.4,129.2$, 128.7, 128.4, 128.3, 127.80, 127.78, 84.7 (C-1), 73.5, 71.7, 70.5, 68.3, 67.9, 59.3, 20.8. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+} 598.1017$, found 598.1015.

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl 3-O-acetyl-2-azido-4-O-benzoyl-6-O-benzyl-2-deoxy-D-galactopyranoside (190)

Compound S24 ($409 \mathrm{mg}, 0.71 \mathrm{mmol}$) was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(6.4 \mathrm{~mL} / 0.6$ mL), then NIS ($238 \mathrm{mg}, 1.06 \mathrm{mmol}$) was added. The resulting mixture was stirred for 6.5 h . The solution was diluted with EtOAc, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water
and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to give the intermediate ($287 \mathrm{mg}, 93 \%$). The above intermediate ($287 \mathrm{mg}, 0.65 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($134 \mathrm{mg}, 0.65 \mathrm{mmol}$) was dissolved in acetone (6.5 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(134 \mathrm{mg}, 0.98 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether, containing 2% $\mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7 o}$ ($306 \mathrm{mg}, 77 \%$) (Compound $\mathbf{1 7 o}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to

General Experimental Procedure at rt for 4 d, using acceptor 18 N-(benzyl)benzyloxycarbonyl-5-aminopentanol ($279 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $\mathbf{1 7 o}$ (306 $\mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{DCM}(5 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(834 \mathrm{mg}, 3.0 \mathrm{mmol})$ and TMSI $(70 \mu \mathrm{~L}, 0.5$ mmol). The product was purified by silica gel column chromatography (PE-EA, 4:1) and LH-20 ($\mathrm{MeOH} / \mathrm{DCM}=1: 1$) to afford 190 ($309 \mathrm{mg}, 84 \%, \alpha / \beta>20: 1$) as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{24}=+92.9$ (c $0.61, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40$ - 7.13 (m, 15H, Ar), $5.80-5.73$ (m, 1H, H-4), 5.52 - 5.43 (m, 1H, H-3), 5.18 (d, $J=$ $11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}$), $5.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.54-4.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.36(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), $4.32-4.23$ (m, 1H, H-5), $3.77-3.65$ (m, 2H, H-2, CH2 $), 3.59$ - 3.39 (m, 3H, H-6, CH2 $), 3.33-3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 1.71-$ $1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0$, $165.6,156.8,156.3,138.0,137.6,133.5,129.9,129.6,128.64,128.62,128.54,128.51$, 128.43 , 128.40, 128.0, 127.95, 127.93, 127.87, 127.82, 127.75, 127.69, 127.4, 98.3 (C-1), 73.6, 68.8, 68.7, 68.20, 68.15, 67.3, 57.9, 50.7, 50.4, 47.2, 46.3, 29.1, 28.0, 27.6, 23.4, 20.8. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+} 751.3338$, found 751.3334.

Phenyl 2-azido-6-O-benzyl-2-deoxy-3,4-di- O-levulinoyl-1-seleno- α-D-galactopyranoside (S27)

Compound $\mathbf{S 9}$ ($400 \mathrm{mg}, 0.92 \mathrm{mmol}$) and levulinic acid ($320 \mathrm{mg}, 2.76 \mathrm{mmol}$) in anhydrous DCM (3 mL) was added DMAP ($224 \mathrm{mg}, 1.88 \mathrm{mmol}$), EDCI (634 mg , 3.31 mmol) and DIPEA ($0.91 \mathrm{~mL}, 5.51 \mathrm{mmol}$). The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 4:1) to afford $\mathbf{S 2 7}(480 \mathrm{mg}, 83 \%)$ as a syrup. $[\alpha]_{\mathrm{D}}{ }^{24}=+186.3$ (c 0.22 , CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.36-7.22(\mathrm{~m}, 6 \mathrm{H}$, Ar), 7.18 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.97$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.54 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 5.08 (dd, $J=10.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.65$ (t, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.48-4.37$ (m, 2H, CH2-Bn), 4.25 (dd, $J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.51-3.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 2.87$ - 2.68 (m, 4H, CH2-Lev), 2.67 - 2.57 (m, 2H, CH2-Lev), 2.56 - 2.46 (m, 2H, CH_{2}-Lev), 2.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Lev), 2.17 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Lev). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.2,206.0,171.9,171.7,137.8,135.1,129.2,128.5,128.2,128.0,127.9$, 127.8, 84.7 (C-1), 73.5, 71.7, 70.3, 67.9, 59.2, 37.9, 37.8, 29.9, 29.8, 27.9, 27.8. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+} 648.1385$, found 648.1386 .

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2-azido-6-O-benzyl-2-deoxy-3,4-di-O-levulinoyl-D-galactopyranoside (19p)

Compound S27 ($400 \mathrm{mg}, 0.63 \mathrm{mmol}$) was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(5.7 \mathrm{~mL} / 0.6$ mL), then NIS ($214 \mathrm{mg}, 0.95 \mathrm{mmol}$) was added. The resulting mixture was stirred for 10 h . The solution was diluted with EtOAc, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 1:1)
to give the intermediate ($217 \mathrm{mg}, 70 \%$). The above intermediate ($217 \mathrm{mg}, 0.44 \mathrm{mmol}$) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($137 \mathrm{mg}, 0.66 \mathrm{mmol}$) was dissolved in acetone (4.4 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(91 \mathrm{mg}, 0.66 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 10:1 to $3: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{1 7} \mathbf{p}(240 \mathrm{mg}, 82 \%)$ (Compound $\mathbf{1 7} \mathbf{p}$ was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedure at rt for 4.5 d, using acceptor 18 ($202 \mathrm{mg}, 0.54 \mathrm{mmol}$) with $\mathbf{1 7 p}(240 \mathrm{mg}, 0.36 \mathrm{mmol})$, DCM 3.6 mL , $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(606 \mathrm{mg}, 2.18 \mathrm{mmol})$ and TMSI ($51 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 2:1) to afford $\mathbf{1 9 p}(250 \mathrm{mg}$, $86 \%, \alpha / \beta=14: 1$) as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{24}=+74.8$ (c $0.17, \mathrm{CHCl}_{3}$). α isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-6.96(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 5.50(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, 5.33 (dd, $J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.17 (d, $\left.J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.94(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-1), 4.54-4.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.19-4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.73-3.55(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-2, \mathrm{CH}_{2}$), $3.53-3.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{CH}_{2}\right), 3.30-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.84-2.67(\mathrm{~m}$, 4H, CH 2 -Lev), 2.66 - 2.56 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.56 - 2.45 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.17 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-Lev), 2.16 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-Lev), $1.66-1.46$ (m, 4H, CH2), $1.39-1.21$ (m, 2H, CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.2, 206.1, 171.9, 171.8, 156.7, 156.2, 138.0, $137.8,136.9,128.6,128.5,128.44,128.40,128.0,127.9,127.84,127.77,127.3,98.1$ (C-1), 73.5, 68.7, 68.5, 68.3, 68.0, 67.8, 67.2, 57.7, 50.6, 50.3, 47.1, 46.2, 37.88, $37.85,37.8,29.85,29.77,29.1,27.9,27.7,23.4$. HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{11}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$818.3971, found 818.3979.

Reaction Scope of acceptors

Figure S1. The acceptors 18, 20a-m, 15, 200-ac using in the stereoselective glycosylation

Octadecyl 2-azido-3,4-di-O-benzoyl-6-O-benzyl-2-deoxy- α-D-galactopyranoside

 (21a)

The glycosylation reaction was carried out according to General Experimental Procedure at $25^{\circ} \mathrm{C}$ for 24 h , using acceptor 1-octadecanol 20a ($92.5 \mathrm{mg}, 0.34 \mathrm{mmol}$) with $\mathbf{1 7 a}$ ($153.8 \mathrm{mg}, 0.23 \mathrm{mmol}$), $\mathrm{DCM} 2.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(380.7 \mathrm{mg}, 1.37 \mathrm{mmol})$ and TMSI ($33 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, $25: 1$ to $20: 1$ to $10: 1$) to afford 21a ($152.6 \mathrm{mg}, 92 \%$,
$\alpha / \beta>20: 1)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{23}=+149.3\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 7.51-7.39$ (m, 3H, Ar), 7.30 (t, J=7.7 Hz, 2H, Ar), $7.25-7.13$ (m, 5H, Ar), 5.94 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.77 (dd, $J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.14 (d, $J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 4.52\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.44-4.37$ (m, 2H, CH2$\left.-\mathrm{Bn}, \mathrm{H}-5\right), 3.87$ - 3.77 (m, 2H, H-2, CH2-Octadecyl), 3.64 - 3.51 (m, 3H, CH2-Octadecyl, H-6), 1.74 - 1.65 (m, 2H, CH ${ }_{2}$-Octadecyl), 1.41 ($\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Octadecyl), $1.30-1.25$ $(\mathrm{m}, 28 \mathrm{H}), 0.88\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-Octadecyl). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.4,137.7,133.4,133.2,129.9,129.8,129.6,129.4,128.6,128.42,128.37,128.3$, 127.71, 127.67, 98.5 (C-1), 73.6, 69.2, 69.1, 69.0, 68.32, 68.28, 58.4, 32.0, 29.80, 29.78, 29.75, 29.73, 29.67, 29.53, 29.50, 29.4, 26.3, 22.8, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 773.4848$, found 773.4857.

2,2,2-Trifluoroethyl
 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside (21b)

The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 2.5 d , using acceptor 2,2,2-trifluoroethanol 20b (35.0 mg , 0.35 mmol) with $\mathbf{1 7 a}$ ($157.7 \mathrm{mg}, 0.23 \mathrm{mmol}$), DCM $2.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(390.3 \mathrm{mg}, 1.40$ $\mathrm{mmol})$ and TMSI ($33 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 10:1) to afford 21b ($117 \mathrm{mg}, 86 \%, \alpha / \beta>20: 1$) as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{21}=+204.5\left(\mathrm{c} 0.21, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.79$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.44-7.32$ (m, 3H, Ar), 7.23 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.17-7.07$ (m, 5H, Ar), 5.87 (d, $J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4), 5.66$ (dd, $J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.16$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.42 (d, $\left.J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.35-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-5\right), 4.06-3.91(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}-Trifluoroethyl), 3.87 (dd, $J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.56-3.46$ (m, 2H, H-6).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.4,165.3,137.5,133.6,133.4,130.0,129.90$, 129.85 , 129.4, 129.2, 128.7, 128.5, 128.4, 127.8, 127.7, 124.9, 122.2, 99.1 (C-1), 73.6, 69.2, 68.8, 68.6, 68.0, 65.7, 65.3, 65.0, 64.6, 58.0. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~F}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$603.2061, found 603.2071.

Benzyl 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside(21c)

The glycosylation reaction was carried out according to General Experimental Procedure at $25^{\circ} \mathrm{C}$ for 23 h , using acceptor benzyl alcohol 20c ($39.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) with $\mathbf{1 7 a}$ ($163.2 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{DCM} 2.4 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(403.9 \mathrm{mg}, 1.45 \mathrm{mmol})$ and TMSI ($35 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 20:1 to 5:1) to afford 21c ($135.6 \mathrm{mg}, 94 \%, \alpha / \beta>20: 1$) as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{23}=+211.3\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.50$ - 7.40 (m, 5H, Ar), $7.40-7.28$ (m, 6H, Ar), $7.26-7.16$ (m, 4H, Ar), 5.94 (d, $J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.81(\mathrm{dd}, J=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.24(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.84$ (d, $\left.J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.69\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.47-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Bn, H-5), 3.92 (dd, $J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.59 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,137.7,136.5$, $133.4,133.3,129.85,129.82,129.5,129.3,128.64,128.60,128.5,128.4,128.35$, 128.26, 128.20, 127.72, 127.68, 97.2 (C-1), 73.6, 70.0, 69.3, 69.0, 68.5, 68.3, 58.4. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 611.2500$, found 611.2501 .

Phenethyl 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside (21d)

The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 23 h , using acceptor phenethyl alcohol 20d ($42.2 \mathrm{mg}, 0.35$ mmol) with $\mathbf{1 7 a}(155.4 \mathrm{mg}, 0.23 \mathrm{mmol})$, $\mathrm{DCM} 2.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(384.5 \mathrm{mg}, 1.38$ $\mathrm{mmol})$ and TMSI ($33 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 20:1 to 5:1) to afford 21d ($129.1 \mathrm{mg}, 92 \%, \alpha / \beta>20: 1$) as a colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{23}=+222.4$ (c $\left.0.27, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.50$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.44$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.37-7.15$ (m, 12H, Ar), 5.83 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.74(\mathrm{dd}, J=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.18(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 4.47\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.35\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.07-$ $3.95(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 3.55-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.40,165.38,138.4,137.7,133.4,133.3,129.84$, $129.81,129.5,129.3,129.1,128.59,128.57,128.4,127.7,127.62,126.60,98.1$ (C-1), 73.4, 69.2, 69.1, 69.0, 68.3, 68.2, 58.4, 36.1. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 625.2657$, found 625.2660 .

Pent-4-en-yl 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside (21e)

The glycosylation reaction was carried out according to General Experimental Procedure at $25^{\circ} \mathrm{C}$ for 23 h , using acceptor 4-penten-1-ol 20e ($30.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) with 17a ($156.5 \mathrm{mg}, 0.23 \mathrm{mmol}$), $\mathrm{DCM} 2.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(387.4 \mathrm{mg}, 1.39 \mathrm{mmol})$ and TMSI ($33 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 20:1 to 10:1) to afford 21e ($121.4 \mathrm{mg}, 91 \%, \alpha / \beta>20: 1$) as a
colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{21}=+227.4\left(\mathrm{c} 0.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.47$ (m, 7.5 Hz, 3H, Ar), 7.32 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.22$ (t, $J=7.4 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{Ar}), 5.93$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.89-5.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=-\mathrm{Pent}), 5.77(\mathrm{dd}, J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 5.15(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.08\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=-\mathrm{Pent}\right), 5.01(\mathrm{~d}, J=$ $\left.10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=-\mathrm{Pent}\right), 4.53\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.44-4.37(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}-Bn, H-5), $3.90-3.77$ (m, 2H, H-2, CH_{2}-Pent), $3.65-3.53$ (m, $3 \mathrm{H}, \mathrm{H}-6$, CH_{2}-Pent), 2.21 ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Pent), $1.84-1.75$ (m, 2H, CH 2 -Pent). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.5,165.4,137.9,137.7,133.5,133.3,129.90,129.87$, 129.6, 129.4, 128.6, 128.42, 128.39, 127.8, 127.7, 115.3, 98.5 (C-1), 73.6, 69.13, $69.05,68.4,68.3,68.2,58.4,30.4,28.7$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$589.2657, found 589.2663.
(S)-(+)-2,2-dimethyl-1,3-dioxolane-4-methyl 2-azido-3,4-di-O-benzoyl-6-O-ben-zyl-2-deoxy- α-D-galactopyranoside (21f)

The glycosylation reaction was carried out according to General Experimental Procedure at $25^{\circ} \mathrm{C}$ for 25 h , using acceptor (S)-(+)-2,2-dimethyl-1,3-dioxolane-4-methanol $20 f(44.7 \mathrm{mg}, 0.34 \mathrm{mmol}$) with $\mathbf{1 7 a}$ ($152 \mathrm{mg}, 0.23 \mathrm{mmol}$), DCM 2.3 mL , $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(376.2 \mathrm{mg}, 1.35 \mathrm{mmol})$ and TMSI ($32 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 10:1 to 5:1) to afford 21f (129.8 mg, $93 \%, \alpha / \beta>20: 1$) as a white solid. $[\alpha]_{D}{ }^{23}=+195.6$ (c $0.18, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.95$ (m, 2H, Ar), $7.91-7.84$ (m, 2H, Ar), 7.59 (t, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.26-7.14$ (m, 5H, Ar), 5.94 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.75$ (dd, $J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.24$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.52\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.48-4.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5$, CH_{2}-Bn, CH), $4.12\left(\mathrm{dd}, J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$,
$\mathrm{H}-2), 3.86-3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{dd}, J=10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.65-3.54(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.40$, $165.38,137.6,133.5,133.3,129.9,129.8,129.5,129.3,128.6,128.39,128.37,127.73$, 127.71, 109.7, 98.7 (C-1), 74.4, 73.6, 69.14, 69.05, 68.9, 68.5, 68.2, 66.8, 58.4, 26.9, 25.5. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$635.2712, found 635.2716.

Methyl O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)-

 ($1 \rightarrow$ 6)-2,3,4-tri- O-benzyl- α-D-glucopyranoside (21g)

The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 36 h , using acceptor $\mathbf{2 0} \mathrm{g}^{5}(88.8 \mathrm{mg}, 0.19 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($193.4 \mathrm{mg}, 0.29 \mathrm{mmol}$), DCM $1.9 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(478.6 \mathrm{mg}, 1.72 \mathrm{mmol})$ and TMSI (41 $\mu \mathrm{L}, 0.29 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford $\mathbf{2 1 g}(184 \mathrm{mg}, 99 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=+149.1$ (c $0.15, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), $7.86(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.46-7.22$ (m, 20H, Ar), $7.22-7.13$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ar}$), $5.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GaIN}}\right), 5.68\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GaIN}}\right), 5.22(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-1_{\text {GalN }}$), 4.97 ($\mathrm{dd}, J=15.9,11.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), $4.85-4.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, $4.69-4.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1_{\mathrm{GIc}}\right), 4.43\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.32(\mathrm{~d}, J=$ $\left.11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-5_{\mathrm{GaIN}}\right), 4.02(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}\right)$, $3.62-3.46$ (m, 4H, H-2 ${ }_{\mathrm{GIc}}$, $\mathrm{H}-6_{\mathrm{GalN}}$), 3.39 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{OMe}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.3,138.8,138.3,138.2,137.6,133.4,133.2,129.8,129.7,129.5,129.3$, $128.53,128.46,128.4,128.35,128.29,128.1,127.91,127.87,127.8,127.6,127.5$, 98.5 ($\mathrm{C}-1_{\mathrm{GaIN}}$), 98.1 ($\mathrm{C}-1_{\mathrm{Glc}}$), 82.1, 80.1, 77.8, 75.7, 75.1, 73.42, 73.37, 70.1, 68.9, 68.1, 66.7, 58.5, 55.2. HRMS (ESI) calcd for $\mathrm{C}_{55} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 967.4124$, found 967.4134.

```
p-Methylphenyl O-(2-azido-3,4-di-O-benzoyl-6-O-benzyl-2-deoxy-\alpha-D-galacto-
pyranosyl)-(1->6)-2,3,4-tri-O-benzyl-1-thio-\beta-D-glucopyranoside (21h)
```


The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 4 d , using acceptor $\mathbf{2 0 h}^{6}$ ($89.5 \mathrm{mg}, 0.16 \mathrm{mmol}$) with 17a ($162.7 \mathrm{mg}, 0.24 \mathrm{mmol}$), DCM $1.6 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(402.6 \mathrm{mg}, 1.45 \mathrm{mmol})$ and TMSI (35 $\mu \mathrm{L}, 0.24 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 5:1) to afford $\mathbf{2 1 h}(151.1 \mathrm{mg}, 90 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=$ $+122.8\left(\mathrm{c} 0.24, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.92-$ 7.87 (m, 2H, Ar), 7.59 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53-7.38$ (m, 8H, Ar), $7.37-7.25$ (m, $15 \mathrm{H}, \mathrm{Ar}), 7.24-7.14$ (m, 6H, Ar), 5.78 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\text {GalN }}$), $5.65(\mathrm{dd}, J=11.0$, $\left.3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\text {GalN }}\right), 5.27\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\text {GalN }}\right), 4.96-4.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, $4.76-4.66\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1_{\mathrm{GIc}}\right), 4.49-4.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.28(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5_{\mathrm{GaIN}}$), 3.88 (dd, $J=11.1,3.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-2_{\mathrm{GaIN}}$), $3.74(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (t, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6_{\mathrm{GalN}}, \mathrm{H}-2_{\mathrm{Glc}}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{STol}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.5,165.3,138.5,138.23,138.19,137.85,137.83$, $133.5,133.3,132.1,130.0,129.91,129.88,129.84,129.7,129.4,128.65,128.63$, $128.53,128.50,128.43,128.38,128.3,128.02,127.98,127.92,127.89,127.78$, 127.69, 127.66, 98.6(C-1 GalN), $87.5\left(\mathrm{C}-1_{\text {Glc }}\right), 87.0,81.0,78.8,77.7,75.9,75.5,75.2$, 73.4, 69.2, 69.0, 68.3, 68.1, 66.8, 58.7, 21.2. HRMS (ESI) calcd for $\mathrm{C}_{61} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1059.4209, found 1059.4205.
p-Methylphenyl O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galacto-pyranosyl)-(1 $\rightarrow \mathbf{6}$)-2,3,4-tri- O-benzoyl-1-thio- β-D-galactopyranoside (21i)

21i
The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 5 d , using acceptor $\mathbf{2 0 i}{ }^{7}(87.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($147.4 \mathrm{mg}, 0.22 \mathrm{mmol}$), DCM $1.5 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(364.9 \mathrm{mg}, 1.31 \mathrm{mmol})$ and TMSI (31 $\mu \mathrm{L}, 0.22 \mathrm{mmol})$. The product was purified by silica gel column chromatography (PE-EA, 5:1) to afford $\mathbf{2 1 i}(135.6 \mathrm{mg}, 86 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+$ 182.7 (c $0.20, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=11.0,7.8 \mathrm{~Hz}, 4 \mathrm{H}$, Ar), 7.90 (dd, $J=10.9,7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.46-7.36(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.26-7.15(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 5.98\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{Gal}}\right), 5.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GalN}}\right), 5.79\left(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{Gal}}\right), 5.71\left(\mathrm{dd}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}\right)$, $5.62\left(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{Gal}}\right), 5.12-5.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1_{\mathrm{GalN}}, \mathrm{H}-1_{\text {Gal }}\right), 4.49(\mathrm{dd}$, $\left.J=12.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5_{\mathrm{GaIN}}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.41\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.36-$ $4.31(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89\left(\mathrm{dd}, J=11.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}\right)$, 3.79 (dd, $J=10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6_{\mathrm{Gal}}$), $3.64-3.51$ (m, 2H, H-6 ${ }_{\text {GalN }}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}-STol). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,165.5,165.42,165.35,165.26$, 138.6, 137.8, 133.6, 133.48, 133.46, 133.39, 133.31, 133.26, 130.1, 130.0, 129.94, $129.90,129.86,129.6,129.5,129.4,129.1,129.0,128.6,128.5,128.4,128.3,127.9$, 127.72, 127.68, $98.7\left(\mathrm{C}-1_{\text {GalN }}\right), 85.9\left(\mathrm{C}-1_{\mathrm{Gal}}\right), 76.6,73.5,73.2,69.2,69.0,68.5,68.3$, 68.2, 68.0, 58.5, 21.3. HRMS (ESI) calcd for $\mathrm{C}_{61} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1101.3586, found 1101.3589.
O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)-(1 $\rightarrow \mathbf{6}$)-1,2,3,4-di- O-isopropylidene- α-D-galactopyranoside (21j)

The glycosylation reaction was carried out according to General Experimental Procedure at $25^{\circ} \mathrm{C}$ for 25 h , using acceptor $\mathbf{2 0 j}$ ($57.2 \mathrm{mg}, 0.22 \mathrm{mmol}$) with 17a ($227.8 \mathrm{mg}, 0.33 \mathrm{mmol}$), DCM $2.2 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(551.3 \mathrm{mg}, 1.98 \mathrm{mmol})$ and TMSI (47 $\mu \mathrm{L}, 0.33 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford $\mathbf{2 1 j}(162 \mathrm{mg}, 99 \%, \alpha / \beta>20: 1)$ as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{22}=+$ 115.1 (c $\left.0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.88 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.31$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.25-7.13(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.95\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GalN}}\right), 5.78$ (dd, $J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}$), $5.54\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{Gal}}\right), 5.22(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GaIN}}$), $4.64\left(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{Gal}}\right), 4.55-4.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5_{\mathrm{GalN}}\right.$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.43-4.31\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2_{\mathrm{Gal}}, \mathrm{H}-4_{\mathrm{Gal}}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.10\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5_{\mathrm{Gal}}\right)$, $3.95\left(\mathrm{dd}, \mathrm{J}=10.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6_{\mathrm{Gal}}\right), 3.89-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}, \mathrm{H}-6_{\mathrm{Gal}}\right), 3.60(\mathrm{~m}$, $\left.J=9.7,6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6_{\mathrm{GaIN}}\right), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,137.7,133.4,133.2,129.9,129.8,129.6,129.4$, 128.6, 128.4, 128.3, 127.7, 127.6, 109.4, 108.8, $98.7\left(\mathrm{C}-1_{\text {GalN }}\right), 96.4\left(\mathrm{C}-1_{\text {Gal }}\right), 73.4$, $71.0,70.8,69.0,68.9,68.1,68.0,67.4,66.5,58.5,26.2,26.1,25.1,24.5$. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 763.3185$, found 763.3192 .

Methyl O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)($\mathbf{1} \rightarrow \mathbf{6}$)-2,3,4-tri- O-benzyl- α-D-mannopyranoside (21 k)

The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 25 h , using acceptor $\mathbf{2 0 k} \mathbf{k}^{8}(70.3 \mathrm{mg}, 0.15 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($153.3 \mathrm{mg}, 0.23 \mathrm{mmol}$), DCM $1.5 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(374.4 \mathrm{mg}, 1.36 \mathrm{mmol})$ and TMSI (33 $\mu \mathrm{L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1 to 3:1) to afford $\mathbf{2 1 k}(132.3 \mathrm{mg}, 92 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}$ $=+166.9\left(\mathrm{c} 0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.87 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.51-7.41$ (m, 3H, Ar), 7.39 $-7.25(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 5.93(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GalN}}$), 5.76 (dd, $J=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}$), $5.29(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1_{\text {GalN }}$), $4.99\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.77-4.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1_{\mathrm{Man}}\right.$), $4.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.52-4.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-5_{\mathrm{GalN}}\right), 4.38(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.96-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.88-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}\right), 3.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2_{\mathrm{Man}}$), $3.64-3.51$ (m, 2H, H-6 GalN), 3.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 165.4,138.7,138.6,138.5,137.7,133.4,133.3,129.90,129.88,129.7$, $129.5,128.6,128.49,128.46,128.44,128.40,128.38,128.0,127.90,127.85,127.80$, 127.73, 127.70, 127.65, 99.1 (C-1 Man $), 98.2$ (C-1 GalN , 80.5, 75.2, 74.9, 73.5, 72.9, $72.2,71.5,69.1,69.0,68.1,68.0,67.2,58.5,54.9$. HRMS (ESI) calcd for $\mathrm{C}_{55} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 967.4124$, found 967.4130.
p-Methoxyphenyl O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galacto-pyranosyl)-(1 \rightarrow 0)-2,3,4-tri- O-benzoyl- α-D-mannopyranoside (211)

The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 36 h , using acceptor $\mathbf{2 0 1}{ }^{9}(94.2 \mathrm{mg}, 0.16 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($159.9 \mathrm{mg}, 0.24 \mathrm{mmol}$), DCM $1.6 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(394.2 \mathrm{mg}, 1.42 \mathrm{mmol})$ and TMSI (34 $\mu \mathrm{L}, 0.24 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 5:1 to 3.5:1) to afford $211(158.9 \mathrm{mg}, 93 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}$ $=+42.8\left(\mathrm{c} 0.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17-8.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 8.05$ -8.00 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}$), 7.94 (m, 2H, Ar), 7.92 - 7.84 (m, 4H, Ar), $7.60-7.40$ (m, 10H, Ar), 7.35 ($\mathrm{q}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.31-7.24$ (m, 2H, Ar), $7.21-7.15$ (m, 2H, Ar), $7.14-7.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.13(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3_{\text {Man }}$), $6.07\left(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\text {Man }}\right.$), $5.91-5.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{GaIN}}, \mathrm{H}-2_{\text {Man }}\right.$), 5.76 (dd, $J=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\text {GalN }}$), $5.69\left(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{Man}}\right.$), $5.16(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GalN}}$), $4.62-4.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5_{\mathrm{Man}}\right), 4.37\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5_{\mathrm{GalN}}\right), 4.33$ (d, $\left.J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.20\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.09(\mathrm{dd}, J=11.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6_{\text {Man }}$), $3.91\left(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\text {GalN }}\right), 3.80-3.79(\mathrm{~m}, 1 \mathrm{H}$, H-6 Man $), 3.78$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{MP}$), $3.49-3.37$ (m, 2H, H-6 GalN). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,165.71,165.67,165.4,165.2,155.9,150.1,137.6,133.62,133.60$, $133.4,133.3,130.1,130.0,129.92,129.89,129.87,129.6,129.5,129.3,129.2,129.1$, 128.7, 128.63, 128.61, 128.4, 128.3, 127.63, 127.60, 118.5, 115.0, 98.3 (C-1 $\left.1_{\text {GalN }}\right), 97.4$ (C- $1_{\text {Man }}$), 73.4, 70.7, 70.23, 70.18, 69.5, 69.0, 68.2, 68.1, 67.2, 58.6, 55.8. HRMS (ESI) calcd for $\mathrm{C}_{61} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{16}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1101.3764, found 1101.3766.

[^0]

The glycosylation reaction was carried out according to General Experimental Procedure at $25^{\circ} \mathrm{C}$ for 34 h , using acceptor $\mathbf{2 0} \mathbf{m}^{10}(73.1 \mathrm{mg}, 0.16 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($164.1 \mathrm{mg}, 0.24 \mathrm{mmol}$), DCM $1.6 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(406.2 \mathrm{mg}, 1.46 \mathrm{mmol})$ and TMSI (35 $\mu \mathrm{L}, 0.24 \mathrm{mmol})$. The product was purified by silica gel column chromatography (PE-EA, 5:1) to afford $\mathbf{2 1 m}(149.2 \mathrm{mg}, 98 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{22}=+$ 199.5 (c $0.20, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.96 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $7.54-7.36$ (m, 11H, Ar), 7.33 (m, 4H, Ar), $7.29-7.22$ (m, 1H, Ar), $7.20-7.09$ (m, $6 \mathrm{H}, \mathrm{Ar}), 5.81\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GaIN}}\right.$), 5.63 (dd, $J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}$), $5.59\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1_{\mathrm{Ara}}, \mathrm{H}-2_{\text {Ara }}\right), 5.21\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GalN}}\right), 4.83(\mathrm{~d}, J=$ $\left.11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.65-4.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{Ara}}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.44(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Bn}$), 4.34 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), 4.27 (dd, $J=6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\text {Ara }}$), $4.20\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5_{\mathrm{GalN}}\right), 3.94-3.83\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}, \mathrm{H}-5_{\text {Ara }}, \mathrm{H}-6_{\text {Ara }}\right), 3.56-$ $3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{G}_{\mathrm{GaIN}}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{STol}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6$, 165.4, 165.2, 138.1, 137.7, 137.3, 133.53, 133.49, 133.3, 133.2, 130.1, 130.0, 129.90, 129.86, 129.6, 129.4, 128.7, 128.65, 128.60, 128.5, 128.43, 128.41, 128.2, 127.73, 127.71, $98.5\left(\mathrm{C}-1_{\text {GalN }}\right), 91.4\left(\mathrm{C}-1_{\text {Ara }}\right), 82.64,82.58,80.8,73.5,72.8,69.2,69.0,68.33$, 68.27, 66.5, 58.6, 21.2. HRMS (ESI) calcd for $\mathrm{C}_{53} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 953.3426$, found 953.3418.

L-Serine
 N -(benzyloxycarbonyl)- O -(2-azido-3,4-di- O-benzoyl-6-O-benzyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (21n)

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 8 d , using acceptor $\mathbf{1 5}(93.2 \mathrm{mg}, 0.28 \mathrm{mmol})$ with $\mathbf{1 7 a}$ (127.3 $\mathrm{mg}, 0.19 \mathrm{mmol})$, $\mathrm{DCM} 1.9 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(315.1 \mathrm{mg}, 1.13 \mathrm{mmol})$ and TMSI ($27 \mu \mathrm{~L}$, 0.19 mmol). The product was purified by silica gel column chromatography (PE-EA, 3:1) to afford 21n (112.3 mg, 73\%, $\alpha / \beta>20: 1$) as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+168.8$ (c $\left.0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40-7.28$ (m, 12H, Ar), 7.22 - 7.14 (m, 5H, Ar), 6.10 (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{NH}-\mathrm{Ser}), 5.81$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.60(\mathrm{dd}, J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.24$ (s, 2H), $5.16-5.07$ (m, 2H), 5.05 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, CH-Ser), 4.47 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), $4.36-4.23$ (m, $3 \mathrm{H}, \mathrm{H}-5, \mathrm{CH}_{2}-\mathrm{Bn}$, CH_{2}-Ser), 4.06 (dd, $J=10.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$-Ser), $3.80(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.57-3.44$ (m, 2H, H-6). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,165.4,165.3$, $156.2,137.5,136.3,135.2,133.5,133.4,129.9,129.8,129.4,129.2,128.8,128.69$, $128.65,128.60,128.43,128.40,128.36,128.3,127.7,99.9$ (C-1), 73.5, 70.5, 68.8, 68.75, 68.71, 68.0, 67.9, 67.3, 58.3, 54.8. HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{11}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$832.3188, found 832.3192.

L-Serine $\quad N$-(t-Butyloxycarbonyl)- O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester(210)

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 7 d , using acceptor N-Boc-L-serine benzyl ester $20 \mathrm{o}(42.3 \mathrm{mg}$, 0.14 mmol) with $\mathbf{1 7 a}(145 \mathrm{mg}, 0.21 \mathrm{mmol})$, $\mathrm{DCM} 1.4 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(358.9 \mathrm{mg}, 1.29$
$\mathrm{mmol})$ and TMSI ($31 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 3:1) to afford $\mathbf{2 1 0}(62.1 \mathrm{mg}, 55 \%, \alpha / \beta>20: 1)$ as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+180.4\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.51(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40-7.29(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 7.24-7.13(\mathrm{~m}, 5 \mathrm{H}$, Ar), 5.87 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.69-5.55$ (m, 2H, H-3, NH-Ser), $5.28-5.18$ (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 5.05(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.65-4.56$ (m, 1H, CH-Ser), 4.52 ($\mathrm{d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.18(\mathrm{dd}, J=$ $10.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$-Ser), 4.04 (dd, $J=10.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$-Ser), $3.81(\mathrm{dd}, J=$ 11.1, $3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.61-3.44 (m, 2H, H-6), 1.46 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.0,165.42,165.37,155.7,137.5,135.3,133.5,133.4,129.92$, 129.87, 129.5, 129.2, 128.8, 128.7, 128.6, 128.5, 128.4, 127.80, 127.77, 99.6 (C-1), 80.4, 73.6, 70.1, 68.9, 68.7, 68.6, 67.9, 67.8, 58.3, 54.3, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$803.2899, found 803.2911.

L-Serine $\quad \mathrm{N}$-(9H-fluoren-9-ylmethoxy)carbonyl)- O -(2-azido-3,4-di-O-benzoyl-6-O-benzyl-2- deoxy- α-D-galactopyranosyl)-benzyl ester(21p)

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 7 d , using acceptor Fmoc-O-benzyl-L-serine 20p $(52.8 \mathrm{mg}$, 0.13 mmol) with $\mathbf{1 7 a}(128 \mathrm{mg}, 0.19 \mathrm{mmol})$, $\mathrm{DCM} 1.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(316.8 \mathrm{mg}, 1.14$ $\mathrm{mmol})$ and TMSI ($27 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 3:1) to afford 21p ($84 \mathrm{mg}, 74 \%, \alpha / \beta>20: 1$) as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+122.8\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.89$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.75$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.62$ (d, $J=7.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Ar}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.41-7.27(\mathrm{~m}$, 11H, Ar), 7.20 - 7.12 (m, 5H, Ar), 6.22 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-$ Ser $), 5.84$ (d, $J=3.2$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.65$ (dd, $J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.27$ (s, 2H, CH2-Bn), 5.04 (d, $J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.26(\mathrm{~m}$, $5 \mathrm{H}), 4.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.59-3.44$ (m, 2H, H-6). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,165.4,156.1$, $144.0,143.9,141.40,141.37,137.5,135.2,133.6,133.4,129.92,129.86,129.4,129.2$, $128.8,128.73,128.68,128.5,128.4,127.8,127.7,127.22,127.21,125.4,125.3,120.0$, 100.0 (C-1), 77.4, 73.5, 70.6, 68.9, 68.83, 68.78, 68.2, 67.9, 67.4, 58.4, 54.8, 47.2, 29.8. HRMS (ESI) calcd for $\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 925.3055$, found 925.3060 .

L-Threonine $\quad \mathrm{N}$-(benzyloxycarbonyl)- O -(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (21q)

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 7 d , using acceptor Benzyloxycarbonyl-L-threonine benzyl ester 20q ($108 \mathrm{mg}, 0.31 \mathrm{mmol}$) with $\mathbf{1 7 a}(141.4 \mathrm{mg}, 0.21 \mathrm{mmol}$), DCM 2.1 mL , $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(350 \mathrm{mg}, 1.26 \mathrm{mmol})$ and TMSI ($30 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 5:1) to afford 21q (94.1 mg , $54 \%, \alpha / \beta>20: 1$) as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{24}=+192.3$ (c $0.21, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40-7.28$ (m, 12H, Ar), 7.23 - 7.13 (m, 5H, Ar), 5.87 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.68 (d, $J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.58 (dd, $J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $5.27-5.16$ (m, 2H), 5.16 ($\mathrm{s}, 2 \mathrm{H}), 5.01$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.54-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.41-4.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.79(\mathrm{dd}, J=$ $11.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.58-3.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 1.38\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Thr}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,165.4,165.3,157.0,137.5,136.3,135.2,133.6$, $133.4,129.89,129.85,129.4,129.2,128.8,128.7,128.64,128.62,128.4,128.4,128.2$,
128.1, 127.82, 127.78, 127.7, 99.4 (C-1), 76.8, 73.6, 69.3, 68.72, 68.69, 68.2, 67.7, 67.3, 59.0, 58.7, 18.7. HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$851.2904, found 851.2904.

Methyl O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)-

 ($1 \rightarrow 4$)-2,3,6-tri- O-benzyl- α-D-glucopyranoside (21r)

The glycosylation reaction was carried out according to General Experimental Procedure at $25{ }^{\circ} \mathrm{C}$ for 59 h , using acceptor $\mathbf{2 0} \mathbf{r}^{11}(68.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($148.6 \mathrm{mg}, 0.22 \mathrm{mmol}$), DCM $1.5 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(367.7 \mathrm{mg}, 1.32 \mathrm{mmol})$ and TMSI (32 $\mu \mathrm{L}, 0.22 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 5:1 to 3:1) to afford $21 \mathbf{r}(126.3 \mathrm{mg}, 91 \%, \alpha / \beta>20: 1)$ as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{23}$ $=+156.6\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.88 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.56$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.49$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $7.44-7.25(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.14-7.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 5.94\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GaN}}\right)$, 5.87 (d, $\left.J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GaIN}}\right), 5.66\left(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GaIN}}\right), 5.15(\mathrm{~d}, J=$ $\left.11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.89\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.73(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.67-4.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}, \mathrm{H}-1_{\mathrm{Glc}}\right), 4.54\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, $4.31-4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5_{\mathrm{GaIN}}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.18-4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3_{\mathrm{Glc}}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.01(\mathrm{t}, J$ $\left.=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{Glc}}\right), 3.89-3.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}, \mathrm{H}-5_{\mathrm{Glc}}, \mathrm{H}-6_{\mathrm{Glc}}\right), 3.62(\mathrm{dd}, J=9.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{GIc}}$), $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{OMe}\right), 3.36\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6_{\mathrm{GaIN}}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.4,139.0,138.4,138.0,137.6,133.4,133.3,129.9$, $129.8,129.6,129.4,128.6,128.5,128.43,128.41,128.37,128.26,128.22,128.1$, 127.7, 127.6, 127.5, 127.4, $98.2\left(\mathrm{C}-1_{\mathrm{GaIN}}\right), 97.7\left(\mathrm{C}-1_{\mathrm{Glc}}\right), 82.0,80.7,74.9,73.8,73.5$, 73.3, 73.2, 69.5, 69.4, 69.0, 68.7, 68.6, 67.8, 58.4, 55.4. HRMS (ESI) calcd for $\mathrm{C}_{55} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 967.4124$, found 967.4133.

Methyl O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)-

 ($1 \rightarrow$ 3)-2,4,6- tri- O-benzyl- α-D-glucopyranoside (21s)

The glycosylation reaction was carried out according to General Experimental Procedures at $25{ }^{\circ} \mathrm{C}$ for 50 h , using acceptor $\mathbf{2 0} \mathrm{s}^{12}(66.4 \mathrm{mg}, 0.14 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($144.6 \mathrm{mg}, 0.21 \mathrm{mmol}$), DCM $1.4 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(357.9 \mathrm{mg}, 1.29 \mathrm{mmol})$ and TMSI (31 $\mu \mathrm{L}, 0.21 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 3:1) to afford 21s $(134.4 \mathrm{mg}, 99 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{21}=+$ 165.2 (c $0.31, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (t, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), $7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.46-7.37$ (m, 6H, Ar), 7.37 - 7.24 (m, 12H, Ar), 7.22 - 7.18 (m, 2H, Ar), 7.16 - 7.08 (m, 4H, Ar), $5.88-5.81$ (m, $\left.2 \mathrm{H}, \mathrm{H}-4_{\mathrm{GaIN}}, \mathrm{H}-3_{\mathrm{GaIN}}\right), 5.72\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GaIN}}\right), 4.93-4.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5_{\mathrm{GalN}}\right.$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.78-4.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1_{\mathrm{Glc}}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.65\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, $4.56\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.51\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.28(\mathrm{t}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{Glc}}$), 4.22 (s, 2H, CH2-Bn), $3.91-3.79$ (m, 2H, H-2 $\mathrm{GalN}, \mathrm{H}-4_{\text {Glc }}$), 3.76 (d, J $=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2_{\mathrm{Glc}}\right), 3.49\left(\mathrm{dd}, J=9.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6_{\mathrm{GalN}}\right)$, $3.37-3.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{OMe}, \mathrm{H}-6_{\mathrm{GalN}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,165.4$, 138.2, 138.1, 137.78, 137.76, 133.2, 129.9, 129.81, 129.76, 129.5, 128.74, 128.66, 128.58, 128.50, 128.47, 128.42, 128.37, 128.31, 128.2, 128.1, 128.0, 127.9, 127.83, 127.77, 127.6, 127.4, 127.3, $98.1\left(\mathrm{C}-1_{\text {GalN }}\right), 97.6$ (C-1 $\left.\mathrm{Glc}_{\text {}}\right)$, 79.4, 78.6, 75.8, 74.0, 73.7, 73.3, 73.0, 70.1, 69.3, 69.2, 68.4, 67.9, 67.4, 58.7, 55.1. HRMS (ESI) calcd for $\mathrm{C}_{55} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 967.4124$, found 967.4129 .

Methyl O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)($\mathbf{~} \boldsymbol{\rightarrow} \mathbf{2}$)-3,4,6-tri- O-benzyl- α-D-glucopyranoside (21t)

21t
The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 60 h , using acceptor $\mathbf{2 0 t}{ }^{13}$ ($73.9 \mathrm{mg}, 0.16 \mathrm{mmol}$) with $\mathbf{1 7 a}$ ($160.7 \mathrm{mg}, 0.24 \mathrm{mmol}$), DCM $1.6 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(397.9 \mathrm{mg}, 1.43 \mathrm{mmol})$ and TMSI (34 $\mu \mathrm{L}, 0.24 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 5:1-3:1) to afford $21 \mathrm{t}(135.6 \mathrm{mg}, 90 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=$ $+192.7\left(\mathrm{c} 0.33, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.90 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58-7.45$ (m, 4H, Ar), $7.44-7.22$ (m, 15H, Ar), $7.22-$ $7.10(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 5.83\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GaIN}}\right), 5.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GaIN}}\right), 5.28(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}-1_{\mathrm{GalN}}\right), 5.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1_{\text {Glc }}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.88\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.69-$ 4.46 (m, 4H, H-5 $\mathrm{GalN}, \mathrm{CH}_{2}-\mathrm{Bn}$), 4.18 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), $4.11\left(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{Glc}}\right.$), $3.96\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2_{\mathrm{GaIN}}, \mathrm{H}-2_{\mathrm{Glc}}\right), 3.81(\mathrm{dd}, J=22.4,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J$ $\left.=10.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4_{\mathrm{GIc}}\right), 3.52-3.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6_{\mathrm{GalN}}, \mathrm{CH}_{3}-\mathrm{OMe}\right), 3.27(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6_{\mathrm{GalN}}$) ${ }^{13}{ }^{\mathrm{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,165.2,138.3,138.2,138.0,137.9$, 133.3, 133.2, 129.8, 129.7, 129.6, 129.4, 128.6, 128.5, 128.4, 128.3, 128.25, 128.17, 127.94, 127.90, 127.8, 127.7, 127.6, 127.5, 127.4, 96.5 (C-1 Gic , 95.1 (C-1 $\left.1_{\text {GalN }}\right), 80.8$, $78.4,76.4,75.03,74.96,73.6,72.8,70.4,69.1,69.0,68.6,68.1,67.7,60.3,58.2,55.4$. HRMS (ESI) calcd for $\mathrm{C}_{55} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 967.4124$, found 967.4120.

Tetrahydropyran-4-yl 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside (21u)

The glycosylation reaction was carried out according to General Experimental Procedures at $25{ }^{\circ} \mathrm{C}$ for 43 h , using acceptor $\mathbf{2 0 u}(19.5 \mathrm{mg}, 0.19 \mathrm{mmol})$ with $\mathbf{1 7 a}$ ($193.2 \mathrm{mg}, 0.29 \mathrm{mmol}$), DCM $1.9 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(478.1 \mathrm{mg}, 1.72 \mathrm{mmol})$ and TMSI (41 $\mu \mathrm{L}, 0.29 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 5:1) to afford $\mathbf{2 1 u}(98.2 \mathrm{mg}, 88 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=$ $+193.1\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.88 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.54-7.42$ (m, 3H, Ar), 7.33 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.22(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ar}), 5.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 5.79(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), 5.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), $4.54-4.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.41(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.02-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.50,165.46,137.6,133.5,133.4,129.92,129.88,129.5,129.3,128.7$, 128.4, 127.8, 127.6, 97.1 (C-1), 74.0, 73.6, 69.0, 68.9, 68.7, 68.4, 65.6, 65.5, 58.1, 33.5, 31.8. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$610.2165, found 610.2164.

2,3-Dihydro-1H-inden-2-yl galactopyranoside (21v)

The glycosylation reaction was carried out according to General Experimental Procedures at $25{ }^{\circ} \mathrm{C}$ for 48 h , using acceptor 20v ($20.6 \mathrm{mg}, 0.15 \mathrm{mmol}$) with 17a ($155.4 \mathrm{mg}, 0.23 \mathrm{mmol}$), DCM $1.5 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(384.5 \mathrm{mg}, 1.38 \mathrm{mmol})$ and TMSI (33 $\mu \mathrm{L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 20:1-10:1) to afford 21v ($87.6 \mathrm{mg}, 92 \%, \alpha / \beta>20: 1$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=$ $+230.0\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.86 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.51-7.40$ (m, 3H, Ar), 7.34 - 7.13 (m, 11H, Ar), $5.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 5.73$ (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.33$ (s, 1H, $\mathrm{H}-1), 4.71(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.48-4.37(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}-Bn), 3.82 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.68-3.54$ (m, 2H), $3.31-3.19$ (m, 3H), $3.13(\mathrm{dd}, J=16.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,140.5,140.2$, $137.6,133.5,133.3,129.88,129.85,129.5,129.3,128.6,128.5,128.42,128.37,127.8$, 127.7, 126.8, 124.74, 124.71, 98.3 (C-1), 80.6, 73.6, 69.0, 68.9, 68.7, 68.4, 58.1, 39.9, 39.3. HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$642.2216, found 642.2216 .

Cyclododecyl 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside (21w)

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 38 h , using acceptor $\mathbf{2 0 w}$ ($27.9 \mathrm{mg}, 0.15 \mathrm{mmol}$) with 17a ($153.3 \mathrm{mg}, 0.23 \mathrm{mmol}$), DCM $1.5 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(379.4 \mathrm{mg}, 1.36 \mathrm{mmol})$ and TMSI (33 $\mu \mathrm{L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 25:1) to afford 21w $(93.6 \mathrm{mg}, 92 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{D}{ }^{25}=$ +261.6 (c $\left.0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.88 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.57 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53-7.40$ (m, 3H, Ar),
$7.36-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.27-7.13(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 5.76(\mathrm{~d}, J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.58-4.34\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.96-3.77(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 3.59$ (s, 2H, H-6), $1.83-1.70$ (m, 2H), 1.63 (s, 2H), $1.52-1.24$ (m, 18H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.45,165.41,137.6,133.4,133.3,129.9,129.8$, 129.5, 129.3, 128.6, 128.3, 127.68, 127.66, 97.0 (C-1), 76.9, 76.8, 73.5, 69.1, 69.0, 68.3, 58.3, 30.0, 28.6, 24.64, 24.55, 24.1, 23.6, 23.5, 23.1, 22.9, 21.3, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$692.3312, found 692.3311.
(+)-Menthyl 2-azido-3,4-di-O-benzoyl-6-O-benzyl-2-deoxy- α-D-galactopyranoside (21x)

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 44 h , using acceptor 20x ($28.0 \mathrm{mg}, 0.18 \mathrm{mmol}$) with 17a ($181 \mathrm{mg}, 0.27 \mathrm{mmol}$), DCM $1.8 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(448.0 \mathrm{mg}, 1.61 \mathrm{mmol})$ and TMSI (38 $\mu \mathrm{L}, 0.27 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 20:1-10:1) to afford 21x ($105.4 \mathrm{mg}, 92 \%, \alpha / \beta>20: 1$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}$ $=+192.2\left(\mathrm{c} 0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.89 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.52-7.40$ (m, 3H, Ar), 7.32 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.26-7.14$ (m, 5H, Ar), 5.92 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.71$ (dd, $J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.21(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.57(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 4.52\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.40\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.97(\mathrm{dd}$, $J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.65-3.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 3.51-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.14(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.05-0.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.81\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.51,165.45,137.7$, 133.4, 133.3, 129.89, 129.87, 129.7, 129.5, 128.6, 128.4, 127.7, 127.6, 99.7 (C-1),
81.8, 73.6, 69.6, 69.2, 68.6, 68.4, 59.3, 48.8, 42.8, 34.3, 31.9, 25.0, 22.9, 22.3, 21.4, 16.0. HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$659.3439, found 659.3446 .

Tricyclo[3.3.1.1 ${ }^{3,7}$]dec-1-yl
 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-Dgalactopyranoside (21y)

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 5.5 d , using acceptor $\mathbf{2 0 y}$ ($35.3 \mathrm{mg}, 0.23 \mathrm{mmol}$) with $\mathbf{1 7 a}$ ($234.7 \mathrm{mg}, 0.35 \mathrm{mmol}$), DCM $2.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(580.8 \mathrm{mg}, 2.09 \mathrm{mmol})$ and TMSI (50 $\mu \mathrm{L}, 0.35 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 20:1) to afford 21y ($136.9 \mathrm{mg}, 93 \%, \alpha / \beta>20: 1$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=$ $+183.9\left(\mathrm{c} 0.33, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.89 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.58 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), $7.51-7.39$ (m, 3H, Ar), 7.31 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.25-7.13(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.94(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.83$ (dd, $J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $5.57(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.63(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 4.51 (d, $\left.J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.40\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.72$ (dd, $J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.59(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 2.17(\mathrm{t}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.93(\mathrm{q}, J=11.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.65(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.49, 165.45, 137.7, 133.4, 133.2, 129.9, 129.8, 129.6, 129.4, 128.6, 128.3, 127.61, 127.56, 91.9 (C-1), 76.1, 73.5, 69.2, 68.9, 68.4, 67.8, 58.1, 42.4, 36.2, 30.7. HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 655.3126$, found 655.3128 .

17-O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl) estradiol benzoate (21z)

$21 z$
The glycosylation reaction was carried out according to General Experimental Procedures at $25{ }^{\circ} \mathrm{C}$ for 8 d , using acceptor 20z ($53.1 \mathrm{mg}, 0.14 \mathrm{mmol}$) with 17a $(142.7 \mathrm{mg}, 0.21 \mathrm{mmol})$, $\mathrm{DCM} 1.4 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(352.2 \mathrm{mg}, 1.27 \mathrm{mmol})$ and TMSI (30 $\mu \mathrm{L}, 0.21 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 7:1) to afford $\mathbf{2 1 z}(121.1 \mathrm{mg}, 99 \%, \alpha / \beta>20: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=$ $+161.8\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $7.53-7.41$ (m, 5H, Ar), 7.33 (q, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}$), $7.28-7.14$ (m, 5H, Ar), 7.00 (dd, $J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.97(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 5.79 (dd, $J=11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.21(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.59-4.50$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ - $\mathrm{Bn}, \mathrm{H}-5$), 4.44 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$),), $3.89-3.75$ (m, 2H, H-2), 3.63 (q, $J=9.8,8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$), $2.94-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.95-$ $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.25-$ $1.17(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.49, 165.45, 148.8, $138.3,138.0,137.7,133.53,133.47,133.3,130.2,129.9,129.84,129.77,129.5,129.3$, 128.61, 128.58, 128.5, 128.4, 127.9, 127.8, 127.7, 127.6, 126.6, 121.7, 118.8, 97.3 (C-1), 86.6, 73.5, 69.2, 68.7, 68.5, 68.4, 58.3, 50.1, 44.2, 43.0, 38.2, 37.3, 29.6, 27.1, 26.9, 26.1, 23.2, 12.2. HRMS (ESI) calcd for $\mathrm{C}_{52} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 879.3964$, found 879.3972.
(3ß)-Cholest-5-en-3-yl 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside (21aa)

21aa
The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 47 h , using acceptor 20aa ($64.6 \mathrm{mg}, 0.17 \mathrm{mmol}$) with 17a ($169.1 \mathrm{mg}, 0.25 \mathrm{mmol}$), DCM $1.7 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(418.5 \mathrm{mg}, 1.50 \mathrm{mmol})$ and TMSI (36 $\mu \mathrm{L}, 0.25 \mathrm{mmol})$. The product was purified by silica gel column chromatography (PE-EA, 20:1) to afford 21aa ($136.7 \mathrm{mg}, 94 \%, \alpha / \beta>20: 1$) as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{21}=$ $+143.3\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.88 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53-7.41$ (m, 3H, Ar), 7.32 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.26-7.15$ (m, 5H, Ar), 5.92 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.78 (dd, $J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $5.34-5.28$ (m, 2H, H-1), $4.56-4.48$ (m, 2H, H-5, $\mathrm{CH}_{2}-\mathrm{Bn}$), 4.41 (d, $\left.J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.79(\mathrm{dd}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, $3.66-3.54$ (m, 3H, H-6), 2.46 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.06-1.93$ (m, 3H), $1.92-1.79$ (m, 2H), $1.70-1.44(\mathrm{~m}, 8 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.08(\mathrm{~m}, 5 \mathrm{H}), 1.08-0.98$ $(\mathrm{m}, 6 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.5,140.5,137.7,133.5,133.3,130.0,129.9,129.7,129.5$, 128.7, 128.43, 128.40, 127.8, 127.7, 122.4, 97.4 (C-1), 79.5, 73.6, 69.3, 69.1, 68.52, 68.47, 58.3, 57.0, 56.4, 50.4, 42.5, 40.2, 40.0, 39.7, 37.2, 36.9, 36.4, 35.9, 32.13, 32.07, 28.4, 28.2, 24.5, 24.0, 23.0, 22.7, 21.2, 19.5, 18.9, 12.0. HRMS (ESI) calcd for $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$889.5474, found 889.5470.

3 β - O-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranosyl)

 dehydroepiandrosterone (21ab)

21ab

The glycosylation reaction was carried out according to General Experimental Procedures at $25^{\circ} \mathrm{C}$ for 3 d , using acceptor 20ab ($44.3 \mathrm{mg}, 0.15 \mathrm{mmol}$) with 17a ($155.4 \mathrm{mg}, 0.23 \mathrm{mmol}$), DCM $1.5 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(384.7 \mathrm{mg}, 1.38 \mathrm{mmol})$ and TMSI (33 $\mu \mathrm{L}, 0.23 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford 21ab ($111.7 \mathrm{mg}, 94 \%, \alpha / \beta>20: 1$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{22}=$ $+186.7\left(\mathrm{c} 0.27, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.88 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.60 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.53-7.42$ (m, 3H, Ar), 7.32 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.28-7.15$ (m, 5H, Ar), 5.92 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.78$ (dd, $J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.32 (m, 2H, H-1), $4.57-4.48$ (m, 2H, H-5, CH2-Bn), 4.42 (d, $\left.J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.80(\mathrm{dd}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.67-3.55$ (m, 3H, H-6), $2.54-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.73-$ $1.61(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.14-0.97(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 221.0,165.51,165.48,140.7,137.7,133.5,133.3$, 129.93, 129.89, 129.6, 129.4, 128.7, 128.5, 128.4, 127.75, 127.72, 121.6, 97.3 (C-1), $79.1,73.6,69.2,69.1,68.55,68.52,58.2,51.9,50.4,47.7,40.1,37.1,37.0,36.0$, 31.64, 31.60, 31.0, 28.1, 22.0, 20.5, 19.5, 13.7. HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{8}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 791.4014$, found 791.4013.

5- β-cholan-24-oic acid benzyl ester-3- α-yl 2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyranoside (21ac)

The glycosylation reaction was carried out according to General Experimental Procedures at $25{ }^{\circ} \mathrm{C}$ for 4 d , using acceptor 20ac ($69 \mathrm{mg}, 0.15 \mathrm{mmol}$) with 17a ($149.6 \mathrm{mg}, 0.22 \mathrm{mmol}$), DCM $1.5 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(370.2 \mathrm{mg}, 1.33 \mathrm{mmol})$ and TMSI (32 $\mu \mathrm{L}, 0.22 \mathrm{mmol})$. The product was purified by silica gel column chromatography (PE-EA, 20:1) to afford 21ac ($121.4 \mathrm{mg}, 86 \%, \alpha / \beta>20: 1$) as a white solid. $[\alpha]_{D}{ }^{21}=$ $+141.4\left(\mathrm{c} 0.28, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.88 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.58 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), $7.51-7.40$ (m, 3H, Ar), 7.37 - 7.28 (m, 7H, Ar), 7.23 - 7.13 (m, 5H, Ar), 5.93 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.79$ (dd, J $=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.30(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.11(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Bn}$), $4.57-4.46$ (m, 2H, CH2-Bn, H-5), $4.40\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.84$ (dd, $J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.74-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{q}, J=9.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6)$, $2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 4 \mathrm{H})$, $1.66(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.30-1.18(\mathrm{~m}$, $4 \mathrm{H}), 1.11(\mathrm{q}, J=10.4,9.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.63$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,165.41,165.39,137.6,136.2,133.4$, 133.2, 129.84, 129.81, 129.5, 129.3, 128.6, 128.3, 128.25, 128.18, 127.6, 127.5, 97.2 (C-1), 79.5, 73.5, 69.2, 69.1, 68.4, 68.3, 66.1, 58.3, 56.3, 55.9, 42.8, 42.2, 40.4, 40.1, $35.9,35.4,35.3,34.7,32.7,31.3,31.0,28.5,28.2,27.3,26.4,24.2,23.5,20.9,18.3$, 12.1. HRMS (ESI) calcd for $\mathrm{C}_{58} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 969.5372$, found 969.5373 .

Preparation of the common intermediate 16

Phenyl 2-azido-4- O-benzoyl-6- O-tert-butyldiphenylsilyl-2-deoxy-3- O-levulinoyl-1-seleno- α-D-galactopyranoside (S31)

Compound S11 ($6.80 \mathrm{~g}, 11.67 \mathrm{mmol}$) was stirred with trimethyl orthobenzoate ($17.3 \mathrm{~mL}, 93.38 \mathrm{mmol}$) in acetonitrile $(58 \mathrm{~mL})$ at room temperature for some time. Then 10-camphorsulfonic acid (CSA) ($813.5 \mathrm{mg}, 3.50 \mathrm{mmol}$) was added, and the reaction mixture was stirred at room temperature for 3 h . The solvent was then removed under reduced pressure, and the temperature was brought down to $0{ }^{\circ} \mathrm{C}, 80 \%$ aq acetic acid (58 mL) was then added, and the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 50 min . The reaction mixture was quenched carefully with saturated NaHCO_{3}. The product was extracted with dichloromethane ($250 \mathrm{~mL} \times 3$), and the combined organic layer was washed with distilled water (300 mL). The organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 8:1) to afford the intermediate $\mathbf{S 3 0}(6.07 \mathrm{~g}, 76 \%)$. To a solution of the above intermediate ($6.07 \mathrm{~g}, 8.84 \mathrm{mmol}$) and levulinic acid ($1.54 \mathrm{~g}, 13.26 \mathrm{mmol}$) in anhydrous DCM (88 mL) was added DMAP ($1.08 \mathrm{~g}, 8.84 \mathrm{mmol}$), EDCI (3.05 g , 15.91 mmol) and DIPEA ($4.4 \mathrm{~mL}, 26.52 \mathrm{mmol}$). The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether-EtOAc, 5:1) to afford $\mathbf{S 3 1}(6.18 \mathrm{~g}, 89 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{23}=+273.2$ (c $0.25, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-8.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.65-7.57(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar}), 7.54-7.50$ (m, 2H, Ar), $7.50-7.34$ (m, 7H, Ar), 7.24 (dd, $J=8.5,6.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.16$ (dd, $J=8.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.06$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.98(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $5.95-5.92$ (m, 1H, H-4), 5.29 (dd, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.66 - 4.58 (m, 1H, H-5), 4.31 (dd, $J=10.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.65(\mathrm{dd}, J=9.9,8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$), 3.48 (dd, $J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $2.92-2.82$ (m, 1H, CH 2 -Lev), $2.77-$ 2.59 (m, 2H, CH CH_{2}-Lev), 2.56 - 2.47 (m, 1H, CH CH_{2}-Lev), 2.16 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Lev), 0.97 (s , $\left.9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 206.3,171.7,165.5,135.6,135.4$,

135.2, 133.6, 132.8, 132.4, 129.93, 129.90, 129.7, 129.5, 129.2, 128.7, 128.2, 127.9, 127.7, 84.4 (C-1), 72.0, 71.3, 67.5, 60.8, 59.4, 38.0, 29.9, 28.0, 26.7, 19.1. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SiSeNa}[\mathrm{M}+\mathrm{Na}]^{+}$802.1987, found 802.1986.

L-Serine $\quad N$-(benzyloxycarbonyl)- O-(2-azido-4-O-benzoyl-6-O-tert-butyl-diphenylsilyl-2-deoxy-3- O-levulinoyl- α-D-galactopyranosyl)-benzyl ester (16)

Compound $\mathbf{S 3 1}(5.28 \mathrm{~g}, 6.72 \mathrm{mmol})$ was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL} / 6$ mL), and NIS $(2.27 \mathrm{~g}, 10.08 \mathrm{mmol})$ was added. The resulting mixture was stirred overnight. The solution was diluted with EtOAc, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to give the intermediate ($3.93 \mathrm{~g}, 91 \%$). The above intermediate ($2.25 \mathrm{mg}, 3.48$ mmol) and 2,2,2-trifluoro- N -phenylacetimidoyl chloride ($794.8 \mathrm{mg}, 3.83 \mathrm{mmol}$) was dissolved in acetone (34 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(721.4 \mathrm{mg}, 5.22 \mathrm{mmol})$ was added. The reaction was stirred overnight at room temperature, then filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 10:1 to 4:1, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 14 ($2.73 \mathrm{~g}, 96 \%$) (Compound 14 was used directly without further structural characterization). PTFAI donor 14 $(2.51 \mathrm{~g}, 3.07 \mathrm{mmol})$ was co-evaporated with anhydrous toluene for three times. Then PTFAI donor with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(5.13 \mathrm{~g}, 18.44 \mathrm{mmol})$ were dissolved in new distilled DCM (30 mL) and stirred over fresh-dried $3 \AA$ molecular sieves under argon at room temperature for 15 min . TMSI ($0.44 \mathrm{~mL}, 0.35 \mathrm{mmol}$)) was added dropwise subsequently. After the mixture was stirred for 1 h , acceptor N-Benzyloxycarbonyl -L-serine Benzyl Ester 15 ($3.52 \mathrm{~g}, 4.61 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 5 d . Upon completion, the solution was diluted with EtOAc and the reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in
vacuo. The products were purified by flash column chromatography (PE-EA=4:1) to afford $16(1.77 \mathrm{~g}, 60 \%, \alpha / \beta>20: 1)$ as a yellow solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+102.7\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, Ar), $7.50-7.41$ (m, 4H, Ar), $7.39-7.21$ (m, 14H, Ar), 7.07 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 5.81 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.78 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-$ Ser), 5.38 (dd, $J=11.2,3.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.24(\mathrm{q}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, $4.62-4.56$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ser}$), $4.15-4.06$ (m, 2H, H-5, CH $2-S e r), 3.94$ (dd, $J=11.0$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$-Ser), 3.73 - 3.55 (m, 3H, H-2, H-6), $2.88-2.78$ (m, 1H, CH2-Lev), $2.75-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.53-2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), 2.14 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Lev), $0.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.3,171.8,169.7,165.5$, $156.2,136.2,135.6,135.5,135.2,133.5,132.8,132.6,129.9,129.8,129.6,128.8$, 128.71, 128.69, 128.6, 128.3, 127.9, 127.7, 99.5 (C-1), 69.8, 68.7, 67.89, 67.86, 67.3, 61.3, 58.0, 54.6, 38.0, 29.8, 28.0, 26.7, 19.1. HRMS (ESI) calcd for $\mathrm{C}_{52} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 979.3562$, found 979.3563 .

Synthesis of T_{N} antigen 1 from 16

O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl]-L-serine (1)

To a solution of compound $\mathbf{1 6}(228.8 \mathrm{mg}, 0.24 \mathrm{mmol})$ in pyridine $(4.8 \mathrm{~mL})$ was added Thioacetic acid (AcSH) ($3.6 \mathrm{~mL}, 48 \mathrm{mmol}$). The reaction mixture was stirred overnight. Then the reaction mixture was concentrated in vacuo. Purification by flash chromatography (petroleum ether-EtOAc, 2:1) afforded intermediate ($213.4 \mathrm{mg}, 92 \%$). The above intermediate ($213.4 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in Py/HOAc (1.2 $\mathrm{mL} / 0.8 \mathrm{~mL}$), subsequently $80 \% \mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.031 \mathrm{~mL}, 0.65 \mathrm{mmol})$ was added. After stirring overnight at room temperature, the reaction mixture was diluted with ethyl acetate, washed with 3 M HCl , saturated NaHCO_{3} solution and brine. The
organic layer was filtered and concentrated. The residue was purified by flash column chromatography (petroleum ether-ethyl acetate, 1:1.3) to give the intermediate (171.3 $\mathrm{mg}, 89 \%$). To a solution of above intermediate ($171 \mathrm{mg}, 0.20 \mathrm{mmol}$) in anhydrous THF (2 mL) was added HF/pyridine ($70 \%, 18 \mathrm{~mL}, 1.95 \mathrm{mmol}$) dropwise. After stirring overnight at room temperature, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ (1mL), diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (DCM/MeOH, 30:1) to afford the intermediate ($114.5 \mathrm{mg}, 92 \%$). A mixture of the above intermediate ($78 \mathrm{mg}, 0.12 \mathrm{mmol}$) and Pd / C ($260.8 \mathrm{mg}, 10 \%$) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(6 \mathrm{~mL} / 0.6 \mathrm{~mL} / 0.06 \mathrm{~mL}$) was stirred under an atmosphere of H_{2} at room temperature for 6.5 h , after which the reaction mixture was filtered and concentrated in vacuo to afford the crude product ($50.5 \mathrm{mg}, 100 \%$). The mixture solution of above crude product ($50.5 \mathrm{mg}, 12 \mathrm{mmol}$) in 1 M $\mathrm{NaOH} /$ Dioxane $/ \mathrm{MeOH}(1.2 \mathrm{~mL} / 0.9 \mathrm{~mL} / 0.9 \mathrm{~mL}$) was stirred overnight at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford $1(27.6 \mathrm{mg}$, 73%) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{22}=+178.5\left(\mathrm{c} 0.16, \mathrm{H}_{2} \mathrm{O}\right) .1 \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ 4.92 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.20(\mathrm{dd}, J=11.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.11(\mathrm{dd}, J=11.0$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.87(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3), 3.82-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta 174.3,171.3,97.6$ (C-1), 71.0, 68.1, 67.1, 66.3, 60.9, 54.2, 49.3, 21.7. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{-} 307.1147$, found 307.1149.

Synthesis of \mathbf{T}_{N} antigen 1 from S32

The glycosylation reaction was carried out according to General Experimental Procedures at $30^{\circ} \mathrm{C}$ for 5.5 d , using acceptor $\mathbf{1 5}(412.3 \mathrm{mg}, 1.25 \mathrm{mmol})$ with $\mathbf{1 7 j}$ ($574.9 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{DCM} 8.3 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(1.39 \mathrm{~g}, 5.01 \mathrm{mmol})$ and TMSI (0.12
$\mathrm{mL}, 0.83 \mathrm{mmol})$. The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford $\mathbf{S 3 2}$ ($353.5 \mathrm{mg}, 51 \%, \alpha / \beta>20: 1$) as a yellow solid. To a solution of compound $\mathbf{S 3 2}$ ($322.6 \mathrm{mg}, 0.39 \mathrm{mmol}$) in pyridine (7.6 mL) was added AcSH ($5.8 \mathrm{~mL}, 77.84 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (PE/EA, 1.2:1-1:1) to afford intermediate (293.1 mg , 89%). A mixture of the above intermediate ($140 \mathrm{mg}, 0.17 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(352.7 \mathrm{mg}$, 10%) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(6 \mathrm{~mL} / 0.6 \mathrm{~mL} / 0.06 \mathrm{~mL})$ was stirred under an atmosphere of H_{2} at room temperature for 6 h , after which the reaction mixture was filtered and concentrated in vacuo to afford the residue ($84.4 \mathrm{mg}, 83 \%$).. To a solution of above residue ($55 \mathrm{mg}, 0.07 \mathrm{mmol}$) in dioxane $/ \mathrm{MeOH}(1.5 \mathrm{~mL} / 1.5 \mathrm{~mL}$) was added 1.5 mL 1 M NaOH aq. The reaction was stirred overnight at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford $\mathbf{1}(34.1 \mathrm{mg}, 81 \%)$ as a white solid.

Preparation of donors 32-34 and acceptors 39 and S33

L-Serine $\quad N$-(benzyloxycarbonyl)- O-(2-azido-4-O-benzoyl-6-O-tert-butyl-diphenylsilyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (39)

Compound 16 ($200 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in anhydrous pyridine/ AcOH $(1.2 \mathrm{~mL} / 0.8 \mathrm{~mL})$, then $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{~mL}, 0.63 \mathrm{mmol})$ was added at room temperature. The reaction was stirred until TLC-analysis indicated full consumption of the starting material. Then the reaction was quenched with acetone and the mixture was concentrated under vacuum. The products were purified by flash column chromatography (PE:EA=5:1) to afford $39(168.8 \mathrm{mg}, 94 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{24}=$ $+63.0\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.55$
(d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.27$ (m, 9H, Ar), 7.17 (m, 5H, Ar), $6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, NH-Ser), $5.61-5.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.19(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.55-4.47(\mathrm{~m}, 1 \mathrm{H}$, CH-Ser), 4.09-3.92 (m, 3H, H-3, H-5, CH ${ }_{2}$-Ser), $3.87-3.77$ (m, 1H, CH ${ }_{2}$-Ser), 3.68 - 3.51 (m, 2H, H-6), 3.36 (dd, $J=10.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 2.70 (s, 1H), 0.89 (s, 9H, $\left.\mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,167.0,156.1,136.1,135.6,135.4$, $135.2,133.5,132.8,132.6,130.0,129.9,129.8,129.5,128.78,128.76,128.64,128.59$, 128.3, 127.9, 127.7, 99.6 (C-1), 70.7, 69.9, 67.8, 67.5, 67.3, 61.3, 60.4, 54.6, 26.7, 19.1. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 881.3194$, found 881.3194 .

L-Serine N-(benzyloxycarbonyl)-O-(2-azido-4-O-benzoyl-2-deoxy-3- O-levulinoyl-α-D-galactopyranosyl)-benzyl ester (S33)

Compound 16 ($430 \mathrm{mg}, 0.45 \mathrm{mmol}$) was then dissolved in anhydrous THF (1.5 mL), and $\mathrm{HF} /$ pyridine $(70 \%, 0.4 \mathrm{~mL}, 4.49 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred overnight at room temperature, the reaction mixture was then quenched with $\mathrm{Et}_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE:EA $=2: 1$) to afford $\mathbf{S 3 3}$ $(293.9 \mathrm{mg}, 91 \%$, $)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{24}=+191.0\left(\mathrm{c} 0.21, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.47(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.42-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 6.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{Ser}), 5.55(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-4), 5.32$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.22(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.98$ (s, $1 \mathrm{H}, \mathrm{H}-1$), 4.63 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ser}), 4.22\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-Ser), 4.10 - 3.92 (m, 2H, H-5, CH 2 -Ser), 3.73 - 3.56 (m, 2H, H-2, H-6), 3.45 (d, J = $10.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), $2.80-2.63$ (m, 2H, CH2-Lev), $2.60-2.51$ (m, 1H, CH2-Lev), $2.50-2.39$ (m,
$1 \mathrm{H}, \mathrm{CH}_{2}$-Lev), 2.10 (s, 3H, CH_{3}-Lev). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.2, 171.7, $169.8,166.1,156.1,136.3,135.1,133.9,129.9,129.0,128.80,128.76,128.7,128.3$, 128.2, 99.7 (C-1), 70.3, 70.2, 68.7, 68.5, 68.0, 67.3, 61.1, 58.0, 54.8, 37.9, 29.7, 27.9. HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 741.2384$, found 741.2383.

3,4,6-tri- O-benzyl-2-O-benzoyl-D-galatopyranosyl-2-(1-phenylvinyl)benzoate

S34

1) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{COOH}$,

2) PVBOH, EDCI, DMAP, DIPEA DCM, overnight, 89\%

32

Anhydrous ethylenediamine ($0.96 \mathrm{~mL}, 14.34 \mathrm{mmol}$) and acetic acid (0.41 mL , 7.17 mmol)are dissolved in anhydrous tetrahydrofuran (35 mL), then $\mathbf{S 3 4}{ }^{14}(4.72 \mathrm{~g}$, 7.17 mmol)dissolved in tetrahydrofuran (35 mL) is added, and stirred at room temperature for 47 h . After the reaction is completed, the reaction mixture was diluted with ethyl acetate and washed with 1 M HCl , saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=5: 1$ to $3: 1$) to give the intermediate $(2.12 \mathrm{~g}, 54 \%$,) as a white solid. The above intermediate ($2.12 \mathrm{~g}, 3.83 \mathrm{mmol}$) and PVBOH [2-(1-phenylvinyl) benzoic acid] ${ }^{15}(1.03 \mathrm{mg}, 4.59 \mathrm{mmol})$ was dissolved in anhydrous DCM (38 mL), and DMAP ($467.7 \mathrm{mg}, 3.83 \mathrm{mmol}$), EDCI ($1.32 \mathrm{~g}, 6.89$ $\mathrm{mmol})$, DIPEA ($1.9 \mathrm{~mL}, 11.48 \mathrm{mmol}$) was added, respectively. The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated in vacuum. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 8:1) to afford $32(2.60 \mathrm{~g}, 89 \%) . \beta$-isomer: $[\alpha]_{\mathrm{D}}{ }^{25}=+29.9$ (c $0.23, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}), 7.55(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.48-7.25$ (m, 15H, Ar), $7.24-7.16$ (m, 2H, Ar), $7.15-7.04$ (m, $8 \mathrm{H}, \mathrm{Ar}), 5.82$ (t, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.53$ (s, 1H, $\mathrm{CH}_{2}=\mathrm{C}-\mathrm{PVB}$), $4.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{PVB}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.63(\mathrm{dd}, J=11.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.46\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.07-4.01(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4$), $3.73-3.59$ (m, 3H, H-3), 3.51 (dd, $J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,164.7,149.2,143.9,140.4,138.4,137.8,137.5,133.2,132.4$, 131.4, 130.9, 130.0, 129.8, 128.9, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.82, 127.80, 127.75, 127.4, 126.5, 114.0, 93.0 (C-1), 79.9, 74.8, 74.5, 73.7, 72.4, 71.9, 70.7, 67.8. HRMS (ESI) calcd for $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 783.2934$, found 783.2932.

3,4,6-tri- O -benzoyl-2-deoxy-2-N-2,2,2-trichloroethoxycarbonyl-D-glucopyrano-syl-2-(1-phenylvinyl)benzoate (33)

Compound $\mathbf{S 3 5}^{16}$ ($2.57 \mathrm{~g}, 7.24 \mathrm{mmol}$) was dissolved in anhydrous pyridine (14 mL). The solution was cooled to $0^{\circ} \mathrm{C}$, DMAP ($883.9 \mathrm{mg}, 7.24 \mathrm{mmol}$) was added, and then $\mathrm{BzCl}(5 \mathrm{~mL}, 43.41 \mathrm{mmol})$ was added slowly. The resulting mixture was allowed to warm to room temperature and stirred 1d. Upon completion, the reaction mixture was diluted in EA, washed with 3 M HCl , saturated NaHCO_{3} solution and brine. The combined organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=10: 1$ to $6: 1$) to give the intermediate $(5.08 \mathrm{~g}, 91 \%)$. Anhydrous ethylenediamine ($0.88 \mathrm{~mL}, 13.18 \mathrm{mmol}$) and acetic acid ($0.38 \mathrm{~mL}, 6.59 \mathrm{mmol}$)are dissolved in anhydrous tetrahydrofuran (32 mL), then above intermediate ($5.08 \mathrm{~g}, 6.59 \mathrm{mmol}$) dissolved in tetrahydrofuran (32 mL) was added, and stirred at room temperature for 42 h . After the reaction is completed, the reaction mixture was diluted with ethyl acetate and washed with 1 M HCl , saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1$ to $3: 1$) to give the intermediate $(2.21 \mathrm{~g}, 50 \%$,) as a white solid. The above intermediate ($2.21 \mathrm{~g}, 3.32$ mmol) and PVBOH ($893.4 \mathrm{mg}, 3.98 \mathrm{mmol}$) was dissolved in anhydrous DCM (33
mL), and DMAP ($405.6 \mathrm{mg}, 3.32 \mathrm{mmol}$), EDCI ($1.15 \mathrm{~g}, 5.98 \mathrm{mmol}$), DIPEA (1.6 mL , 9.96 mmol) was added, respectively. The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated in vacuum. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 6:1) to afford $33(2.76 \mathrm{~g}, 95 \%)$. α-isomer: $[\alpha]_{\mathrm{D}}{ }^{25}=+72.2\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.90(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.55-7.45$ (m, 6H, Ar), $7.43-7.31$ (m, 9H, Ar), $7.30-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.47$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 6.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{PVB}\right), 5.60(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.40(\mathrm{t}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 5.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{PVB}\right), 4.92(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, 1 H), $4.49-4.41$ (m, 2H, H-2), 4.35 (dd, $J=12.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 4.20 (dd, $J=12.4$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.83-3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4$, $166.3,166.1,165.1,154.2,149.4,142.6,138.9,133.63,133.60,133.2,133.0,131.4$, 131.3, 130.0, 129.94, 129.86, 129.7, 129.6, 129.0, 128.9, 128.8, 128.66, 128.53, 128.49, 128.1, 126.8, 113.6, 95.2, 91.7 (C-1), 74.6, 71.5, 70.4, 68.6, 62.3, 53.7. HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{NO}_{11} \mathrm{Cl}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$894.1252, found 894.1248.

2-azido-3-O-benzoyl-2-deoxy-4,6-O-(di-tert-butylsilylene)-D-galactopyranosyl-2-(

1-phenylvinyl)benzoate (34)

S36

1) NIS , acetone $/ \mathrm{H}_{2} \mathrm{O}=10 / 1$, rt, overnight, 54\%
2) PVBOH, EDCI, DMAP, DIPEA DCM, rt, overnight, 77\%

Compound S36 ${ }^{\mathbf{1 7}}$ ($505.5 \mathrm{mg}, 0.86 \mathrm{mmol}$) was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}$ (7.5 $\mathrm{mL} / 0.8 \mathrm{~mL}$), then NIS (N-Iodosuccinimide) ($289.8 \mathrm{mg}, 1.29 \mathrm{mmol}$) was added. The resulting mixture was stirred for overnight. The solution was diluted with EtOAc, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to give the intermediate (209.7 mg ,
54%). The above intermediate ($205 \mathrm{mg}, 0.46 \mathrm{mmol}$) and PVBOH ($122.7 \mathrm{mg}, 0.55$ mmol) was dissolved in anhydrous DCM (4.6 mL), and DMAP ($55.7 \mathrm{mg}, 0.46 \mathrm{mmol}$), EDCI ($157.3 \mathrm{mg}, 0.82 \mathrm{mmol}$), DIPEA ($0.23 \mathrm{~mL}, 1.37 \mathrm{mmol}$) was added, respectively. The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was evaporated in vacuum. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 4:1) to afford 34 ($230.7 \mathrm{mg}, 77 \%$) as a white solid. α-isomer: $[\alpha]_{\mathrm{D}}{ }^{23}=+227.7\left(\mathrm{c} 0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.97$ (m, 2H, Ar), 7.94 - 7.90 (m, 1H, Ar), 7.52 - 7.42 (m, 2H, Ar), $7.40-$ $7.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}$, Ar), 6.33 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.84 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{PVB}$), 5.17 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{C}-\mathrm{PVB}$), 5.09 (dd, $\left.J=10.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.47(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, 4.14 (dd, $J=10.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.73$ (d, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$), 2.89 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), $0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right), 0.81\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0$, $165.8,148.3,142.8,139.7,133.5,132.5,131.5,130.9,130.1,129.8,129.7,128.6$, 128.5, 127.95, 127.87, 126.6, 114.4, 91.9 (C-1), 72.5, 69.9, 69.2, 66.6, 57.2, 27.5, 27.3, 23.3, 20.8. HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$678.2606, found 678.2606.

Synthesis of core 1 mucin-type \boldsymbol{O}-glycan (2)

L-Serine $\quad O$-(3,4,6-tri- O-benzyl-2- O-benzoyl- β-D-galatopyranosyl)-(1 $\rightarrow \mathbf{3}$)- N -(benzyloxycarbonyl)-O-(2-azido-4-O-benzoyl-6-O-tert-butyl-diphenylsilyl-

2-deoxy- α-D-galactopyranosyl)-benzyl ester (22)

A suspension of donor $32(94.7 \mathrm{mg}, 0.12 \mathrm{mmol})$, acceptor $39(71.3 \mathrm{mg}$, $0.083 \mathrm{mmol})$, and activated $3 \AA \mathrm{MS}(170 \mathrm{mg})$ in anhydrous $\mathrm{DCM}(2.5 \mathrm{~mL})$ was stirred at room temperature for 15 min and was then cooled to $0{ }^{\circ} \mathrm{C}$. NIS $(56.0 \mathrm{mg}, 0.25$ mmol) and HOTf (Trifluoromethanesulfonic acid) ($6 \mu \mathrm{~L}, 0.062 \mathrm{mmol}$) were added successively. The resulting mixture was stirred at room temperature for 3 h , then
quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, 6:1 to 5:1) to afford 22 ($101.9 \mathrm{mg}, 84 \%$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{24}=+76.0\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.86$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.56$ (d, $J=7.2$ Hz, 2H, Ar), 7.53 - 7.47 (m, 2H, Ar), $7.40-7.26$ (m, 23H, Ar), $7.25-7.20$ (m, 8H, Ar), $7.18-7.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 5.70(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-4 Gals), $5.66(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50\left(\mathrm{dd}, J=10.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{Gal}}\right), 5.16-5.03$ (m, 4H, CH2-Bn, CH ${ }_{2}$ - Cbz), 4.89 (d, $\left.J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.77(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GalN}}\right), 4.73\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{Gal}}\right), 4.62-4.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.48-$ $4.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.05\left(\mathrm{dd}, J=10.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}\right), 3.99-3.91(\mathrm{~m}, 4 \mathrm{H})$, 3.70 (dd, $J=11.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3_{\mathrm{Gal}}\right), 3.51(\mathrm{dd}, J=$ $10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{GaIN}}$), $0.99\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $169.8,165.3,165.2,156.1,138.8,138.1,137.7,136.2,135.64,135.62,135.2,133.25$, $133.18,132.79,132.75,130.4,130.2,129.90,129.86,129.73,129.71,128.73,128.68$, $128.61,128.55,128.39,128.37,128.35,128.27,128.21,128.18,128.0,127.9,127.72$, 127.70, 127.68, 127.59, 127.2, 102.3 ($\mathrm{C}-1_{\text {Gal }}$), 99.2 (C-1 GalN), 79.6, 77.4, 74.7, 74.3, 73.7, 73.6, 72.4, 71.8, 71.5, 71.2, 70.3, 68.9, 68.2, 67.7, 67.4, 62.8, 59.6, 54.4, 26.8, 19.2. HRMS (ESI) calcd for $\mathrm{C}_{81} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 1417.5393$, found 1417.5392 .

β-D-galatopyranosyl-(1 $\rightarrow 3$)O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl]-

 L-serine (2)

1) $\mathrm{AcSH}, \mathrm{Py}, \mathrm{rt}$, overnight 2) $\mathbf{7 0 \%}$ HF-Py, rt, overnight 3) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}, 12 \mathrm{~h}$
2) 1 M NaOH, Dioxane/MeOH, 12 h 60\% for 4 steps

To a solution of compound $22(245 \mathrm{mg}, 0.17 \mathrm{mmol})$ in pyridine (3.4 mL) was added AcSH ($3.09 \mathrm{~mL}, 34 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was
purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 25$) to afford intermediate (213.9 $\mathrm{mg}, 86 \%$). To a solution of above intermediate ($213 \mathrm{mg}, 0.15 \mathrm{mmol}$) in anhydrous THF (3 mL) was added HF/pyridine (70%, $0.19 \mathrm{~mL}, 1.47 \mathrm{mmol}$) dropwise. After stirring overnight at room temperature, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ (1 mL), diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}, 30: 1$) to afford the intermediate ($174 \mathrm{mg}, 98 \%$). A mixture of the above intermediate ($170 \mathrm{mg}, 0.14 \mathrm{mmol}$) and Pd / C ($331.4 \mathrm{mg}, 10 \%$) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(8 \mathrm{~mL} / 0.8 \mathrm{~mL} / 0.08 \mathrm{~mL}$) was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo. The residue was purified by column chromatography on RP-18 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=2: 1\right)$ to afford the intermediate (104.7 mg , 76%). To a solution of above intermediate ($104 \mathrm{mg}, 0.10 \mathrm{mmol}$) in Dioxane $/ \mathrm{MeOH}$ $(1.5 \mathrm{~mL} / 1.5 \mathrm{~mL})$ was added 1.5 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford 2 (46.3 $\mathrm{mg}, 94 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+82.0\left(\mathrm{c} 0.10, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ 4.92 (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.83-$ $3.71(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 174.7,171.8,104.7,98.3,76.8,75.1,72.6,71.2,70.7,68.8,68.7,61.3$, 61.1, 48.5, 22.2. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{13}$ [M-H] 469.1675, found 469.1680.

Synthesis of core 3 mucin-type \boldsymbol{O}-glycan (4)

L-Serine O-(3,4,6-tri- O-benzoyl-2-deoxy-2-N-2,2,2-tri-chloroethoxycarbonyl- β-D-glucopyranosyl)-($1 \rightarrow 3$)- N -(benzyloxycarbonyl)- O - (2- azido-4-O-benzoyl-6-O-tert-butyldiphenylsilyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (23)

A suspension of donor $\mathbf{3 3}(117.1 \mathrm{mg}, 0.13 \mathrm{mmol})$, acceptor $39(76.8 \mathrm{mg}, 0.089$ $\mathrm{mmol})$, and activated $3 \AA \mathrm{MS}(200 \mathrm{mg})$ in anhydrous DCM $(4 \mathrm{~mL})$ was stirred at room temperature for 15 min and was then cooled to $0^{\circ} \mathrm{C}$. NIS $(60.3 \mathrm{mg}, 0.27 \mathrm{mmol})$ and HOTf (Trifluoromethanesulfonic acid) ($6 \mu \mathrm{~L}, 0.067 \mathrm{mmol}$) were added successively. The resulting mixture was stirred at room temperature for 3 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, $4: 1$) to afford $23(133.3 \mathrm{mg}, 96 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+62.3$ (c 0.23 , CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.85(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{~d}, \mathrm{~A} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{Ar}), 7.40-7.25$ (m, 20H, Ar), $7.25-7.17$ (m, 3H, Ar), $5.85-5.73$ (m, $\left.2 \mathrm{H}, \mathrm{H}-4_{\mathrm{GalN}}, \mathrm{H}-3_{\mathrm{GlcN}}\right), 5.59\left(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GlcN}}\right), 5.36-5.17(\mathrm{~m}, 3 \mathrm{H}), 5.15-$ $5.01\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1_{\mathrm{GlcN}}\right), 4.90-4.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GalN}}\right), 4.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-$ $4.47(\mathrm{~m}, 3 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}\right), 4.11-3.95(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}-5_{\mathrm{GlcN}}\right), 3.82\left(\mathrm{q}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{GlcN}}\right), 3.74-3.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}\right), 0.97(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,166.2,166.1,165.1,164.8$, $156.2,154.1,136.1,135.63,135.57,135.2,133.5,133.4,133.1,133.05,132.96,130.0$, $129.83,129.77,129.74,128.9,128.8,128.7,128.5,128.44,128.42,128.38,128.32$, $127.7,101.3\left(\mathrm{C}-1_{\mathrm{GlcN}}\right), 98.9\left(\mathrm{C}-1_{\mathrm{GaIN}}\right), 95.3,77.4,75.3,74.4,72.2,71.1,69.9,69.3$, $69.0,67.8,67.4,62.7,62.5,59.8,56.9,54.5,26.8,19.1$. HRMS (ESI) calcd for $\mathrm{C}_{77} \mathrm{H}_{74} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{19} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$1528.3711, found 1528.3712.

O-[2-(Acetylamino)-2-deoxy- β-D-glucopyranosyl)-(1 $\rightarrow 3$)- O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl]- L-serine (4)

To a solution of compound 23 ($260 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCM}$ $(24 \mathrm{~mL} / 12 \mathrm{~mL} / 12 \mathrm{~mL})$ was added Zn powder ($1.6 \mathrm{~g}, 25.86 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3.5 h . Then the reaction mixture was filtered, the solvent was removed under vacuum to give the intermediate. The above intermediate was then dissolved in anhydrous pyridine (1.7 mL), and $\mathrm{Ac}_{2} \mathrm{O}(0.81 \mathrm{~mL}, 8.62 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 50$ to $1: 20$) to afford intermediate (183.6 mg , 77%). To a solution of above intermediate ($180 \mathrm{mg}, 0.13 \mathrm{mmol}$) in anhydrous THF (1.3 mL) was added $\mathrm{HF} /$ pyridine ($70 \%, 0.17 \mathrm{~mL}, 1.29 \mathrm{mmol}$) dropwise. After stirring overnight at room temperature, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (DCM/MeOH, 30:1) to afford the intermediate (89.2 mg , 60%). A mixture of the above intermediate ($88 \mathrm{mg}, 0.08 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(181 \mathrm{mg}$, 10%) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(5 \mathrm{~mL} / 0.5 \mathrm{~mL} / 0.05 \mathrm{~mL})$ was stirred under an atmosphere of H_{2} at room temperature for 14 h , after which the reaction mixture was filtered and concentrated in vacuo. The residue was purified by column chromatography on RP-18 ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=4: 1$) to afford the intermediate ($55.7 \mathrm{mg}, 79 \%$). To a solution of above intermediate ($55 \mathrm{mg}, 0.06 \mathrm{mmol}$) in Dioxane $/ \mathrm{MeOH}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ was added 1 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford $4(24.9 \mathrm{mg}, 82 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+91.5$ (c $0.22, \mathrm{H}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.85(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=11.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=11.2$,
$2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 2 \mathrm{H})$, $3.80-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 174.4,173.7,171.7,102.3,98.1,76.1,75.5,73.3,70.9,69.6,68.6,66.6,61.2$, $60.4,55.5,54.4,48.1,22.2,22.1$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{13}[\mathrm{M}-\mathrm{H}]^{-}$ 510.1941, found 510.1945.

Synthesis of core 5 mucin-type \boldsymbol{O}-glycan (6)

L-Serine $\quad O$-(2-azido-3-O-benzoyl-2-deoxy-4,6-O-(di-tert-butylsilylene)- α-D-galactopyranosyl)-($1 \rightarrow 3$)- N -(benzyloxycarbonyl)- O -(2-azido-4- O -benzoyl-6- O -ter t- butyldiphenylsilyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (24)

A suspension of donor $34(101.2 \mathrm{mg}, 0.15 \mathrm{mmol})$, acceptor $39(88.4 \mathrm{mg}, 0.10$ $\mathrm{mmol})$, and activated 3 \AA MS (200 mg) in anhydrous DCM (3 mL) was stirred at room temperature for 15 min and was then cooled to $-20^{\circ} \mathrm{C}$. NIS ($52.1 \mathrm{mg}, 0.23 \mathrm{mmol}$) and HOTf (Trifluoromethanesulfonic acid) ($7 \mu \mathrm{~L}, 0.077 \mathrm{mmol}$) were added successively. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2.5 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, $5: 1$ to 4:1) to afford $24(103.2 \mathrm{mg}, 79 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{26}=+178.2\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (dd, $J=5.8,3.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), $7.68-7.63(\mathrm{~m}, 2 \mathrm{H}$, Ar), $7.57-7.51$ (m, 2H, Ar), 7.49 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), $7.44-7.32$ (m, 16H, Ar), $7.30-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.93\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{A}}\right)$, $5.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{B}}\right), 5.32(\mathrm{dd}, J=10.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-3_{\mathrm{B}}\right), 5.23$ (q, $\left.J=12.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.06(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-4_{\mathrm{B}}, \mathrm{H}-1_{\mathrm{A}}\right), 4.60(\mathrm{dd}, \mathrm{J}=7.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.26\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3_{\mathrm{A}}\right), 4.13-4.07(\mathrm{~m}$,
$1 \mathrm{H}), 4.05-3.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2_{\mathrm{B}}, \mathrm{H}-4_{\mathrm{B}}\right), 3.97-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2_{\mathrm{A}}\right)$, $3.62(\mathrm{dd}, J=10.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right), 0.95$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.7, 165.9, 165.7, 156.1, 136.1, $135.6,135.5,135.2,133.3,132.8,132.6,129.9,129.85,129.82,129.79,129.71,129.6$, 128.81, 128.75, 128.65, 128.52, 128.50, 128.33, 128.30, 127.9, 127.7, $99.1\left(\mathrm{C}-1_{\mathrm{A}}\right)$, $94.0\left(\mathrm{C}-1_{\mathrm{B}}\right), 71.5,70.4,70.1,69.8,69.4,67.8,67.7,67.3,67.0,64.9,61.6,59.7,57.0$, 54.5, 27.7, 27.4, 26.8, 23.3, 20.8, 19.1. HRMS (ESI) calcd for $\mathrm{C}_{68} \mathrm{H}_{79} \mathrm{~N}_{7} \mathrm{O}_{15} \mathrm{Si}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 1312.5070$, found 1312.5072 .

O-[2-(Acetylamino)-2-deoxy- α-D-galatopyranosyl)-(1 $\rightarrow 3$)-O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl]- L-serine (6)

To a solution of compound 24 ($109 \mathrm{mg}, 0.08 \mathrm{mmol}$) in pyridine (1.7 mL) was added AcSH ($3.06 \mathrm{~mL}, 33.78 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 25$) to afford intermediate ($104.4 \mathrm{mg}, 93 \%$). To a solution of above intermediate ($104 \mathrm{mg}, 0.08 \mathrm{mmol}$) in anhydrous THF (2 mL) was added HF/pyridine ($70 \%, 0.2 \mathrm{~mL}, 1.57 \mathrm{mmol}$) dropwise. After stirring overnight at room temperature, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}, 25: 1$) to afford the intermediate ($63.2 \mathrm{mg}, 85 \%$). A mixture of the above intermediate ($63 \mathrm{mg}, 0.07 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(158 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(5 \mathrm{~mL} / 0.5 \mathrm{~mL} / 0.05 \mathrm{~mL})$ was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo. The residue was purified by column
chromatography on RP-18 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1.5: 1\right)$ to afford the intermediate $(36.4 \mathrm{mg}$, 76%). To a solution of above intermediate ($36 \mathrm{mg}, 0.05 \mathrm{mmol}$) in dioxane $/ \mathrm{MeOH}$ $(1 \mathrm{~mL} / 1 \mathrm{~mL})$ was added 1 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford $6(19.9 \mathrm{mg}$, 78%) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+195.0\left(\mathrm{c} 0.08, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ $5.09(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=11.1,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.70(\mathrm{~m}, 9 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{3} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.6,174.4,172.9,97.9,93.1$, 71.7, 71.23, 71.20, 68.3, 67.7, 66.9, 64.2, 61.3, 61.0, 54.6, 49.3, 47.7, 22.0, 21.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{13}[\mathrm{M}-\mathrm{H}]^{-} 510.1941$, found 510.1945.

Synthesis of core 8 mucin-type \boldsymbol{O}-glycan (9)

L-Serine $\quad O$-(2,3-di- O-benzoyl-4,6- O-(di-tert-butylsilylene)- α-D-galactopyranosyl))-($1 \rightarrow 3$)- N -(benzyloxycarbonyl)- O-(2-azido-4-O-benzoyl-6-O-tert-butyldiphenylsilyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (25)

A suspension of donor $\mathbf{3 5}$ ($273.9 \mathrm{mg}, 0.37 \mathrm{mmol}$), acceptor 39 ($246.3 \mathrm{mg}, 0.29$ mmol), and activated $3 \AA$ MS (550 mg) in anhydrous DCM (11 mL) was stirred at room temperature for 15 min and was then cooled to $-15{ }^{\circ} \mathrm{C}$. NIS ($125.8 \mathrm{mg}, 0.56$ mmol) and HOTf (Trifluoromethanesulfonic acid) ($13 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) were added successively. The resulting mixture was stirred at $-15^{\circ} \mathrm{C}$ for 3.5 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, 6:1 to $4: 1$) to afford $\mathbf{2 5}(364.5 \mathrm{mg}, 93 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+164.3$ (c
$0.36, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.70-7.65(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 7.60-7.56$ (m, 2H, Ar), $7.46-7.38$ (m, 7H, Ar), $7.36-7.21$ (m, 16H, Ar), 7.09 - 6.96 (m, 6H, Ar), 5.97 (dd, $J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{Gal}), 5.77-5.69$ (m, 3H, $\mathrm{H}-1_{\text {Gal }}, \mathrm{H}-4_{\text {GalN }}$), $5.58\left(\mathrm{dd}, J=10.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\text {Gal }}\right), 5.24(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.07$ $(\mathrm{s}, 2 \mathrm{H}), 4.91\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1_{\mathrm{GaIN}}, \mathrm{H}-4_{\mathrm{Gal}}\right), 4.60(\mathrm{dd}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dd, $J=10.9,2.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}$), $4.08(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 2 \mathrm{H})$, 3.79 (dd, $\left.J=10.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2_{\mathrm{GaIN}}\right), 3.57(\mathrm{dd}, J=10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=$ 10.3, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.18 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}$), 0.98 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-t-\mathrm{Bu}$), 0.93 ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3}-t-\mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,166.1,166.0,164.8,156.1,136.1$, 135.6, 135.4, 135.2, 133.1, 132.8, 132.6, 129.8, 129.69, 129.65, 129.5, 129.4, 128.82, 128.79, 128.72, 128.63, 128.59, 128.32, 128.30, 128.27, 128.1, 128.0, 127.8, 127.7, 127.6, 98.9 ($\mathrm{C}-1_{\mathrm{GaIN}}$), $93.1\left(\mathrm{C}-1_{\mathrm{Gal}}\right), 71.4,70.9,70.6,69.6,69.2,67.8,67.6,67.29$, $67.25,66.9,65.5,61.9,60.5,59.7,54.5,27.7,27.4,26.7,23.4,20.8,19.0,14.3 . \mathrm{MS}$ (Maldi-TOF) calcd for $\mathrm{C}_{75} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]{ }^{+} 1391.5268$, found 1391.5269.

α-D-galatopyranosyl-(1 $\rightarrow 3$)-O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl] -L-serine (9)

Core 8 (9)

To a solution of compound $\mathbf{2 5}(362 \mathrm{mg}, 0.26 \mathrm{mmol})$ in pyridine (5 mL) was added AcSH ($3.9 \mathrm{~mL}, 52.86 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (PE/EA/DCM, 6:3:1) to afford intermediate (366.2 $\mathrm{mg}, 82 \%$). To a solution of above intermediate ($323.9 \mathrm{mg}, 0.24 \mathrm{mmol}$) in anhydrous THF (8 mL) was added HF/pyridine (70%, $0.21 \mathrm{~mL}, 2.33 \mathrm{mmol}$) dropwise. After stirring overnight at room temperature, the reaction mixture was quenched with $E t_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The
organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (DCM/MeOH, 40:1) to afford the intermediate (203.8 $\mathrm{mg}, 87 \%$). A mixture of the above intermediate ($93 \mathrm{mg}, 0.09 \mathrm{mmol}$) and Pd/C (196.6 $\mathrm{mg}, 10 \%$) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(6 \mathrm{~mL} / 0.6 \mathrm{~mL} / 0.06 \mathrm{~mL}$) was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo. The residue was purified by column chromatography on RP-18 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1.5: 1\right.$ to $\left.2: 1\right)$ to afford the intermediate ($55.5 \mathrm{mg}, 77 \%$). To a solution of above intermediate ($55 \mathrm{mg}, 0.07 \mathrm{mmol}$) in dioxane $/ \mathrm{MeOH}(0.75 \mathrm{~mL} / 0.75 \mathrm{~mL})$ was added 1 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford 9 ($24.8 \mathrm{mg}, 75 \%$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+256.9\left(\mathrm{c} 0.16, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, D 2 O) $\delta 5.15(\mathrm{~d}, ~ J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=$ $11.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-$ $3.92(\mathrm{~m}, 5 \mathrm{H}), 3.89-3.74(\mathrm{~m}, 7 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 174.0$, $171.3,97.6,94.4,71.9,70.8,70.7,68.9,68.6,67.6,66.0,64.0,60.8,60.5,54.0,47.3$, 21.6. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{13}[\mathrm{M}-\mathrm{H}]^{-} 469.1675$, found 469.1677.

Synthesis of core ST $_{\mathrm{N}}$ antigen (10)

L-Serine 5-azido-4,7,8,9-tetra- O-acetyl-3,5-dideoxy-D-glycero- α-D-galacto-non-2-

 ulopyranosylonate)-(2 $\rightarrow 3$)- N -(benzyloxycarbonyl)- O -(2-azido-4- O-benzoyl-2-deo xy- 3-O-levulinoyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (30)

A suspension of donor $\mathbf{3 6}^{18}(122.2 \mathrm{mg}, 0.19 \mathrm{mmol})$, acceptor $\mathbf{S 3 3}(76.4 \mathrm{mg}, 0.11$ $\mathrm{mmol})$, and activated $3 \AA \mathrm{MS}(200 \mathrm{mg})$ in anhydrous DCM $(4 \mathrm{~mL})$ was stirred at room
temperature for 15 min and was then cooled to $-40^{\circ} \mathrm{C}$. NIS ($100.2 \mathrm{mg}, 0.45 \mathrm{mmol}$) and HOTf (Trifluoromethanesulfonic acid) ($16.4 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$) were added successively. The resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 3 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, 6:1 to $4: 1$) to afford $\mathbf{3 0}(185.2 \mathrm{mg}, 80 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+36.8$ (c $\left.0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.65(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31$ $(\mathrm{m}, 10 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.37-5.04(\mathrm{~m}, 8 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.06(\mathrm{~m}, 5 \mathrm{H}), 3.89-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}$, $J=10.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.62(\mathrm{~m}$, $3 \mathrm{H}), 2.60-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}$, $3 \mathrm{H}), 1.71(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 206.0, 171.6, 170.7, $169.9,169.74,169.65,169.5,166.5,165.4,156.2,154.2,149.2,137.1,136.3,135.2$, 133., 129.8, 129.5, 128.7, 128.6, 128.6, 128.2, 128.2, 123.2, 121.2, 99.2(C-1 $\left.1_{\text {GalN }}\right), 98.5$, $77.4,71.7,70.9,69.4,68.7,68.1,67.9,67.8,67.7,67.2,67.1,62.6,62.0,60.0,57.9$, 54.6, 37.9, 37.4, 29.7, 27.9, 20.9, 20.8, 20.7. HRMS (ESI) calcd for $\mathrm{C}_{59} \mathrm{H}_{65} \mathrm{~N}_{8} \mathrm{O}_{23}$ $\left[^{M}+\mathrm{H}\right]^{+}$1253.4157, found 1253.4159.

5-acetamido-3,5-dideoxy-D-glycero-D-galacto-non-2-ulopyranosylonic acid-(2 \rightarrow 6) -O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl] -L-serine (10)

To a solution of compound $\mathbf{3 0}(180 \mathrm{mg}, 0.14 \mathrm{mmol})$ in pyridine (3 mL) was added AcSH ($5.2 \mathrm{~mL}, 57.45 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue
was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 20$) to afford intermediate ($184.6 \mathrm{mg}, 100 \%$). The above intermediate ($184 \mathrm{mg}, 0.14 \mathrm{mmol}$) was dissolved in anhydrous DCM/pyridine/AcOH ($1 \mathrm{~mL} / 0.3 \mathrm{~mL} / 0.2 \mathrm{~mL}$), then $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.026$ $\mathrm{mL}, 0.43 \mathrm{mmol}$) was added at room temperature. The reaction was stirred until TLC-analysis indicated full consumption of the starting material. Then the reaction was quenched with acetone and the mixture was concentrated under vacuum. The products were purified by flash column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 20: 1$) to afford the intermediate ($151 \mathrm{mg}, 89 \%$). A mixture of the above intermediate (144 mg , 0.13 mmol) and $\mathrm{Pd} / \mathrm{C}(288 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(6 \mathrm{~mL} / 0.6 \mathrm{~mL} / 0.06 \mathrm{~mL})$ was stirred under an atmosphere of H_{2} at room temperature for 13 h , after which the reaction mixture was filtered and concentrated in vacuo to afford the intermediate. To a solution of above intermediate in dioxane $/ \mathrm{MeOH}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ was added 1 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford $10(72.1 \mathrm{mg}, 95 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+73.1\left(\mathrm{c} 0.21, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.90(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J$ $=11.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=11.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=8.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01-3.97$ (m, 2H), $3.95-3.86(\mathrm{~m}, 5 \mathrm{H}), 3.83(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.62$ (m, $4 \mathrm{H}), 3.58$ (dd, $J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=12.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.04$ $(\mathrm{s}, 3 \mathrm{H}), 1.69(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 175.0,174.7,173.4$, $171.8,100.3,98.0,72.6,71.8,69.7,68.4,68.2,67.2,66.9,63.9,62.6,54.4,51.8,49.6$, 40.2, 22.00, 21.99. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{16}[\mathrm{M}-\mathrm{H}]^{-}$598.2101, found 598.2105.

Synthesis of core 6 mucin-type \boldsymbol{O}-glycan (7)

L-Serine O-(3,4,6-tri- O-benzoyl-2-deoxy-2-N-2,2,2-tri-chloroethoxycarbonyl- β-D-glucopyranosyl)-($1 \rightarrow 6$)- N -(benzyloxycarbonyl)- O -(2- azido-4- O -benzoyl-2-deoxy-

A suspension of donor $\mathbf{3 3}$ ($111.4 \mathrm{mg}, 0.13 \mathrm{mmol}$), acceptor $\mathbf{S 3 3}(76.4 \mathrm{mg}, 0.11$ $\mathrm{mmol})$, and activated $3 \AA \mathrm{MS}(200 \mathrm{mg})$ in anhydrous DCM (3.3 mL) was stirred at room temperature for 15 min and was then cooled to $0^{\circ} \mathrm{C}$. NIS ($43.0 \mathrm{mg}, 0.19 \mathrm{mmol}$) and HOTf (Trifluoromethanesulfonic acid) ($3 \mu \mathrm{~L}, 0.038 \mathrm{mmol}$) were added successively. The resulting mixture was stirred at room temperature for 2.5 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, $3: 1$ to $2: 1$) to afford 26 ($134.7 \mathrm{mg}, 93 \%$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{24}=+62.2\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-8.01(\mathrm{~m}$, 2H), $7.94-7.89$ (m, 4H), 7.87 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-$ 7.44 (m, 6H), $7.40-7.27(\mathrm{~m}, 15 \mathrm{H}), 6.03(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-3_{\mathrm{GlcN}}\right), 5.60\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GalN}}\right), 5.52\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GlcN}}\right), 5.35(\mathrm{dd}$, $\left.J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{GalN}}\right), 5.25(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1_{\text {GalN }}\right), 4.95\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GlcN}}\right), 4.81(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.59(\mathrm{~m}$, $1 \mathrm{H}), 4.57$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (dd, $J=12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=12.2,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=7.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=$ 10.7, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 - 3.96 (m, 1H), 3.92 (dd, $J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.60(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}, \mathrm{H}-2_{\mathrm{GlcN}}$), $2.81-2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.71-2.64$ (m, 1H, CH CH_{2}-Lev), 2.60 - 2.54 (m, 1H, CH 2 -Lev), 2.49 - 2.41 (m, 1H, CH ${ }_{2}$-Lev), 2.13 (s, 3H, CH ${ }_{3}$-Lev). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.2,171.6,169.5,166.1,166.0,165.4,165.3,156.1$, 154.1, 136.1, 135.1, 133.8, 133.44, 133.41, 133.1, 129.9, 129.85, 129.76, 129.67, 129.57, 129.1, 129.0, 128.9, 128.8, 128.74, 128.72, 128.69, 128.64, 128.57, 128.49, $128.42,128.35,128.2,100.0\left(\mathrm{C}-1_{\text {GlcN }}\right), 98.7\left(\mathrm{C}-1_{\text {GalN }}\right), 95.6,74.3,71.9,71.6,70.0$, 69.0, 68.8, 68.51, 68.50, 68.1, 68.0, 67.4, 63.0, 57.7, 57.0, 54.5, 37.9, 29.8, 27.9. HRMS (ESI) calcd for $\mathrm{C}_{66} \mathrm{H}_{62} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{21} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1388.2901, found 1388.2899.
O-[2-(Acetylamino)-2-deoxy- β-D-glucopyranosyl)-(1 $\rightarrow 6$)-O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl]- L-serine (7)

To a solution of compound $\mathbf{2 6}(125 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCM}(13$ $\mathrm{mL} / 6.5 \mathrm{~mL} / 6.5 \mathrm{~mL}$)was added Zn powder ($1.2 \mathrm{~g}, 18.28 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was filtered, the solvent was removed under vacuum to give the intermediate. The above intermediate was then dissolved in anhydrous pyridine (4.6 mL), and $\mathrm{Ac}_{2} \mathrm{O}(0.43 \mathrm{~mL}, 4.57 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 30$) to afford intermediate ($110.3 \mathrm{mg}, 97 \%$). The above intermediate ($100 \mathrm{mg}, 0.09 \mathrm{mmol}$) was dissolved in anhydrous DCM/pyridine $/ \mathrm{AcOH}(1 \mathrm{~mL} / 0.3 \mathrm{~mL} / 0.2 \mathrm{~mL})$, then $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.016 \mathrm{~mL}, 0.26$ mmol) was added at room temperature. The reaction was stirred until TLC-analysis indicated full consumption of the starting material. Then the reaction was quenched with acetone and the mixture was concentrated under vacuum. The products were purified by flash column chromatography ($\mathrm{DCM} / \mathrm{MeOH}$, 15:1) to afford the intermediate ($100 \mathrm{mg}, 99 \%$). A mixture of the above intermediate ($100 \mathrm{mg}, 0.09 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(206 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(5 \mathrm{~mL} / 0.5 \mathrm{~mL} / 0.05 \mathrm{~mL})$ was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo. The residue was purified by column chromatography on RP-18 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=3: 1\right)$ to afford the intermediate $(68.8 \mathrm{mg}$, 83%). To a solution of above intermediate ($68 \mathrm{mg}, 0.07 \mathrm{mmol}$) in Dioxane $/ \mathrm{MeOH}$ $(1.5 \mathrm{~mL} / 1.5 \mathrm{~mL})$ was added 1.5 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to
$\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford 7 (33.8 $\mathrm{mg}, 90 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+110.8\left(\mathrm{c} 0.10, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ $4.87(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{dd}, J=10.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.87$ $(\mathrm{m}, 3 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-$ $3.41(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.7,174.5$, $171.6,101.5,98.0,75.8,73.6,69.92,69.86,69.8,68.4,67.2,66.5,60.6,55.5,54.4$, 49.5, 22.2, 22.0. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{13}[\mathrm{M}-\mathrm{H}]^{-}$510.1941, found 510.1945.

Synthesis of core 7 mucin-type \boldsymbol{O}-glycan (8)

L-Serine $\quad O$-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galactopyra-nosyl)-($1 \rightarrow 6$)- N -(benzyloxycarbonyl)- O -(2-azido-4- O-benzoyl-2-deoxy-3- O -levulinoyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (27)

PTFAI donor 17 a ($180.2 \mathrm{mg}, 0.27 \mathrm{mmol}$) was co-evaporated with anhydrous toluene for three times. Then PTFAI donor with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(446.1 \mathrm{mg}, 1.60 \mathrm{mmol})$ were dissolved in new distilled DCM (1.8 mL) and stirred over fresh-dried $3 \AA$ molecular sieves (300 mg) under argon at room temperature for 15 min . TMSI $(38 \mu \mathrm{~L}, 0.27$ mmol) was added dropwise subsequently. After the mixture was stirred for 1 h , acceptor $\mathbf{S 3 3}$ ($128 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 3d. Upon completion, the solution was diluted with EtOAc and the reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The products were purified by flash column chromatography ($\mathrm{PE}-\mathrm{EA}=3: 1$) to afford
$27(182.7 \mathrm{mg}, 85 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+205.5\left(\mathrm{c} 0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}$, Ar), 7.59 (q, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.52-7.24$ (m, 20H, Ar), $7.17-7.12$ (m, 2H, Ar), $5.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{B}}\right), 5.70(\mathrm{dd}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-3_{\mathrm{B}}\right), 5.61\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{A}}\right), 5.36\left(\mathrm{dd}, J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{A}}\right), 5.24(\mathrm{q}, J$ $=10.2,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{q}, J=12.0,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.02\left(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1_{\mathrm{A}}\right.$, $\left.\mathrm{H}-1_{\mathrm{B}}\right), 4.76-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ $(\mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=10.4,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09 (dd, $J=10.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=10.5,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{q}, J=$ $9.7,8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.82-2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.72-2.63$ (m, 1H, CH ${ }_{2}$-Lev), $2.61-$ $2.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-Lev), $2.50-2.41$ (m, 1H, CH 2 -Lev), 2.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-Lev). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.2,171.6,169.9,165.6,165.45,165.37,156.2,137.6$, $136.3,135.3,133.8,133.5,133.4,129.9,129.8,129.5,129.2,129.1,128.79,128.77$, $128.72,128.63,128.61,128.4,128.3,128.2,127.75,127.69,99.0,97.8,73.4,69.3$, 69.1, 68.9, 68.7, 68.55, 68.50, 68.02, 67.97, 67.8, 67.3, 66.5, 58.4, 57.9, 54.3, 37.9, 29.8, 27.9. HRMS (ESI) calcd for $\mathrm{C}_{63} \mathrm{H}_{61} \mathrm{~N}_{7} \mathrm{O}_{18} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1226.3971, found 1226.3970.

O-[2-(Acetylamino)-2-deoxy- α-D-galactoopyranosyl)-(1 $\rightarrow 6$)- O-[2-(Acetylamino)-

2- deoxy- α-D-galactopyranosyl]- L-serine (8)

To a solution of compound $27(180 \mathrm{mg}, 0.15 \mathrm{mmol})$ in pyridine (3 mL) was added AcSH ($5.42 \mathrm{~mL}, 59.79 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue
was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 30$) to afford intermediate ($184.8 \mathrm{mg}, 100 \%$). The above intermediate ($183 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in anhydrous DCM/pyridine/AcOH ($1 \mathrm{~mL} / 0.3 \mathrm{~mL} / 0.2 \mathrm{~mL}$), then $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(80 \%$, $0.027 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was added at room temperature. The reaction was stirred until TLC-analysis indicated full consumption of the starting material. Then the reaction was quenched with acetone and the mixture was concentrated under vacuum. The products were purified by flash column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 30: 1$) to afford the intermediate $(168.5 \mathrm{mg}, 100 \%)$. A mixture of the above intermediate (168 $\mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(524 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(8 \mathrm{~mL} / 0.8 \mathrm{~mL} / 0.08$ mL) was stirred under an atmosphere of H_{2} at room temperature for 11 h , after which the reaction mixture was filtered and concentrated in vacuo. The residue was purified by column chromatography on RP-18 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1.5: 1\right)$ to afford the intermediate ($107.8 \mathrm{mg}, 89 \%$).To a solution of above intermediate ($106 \mathrm{mg}, 0.013 \mathrm{mmol}$) in dioxane $/ \mathrm{MeOH}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ was added $2 \mathrm{~mL} 1 \mathrm{M} \mathrm{NaOH} \mathrm{aq}$. for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford 8 ($53.3 \mathrm{mg}, 81 \%$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+149.3$ (c $0.21, \mathrm{H}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.96(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.07(\mathrm{~m}$, $4 \mathrm{H}), 4.07-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.96-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) ~ \delta 174.64,174.57,171.4,97.9,97.1,71.1,69.0,68.5,68.5$, 67.6, 67.5, 66.5, 66.3, 61.2, 54.5, 49.8, 49.5, 22.0, 21.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{13}[\mathrm{M}-\mathrm{H}]^{-} 510.1941$, found 510.1939.

Synthesis of core 2 mucin-type \boldsymbol{O}-glycan (3)

L-Serine \boldsymbol{O}-(3,4,6-tri- O-benzoyl-2-deoxy-2- N-2,2,2-tri-chloroethoxycarbonyl- $\boldsymbol{\beta}$-D-

 glucopyranosyl)-($1 \rightarrow 6$)- N -(benzyloxycarbonyl)- O -(2-azido-4-O-benzoyl-2-deoxy-α-D-galactopyranosyl)-(3 $\rightarrow 1$)- O-(3,4,6-tri- O-benzyl-2-O-benzoyl- β-D-galato-pyranosyl)-benzyl ester (28)

Compound 22 ($358 \mathrm{mg}, 0.26 \mathrm{mmol}$) was then dissolved in anhydrous THF (1.0 mL), and $\mathrm{HF} /$ pyridine $(70 \%, 0.23 \mathrm{~mL}, 2.56 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred overnight at room temperature, the reaction mixture was then quenched with $\mathrm{Et}_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford the acceptor ($262.4 \mathrm{mg}, 88 \%$, as a white solid. A suspension of donor 33 ($115.8 \mathrm{mg}, 0.13$ mmol), acceptor ($127.9 \mathrm{mg}, 0.11 \mathrm{mmol}$), and activated $3 \AA \mathrm{MS}(250 \mathrm{mg})$ in anhydrous DCM (3.3 mL) was stirred at room temperature for 15 min and was then cooled to $0{ }^{\circ} \mathrm{C}$. NIS ($44.7 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HOTf (Trifluoromethanesulfonic acid) ($5 \mu \mathrm{~L}$, 0.053 mmol) were added successively. The resulting mixture was stirred at room temperature for 3.5 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, 3:1) to afford $\mathbf{2 8}$ ($193.8 \mathrm{mg}, 97 \%$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+78.3\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{t}$, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.94$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.89$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.86 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.52(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.46-7.37$ (m, 8H, Ar), $7.36-7.31$ (m, 7H, Ar), 7.28 (h, $J=7.9,6.9 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Ar}), 7.21-7.19$ (m, 3H, Ar), $7.17-7.14$ (m, 2H, Ar), $7.11(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}), 6.06-6.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3_{\mathrm{GlcN}}, \mathrm{H}-4_{\mathrm{GaIN}}\right), 5.98$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2_{\mathrm{Gal}}, \mathrm{H}-4_{\mathrm{GlcN}}, \mathrm{H}-3_{\mathrm{GalN}}\right), 5.16-5.08(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Cbz}, \mathrm{CH}_{2}-\mathrm{Bn}$), $4.96\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GlcN}}\right), 4.87(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Bn}\right), 4.81\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{GaN}}\right), 4.70(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{Gal}}$), $4.58\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.56-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}$), 4.43 (dd, $\left.J=12.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.38(\mathrm{dd}, J=12.1$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 3 \mathrm{H})$,
$4.00(\mathrm{dd}, J=10.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=10.6,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65-3.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2_{\mathrm{GlcN}}\right), 3.57-3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}\right), 3.46(\mathrm{t}, J=9.9 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,166.1,165.93,165.89,165.3,165.2,155.9$, $154.0,138.6,137.8,137.6,136.0,135.0,133.4,133.3,133.0,132.8,130.2,129.9$, 129.8, 129.81, 129.79, 129.73, 129.6, 129.0, 128.8, 128.7, 128.64, 128.57, 128.49, $128.47,128.43,128.40,128.36,128.35,128.29,128.24,128.16,128.09,127.98$, $127.8,127.6,127.5,127.2,102.2\left(\mathrm{C}-1_{\mathrm{Gal}}\right), 100.2\left(\mathrm{C}-1_{\mathrm{GlcN}}\right), 98.4\left(\mathrm{C}-1_{\mathrm{GalN}}\right), 95.4,79.4$, $74.8,74.2,73.6,73.5,72.4,71.8,71.6,71.5,71.4,70.8,70.0,69.9,69.7,68.2,68.1$, 67.7, 67.3, 63.2, 59.1, 57.1, 54.2. HRMS (ESI) calcd for $\mathrm{C}_{95} \mathrm{H}_{88} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{25} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 1826.4726, found 1826.4731.

O-[2-(Acetylamino)-2-deoxy- β-D-galactoopyranosyl)-($1 \rightarrow 6$)- O-[2-(Acetylamino)-

2-deoxy- α-D-galactopyranosyl])-(3 $\rightarrow 1$)-O- β-D-galactopyranosyl)- L-serine (3)

To a solution of compound $\mathbf{2 8}(180 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCM}(14$ $\mathrm{mL} / 7 \mathrm{~mL} / 7 \mathrm{~mL}$) was added Zn powder ($652 \mathrm{mg}, 9.97 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was filtered, the solvent was removed under vacuum to give the intermediate. The above intermediate was then dissolved in anhydrous $\mathrm{MeOH}(28 \mathrm{~mL})$, and $\mathrm{Ac}_{2} \mathrm{O}(0.47 \mathrm{~mL}, 4.98 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 30$) to afford intermediate ($117.3 \mathrm{mg}, 70 \%$). A mixture of the above intermediate ($115 \mathrm{mg}, 0.07 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(403 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}\left(5 \mathrm{~mL} / 0.5 \mathrm{~mL} / 0.05 \mathrm{~mL}\right.$) was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo. The residue was purified by column chromatography on RP-18
($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=2: 1$ to $3: 1$) to afford the intermediate $(56.7 \mathrm{mg}, 70 \%)$. To a solution of above intermediate ($55 \mathrm{mg}, 0.05 \mathrm{mmol}$) in Dioxane $/ \mathrm{MeOH}(1 \mathrm{~mL} / 1 \mathrm{~mL}$) was added 1 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 (MeOH- $\mathrm{H}_{2} \mathrm{O}=1: 1$) to afford $3(25.3 \mathrm{mg}, 82 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+32.0\left(\mathrm{c} 0.10, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.85(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.51 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.19 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{dd}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-$ $3.83(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.66(\mathrm{~m}, 5 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{~s}$, $3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.21,174.09,104.14$, 101.12, 97.66, $75.89,75.39,74.49,73.23,72.00,70.11,69.59,69.43,69.32,68.37,68.09,66.53$, 60.52, 60.17, 55.05, 54.09, 47.86, 21.78, 21.61. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{18}$ [M-H] 672.2469 , found 672.2475 .

Synthesis of core 4 mucin-type \boldsymbol{O}-glycan (5)

L-Serine $\quad O$-(3,4,6-tri- O-benzoyl-2-deoxy-2-N-2,2,2-tri-chloroethoxycarbonyl- β -

D-glucopyranosyl)-($1 \rightarrow 6$)- N -(benzyloxycarbonyl)- O -(2-azido-4-O-benzoyl-2-deoxy- α-D-galactopyranosyl)-(3 $\rightarrow 1$)- O-(3,4,6-tri- O-benzoyl-2-deoxy-2-N-2,2,2-trichloroethoxycarbonyl- β-D-glucopyranosyl)-benzyl ester (29)

Compound 39 ($428 \mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved in anhydrous THF (1.6 mL), and $\mathrm{HF} /$ pyridine $(70 \%, 0.45 \mathrm{~mL}, 4.98 \mathrm{mmol}$) was added dropwise. The resulting mixture was stirred overnight at room temperature, the reaction mixture was then quenched with $\mathrm{Et}_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue
was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford the acceptor ($292.6 \mathrm{mg}, 95 \%$,) as a white solid. A suspension of donor 33 ($211.0 \mathrm{mg}, 0.24$ mmol), acceptor ($60.0 \mathrm{mg}, 0.097 \mathrm{mmol}$), and activated $3 \AA \mathrm{MS}(300 \mathrm{mg})$ in anhydrous DCM (2.9 mL) was stirred at room temperature for 15 min and was then cooled to $-15^{\circ} \mathrm{C}$. NIS ($217.5 \mathrm{mg}, 0.97 \mathrm{mmol}$) and HOTf (Trifluoromethanesulfonic acid) ($21 \mu \mathrm{~L}$, $0.24 \mathrm{mmol})$ were added successively. The resulting mixture was stirred at $-15{ }^{\circ} \mathrm{C}$ for 3.5 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, 6:1 to 5:1) to afford 29 ($165.3 \mathrm{mg}, 89 \%$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{24}=+47.1\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.03-7.85$ (m, 16H, Ar), $7.56-7.45$ (m, 7H, Ar), $7.43-7.29$ (m, 22H, Ar), $6.10(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 3 \mathrm{H}), 5.83(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4_{\mathrm{GalN}}\right)$, $5.60(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (s, 2H), $5.20(\mathrm{~s}, 2 \mathrm{H}), 5.04$ (t, J $=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1_{\text {GalN }}\right), 4.79(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.64(\mathrm{~m}, 2 \mathrm{H})$, $4.60(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.50(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=12.2,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.22 - 4.03 (m, 7H, H-3 GalN), $3.92-3.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2_{\mathrm{GalN}}, \mathrm{H}-2_{\mathrm{A}}, \mathrm{H}-2_{\mathrm{B}}\right.$), $3.51(\mathrm{t}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,166.2,166.12,166.06,165.96$, $165.33,165.28,165.0,156.0,154.1,154.0,136.0,135.1,133.5,133.4,133.3,133.1$, 132.9, 129.88, 129.85, 129.78, 129.71, 129.69, 129.60, 129.5, 129.4, 128.9, 128.81, 128.78, 128.73, 128.70, 128.66, 128.62, 128.59, 128.46, 128.42, 128.37, 128.31, $128.2,101.5,100.2,98.2,95.5,95.2,76.0,74.4,74.2,72.1,72.0,71.93,71.85,71.5$, $70.1,69.7,69.4,69.0,68.2,67.8,67.3,63.2,62.4,59.2,57.1,56.7,54.3 . \mathrm{MS}$ (Maldi-TOF) calcd for $\mathrm{C}_{91} \mathrm{H}_{80} \mathrm{~N}_{6} \mathrm{O}_{28} \mathrm{Cl}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1937.3049$, found 1937.3041.

O-[2-(Acetylamino)-2-deoxy- β-D-glucopyranosyl)-(1 $\rightarrow 6$)-O-[2-(Acetylamino)-2-d eoxy- α-D-galactopyranosyl])-(3 $\rightarrow 1$)- O-[2-(Acetylamino)-2-deoxy- β-D-glucopyran osyl])- L-serine (5)

To a solution of compound $29(160 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCM}(12$ $\mathrm{mL} / 6 \mathrm{~mL} / 6 \mathrm{~mL}$)was added Zn powder ($1.64 \mathrm{~g}, 25.02 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was filtered, the solvent was removed under vacuum to give the intermediate. The above intermediate was then dissolved in anhydrous Py (2 mL), and $\mathrm{Ac}_{2} \mathrm{O}(0.59 \mathrm{~mL}, 6.26 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 30$) to afford intermediate ($120.7 \mathrm{mg}, 87 \%$). A mixture of the above intermediate ($120 \mathrm{mg}, 0.07 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(170 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}\left(8 \mathrm{~mL} / 0.8 \mathrm{~mL} / 0.08 \mathrm{~mL}\right.$) was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo afford the intermediate. To a solution of above intermediate in Dioxane/MeOH ($2 \mathrm{~mL} / 2 \mathrm{~mL}$) was added 2 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=1: 1\right)$ to afford $5\left(31.6 \mathrm{mg}, 60 \%\right.$ for two steps) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+9.6\left(\mathrm{c} 0.15, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.85(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.04$ - $3.99(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.66(\mathrm{~m}, 6 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.51-$ $3.40(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.4,174.4$, 173.7, 102.4, 101.5, 97.9, 76.0, 75.8, 75.6, 73.8, 73.4, 70.9, 70.1, 70.0, 69.9, 69.7, 69.5, 68.9, 60.6, 60.4, 55.51, 55.47, 48.2, 22.23, 22.16, 22.1. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{18}[\mathrm{M}-\mathrm{H}]^{-} 713.2734$, found 713.2734.

Synthesis of 2,6 STF antigen (11)

L-Serine 5-azido-4,7,8,9-tetra- O-acetyl-3,5-dideoxy-D-glycero- α-D-galacto-non-2-ulopyranosylonate)-(2 $\rightarrow 3$)- N -(benzyloxycarbonyl)- O -(2-azido-4-O-benzoyl-2-deo xy-3-O-levulinoyl-2-deoxy- α-D-galactopyranosyl)-(3 $\rightarrow 1$)-O-(3,4,6-tri- O-benzyl-2-O-benzoyl- β-D-galatopyranosyl)-benzyl ester (31)

Compound 22 ($358 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in anhydrous THF (1.0 mL), and $\mathrm{HF} / \mathrm{pyridine}(70 \%, 0.23 \mathrm{~mL}, 2.56 \mathrm{mmol}$) was added dropwise. The resulting mixture was stirred overnight at room temperature, the reaction mixture was then quenched with $\mathrm{Et}_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3} solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford the acceptor $(262.4 \mathrm{mg}, 88 \%$,) as a white foam. A suspension of donor $\mathbf{3 6}(112 \mathrm{mg}, 0.17$ mmol), acceptor ($79 \mathrm{mg}, 0.07 \mathrm{mmol}$), and activated $3 \AA \mathrm{MS}(200 \mathrm{mg})$ in anhydrous DCM (3.4 mL) was stirred at room temperature for 15 min and was then cooled to $-40^{\circ} \mathrm{C}$. NIS ($91.8 \mathrm{mg}, 0.41 \mathrm{mmol}$) and HOTf (Trifluoromethanesulfonic acid) ($15 \mu \mathrm{~L}$, 0.17 mmol) were added successively. The resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 2 h, then quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, 1.5:1, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford 31 (101.3 mg , 88%) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+18.4\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.10(\mathrm{~m}, 31 \mathrm{H}), 6.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.52-5.42(\mathrm{~m}$, 2H), $5.32-5.23$ (m, 2H), $5.19-4.96$ (m, 6H), 4.88 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.36(\mathrm{~m}, 4 \mathrm{H}), 4.25$ $(\mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=12.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.91$
(m, 4H), $3.87(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.53(\mathrm{~m}, 5 \mathrm{H}), 3.53-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=12.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 170.7,169.9,169.7,169.5,166.8,165.4,165.1,156.2,154.6,149.5,138.7$, 138.1, 137.7, 136.9, 135.2, 132.73, 132.70, 130.3, 129.9, 129.8, 128.7, 128.60, 128.56, $128.5,128.32,128.26,128.21,128.17,128.0,127.9,127.71,127.66,127.3,123.0$, $121.5,101.8,99.1,98.5,79.7,77.4,74.4,73.7,73.6,72.6,71.9,71.8,71.7,71.0,70.2$, $69.2,68.9,68.4,68.2,68.2,67.6,67.5,67.2,63.9,62.0,60.1,59.6,54.6,36.9,20.9$, 20.8, 20.73, 20.67. HRMS (ESI) calcd for $\mathrm{C}_{88} \mathrm{H}_{90} \mathrm{~N}_{8} \mathrm{O}_{27} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1713.5808$, found 1713.5817.

5-acetamido-3,5-dideoxy-D-glycero-D-galacto-non-2-ulopyranosylonic acid-(2 \rightarrow 6)

 -O-[2-(Acetylamino)-2-deoxy- α-D-galactopyranosyl]-(3 $\rightarrow 1$)-O- β-D-galatopyranos yl)-L-serine (11)

To a solution of compound $\mathbf{3 1}(80 \mathrm{mg}, 0.05 \mathrm{mmol})$ in pyridine $(1 \mathrm{~mL})$ was added AcSH ($1.7 \mathrm{~mL}, 18.92 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 40$ to $1: 9$) to afford intermediate $(81.5 \mathrm{mg}, 100 \%)$. A mixture of the above intermediate ($81.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(524 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(5 \mathrm{~mL} / 0.5 \mathrm{~mL} / 0.05 \mathrm{~mL})$ was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo to afford the intermediate.To a solution of above intermediatein dioxane $/ \mathrm{MeOH}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ was added 2 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and
concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to afford $11(22.4 \mathrm{mg}, 62 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+89.7(\mathrm{c} 0.19$, $\left.\mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.90(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.02(\mathrm{~m}, 3 \mathrm{H}), 4.00-$ $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 6 \mathrm{H}), 3.79-3.56(\mathrm{~m}, 9 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}$, $J=12.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta 175.0,174.6,173.5,104.6,100.2,98.2,76.5,74.9,72.55,72.48$, $71.7,70.5,69.4,68.6,68.5,68.2,67.0,63.8,62.6,60.9,54.4,51.8,48.3,40.2,22.03$, 21.98. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{21}[\mathrm{M}-\mathrm{H}]^{-} 760.2629$, found 760.2624 .

Synthesis of 2,3 STF antigen (12)

L-Serine 5-acetamido-7,8,9-tri-O-acetyl-3,5-dideoxy-D-glycero- α-D-galacto-non-

 2-ulopyranosylonate-(2 $\rightarrow 3$)-2- O-benzoyl-4,6- O-benzylidene-3- O-(p-methoxy)ben zyl- α-D-galactopyranosyl-1 \rightarrow)- N -(benzyloxycarbonyl)- O -(2-azido-4- O-benzoyl-6-O-tert-butyl-diphenylsilyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (40)

A suspension of donor $\mathbf{3 7}^{19}(240 \mathrm{mg}, 0.38 \mathrm{mmol})$, PVB acceptor $\mathbf{3 8}^{20}(87.4 \mathrm{mg}$, $0.15 \mathrm{mmol})$, and activated $4 \AA \mathrm{MS}(430 \mathrm{mg})$ in anhydrous DCM (3.8 ml) was stirred at room temperature for 15 min and was then cooled to $-78^{\circ} \mathrm{C}$. TMSOTf $(0.068 \mathrm{~mL}$, $0.38 \mathrm{mmol})$ was added to the mixture dropwise. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for another 15 min , acceptor 39 ($103.8 \mathrm{mg}, 0.12 \mathrm{mmol}$), NIS ($51 \mathrm{mg}, 0.23 \mathrm{mmol}$) were added successively. The reaction was allowed to warm to $-40^{\circ} \mathrm{C}$. After being stirred at $-40^{\circ} \mathrm{C}$ for another 2 h , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether/ethyl acetate, 1.5:1) and Sephadex TM LH-20 (MeOH-DCM $=1: 1$) to afford $40(182.3 \mathrm{mg}, 90 \%)$ as a white foam. $[\alpha]_{\mathrm{D}}{ }^{20}=$
$+82.9\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 25 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.63-5.51(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.04(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.42-$ 4.33 (m, 2H), 4.24 (dd, $J=9.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{dd}, J=11.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=$ $10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=10.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.23(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=11.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,171.11,171.05,169.8,169.4,165.9,165.2,164.9,156.0,153.5$, $137.9,136.1,135.60,135.58,135.1,133.3,133.1,132.9,132.7,130.2,130.1,129.9$, 129.7, 129.7, 129.1, 128.7, 128.68, 128.65, 128.54, 128.49, 128.4, 128.24, 128.22, 128.1, 127.72, 127.70, 126.65, 101.2, 100.9, 99.5, 99.0, 76.1, 74.8, 74.4, 74.2, 74.0, $72.1,71.2,70.6,69.8,68.8,68.5,67.7,67.4,66.4,63.3,62.8,59.6,59.1,54.4,52.8$, 36.7, 26.8, 24.5, 21.2, 21.0, 20.8, 19.2. HRMS (ESI) calcd for $\mathrm{C}_{86} \mathrm{H}_{91} \mathrm{~N}_{5} \mathrm{O}_{28} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 1692.5512$, found 1692.5513 .

L-Serine 5-acetamido-7,8,9-tri-O-acetyl-3,5-dideoxy-D-glycero- α-D-galacto-non-

 2-ulopyranosylonate-(2 $\rightarrow 3$)-2- O-benzoyl-4,6- O-benzylidene-3- O-(p-methoxy)ben zyl- α-D-galactopyranosyl-1 $\rightarrow 6$)- N -(benzyloxycarbonyl)- O -(2-azido-4- O-benzoyl-2-deoxy- α-D-galactopyranosyl)-benzyl ester (41)

Compound 40 ($197 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in anhydrous THF (1.2 mL), and $\mathrm{HF} /$ pyridine $(70 \%, 0.15 \mathrm{~mL}, 1.18 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred overnight at room temperature, the reaction mixture was then quenched with $\mathrm{Et}_{3} \mathrm{~N}$, diluted with ethyl acetate and washed with saturated NaHCO_{3}
solution and brine. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE:EA = 1:1) to afford 41 $(146.3 \mathrm{mg}, 87 \%$, $)$ as a white foam. $[\alpha]_{\mathrm{D}}{ }^{20}=+61.0\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.24(\mathrm{~m}, 15 \mathrm{H})$, $7.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $-5.06(\mathrm{~m}, 5 \mathrm{H}), 4.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.54-4.42(\mathrm{~m}$, 2H), 4.37 ($\mathrm{s}, 1 \mathrm{H}$), $4.34-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.93(\mathrm{~m}, 4 \mathrm{H})$, $3.93-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.41(\mathrm{~m}, 6 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ ($\mathrm{s}, 3 \mathrm{H}$), $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,170.99,170.97,169.6,169.3,168.2,165.8,165.0,155.8$, 153.4, 137.7, 136.1, 135.1, 133.3, 132.9, 130.2, 129.7, 129.5, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 126.4, 101.6, 101.1, 99.5, 99.1, 76.1, 75.2, 74.7, $74.3,74.2,74.1,72.0,70.6,70.3,69.6,69.2,68.3,67.7,67.4,66.3,63.2,60.0,59.2$, 59.1, 54.5, 52.7, 36.7, 29.7, 24.4, 21.0, 20.9, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{70} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{28} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1454.4334, found 1454.4341.

5-acetamido-3,5-dideoxy-D-glycero- α-D-galacto-non-2-ulopyranosylonic acid-(2 $\rightarrow 3$)-O- β-D-galactopyranosyl- O-[2-(Acetylamino)-2-deoxy- α-D-glucopyranosyl])-L-serine (12)

To a solution of compound $41(56 \mathrm{mg}, 0.04 \mathrm{mmol})$ in pyridine (2 mL) was added AcSH ($0.71 \mathrm{~mL}, 7.82 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for two days. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 50$) to afford intermediate (47.6 $\mathrm{mg}, 84 \%$). The above intermediate ($47 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$ ($2.5 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 4: 1$), $70^{\circ} \mathrm{C}$ stirred for 4 h , then the reaction mixture was concentrated in
vacuo. The residue was purified by flash chromatography (MeOH/DCM, 1:50 to 1:30) to afford intermediate ($31.6 \mathrm{mg}, 72 \%$). A mixture of the above intermediate (31 mg , 0.02 mmol) and $\mathrm{Pd} / \mathrm{C}(54 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(4 \mathrm{~mL} / 0.4 \mathrm{~mL} / 0.04 \mathrm{~mL}$) was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo to afford the intermediate ($21.4 \mathrm{mg}, 83 \%$). To a solution of above intermediatein dioxane/ $\mathrm{MeOH}(1 \mathrm{~mL} / 1 \mathrm{~mL}$) was added 1 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 1: 1\right)$ to afford $12(13.1 \mathrm{mg}$, $91 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+40.2\left(\mathrm{c} 0.10, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.88$ $(\mathrm{d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-$ $4.09(\mathrm{~m}, 3 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.85-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.73-$ $3.51(\mathrm{~m}, 8 \mathrm{H}), 3.46(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.9,174.3$, $104.3,102.5,97.6,77.1,76.6,74.3,71.1,70.6,69.5,68.6,68.2,68.0,67.5,65.8,62.9$, $60.8,60.3,54.2,51.6,47.9,21.7$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{21}[\mathrm{M}-\mathrm{H}]$ 760.2629 , found 760.2624 .

Synthesis of glycophorin (13)

L-Serine 5-acetamido-7,8,9-tri-O-acetyl-3,5-dideoxy-D-glycero- α-D-galacto-non-

 2-ulopyranosylonate-($2 \rightarrow 3$)-2- O-benzoyl-4,6- O-benzylidene-3- O-(p-methoxy)ben zyl- α-D-galactopyranosyl-1 \rightarrow)- N -(benzyloxycarbonyl)- O -(2-azido-4-O-benzoyl-2-deoxy- α-D-galactopyranosyl)-(3 $\rightarrow 1$)- O-(3,4,6-tri- O-benzyl-2- $\quad O$-benzoyl- β-D-galatopyranosyl)-benzyl ester (42)

A suspension of donor 36 ($164.4 \mathrm{mg}, 0.25 \mathrm{mmol}$), acceptor 41 ($143 \mathrm{mg}, 0.10$ mmol), and activated $3 \AA$ MS (310 mg) in anhydrous DCM (5 mL) was stirred at room temperature for 15 min and was then cooled to $-40^{\circ} \mathrm{C}$. NIS ($134.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and HOTf ($22 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) were added successively. The resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 2 h , then quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and filtered. The filtrates were concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether-ethyl acetate, 1:1) and Sephadex TM LH-20 (MeOH-DCM $=1: 1$) to afford $42(122.9 \mathrm{mg}, 63 \%)$ as a white foam. $[\alpha]_{\mathrm{D}}{ }^{20}=+60.9$ (c $\left.0.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H})$, 7.65 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27$ (m, 17H), 7.24 (d, $J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.60-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.44$ (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.25(\mathrm{~m}, 3 \mathrm{H}), 5.20$ - 5.16 (m, 2H), $5.15-5.06(\mathrm{~m}, 4 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.86(\mathrm{~d}, ~ J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (dd, $J=17.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=10.6,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 3 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.67$ (m, 1H), $3.67-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{t}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.88$ (s , $3 \mathrm{H}), 1.81(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,171.2,171.1,170.9,170.0,169.79,169.77,169.6,169.5,166.9,165.9,165.3$, $164.9,156.2,154.5,153.5,149.6,137.9,137.0,136.3,135.3,132.9,132.7,130.22$, 130.18, 129.9, 129.7, 129.1, 128.8, 128.7, 128.6, 128.4, 128.3, 128.22, 128.19, 126.6, 123.2, 121.6, 101.2, 100.6, 99.5, 99.1, 98.6, 76.2, 74.9, 74.34, 74.25, 73.2, 72.1, 71.8, $71.0,70.6,69.9,69.3,68.9,68.5,68.4,68.2,67.7,67.6,67.3,66.5,63.9,63.3,62.0$, 60.1, 59.6, 59.1, 54.5, 52.8, 36.8, 29.8, 24.5, 21.2, 21.1, 21.0, 20.79, 20.77. HRMS (ESI) calcd for $\mathrm{C}_{93} \mathrm{H}_{99} \mathrm{~N}_{9} \mathrm{O}_{39} \mathrm{Cl}[\mathrm{M}+\mathrm{Cl}]^{-} 2000.5734$, found 2000.5737.

5-acetamido-3,5-dideoxy-D-glycero- α-D-galacto-non-2-ulopyranosylonic acid-(2 $\rightarrow 3$)- O - β-D-galactopyranosyl- O-[2-(Acetylamino)-2-deoxy- α-D-glucopyranosyl])(3 $\rightarrow \mathbf{1}$)-O- $\boldsymbol{\beta}$-D-galatopyranosyl)-L-serine (13)

To a solution of compound $\mathbf{4 2}(68 \mathrm{mg}, 0.03 \mathrm{mmol})$ in pyridine $(2 \mathrm{~mL})$ was added AcSH ($1.25 \mathrm{~mL}, 13.83 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for one day. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 50$ to $1: 30$) to afford intermediate ($67 \mathrm{mg}, 97 \%$). The above intermediate ($67 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 4: 1), 70^{\circ} \mathrm{C}$ stirred for 4 h , then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1: 30$) to afford intermediate ($50.6 \mathrm{mg}, 79 \%$). A mixture of the above intermediate ($50 \mathrm{mg}, 0.03 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(93 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(5$ $\mathrm{mL} / 0.5 \mathrm{~mL} / 0.05 \mathrm{~mL}$) was stirred under an atmosphere of H_{2} at room temperature for 12 h , after which the reaction mixture was filtered and concentrated in vacuo to afford the intermediate ($31.6 \mathrm{mg}, 76 \%$). To a solution of above intermediate ($31 \mathrm{mg}, 0.02$ mmol) in dioxane/ $\mathrm{MeOH}(1 \mathrm{~mL} / 1 \mathrm{~mL}$) was added 1 mL 1 M NaOH aq. The reaction was stirred for 12 h at room temperature. After the reaction was completed, the reaction was neutralized to $\mathrm{pH}=7$ by acetic acid, then filtered and concentrated. The residue was purified by column chromatography on Sephadex TM LH-20 $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 1: 1\right)$ to afford $\mathbf{1 3}(12.8 \mathrm{mg}, 63 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=+35.0(\mathrm{c}$ $\left.0.16, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.10-3.99(\mathrm{~m}$, 3H), 3.98 - 3.74 (m, 10H), $3.73-3.53$ (m, 11H), 3.49 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dd, J $=12.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=12.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{t}$, $J=12.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (201 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 175.4,175.0,174.7,174.7,173.5$,
$104.8,102.9,100.3,98.1,77.6,77.0,74.7,72.6,71.7,71.6,69.9,69.4,69.168 .6,68.4$, $68.24,68.23,67.9,66.2,63.8,63.3,62.6,60.7,54.6,52.0,51.8,48.3,40.6,40.2$, 22.11, 22.10, 22.0. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{29}[\mathrm{M}-2 \mathrm{H}]^{2-} 525.1755$, found 525.1752.

Mechanistic studies

To shed light on the reactive intermediates formed with the TMSI and $\mathrm{Ph}_{3} \mathrm{PO}$ reagent combination, we studied the activation of donor 17a by NMR spectroscopy. When donor 17a was activated with TMSI in CDCl_{3} in the absence of $\mathrm{Ph}_{3} \mathrm{PO}$ additive (Within 5 min), a mixture of two products was formed. The products were tentatively assigned as $\boldsymbol{\alpha}$-iodide (Figure S1, H-1: $\delta=6.93 \mathrm{ppm}, J=3.9 \mathrm{~Hz}$) and its $\boldsymbol{\beta}$-iodide (H-1: $\delta=5.65 \mathrm{ppm}, J=9.7 \mathrm{~Hz}$), $\boldsymbol{\alpha} / \boldsymbol{\beta}=4: 1$. In time (4 h), the $\boldsymbol{\beta}$-iodide isomerized into its more stable $\boldsymbol{\alpha}$-iodide ($\boldsymbol{\alpha} / \boldsymbol{\beta}>20: 1$). Alternatively, treatment of a mixture of donor 17a and $\mathrm{Ph}_{3} \mathrm{PO}$ in CDCl_{3} with TMSI (Within 5 min), showed a clean conversion of the imidate into the anomeric $\boldsymbol{\alpha}$-iodide. The $\boldsymbol{\beta}$-iodide was not observed, nor could we detect the presence of any anomeric phosphonium species by NMR spectroscopy. However, through ESI-MS experiment monitoring, we detected the MS of phosphonium iodide intermediate (Figure S2).

Figure S1. Detection of the anomeric iodides intermediates by ${ }^{1} \mathrm{H}-\mathrm{NMR}$

Figure S2. Detection of the phosphonium iodide intermediate by MS

Glycosylation with 2-deoxy Galactosyl PTFAI donors 17q-s

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl
 2-deoxy-3,4,6-tri-O-benzyl-D-

 galactopyranoside (19q)

To a solution of $\mathbf{S 3 7}{ }^{21}(94.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ in acetone (1.0 mL) were added 2,2,2-trifluoro-N-phenylacetimidoyl chloride ($58.7 \mathrm{mg}, 0.35 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(90.2$ $\mathrm{mg}, 0.65 \mathrm{mmol})$. The mixture was stirred at rt overnight, and then filtered and concentrated in vacuo to afford 17q (This compound is unstable, so it was used directly without further structural characterization). The glycosylation reaction was carried out according to General Experimental Procedures at rt for 6 h , using donor $\mathbf{1 7 q}(131.9 \mathrm{mg}, 0.22 \mathrm{mmol})$, acceptor $18(106.8 \mathrm{mg}, 0.33 \mathrm{mmol})$, DCM 2.2 mL , $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(363.2 \mathrm{mg}, 1.31 \mathrm{mmol})$ and TMSI ($31 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 20:1-4:1) to afford 19q (116.2 $\mathrm{mg}, 72 \%, \alpha / \beta=2: 1)$ as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.12$ (m, 25H, Ar), $5.16\left(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 4.96-4.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \alpha, \mathrm{CH}_{2}-\mathrm{Bn}\right)$, $4.65-4.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.51-4.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.36-4.32(\mathrm{~m}, \mathrm{H}-1 \beta)$, 3.94 - 3.80 (m, 3H, H-3 $), 3.66-3.49$ (m, 3H, H-4 $)$), 3.35 - 3.14 (m, 3H), 2.26 2.16 (m, 1H, H-2), 2.13 - 1.93 (m, 1H, H-2), $1.58-1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.18$ (m, 2H, CH2 $).{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 156.8, 156.2, 139.0, 138.96, 138.7, $138.4,138.2,138.0,136.9,128.57,128.55,128.48$, 128.43, 128.40, 127.39, 128.3, $128.23,128.15,128.0,127.93,127.86,127.8,127.74,127.68,127.63,127.51,127.45$, 127.40, 127.3, 100.5 (C-1 β), 97.8 (C-1 α), 75.0, 74.3, 74.2, 74.1, 73.6, 73.5, 73.2, 71.9, $70.5,70.2,70.0,69.7,69.4,69.0,67.23,67.19,50.5,50.3,47.2,46.2,32.9,31.6,31.5$, 31.3, 30.2, 29.7, 29.34, 29.28, 28.0, 27.6, 23.6, 23.4. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{53} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+766.3714$, found 766.3718 .

N -(Benzyl)benzyloxycarbonyl-5-amino-pentyl galactopyranoside (19r)

To a solution of $\mathbf{S 3 8}^{21}(318.1 \mathrm{mg}, 1.10 \mathrm{mmol})$ in acetone $(2.0 \mathrm{~mL})$ were added 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($250.2 \mathrm{mg}, 1.21 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($227.1 \mathrm{mg}, 1.64 \mathrm{mmol}$). The mixture was stirred at rt overnight, and then filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (PE-EA, 30:1-4:1, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford $\mathbf{1 7 r}(435.8 \mathrm{mg}$, 86%) as a yellow syrup. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.26(\mathrm{~m}, 1 \mathrm{H})$, $4.30(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.04(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 7 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.48,170.46,170.3,170.2,170.02,169.96,145.5,143.6$, $143.4,128.93,128.89,124.6,119.5,119.3,94.5,72.1,69.5,67.9,66.1,65.5,65.2$, $62.1,61.7,60.5,30.5,28.7,20.9,20.8,20.75,20.72,14.3$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{8} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 484.1190$, found 484.1187. The glycosylation reaction was carried out according to General Experimental Procedures at rt for 22 h, using donor $\mathbf{1 7 r}(177.2 \mathrm{mg}, 0.38 \mathrm{mmol})$, acceptor $\mathbf{1 8}$ ($188.6 \mathrm{mg}, 0.58 \mathrm{mmol}$), DCM 3.8 mL , $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(641.3 \mathrm{mg}, 2.30 \mathrm{mmol})$ and TMSI ($55 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 3:1) to afford 19r (199 mg , $87 \%, \alpha / \beta=5: 1$) as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.14(\mathrm{~m}$, 10H, Ar), $5.34-5.31$ (m, 1H, H-4 $), 5.30-5.24$ (m, 1H, H-3), 5.17 (d, $J=12.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 5.01-4.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \alpha), 4.55-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 3 \mathrm{H})$, $3.78(\mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H}-5 \beta), 3.65-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.17(\mathrm{~m}, 3 \mathrm{H}), 2.13-1.93(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{H}-2, \mathrm{CH}_{3}-\mathrm{Ac}$), $1.88-1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.62-1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.27$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,170.2,169.9,156.6,156.1,137.9$, 136.8, 128.5, 128.4, 127.9, 127.8, 127.2, 100.0 (C-1 β), 97.4 (C-1 α), 70.9, 69.4, 68.5, $67.5,67.1,66.7,66.6,66.2,65.4,62.4,61.8,50.5,50.3,47.1,46.1,32.0,31.5,31.4$, 30.2, 29.6, 29.15, 29.10, 27.9, 27.5, 23.5, 23.2, 20.8, 20.7, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{NO}_{10}[\mathrm{M}+\mathrm{H}]^{+} 600.2803$, found 600.2802 .

N-(Benzyl)benzyloxycarbonyl-5-amino-pentyl galactopyranoside (19s)

2-deoxy-3,4,6-tri-O-benzoyl-D-

To a solution of $\mathbf{S 3 9}^{21}(537.8 \mathrm{mg}, 1.13 \mathrm{mmol})$ in acetone (2.0 mL) were added 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($257.7 \mathrm{mg}, 1.24 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($233.9 \mathrm{mg}, 1.69 \mathrm{mmol}$). The mixture was stirred at rt overnight, and then filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (PE, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford $\mathbf{1 7 s}(559 \mathrm{mg}, 77 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16-8.06(\mathrm{~m}, 2 \mathrm{H}), 8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H})$, $7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 1 \mathrm{H})$, $6.83-6.70(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.49-$ $4.35(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,165.6,165.5$, $165.4,165.3,143.5,143.4,133.60,133.57,133.34,133.26,133.20,130.0,129.9$, $129.8,129.73,129.71,129.51,129.47$, 129.42, 129.34, 129.30, 129.2, 128.8, 128.6, $128.5,128.42,128.38,128.36,124.4,119.4,119.3,72.6,70.0,68.8,67.0,66.5,66.1$, 63.0, 62.6, 31.1, 29.3. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{NO}_{8} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 670.1659$, found 670.1661 . The glycosylation reaction was carried out according to General Experimental Procedures at rt for 22 h , using donor 17s ($158.0 \mathrm{mg}, 0.24 \mathrm{mmol}$), acceptor $\mathbf{1 8}$ ($119.8 \mathrm{mg}, 0.37 \mathrm{mmol}$), $\mathrm{DCM} 2.4 \mathrm{~mL}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ ($407.4 \mathrm{mg}, 1.46 \mathrm{mmol}$) and TMSI ($35 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$). The product was purified by silica gel column chromatography (PE-EA, 4:1) to afford 19s ($172.9 \mathrm{mg}, 90 \%, \alpha / \beta=5: 1$) as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.02(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.85$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.52-7.41(\mathrm{~m}, 4 \mathrm{H}$, Ar), 7.39 - 7.14 (m, 14H, Ar), 5.86 (s, 1H, H-4 α), 5.80 (d, $J=3.0 \mathrm{~Hz}, \mathrm{H}-4 \beta$), 5.70 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \alpha), 5.43-5.34(\mathrm{~m}, \mathrm{H}-3 \beta), 5.16(\mathrm{t}, J=16.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1 \alpha$, CH_{2}-Cbz), $4.70-4.32(\mathrm{~m}, 5 \mathrm{H}), 3.76-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.12(\mathrm{~m}, 3 \mathrm{H}), 2.41-2.30$ (m, 1H, H-2), 2.26-2.09 (m, 1H, H-2), 1.67 - 1.46 (m, 4H, CH2), $1.38-1.28(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,165.7,165.7,165.4,138.0,136.9,133.3$, 133.1, 133.0, 129.9, 129.82, 129.79, 129.72, 129.65, 129.62, 129.5, 128.5, 128.42,
128.38, 128.3, 128.2, 127.9, 127.8, 127.3, 100.2 (C-1 β), 97.5 (C-1 α), 71.4, 69.6, 67.70, $67.65,67.3,67.2,67.1,66.4,63.3,62.5,50.5,50.3,47.1,46.2,32.7,30.8,29.7,29.2$, 27.9, 27.5, 23.5, 23.3. HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NO}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 808.3092$, found 808.3095.

Computational studies

Computational details. All calculations were performed with Gaussian 09. ${ }^{22}$ Geometry optimizations were performed in solvent with the M06-2X functional ${ }^{23}$ and a mixed basis set of LANL2DZ for I and $6-31 \mathrm{G}(\mathrm{d})$ for other atoms. Single point energies in solvent were calculated with the M06-2X functional and a mixed basis set of SDD for I and $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ for other atoms. The SMD model ${ }^{24}$ was used for the solvation corrections with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent. All minima have zero imaginary frequency and all transition states have only one imaginary frequency and were confirmed by intrinsic reaction coordinate calculations. The conformational searches were performed by using CREST/xTB ${ }^{25}$. The 3D structures and NCI plots ${ }^{26}$ were generated using CYLView ${ }^{27}$ and VMD, ${ }^{28}$ respectively.

Comparison of $\boldsymbol{\alpha}$-iodide with $\boldsymbol{\beta}$-iodide. The control experiments shown in Figure S1 indicate that the mixture of α-iodide and β-iodide ($\boldsymbol{\alpha} / \boldsymbol{\beta}=4: 1$) can be observed at the initial stage of the reaction (5 min). Then, the $\boldsymbol{\alpha} / \boldsymbol{\beta}$ ratio is significantly increased in $4 \mathrm{~h}(\boldsymbol{\alpha} / \boldsymbol{\beta}>20: 1)$. Consistently, the computed energetics show that α-iodide is 1.8 $\mathrm{kcal} / \mathrm{mol}$ more stable than β-iodide (Figure S3).

Figure S3. Energy difference between α-iodide and β-iodide.

Interactions between I and $\mathbf{P h}_{\mathbf{3}} \mathbf{P}=\mathbf{O}$. For the β-anomeric phosphonium iodide species (Int1, Figure S4), the iodine and phosphine atoms are negatively and positively charged, respectively (charge on I: $-0.977 e$; charge on $\mathrm{P}: 1.977 e$). Thus,

Int1 can be stabilized by the attractive electrostatic interactions. In addition, the NCI plots indicate that there are non-covalent interactions between I and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ moieties in both Int1 and TS4 (Figure S4), which also contribute to the stability of these structures. As such, the dissociations of I from Int1 and TS4 lead to less favorable Int1a and TS4a, respectively.

Int1

TS4

Figure S4. Interactions between I and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ in Int1 and TS4.

Reaction of $\boldsymbol{\beta}$-iodide with $\mathbf{P h}_{3} \mathbf{P}=\mathbf{O}$. As indicated in Scheme 6 b in the main text, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ can significantly promote the $\mathrm{S}_{\mathrm{N}} 2$ displacement of α-iodide. We further studied the reaction of β-iodide with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$, and the energy profiles are shown in Figure S 5 . The results show that $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ can also replace the iodine atom of β-iodide. The computed $\mathrm{S}_{\mathrm{N}} 2$ transition state (TS5) has a barrier of $14.7 \mathrm{kcal} / \mathrm{mol}$, generating the α-anomeric phosphonium iodide intermediate (Int2). The ensuing nucleophilic attack by alcohol requires a barrier of $27.1 \mathrm{kcal} / \mathrm{mol}$ (TS6) to form the undesired β-anomer.

The relatively high barrier of TS6 renders the generation of Int2 reversible. Thus, although $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ is more reactive than alcohol towards β-iodide (TS5 vs. TS1), the overall pathway of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ mediated $\mathrm{S}_{\mathrm{N}} 2$ displacement of β-iodide is less favorable than the direct $\mathrm{S}_{\mathrm{N}} 2$ displacement of β-iodide with alcohol (TS6 vs. TS1). Therefore, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O} \quad$ is less effective for the transformation of β-iodide $\rightarrow \beta$-anomer. Instead, the process of β-iodide $\rightarrow \alpha$-anomer via TS1 is more kinetically favorable.

Figure S5. Energy profiles for $\mathrm{S}_{\mathrm{N}} 2$ nucleophilic reaction of β-iodide with alcoholic acceptor.

Conformational search for key transition states. To obtain the lowest energy structures for the $S_{\mathrm{N}} 2$ displacement transition states with the β / α-anomeric phosphonium iodide species (TS4 and TS6), we carried out conformational search by using CREST with the default setting. The suggested 69 conformers for TS4 and 66 conformers for TS6 were further calculated at the M06-2X/SDD-6-311+G(d,p)-SMD(DCM)//M06-2X/LANL2DZ-6-31(d)-SMD(DCM) level. The three lowest energy conformers of these transition states are shown in Figure S6.

TS6 (66 conformers)

$\Delta G^{\ddagger}=27.1 \mathrm{kcal} / \mathrm{mol}$
The three lowest energy conformers of TS6

Figure S6. Results of conformational search for TS4 and TS6.

References

(1) Czernecki, S.; Ayadi, E. Can. J. Chem. 1995, 73, 343.
(2) Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405.
(3) van der Es, D.; Groenia, N. A.; Laverde, D.; Overkleeft, H. S.; Huebner, J.; van der Marel, G. A.; Codée, J. D. C. Biorg. Med. Chem. 2016, 24, 3893.
(4) Lee, B.-Y.; Oh, J. W.; Baek, J. Y.; Jeon, H. B.; Kim, K. S. J. Org. Chem. 2016, 81, 11372.
(5) Kotammagari, T. K.; Gonnade, R. G.; Bhattacharya, A. K. Org. Lett. 2017, 19, 3564.
(6) France, R. R.; Compton, R. G.; Davis, B. G.; Fairbanks, A. J.; Rees, N. V.; Wadhawan, J. D. Org. Biomol. Chem. 2004, 2, 2195.
(7) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.
(8) Hevey, R.; Ling, C.-C. Carbohydr. Res. 2017, 445, 65.
(9) Fairweather, J. K.; Karoli, T.; Ferro, V. Biorg. Med. Chem. 2004, 12, 6063.
(10) Wu, Y.; Xiong, D.-C.; Chen, S.-C.; Wang, Y.-S.; Ye, X.-S. Nat. Commun. 2017, 8, 14851.
(11) Wang, C.; Li, Q.; Wang, H.; Zhang, L.-H.; Ye, X.-S. Tetrahedron 2006, 62, 11657.
(12) Kalikanda, J.; Li, Z. Carbohydr. Res. 2011, 346, 2380.
(13) Zhu, Q.; Jiang, Y.; Lin, S.; Wen, L.; Wu, D.; Zhao, M.; Chen, F.; Jia, Y.; Yang, B. Biomacromolecules 2013, 14, 1999.
(14) Charette, A. B.; Marcoux, J.-F.; Côté, B. Tetrahedron Lett. 1991, 32, 7215.
(15) Yang, R.; He, H.; Chen, Z.; Huang, Y.; Xiao, G. Org. Lett. 2021, 23, 8257.
(16) Hou, Z.; Lin, B.; Bao, Y.; Yan, H.-n.; Zhang, M.; Chang, X.-w.; Zhang, X.-x.; Wang, Z.-j.; Wei, G.-f.; Cheng, M.-s.; Liu, Y.; Guo, C. Eur. J. Med. Chem. 2017, 132, 1.
(17) Kazakova, E. D.; Yashunsky, D. V.; Krylov, V. B.; Bouchara, J.-P.; Cornet, M.; Valsecchi, I.; Fontaine, T.; Latgé, J.-P.; Nifantiev, N. E. J. Am. Chem. Soc. 2020, 142, 1175.
(18) Chen, J.; Hansen, T.; Zhang, Q.-J.; Liu, D.-Y.; Sun, Y.; Yan, H.; Codée, J. D. C.; Schmidt, R. R.; Sun, J.-S. Angew. Chem. Int. Ed. 2019, 58, 17000. Angew. Chem. 2019, 131, 17156.
(19) Hsu, C.-H.; Chu, K.-C.; Lin, Y.-S.; Han, J.-L.; Peng, Y.-S.; Ren, C.-T.; Wu, C.-Y.; Wong, C.-H. Chem. Eur. J. 2010, 16, 1754.
(20) He, H.; Xu, L.; Sun, R.; Zhang, Y.; Huang, Y.; Chen, Z.; Li, P.; Yang, R.; Xiao, G. Chem. Sci. 2021, 12, 5143.
(21) Yuan, W.; Liu, Y.; Li, C. Asian J. Org. Chem. 2017, 6, 1428-1439.
(22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J.B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
(23) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
(24) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.
(25) (a) Pracht, P.; Bohle, F.; Grimme, S. Phys. Chem. Chem. Phys. 2020, 22, 7169-7192. (b) Bannwarth, C.; Ehlert, S.; Grimme, S. J. Chem. Theory Comput. 2019, 15, 1652-1671.
(26) (a) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498-6506. (b) Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J.; Beratan, D. N.; Yang, W. J. Chem. Theory Comput. 2011, 7, 625-632.
(27) Legault, C. Y. CYLview, 1.0b, Université de Sherbrooke (2009).
(28) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33-38.

Cartesian coordinates (\AA) and energies of optimized structures

```
    \alpha-I
M06-2X SCF energy: -1438.60457362 a.u.
M06-2X enthalpy: -1438.177163 a.u.
M06-2X free energy: -1438.269530 a.u.
M06-2X SCF energy in solution: -1439.05482081 a.u.
M06-2X enthalpy in solution: -1438.627410 a.u.
M06-2X free energy in solution: -1438.719777 a.u.
Three lowest frequencies (cm-1): 13.9839 29.6537 31.9575
```

Cartesian coordinates

ATOM	X	Y	Z
C	-1.619004	3.026321	-1.770657
C	-0.433210	2.322528	-2.418735
C	0.845537	3.138216	-2.249268
C	0.007189	4.195360	-0.288865
C	-1.289185	3.393425	-0.327394
H	-0.247877	1.383596	-1.876696
H	-1.872646	3.935096	-2.325804
H	-0.159998	5.149716	-0.807794
H	-2.100982	3.974052	0.115806
0	1.063839	3.494001	-0.951066
N	-0.661447	2.052739	-3.840054
N	-1.418782	1.102802	-4.061868
N	-2.087718	0.254063	-4.386035
0	-2.697526	2.099508	-1.836335
C	-3.947593	2.604415	-1.741941
0	-4.165862	3.780920	-1.570876
C	-4.986678	1.552111	-1.881525
C	-4.653205	0.201268	-2.016212
C	-6.324964	1.953244	-1.879098
C	-5.664096	-0.745006	-2.15115
H	-3.612962	-0.106054	-2.009774
C	-7.330703	1.003430	-2.017352
H	-6.560956	3.007250	-1.771586
C	-6.999690	-0.344861	-2.153543
H	-5.409851	-1.795130	-2.254438
H	-8.371187	1.312242	-2.018986
H	-7.785249	-1.086696	-2.261452
O	-1.126018	2.163655	0.386888
C	-1.686065	2.074221	1.611403
0	-2.248844	2.997970	2.152699
C	-1.521988	0.723920	2.212130
C	-0.880620	-0.318522	1.537135

C	-2.040390	0.520385	3.493775
C	-0.759482	-1.561792	2.150129
H	-0.480179	-0.157041	0.542158
C	-1.917385	-0.723796	4.101245
H	-2.536847	1.342188	3.999569
C	-1.276215	-1.764666	3.429294
H	-0.261003	-2.373516	1.630029
H	-2.320724	-0.882311	5.096328
H	-1.178494	-2.736586	3.903509
C	0.479181	4.473443	1.121936
H	-0.363859	4.865947	1.711127
H	0.815280	3.533460	1.588756
O	1.529219	5.401253	1.054735
C	2.090598	5.646196	2.323521
H	2.508742	4.727659	2.759565
H	2.892236	6.375706	2.191035
H	1.345405	6.055497	3.020810
H	1.717223	2.599357	-2.615565
I	0.848275	4.949583	-3.605837

```
    \beta-I
M06-2X SCF energy: -1438.59906321 a.u.
M06-2X enthalpy: -1438.172069 a.u.
M06-2X free energy: -1438.265980 a.u.
M06-2X SCF energy in solution: -1439.05002409 a.u.
M06-2X enthalpy in solution: -1438.623030 a.u.
M06-2X free energy in solution: -1438.716941 a.u.
Three lowest frequencies (cm-1): 13.1482 21.9943 30.6398
```

Cartesian coordinates
ATOM X Y Z
$\begin{array}{llll}C & -1.606802 & 2.989976 & -1.754762\end{array}$
C $\quad-0.428043 \quad 2.274476-2.422076$
$\begin{array}{llll}C & 0.800841 & 3.161850 & -2.263780\end{array}$
$\begin{array}{llll}C & 0.023462 \quad 4.160897 & -0.290490\end{array}$
C $\quad-1.283273 \quad 3.370779 \quad-0.315069$
$\begin{array}{llll}\mathrm{H} & -0.251203 & 1.316916 & -1.917669\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.852206 & 3.898078 & -2.315648\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.128191 & 5.102621 & -0.838961\end{array}$
$\begin{array}{llll}\text { H } & -2.096490 & 3.957789 & 0.117589\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.697246 \quad 4.090249 & -2.838558\end{array}$
$\begin{array}{llll}0 & 1.057692 & 3.398329 & -0.917752\end{array}$

N	-0.701368	2.089916	-3.852497
N	-1.438512	1.134365	-4.108982
N	-2.095163	0.283714	-4.453899
0	-2.695036	2.074319	-1.821940
C	-3.940878	2.592770	-1.756089
0	-4.150906	3.772689	-1.597064
C	-4.987707	1.550093	-1.910368
C	-4.663049	0.199132	-2.064082
C	-6.323210	1.960377	-1.904157
C	-5.680105	-0.738314	-2.213291
H	-3.624721	-0.114575	-2.062309
C	-7.335216	1.019224	-2.055508
H	-6.552005	3.014382	-1.782043
C	-7.013011	-0.329250	-2.210205
H	-5.432783	-1.788406	-2.332365
H	-8.373670	1.334801	-2.053004
H	-7.803316	-1.064428	-2.328380
0	-1.126545	2.147724	0.410184
C	-1.670983	2.074838	1.641043
0	-2.222689	3.006645	2.180736
C	-1.506400	0.728427	2.251290
C	-0.864878	-0.317217	1.581231
C	-2.022545	0.531715	3.534809
C	-0.741769	-1.556961	2.200856
H	-0.464567	-0.159993	0.585524
C	-1.897956	-0.709219	4.148772
H	-2.518619	1.356008	4.036979
C	-1.257000	-1.753363	3.481639
H	-0.242702	-2.370738	1.684534
H	-2.299879	-0.862827	5.145211
H	-1.158019	-2.722686	3.960944
C	0.487395	4.474714	1.115644
H	-0.352681	4.899336	1.686671
H	0.802654	3.542269	1.610962
0	1.554710	5.381667	1.032322
C	2.112464	5.647636	2.298342
H	2.514198	4.733369	2.758156
H	2.925890	6.361794	2.153950
H	1.369671	6.083916	2.981883
I	2.574568	2.192008	-3.089725

EtOH

```
M06-2X SCF energy: -154.95933303 a.u.
M06-2X enthalpy: -154.873046 a.u.
M06-2X free energy: -154.903432 a.u.
M06-2X SCF energy in solution: -155.02019768 a.u.
M06-2X enthalpy in solution: -154.933911 a.u.
M06-2X free energy in solution: -154.964297 a.u.
Three lowest frequencies (cm-1): 266.0407 350.8119 425.1683
```

Cartesian coordinates

ATOM	X	Y	Z
C	2.220606	-2.881861	-7.844016
H	2.575415	-3.917062	-7.855148
H	2.572385	-2.383121	-8.752198
H	1.126330	-2.892366	-7.854148
C	2.728399	-2.164524	-6.610845
H	3.828031	-2.144583	-6.611972
H	2.380475	-1.121315	-6.611326
O	2.238342	-2.858397	-5.472867
H	2.563167	-2.396832	-4.684741

```
    Ph}\mp@subsup{}{3}{}\textrm{P}=
M06-2X SCF energy: -1111.21361153 a.u.
M06-2X enthalpy: -1110.914308 a.u.
M06-2X free energy: -1110.978631 a.u.
M06-2X SCF energy in solution: -1111.44366327 a.u.
M06-2X enthalpy in solution: -1111.144360 a.u.
M06-2X free energy in solution: -1111.208683 a.u.
Three lowest frequencies (cm-1): 25.8459 28.3885 39.5182
```

Cartesian coordinates
ATOM X Y Z
$\begin{array}{llll}\mathrm{P} & -0.771397 & 0.965232 & 1.007852\end{array}$
$\begin{array}{llll}0 & 0.691558 & 1.115202 & 0.703258\end{array}$
$\begin{array}{llll}C & -1.776808 & 2.319473 & 0.330645\end{array}$
$\begin{array}{llll}C & -3.084661 & 2.143131 & -0.130467\end{array}$
$\begin{array}{llll}C & -1.196095 & 3.592083 & 0.305018\end{array}$
C $\quad-3.809528 \quad 3.235520 \quad-0.602161$
$\begin{array}{llll}\mathrm{H} & -3.538760 \quad 1.155537 & -0.128528\end{array}$
C $\quad-1.922524 \quad 4.680590 \quad-0.168809$
$\begin{array}{llll}\mathrm{H} & -0.173091 & 3.723019 & 0.648211\end{array}$
C $\quad-3.229964 \quad 4.502561 \quad-0.619359$
$\begin{array}{llll}\mathrm{H} & -4.824531 & 3.095339 & -0.961523\end{array}$

H	-1.468724	5.666870	-0.188933
H	-3.796451	5.352541	-0.988504
C	-1.121707	0.932510	2.792123
C	-2.302548	1.437131	3.345326
C	-0.159850	0.346538	3.622042
C	-2.524846	1.341211	4.717352
H	-3.048349	1.907619	2.709332
C	-0.384029	0.255259	4.992822
H	0.765222	-0.027710	3.191318
C	-1.567725	0.749446	5.539486
H	-3.443007	1.733734	5.143775
H	0.364830	-0.198172	5.635232
H	-1.742669	0.677356	6.608917
C	-1.470014	-0.575375	0.343386
C	-2.589707	-1.194564	0.907321
C	-0.856263	-1.136257	-0.780621
C	-3.100486	-2.359314	0.340766
H	-3.060568	-0.773066	1.792001
C	-1.367282	-2.304018	-1.342207
H	0.025259	-0.660984	-1.202648
C	-2.490139	-2.912605	-0.783788
H	-3.969459	-2.838102	0.781775
H	-0.887801	-2.740838	-2.213055
H	-2.886884	-3.823997	-1.221254

TS1

```
M06-2X SCF energy: -1593.55703236 a.u.
M06-2X enthalpy: -1593.042701 a.u.
M06-2X free energy: -1593.148955 a.u.
M06-2X SCF energy in solution: -1594.06312828 a.u.
M06-2X enthalpy in solution: -1593.548797 a.u.
M06-2X free energy in solution: -1593.655051 a.u.
Three lowest frequencies (cm-1): -108.7899 16.9269 23.7794
Imaginary frequency: -108.7899 cm-1
```

Cartesian coordinates

ATOM	X	Y	Z
C	0.145963	-1.430545	0.570928
C	-0.760530	-1.202611	-0.633248
C	-2.199858	-1.162054	-0.202006
C	-1.638576	-0.485144	2.055177
C	-0.191041	-0.370997	1.616661

H	-0.518364	-0.215114	-1.044632
H	0.022405	-2.434169	0.983228
H	-1.736199	-1.316291	2.758043
H	0.442448	-0.488929	2.499103
H	-2.980257	-1.544898	-0.849428
\bigcirc	-2.562904	-0.859267	0.973049
N	-0.630194	-2.245189	-1.650527
N	0.307532	-2.040974	-2.434476
N	1.131937	-1.957031	-3.196668
\bigcirc	1.459929	-1.238532	0.070559
C	2.475953	-1.696643	0.846378
\bigcirc	2.283172	-2.324867	1.858879
C	3.803434	-1.340574	0.288255
C	3.934003	-0.470485	-0.798181
C	4.934926	-1.890230	0.895569
C	5.202572	-0.152410	-1.272178
H	3.051807	-0.043001	-1.263197
C	6.199433	-1.574591	0.412395
H	4.809931	-2.561172	1.739617
C	6.332602	-0.704672	-0.669815
H	5.309172	0.527965	-2.111015
H	7.080588	-2.003629	0.878696
H	7.320850	-0.454799	-1.044221
\bigcirc	0.023789	0.914486	1.033843
C	1.251405	1.466495	1.220768
0	2.090579	0.966860	1.932658
C	1.426085	2.728758	0.461696
C	0.414849	3.257777	-0.345013
C	2.662467	3.373367	0.565009
C	0.645335	4.439432	-1.042956
H	-0.541388	2.750932	-0.431795
C	2.885003	4.553781	-0.133412
H	3.435276	2.937947	1.190478
C	1.875904	5.086394	-0.936729
H	-0.136794	4.852082	-1.672442
H	3.843247	5.057302	-0.054402
H	2.051263	6.008333	-1.483259
C	-2.190108	0.784605	2.667497
H	-1.460128	1.159296	3.403015
H	-2.311450	1.549148	1.886630
0	-3.412630	0.463962	3.269292
C	-4.062113	1.610171	3.777615
H	-4.288006	2.326483	2.976174
H	-4.995354	1.276060	4.234788

H	-3.447105	2.111055	4.538378
I	-3.066241	1.285515	-1.708572
C	-2.628962	-5.069769	-1.148460
H	-2.592518	-4.277499	-1.902218
H	-2.344656	-6.014954	-1.621467
H	-3.660518	-5.167159	-0.791327
C	-1.692206	-4.747840	-0.000854
H	-1.696104	-5.551111	0.746869
H	-0.667571	-4.623063	-0.359577
O	-2.030161	-3.510044	0.628546
H	-2.918187	-3.604817	1.014783

TS2

```
M06-2X SCF energy: -1593.55202062 a.u.
M06-2X enthalpy: -1593.036514 a.u.
M06-2X free energy: -1593.141889 a.u.
M06-2X SCF energy in solution: -1594.05499449 a.u.
M06-2X enthalpy in solution: -1593.539488 a.u.
M06-2X free energy in solution: -1593.644863 a.u.
Three lowest frequencies (cm-1): -233.7037 11.6846 22.2783
Imaginary frequency: -233.7037 cm-1
```

Cartesian coordinates

ATOM	X	Y	Z
C	0.365887	-0.774385	-0.267932
C	0.774157	-0.164017	1.067969
C	1.984273	0.730631	0.913906
C	1.682927	0.949651	-1.481902
C	0.305891	0.350263	-1.295431
H	-0.049038	0.485974	1.389036
H	1.073691	-1.545676	-0.586244
H	2.332192	0.226231	-1.985004
H	-0.052368	-0.018697	-2.258887
O	2.369812	1.198388	-0.207943
N	1.072056	-1.169287	2.088787
N	0.056285	-1.592480	2.656968
N	-0.794678	-2.047059	3.238663
O	-0.918358	-1.331202	-0.023334
C	-1.386994	-2.179237	-0.974551
O	-0.748692	-2.455768	-1.961112
C	-2.731531	-2.713973	-0.646509
C	-3.425885	-2.334939	0.505997

C	-3.291236	-3.630404	-1.540606
C	-4.681184	-2.879289	0.759065
H	-2.988033	-1.623248	1.198168
C	-4.544590	-4.171276	-1.282017
H	-2.732729	-3.909222	-2.428074
C	-5.239072	-3.795986	-0.131950
H	-5.224949	-2.590538	1.652848
H	-4.979387	-4.884854	-1.974473
H	-6.218092	-4.219946	0.070508
0	-0.563206	1.371252	-0.798649
C	-1.872743	1.290030	-1.149229
0	-2.288718	0.484879	-1.947162
C	-2.701676	2.298609	-0.442643
C	-2.166848	3.136885	0.540576
C	-4.055623	2.375197	-0.779869
C	-2.993488	4.054828	1.180795
H	-1.116370	3.062026	0.805046
C	-4.874856	3.296357	-0.138207
H	-4.450568	1.709007	-1.540164
C	-4.343592	4.136284	0.840830
H	-2.585053	4.708435	1.945216
H	-5.926550	3.359233	-0.398692
H	-4.984777	4.855165	1.342098
C	1.672881	2.260768	-2.236299
H	1.076661	2.117873	-3.151988
H	1.183921	3.040922	-1.632706
0	2.998285	2.597733	-2.530440
C	3.081991	3.784933	-3.288980
H	2.647665	4.637043	-2.747328
H	4.140366	3.978261	-3.472094
H	2.562879	3.678985	-4.251680
H	2.726732	0.767254	1.708477
I	4.129900	-1.817039	0.089021
C	0.562196	1.759187	3.875936
H	0.606781	2.055477	4.927473
H	-0.490419	1.704878	3.578734
H	1.015563	0.766729	3.788697
C	1.302270	2.779266	3.042169
H	0.894089	3.782780	3.193846
H	2.370826	2.792638	3.280953
0	1.130874	2.450872	1.643804
H	1.567710	3.142584	1.109169

α-anomer

```
M06-2X SCF energy: -1581.66750963 a.u.
M06-2X enthalpy: -1581.165947 a.u.
M06-2X free energy: -1581.261751 a.u.
M06-2X SCF energy in solution: -1582.11547095 a.u.
M06-2X enthalpy in solution: -1581.613908 a.u.
M06-2X free energy in solution: -1581.709712 a.u.
Three lowest frequencies (cm-1): 20.0228 23.2778 29.6629
```

Cartesian coordinates

ATOM	X	Y	Z
C	-1.953316	2.852598	-2.168978
C	-0.829879	2.130632	-2.901918
C	0.296848	3.122078	-3.197901
C	-0.212454	4.388593	-1.245768
C	-1.407858	3.507435	-0.900441
H	-0.424954	1.346842	-2.250730
H	-2.407138	3.610684	-2.812795
H	-0.580851	5.231610	-1.845298
H	-2.188099	4.088487	-0.403041
0	0.766641	3.660882	-1.981946
N	-1.304043	1.554333	-4.171701
N	-1.934838	0.503033	-4.035507
N	-2.519323	-0.463441	-4.026274
0	-2.913934	1.850220	-1.839915
C	-4.162583	2.278132	-1.545489
0	-4.501677	3.432691	-1.650757
C	-5.046229	1.166624	-1.105371
C	-4.559905	-0.128011	-0.904527
C	-6.392066	1.459510	-0.875330
C	-5.427028	-1.127239	-0.473025
H	-3.511930	-0.347526	-1.081784
C	-7.254812	0.456815	-0.447895
H	-6.746052	2.473461	-1.032920
C	-6.771900	-0.835855	-0.246120
H	-5.052904	-2.133840	-0.313866
H	-8.301515	0.682086	-0.268824
H	-7.445207	-1.618610	0.090864
0	-0.947829	2.469570	-0.022683
C	-1.830581	1.966873	0.862396
0	-2.949356	2.402782	1.013731
C	-1.266661	0.820681	1.626147
C	0.068930	0.429401	1.496656

C	-2.125352	0.128859	2.484010
C	0.541850	-0.651645	2.233824
H	0.729588	0.969819	0.826593
C	-1.648952	-0.954377	3.213287
H	-3.160266	0.446984	2.563499
C	-0.315195	-1.342995	3.089240
H	1.579619	-0.956161	2.140193
H	-2.315266	-1.496548	3.877064
H	0.056891	-2.188394	3.660671
C	0.468061	4.930063	-0.006059
H	-0.293717	5.321963	0.687318
H	1.006516	4.117086	0.502804
O	1.354796	5.948702	-0.396740
C	2.061304	6.475691	0.702759
H	2.662375	5.701298	1.200537
H	2.726116	7.254098	0.322465
H	1.377543	6.915886	1.442904
H	1.158906	2.602763	-3.634472
O	-0.200206	4.082112	-4.068375
C	0.785315	4.908617	-4.692035
H	0.378513	5.154935	-5.677189
H	1.703171	4.324822	-4.842827
C	1.071169	6.174780	-3.904815
H	1.504959	5.949858	-2.926611
H	1.771382	6.803557	-4.465104
H	0.148236	6.745207	-3.757106

```
    \beta-anomer
M06-2X SCF energy: -1581.66105663 a.u.
M06-2X enthalpy: -1581.159556 a.u.
M06-2X free energy: -1581.258953 a.u.
M06-2X SCF energy in solution: -1582.11188236 a.u.
M06-2X enthalpy in solution: -1581.610382 a.u.
M06-2X free energy in solution: -1581.709779 a.u.
Three lowest frequencies (cm-1): 11.8930 20.2896 24.0610
```

Cartesian coordinates
ATOM X

C	-1.713840	2.941248	-1.798740

C $\quad-0.548495 \quad 2.209140 \quad-2.459383$
$\begin{array}{llll}C & 0.718190 & 3.051102 & -2.321719\end{array}$
$\begin{array}{llll}\text { C } & -0.065186 & 4.106543 & -0.355804\end{array}$

C	-1.388019	3.337641	-0.363507
H	-0.375865	1.248507	-1.958933
H	-1.947907	3.848345	-2.366483
H	-0.209412	5.036611	-0.928928
H	-2.194449	3.940924	0.059163
0	0.947674	3.316160	-0.953132
N	-0.819986	2.020099	-3.894800
N	-1.582745	1.086068	-4.148433
N	-2.261378	0.250938	-4.492646
0	-2.821644	2.044876	-1.859860
C	-4.055682	2.586894	-1.789447
0	-4.244553	3.770654	-1.629604
C	-5.124813	1.565211	-1.939780
C	-4.828465	0.209555	-2.107336
C	-6.451882	2.001233	-1.915878
C	-5.865182	-0.706556	-2.252586
H	-3.796223	-0.123655	-2.119507
C	-7.483725	1.081377	-2.062554
H	-6.658330	3.058686	-1.783177
C	-7.189686	-0.271801	-2.231192
H	-5.639655	-1.760315	-2.383003
H	-8.515806	1.417236	-2.045758
H	-7.995445	-0.990816	-2.345922
0	-1.250969	2.121340	0.379485
C	-1.743207	2.094088	1.632367
0	-2.251300	3.051623	2.170392
C	-1.582192	0.759485	2.271286
C	-0.971247	-0.309812	1.610338
C	-2.064519	0.600257	3.572907
C	-0.844646	-1.535329	2.256454
H	-0.596457	-0.180857	0.600687
C	-1.937299	-0.626930	4.213250
H	-2.537014	1.442539	4.068342
C	-1.326630	-1.694453	3.555122
H	-0.368301	-2.366980	1.746812
H	-2.313539	-0.751940	5.223766
H	-1.225517	-2.653135	4.055301
C	0.393992	4.466349	1.041793
H	-0.428597	4.960925	1.580271
H	0.659698	3.547773	1.589605
0	1.507396	5.315659	0.927646
C	2.017167	5.676838	2.190561
H	2.347064	4.793874	2.756643
H	2.873986	6.332760	2.021476

H	1.266407	6.213844	2.788369
H	0.595821	4.008201	-2.864143
O	1.779413	2.328796	-2.816974
C	2.988507	3.083682	-2.902581
H	3.288647	3.410793	-1.900885
H	2.810017	3.979713	-3.514249
C	4.043086	2.198012	-3.528167
H	3.734785	1.879189	-4.528014
H	4.988132	2.742287	-3.611496
H	4.209102	1.307968	-2.914226

TS3

M06-2X SCF energy: -2549.80888805						
M06-2X enthalpy: -2549.081576 a.u.						
M06-2X free energy: -2549.216405 a.u.						
M06-2X SCF energy in solution: -2550.49481485 a.u.						
M06-2X enthalpy in solution: -2549.767503						
M06-2X free energy in solution: -2549.902332 a.u.						
Three lowest frequencies (cm-1) : -207.2552 15.3226 16.2647						
Imaginary frequency: -207.2552 cm-1						
Cartesian coordinates						
ATOM	X	Y	Z			
C	-1.833114	-1.332956	-0.	40095		
C	-0.579336	-1.033471	0.3	7063		
C	0.635999	-1.616060	-0.2	4214		
C	-0.408384	-1.674346	-2.	72288		
C	-1.562509	-0.891890	-1.87	77564		
H	-0.432994	0.054529	0.3	7129		
H	-2.102040	-2.392703	-0.	93637		
H	-0.743954	-2.681200	-2.	36509		
H	-2.444781	-1.039051	-2.	55524		
0	0.679848	-1.919800	-1.5	0283		
N	-0.610744	-1.534248	1.7	0527		
N	-1.465194	-0.999589	2.4	64930		
N	-2.208775	-0.598954	3.2	2280		
0	-2.836462	-0.518895	0.1	50051		
C	-4.124074	-0.792274	-0.	82002		
\bigcirc	-4.424740	-1.707567	-0.	07921		
C	-5.071379	0.153782	0.4	8481		
C	-4.628643	1.213326	1.2	5960		
C	-6.436298	-0.042149	0.2	35411		

C	-5.559156	2.073237	1.830773
H	-3.567328	1.364124	1.424197
C	-7.361084	0.819740	0.813563
H	-6.755715	-0.870797	-0.388380
C	-6.922110	1.876740	1.610792
H	-5.221613	2.897910	2.450435
H	-8.422254	0.668822	0.643018
H	-7.644686	2.550892	2.060840
0	-1.205075	0.490240	-1.840569
C	-2.213490	1.393639	-1.925107
0	-3.333237	1.100732	-2.270713
C	-1.767052	2.753468	-1.531228
C	-0.463184	2.995813	-1.085313
C	-2.705821	3.786986	-1.580748
C	-0.106798	4.280691	-0.684232
H	0.258197	2.181881	-1.054126
C	-2.340665	5.068464	-1.184036
H	-3.713302	3.571670	-1.922634
C	-1.042902	5.313896	-0.735033
H	0.903174	4.476615	-0.333797
H	-3.066762	5.874428	-1.221799
H	-0.759563	6.314532	-0.422538
C	0.223604	-0.993631	-3.667608
H	-0.581199	-0.674087	-4.348964
H	0.766900	-0.098598	-3.331278
0	1.080458	-1.915667	-4.280303
C	1.766117	-1.345730	-5.373751
H	2.402732	-0.509014	-5.053251
H	2.392667	-2.127697	-5.806811
H	1.064849	-0.980590	-6.137221
H	1.468042	-1.977485	0.303938
I	-0.157490	-4.824253	0.298354
P	2.657198	0.837443	0.458798
0	1.669015	0.291216	-0.570231
C	1.995324	0.724731	2.134434
C	2.410782	-0.283487	3.007506
C	0.922312	1.558548	2.485330
C	1.760381	-0.455549	4.228580
H	3.230951	-0.942195	2.737562
C	0.282435	1.386362	3.707314
H	0.590061	2.339514	1.803180
C	0.700354	0.376221	4.577017
H	2.081312	-1.243701	4.902051
H	-0.550408	2.027531	3.978916

H	0.190700	0.235661	5.525439
C	3.033180	2.568861	0.099465
C	3.303558	3.507526	1.099788
C	3.106593	2.936574	-1.249656
C	3.639553	4.813622	0.746924
H	3.246222	3.227364	2.148221
C	3.447247	4.240489	-1.595012
H	2.888637	2.203404	-2.022203
C	3.712123	5.178261	-0.596525
H	3.841666	5.545639	1.522455
H	3.500377	4.526329	-2.640788
H	3.974049	6.196745	-0.866641
C	4.213104	-0.078305	0.406737
C	5.277959	0.255170	1.252102
C	4.342661	-1.116955	-0.517641
C	6.467633	-0.459904	1.174627
H	5.174287	1.065753	1.970744
C	5.538463	-1.829849	-0.590291
H	3.515212	-1.359034	-1.179477
C	6.596050	-1.501814	0.253835
H	7.295496	-0.206321	1.829055
H	5.641331	-2.638249	-1.306958
H	7.526662	-2.058050	0.196085

Int1

```
M06-2X SCF energy: -2549.84253505 a.u.
M06-2X enthalpy: -2549.112688 a.u.
M06-2X free energy: -2549.247762 a.u.
M06-2X SCF energy in solution: -2550.52616110 a.u.
M06-2X enthalpy in solution: -2549.796314 a.u.
M06-2X free energy in solution: -2549.931388 a.u.
Three lowest frequencies (cm-1): 15.4197 17.1265 18.7516
```

Cartesian coordinates
ATOM X Y Z

C	-1.912333	3.490247	-1.244631

C $\quad-0.690758 \quad 2.888499 \quad-1.930116$
$\begin{array}{llll}C & 0.502156 & 3.801071 & -1.645604\end{array}$
$\begin{array}{llll}C & -0.335006 & 4.579216 & 0.383912\end{array}$
$\begin{array}{llll}C & -1.627578 & 3.785293 & 0.234538\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.476221 & 1.895606 & -1.515806\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.201343 & 4.417537 & -1.750224\end{array}$

H	-0.476242	5.569287	-0.076247
H	-2.469361	4.325244	0.674749
H	0.330294	4.794580	-2.086888
0	0.724145	3.892278	-0.276432
N	-0.957602	2.834539	-3.373334
N	-0.253909	2.027772	-3.991037
N	0.333278	1.328550	-4.653184
0	-2.959733	2.533415	-1.345920
C	-4.220453	3.006163	-1.210850
0	-4.476149	4.186578	-1.171517
C	-5.224180	1.914337	-1.123191
C	-4.846092	0.575453	-0.990904
C	-6.574713	2.269425	-1.131012
C	-5.825059	-0.405729	-0.868000
H	-3.794827	0.307133	-0.975520
C	-7.549198	1.284507	-1.014195
H	-6.845236	3.316406	-1.224579
C	-7.174137	-0.052206	-0.881389
H	-5.535149	-1.446098	-0.758433
H	-8.599642	1.557713	-1.022108
H	-7.935371	-0.820510	-0.784417
0	-1.444926	2.535839	0.906258
C	-2.530278	1.975758	1.481276
0	-3.604960	2.526632	1.553178
C	-2.245400	0.617302	2.012727
C	-0.970504	0.047991	1.946566
C	-3.308881	-0.092226	2.577204
C	-0.763567	-1.231421	2.452702
H	-0.151113	0.603502	1.502695
C	-3.096341	-1.370890	3.079240
H	-4.291485	0.367721	2.611528
C	-1.823714	-1.939016	3.018675
H	0.224833	-1.677322	2.404662
H	-3.920289	-1.923906	3.518973
H	-1.658645	-2.937337	3.412716
C	0.090356	4.759483	1.824600
H	-0.751987	5.165962	2.406202
H	0.365218	3.783522	2.250459
0	1.186297	5.639833	1.838657
C	1.714818	5.797535	3.136858
H	2.087772	4.843375	3.534174
H	2.543587	6.505502	3.068753
H	0.960528	6.195604	3.830181
0	1.660759	3.201150	-2.194521

P	2.796317	4.018438	-3.021021
C	4.270682	3.077948	-2.679485
C	5.465849	3.732776	-2.371324
C	4.204450	1.678765	-2.740191
C	6.606587	2.975188	-2.120098
H	5.508327	4.816973	-2.334090
C	5.350019	0.936043	-2.484558
H	3.269516	1.180116	-2.983196
C	6.546959	1.585051	-2.175963
H	7.540180	3.475205	-1.885107
H	5.310534	-0.147423	-2.526884
H	7.439970	1.000292	-1.977570
C	2.873690	5.698596	-2.422794
C	2.993991	6.753443	-3.335813
C	2.848050	5.941720	-1.039656
C	3.088963	8.057695	-2.860217
H	3.026599	6.559048	-4.402994
C	2.923013	7.251787	-0.582646
H	2.735216	5.130292	-0.327325
C	3.049213	8.304859	-1.489929
H	3.192579	8.876360	-3.564381
H	2.878608	7.446515	0.483806
H	3.114840	9.325168	-1.124563
C	2.322879	3.956835	-4.741706
C	3.058933	3.199623	-5.657778
C	1.145404	4.612854	-5.131920
C	2.601360	3.083174	-6.967111
H	3.982451	2.714955	-5.356060
C	0.695145	4.481679	-6.439248
H	0.584325	5.217852	-4.422966
C	1.421298	3.714429	-7.351864
H	3.170775	2.502127	-7.684695
H	-0.217015	4.981881	-6.747469
H	1.066218	3.617370	-8.373148
I	6.002977	5.811929	-5.667958

TS4

```
M06-2X SCF energy: -2704.78790478 a.u.
M06-2X enthalpy: -2703.971293 a.u.
M06-2X free energy: -2704.117478 a.u.
M06-2X SCF energy in solution: -2705.53143144 a.u.
M06-2X enthalpy in solution: -2704.714820 a.u.
```

M06-2X free energy in solution: -2704.861005 a.u.						
Three lowest frequencies (cm-1):				-226.9560	7.2070	19.8614
Imaginary frequency:			-226.9560 cm-1			
Cartesian coordinates						
ATOM	X	Y	Z			
C	1.522199	-1.935835	0.807834			
C	0.381017	-1.276873	0.042096			
C	-0.824336	-1.111061	0.928751			
C	0.470875	-1.228449	2.969440			
C	1.720368	-1.165951	2.111104			
H	0.701355	-0.265034	-0.234255			
H	1.313525	-2.991460	0.999380			
H	0.405351	-2.210972	3.444609			
H	2.557193	-1.574466	2.682942			
0	-0.771323	-1.131483	2.195721			
N	-0.027391	-2.034985	-1.140817			
N	0.738389	-1.894688	-2.102014			
N	1.364815	-1.854046	-3.037721			
0	2.647849	-1.779483	-0.044381			
C	3.757441	-2.496841	0.262913			
0	3.779419	-3.302400	1.161315			
C	4.894442	-2.163692	-0.631006			
C	4.787368	-1.179937	-1.618893			
C	6.095433	-2.851647	-0.443819			
C	5.888281	-0.888601	-2.417860			
H	3.852912	-0.646138	-1.758316			
C	7.192115	-2.555864	-1.245635			
H	6.157296	-3.609268	0.331088			
C	7.087902	-1.574568	-2.231554			
H	5.809843	-0.125117	-3.185304			
H	8.127671	-3.086957	-1.102026			
H	7.945627	-1.341782	-2.855434			
\bigcirc	1.972860	0.199097	1.776438			
C	3.265053	0.563838	1.591079			
0	4.198684	-0.155016	1.858979			
C	3.374989	1.932881	1.027161			
C	2.239480	2.686402	0.713118			
C	4.654667	2.444388	0.797126			
C	2.392281	3.959937	0.170749			
H	1.251550	2.269991	0.893813			
C	4.799636	3.716703	0.255527			
H	5.520224	1.837932	1.044429			
C	3.669313	4.472697	-0.0	7737		

H	1.513887	4.551661	-0.075395
H	5.791406	4.119784	0.077028
H	3.784843	5.465462	-0.482171
C	0.416881	-0.127905	4.022725
H	1.400039	-0.088954	4.504593
H	0.233843	0.832237	3.521229
0	-0.525181	-0.373551	5.028076
C	-1.857718	-0.014232	4.707989
H	-2.361099	-0.787403	4.116051
H	-2.389456	0.105309	5.655032
H	-1.888502	0.936491	4.158559
H	-1.823186	-1.125354	0.494204
0	-0.851777	1.064068	0.845895
P	-1.554860	1.871590	-0.244695
C	-0.979992	1.474291	-1.911926
C	-1.623950	0.465938	-2.640032
C	0.175259	2.078063	-2.427118
C	-1.133172	0.087468	-3.886682
H	-2.506304	-0.027752	-2.239769
C	0.661415	1.693986	-3.673885
H	0.689570	2.851976	-1.862025
C	0.003095	0.705614	-4.405661
H	-1.637715	-0.696164	-4.443426
H	1.552296	2.166859	-4.075161
H	0.384608	0.406507	-5.377368
C	-1.269370	3.635741	0.040162
C	-0.935070	4.037292	1.337450
C	-1.428477	4.589900	-0.970965
C	-0.747521	5.387921	1.619911
H	-0.811260	3.289812	2.116265
C	-1.237203	5.938863	-0.683218
H	-1.691869	4.284680	-1.980391
C	-0.895946	6.336850	0.609668
H	-0.481163	5.697288	2.625671
H	-1.354037	6.679451	-1.468068
H	-0.745817	7.389599	0.829158
C	-3.336497	1.575046	-0.194907
C	-3.862998	0.940548	0.933030
C	-4.182723	1.989307	-1.229303
C	-5.234225	0.712284	1.022068
H	-3.198166	0.618383	1.730895
C	-5.550110	1.755601	-1.136231
H	-3.773610	2.476308	-2.111312
C	-6.074427	1.117286	-0.011826

H	-5.643429	0.209126	1.892417
H	-6.206580	2.065683	-1.943002
H	-7.141858	0.930222	0.053668
C	-2.623473	-5.196465	1.800431
H	-3.303420	-5.411607	2.630808
H	-3.183626	-5.295783	0.864499
H	-1.817371	-5.936512	1.805909
C	-2.058549	-3.793965	1.924998
H	-2.870164	-3.051957	1.923185
H	-1.501551	-3.681697	2.861306
O	-1.131244	-3.511137	0.880045
H	-1.619443	-3.550679	0.032709
I	-3.931473	-2.599435	-1.232846

Int1a

```
M06-2X SCF energy: -2538.34541018 a.u.
M06-2X enthalpy: -2537.617479 a.u.
M06-2X free energy: -2537.745499 a.u.
M06-2X SCF energy in solution: -2538.96577038 a.u.
M06-2X enthalpy in solution: -2538.237839 a.u.
M06-2X free energy in solution: -2538.365859 a.u.
Three lowest frequencies (cm-1): 12.3594 16.6326 21.9195
```

Cartesian coordinates			
ATOM	X	Y	Z
C	-1.937373	2.811947	-1.994810
C	-0.786515	2.157111	-2.761284
C	0.307653	3.204901	-2.899605
C	-0.295600	4.341557	-0.919325
C	-1.457197	3.381481	-0.661921
H	-0.391163	1.302002	-2.199448
H	-2.358767	3.626061	-2.594322
H	-0.664350	5.193495	-1.510775
H	-2.274223	3.893262	-0.148779
O	0.723002	3.655517	-1.648863
N	-1.204467	1.771916	-4.115058
N	-1.874902	0.734569	-4.161212
N	-2.483783	-0.200770	-4.322244
O	-2.920244	1.800779	-1.808826
C	-4.192373	2.229797	-1.624513
O	-4.479118	3.402737	-1.569726
C	-5.159260	1.109891	-1.506927

C	-4.754621	-0.227539	-1.542000
C	-6.509727	1.437363	-1.359446
C	-5.707724	-1.234630	-1.427031
H	-3.704204	-0.475803	-1.652820
C	-7.457087	0.427011	-1.247624
H	-6.801466	2.482518	-1.335371
C	-7.055473	-0.908304	-1.281077
H	-5.399007	-2.274919	-1.451186
H	-8.506945	0.678332	-1.133986
H	-7.796248	-1.697401	-1.191808
0	-1.008950	2.268415	0.115754
C	-1.278598	2.282278	1.438524
0	-1.819598	3.211286	1.992392
C	-0.830782	1.037651	2.117787
C	-0.197411	0.000965	1.426082
C	-1.070208	0.927188	3.489829
C	0.192233	-1.144845	2.111949
H	-0.013003	0.091666	0.360903
C	-0.680478	-0.220605	4.169880
H	-1.564439	1.743520	4.006692
C	-0.049813	-1.256385	3.480693
H	0.683741	-1.952833	1.579226
H	-0.868996	-0.309518	5.235109
H	0.252407	-2.153759	4.012410
C	0.361182	4.855983	0.344436
H	-0.399028	5.298462	1.003953
H	0.838138	4.017594	0.875724
0	1.323069	5.809421	-0.036349
C	2.130630	6.213859	1.049244
H	2.680861	5.361746	1.471746
H	2.844309	6.946156	0.666288
H	1.528588	6.675485	1.843749
H	-0.041005	4.038054	-3.528741
0	1.436736	2.597228	-3.504111
P	2.772998	3.468547	-3.764385
C	2.342346	5.147367	-4.210634
C	2.015975	6.060132	-3.195557
C	2.271636	5.514622	-5.560265
C	1.613151	7.343679	-3.545737
H	2.058450	5.770886	-2.147274
C	1.872278	6.805143	-5.892765
H	2.529433	4.805287	-6.341702
C	1.543330	7.714473	-4.888960
H	1.355732	8.053543	-2.765796

H	1.820976	7.099809	-6.935763
H	1.233535	8.720477	-5.155198
C	3.527004	2.598036	-5.133044
C	4.902986	2.716880	-5.358199
C	2.713758	1.863953	-6.004732
C	5.465091	2.094589	-6.467353
H	5.532282	3.285491	-4.678099
C	3.291177	1.244053	-7.108418
H	1.647703	1.773044	-5.818198
C	4.660806	1.361006	-7.338713
H	6.531496	2.179551	-6.648881
H	2.669839	0.667910	-7.786306
H	5.106247	0.875684	-8.201675
C	3.781389	3.446861	-2.284961
C	3.612334	2.411694	-1.358710
C	4.746930	4.440534	-2.086611
C	4.421246	2.375456	-0.228282
H	2.846449	1.657292	-1.512134
C	5.553727	4.388882	-0.953961
H	4.865274	5.249384	-2.802533
C	5.390012	3.359600	-0.028877
H	4.292658	1.581755	0.500360
H	6.304182	5.155852	-0.793821
H	6.017471	3.326360	0.856381

TS4a

```
M06-2X SCF energy: -2693.28461355 a.u.
M06-2X enthalpy: -2692.470284 a.u.
M06-2X free energy: -2692.608534 a.u.
M06-2X SCF energy in solution: -2693.96364658 a.u.
M06-2X enthalpy in solution: -2693.149317 a.u.
M06-2X free energy in solution: -2693.287567 a.u.
Three lowest frequencies (cm-1): -182.5182 12.0261 16.8953
Imaginary frequency: -182.5182 cm-1
```

Cartesian coordinates
ATOM X Y Z
$\begin{array}{llll}\text { C } & -2.181235 & -1.498114 & -0.414868\end{array}$
C $\quad-1.111739 \quad-1.529998 \quad 0.669607$
$\begin{array}{llll}C & 0.247935 & -1.772643 & 0.078883\end{array}$
C $\quad-0.446760-1.155708 \quad-2.151791$
C $\quad-1.716158 \quad-0.584911 \quad-1.542798$

H	-1.052158	-0.538185	1.134532
H	-2.365720	-2.501667	-0.806617
H	-0.679011	-2.103575	-2.647469
H	-2.474778	-0.515465	-2.326732
0	0.541260	-1.525230	-1.129215
N	-1.362304	-2.571388	1.671575
N	-2.186763	-2.226399	2.531032
N	-2.922755	-2.022992	3.358169
0	-3.339832	-0.994308	0.233070
C	-4.529589	-1.253651	-0.366033
0	-4.605984	-1.825754	-1.427167
C	-5.678714	-0.761372	0.432907
C	-5.501477	-0.100359	1.652034
C	-6.962848	-0.985266	-0.070939
C	-6.614266	0.332121	2.365497
H	-4.502658	0.074959	2.037440
C	-8.070574	-0.551121	0.647176
H	-7.078317	-1.498527	-1.020419
C	-7.895865	0.106649	1.864741
H	-6.481556	0.843930	3.313365
H	-9.069360	-0.723097	0.258666
H	-8.762407	0.443903	2.425746
0	-1.490527	0.697996	-0.958495
C	-1.825712	1.783396	-1.700159
0	-2.133862	1.703182	-2.865526
C	-1.767491	3.045184	-0.919522
C	-1.488269	3.059209	0.450857
C	-2.009801	4.239424	-1.604798
C	-1.446289	4.272364	1.129687
H	-1.296257	2.127880	0.975253
C	-1.967698	5.448346	-0.920197
H	-2.230317	4.205757	-2.667143
C	-1.685619	5.463973	0.445861
H	-1.226453	4.288717	2.192420
H	-2.154729	6.377465	-1.449148
H	-1.651511	6.408852	0.979941
C	0.276924	-0.226812	-3.100646
H	-0.403322	0.026899	-3.926293
H	0.548833	0.702211	-2.578221
0	1.424744	-0.894526	-3.556799
C	2.268074	-0.029422	-4.292882
H	2.583114	0.829079	-3.682058
H	3.147481	-0.606392	-4.585973
	1.762886	0.343452	-5.194084

H	1.018659	-2.257450	0.666029
0	1.141311	0.006135	1.024607
P	2.626441	0.281818	0.798356
C	3.579196	-1.187883	0.327679
C	3.561594	-1.625791	-1.004893
C	4.270772	-1.926948	1.295013
C	4.243837	-2.785780	-1.361249
H	3.010130	-1.074158	-1.763162
C	4.954679	-3.084262	0.929811
H	4.285587	-1.595111	2.329577
C	4.945083	-3.510103	-0.396995
H	4.231036	-3.119962	-2.394562
H	5.497231	-3.648804	1.681645
H	5.483855	-4.409534	-0.680215
C	3.364124	0.939136	2.313887
C	4.715482	1.298360	2.376251
C	2.542276	1.094008	3.431710
C	5.239159	1.808384	3.559061
H	5.357848	1.177433	1.506829
C	3.072802	1.607087	4.614054
H	1.495103	0.812844	3.369259
C	4.417491	1.962555	4.676785
H	6.287352	2.085934	3.610257
H	2.435221	1.727049	5.484619
H	4.829534	2.361341	5.598814
C	2.861120	1.496890	-0.521767
C	1.760127	2.288821	-0.856655
C	4.090819	1.698104	-1.159100
C	1.884724	3.285855	-1.821785
H	0.808385	2.108095	-0.365196
C	4.212719	2.698858	-2.119377
H	4.947472	1.075590	-0.911893
C	3.112190	3.492243	-2.449008
H	1.024326	3.897317	-2.080003
H	5.165769	2.856824	-2.614652
H	3.214050	4.269842	-3.200050
C	1.707425	-5.087342	-0.132968
H	2.126182	-4.238141	0.418357
H	1.257954	-5.781956	0.585496
H	2.531078	-5.606015	-0.633040
C	0.680998	-4.631815	-1.151423
H	1.119491	-3.916353	-1.855667
H	0.298778	-5.481462	-1.729422
0	-0.416039	-3.945215	-0.540954

```
H -0.757920 -4.479593 0.196946
```

$\alpha-17 a$
M06-2X SCF energy: -2164.38664943 a.u.
M06-2X enthalpy: -2163.825959 a.u.
M06-2X free energy: -2163.940625 a.u.
M06-2X SCF energy in solution: -2165.00886184 a.u.
M06-2X enthalpy in solution: -2164.448171 a.u.
M06-2X free energy in solution: -2164.562837 a.u.
$\begin{array}{lllll}\text { Three lowest frequencies (cm-1): } 10.6895 & 17.3015 & 22.3110\end{array}$
Cartesian coordinates

ATOM	X	Y	Z
C	-2.086924	0.524470	0.283243
C	-0.737688	0.311359	-0.382338
C	0.053933	1.630407	-0.397065
C	-1.074482	2.452735	1.522845
C	-1.905591	1.185555	1.648904
H	-0.155837	-0.414802	0.198529
H	-2.724729	1.151798	-0.346568
H	-1.645469	3.186724	0.940243
H	-2.879875	1.409876	2.089307
0	0.167975	2.178365	0.865405
N	-0.995087	-0.182642	-1.743503
N	-0.017477	-0.701374	-2.288521
N	0.811215	-1.190221	-2.877716
0	-2.676404	-0.762384	0.447385
C	-4.013713	-0.786255	0.641349
0	-4.706843	0.200452	0.557609
C	-4.515785	-2.150691	0.953116
C	-5.898007	-2.331794	1.036267
C	-3.648187	-3.221026	1.185824
C	-6.414156	-3.585182	1.344569
H	-6.553888	-1.485384	0.858018
C	-4.169584	-4.472225	1.499084
H	-2.575142	-3.071940	1.126175
C	-5.549890	-4.654877	1.576537
H	-7.488370	-3.728689	1.406872
H	-3.498485	-5.305054	1.684890
H	-5.953156	-5.633359	1.820667
\bigcirc	-1.187609	0.278345	2.493690
C	-1.909402	-0.549342	3.277152

0	-3.115689	-0.507992	3.359071
C	-1.047494	-1.505995	4.022061
C	-1.679980	-2.473675	4.806835
C	0.347437	-1.461794	3.942187
C	-0.917512	-3.397174	5.512520
H	-2.764554	-2.492984	4.850375
C	1.105335	-2.386480	4.653520
H	0.831635	-0.708073	3.329922
C	0.474537	-3.352672	5.436385
H	-1.406579	-4.152073	6.120258
H	2.188883	-2.354174	4.596349
H	1.069499	-4.074300	5.988463
C	-0.738716	3.049593	2.872859
H	-1.650870	3.076501	3.491260
H	0.000174	2.412649	3.381727
0	-0.233504	4.343669	2.669176
C	0.128989	4.956990	3.885016
H	0.927886	4.398636	4.393708
H	0.489168	5.960881	3.650309
H	-0.730906	5.034088	4.566169
0	-0.631794	2.578453	-1.233301
C	-0.206603	2.756438	-2.489242
N	0.670612	2.043523	-3.042703
C	1.170393	2.294984	-4.342221
C	1.914083	3.443681	-4.625371
C	0.979909	1.323600	-5.329026
C	2.447390	3.622790	-5.899594
H	2.078246	4.181340	-3.845922
C	1.505975	1.519021	-6.601421
H	0.410419	0.430244	-5.090747
C	2.243084	2.666831	-6.891902
H	3.025626	4.516497	-6.114735
H	1.345192	0.766200	-7.367294
H	2.660654	2.811044	-7.883441
C	-0.939531	3.956477	-3.105056
F	-2.083510	4.202895	-2.469876
F	-0.179760	5.055563	-3.023954
F	-1.218928	3.740484	-4.389944
H	1.064262	1.479370	-0.782590

$\beta-17 a$
M06-2X SCF energy: $\quad-2164.38495255$ a.u.

```
M06-2X enthalpy: -2163.824066 a.u.
M06-2X free energy: -2163.937625 a.u.
M06-2X SCF energy in solution: -2165.00726381 a.u.
M06-2X enthalpy in solution: -2164.446377 a.u.
M06-2X free energy in solution: -2164.559936 a.u.
Three lowest frequencies (cm-1): 17.6563 18.0239 24.0054
```

Cartesian coordinates
ATOM X Y Z
C $\quad-1.099820 \quad-0.008751$
C $\quad 0.390366 \quad-0.267997 \quad-0.536721$

C	1.112791	1.077154	-0.626788

| C | -0.479184 | $2.218820 \quad 0.630611$ |
| :--- | :--- | :--- | :--- |

C	-1.366131	0.983896	0.758493

H	0.771162	-0.804355	0.341713

| H | $-1.510529 \quad 0.389016$ | -1.313029 |
| :--- | :--- | :--- | :--- |

H	-0.780949	2.771184	-0.272083

H	-2.421019	1.267839	0.762674

| H | $0.818865 \quad 1.627591$ | -1.531785 |
| :--- | :--- | :--- | :--- |

0	0.887443	1.832009	0.521755

$\mathrm{N} \quad 0.588185 \quad-1.046521 \quad-1.770284$

| N | $1.712742 \quad-1.547975$ | -1.873049 |
| :--- | :--- | :--- | :--- |

N	2.707425	-2.045247	-2.062741

$0 \quad-1.705566-1.259482 \quad-0.071380$
C - $3.018399 \quad-1.397924 \quad-0.364283$
$0 \quad-3.640687 \quad-0.586122 \quad-1.006784$

C	-3.577821	-2.659599	0.189362

C $-4.846430-3.060995-0.233859$
C $\quad-2.880448 \quad-3.410443 \quad 1.139521$

C	-5.413173	-4.219850	0.285741

H $\quad-5.375446 \quad-2.459795 \quad-0.966921$
C $\quad-3.456785 \quad-4.561745 \quad 1.665808$

H	-1.897484	-3.089852	1.468583

C $\quad-4.720029 \quad-4.968106 \quad 1.236973$
H $\quad-6.396256 \quad-4.538238 \quad-0.046775$

| H | $-2.920862 \quad-5.138572$ | 2.413431 |
| :--- | :--- | :--- | :--- |

| H | $-5.166322 \quad-5.869152$ | 1.647386 |
| :--- | :--- | :--- | :--- |

$0 \quad-1.034575 \quad 0.340423 \quad 1.994319$

C	-2.028528	-0.305369	2.638597

0	-3.184992	-0.273127	283708

| C | -1.536495 | $-1.057852 \quad 3.823289$ |
| :--- | :--- | :--- | :--- |

C $\quad-2.456612 \quad-1.857964 \quad 4.506433$
C $\quad-0.203666 \quad-0.998584 \quad 4.240023$

| C | -2.043993 | $-2.598662 \quad 5.607868$ |
| :--- | :--- | :--- | :--- |

H	-3.484993	-1.893277	4.160308
C	0.201897	-1.737786	5.347071
H	0.506273	-0.379343	3.701539
C	-0.715517	-2.536410	6.028866
H	-2.755895	-3.223293	6.138421
H	1.235199	-1.693062	5.676544
H	-0.394865	-3.114355	6.890545
C	-0.596811	3.131278	1.833290
H	-1.662000	3.290265	2.067333
H	-0.124767	2.648650	2.701763
0	0.037319	4.346187	1.527410
C	0.034600	5.224487	2.629615
H	0.564099	4.789947	3.489499
H	0.546196	6.138318	2.319787
H	-0.990201	5.474938	2.939946
0	2.486317	0.763783	-0.685191
C	3.322438	1.702580	-1.167151
N	2.961328	2.872412	-1.444497
C	3.819095	3.835861	-2.024964
C	4.397324	3.640759	-3.282289
C	4.009290	5.041327	-1.345083
C	5.188272	4.642296	-3.838971
H	4.215574	2.714715	-3.819004
C	4.814682	6.028167	-1.903174
H	3.528510	5.184461	-0.382009
C	5.407326	5.833263	-3.150847
H	5.635809	4.486898	-4.816176
H	4.973434	6.957668	-1.364487
H	6.028523	6.609185	-3.587361
C	4.713901	1.076526	-1.331936
F	4.871572	0.032143	-0.521145
F	4.878969	0.645000	-2.589180
F	5.674827	1.958332	-1.064330

TMSI
M06-2X SCF energy: -420.53229462 a.u.
M06-2X enthalpy: -420.409327 a.u.
M06-2X free energy: -420.453528 a.u.
M06-2X SCF energy in solution: -420.63615597 a.u.
M06-2X enthalpy in solution: -420.513188 a.u.
M06-2X free energy in solution: -420.557389 a.u.
Three lowest frequencies (cm-1): 145.5882149 .9084165 .7522

Cartesian coordinates			
ATOM	X	Y	Z
Si	-0.932808	-0.039735	0.102939
C	-2.795209	0.019453	-0.002946
H	-3.159764	1.050696	-0.033343
H	-3.156036	-0.502579	-0.894522
H	-3.227659	-0.470698	0.878189
C	-0.253961	0.915742	1.554602
H	-0.596567	0.451931	2.488063
H	0.840487	0.914024	1.555846
H	-0.599146	1.954059	1.544733
C	-0.254203	-1.775517	-0.005172
H	-0.614071	-2.289546	-0.901845
H	0.839963	-1.773199	-0.021109
H	-0.580844	-2.348790	0.871484
I	-0.092942	1.164739	-1.968495

TMSI-OPTFAI

Cartesian coordinates

ATOM	X	Y	Z
Si	-0.846030	-0.054571	0.189638
C	-2.655414	0.081996	-0.234266
H	-2.964651	1.128631	-0.327891
H	-2.880162	-0.423538	-1.179531
H	-3.269655	-0.380101	0.546842
C	-0.416793	0.947586	1.705775
H	-1.052529	0.645765	2.546492
H	0.627151	0.811770	2.001676
H	-0.588984	2.014906	1.527481
C	-0.290633	-1.833191	0.283804
H	-0.381232	-2.322473	-0.692517
H	0.746794	-1.920781	0.617846
H	-0.924401	-2.384029	0.988766

O	-0.110453	0.685423	-1.195926
C	1.201727	0.788500	-1.343012
N	2.031858	0.394350	-0.474904
C	3.432058	0.423798	-0.656935
C	4.206115	1.163957	0.241326
C	4.056005	-0.342350	-1.646284
C	5.591758	1.168957	0.122266
H	3.708122	1.734431	1.019842
C	5.444705	-0.340745	-1.749168
H	3.450380	-0.940104	-2.320913
C	6.217367	0.417219	-0.872036
H	6.185971	1.757973	0.814786
H	5.922793	-0.936773	-2.521076
H	7.299557	0.416878	-0.957397
C	1.543932	1.425026	-2.698950
F	0.544511	2.187238	-3.140773
F	2.634715	2.189249	-2.623693
F	1.767216	0.474504	-3.617769

TS5

```
M06-2X SCF energy: -2549.80693715 a.u.
M06-2X enthalpy: -2549.078981 a.u.
M06-2X free energy: -2549.215062 a.u.
M06-2X SCF energy in solution: -2550.49414658 a.u.
M06-2X enthalpy in solution: -2549.766190 a.u.
M06-2X free energy in solution: -2549.902271 a.u.
Three lowest frequencies (cm-1): -125.6201 7.3216 15.6513
Imaginary frequency: -125.6201 cm-1
```

Cartesian coordinates
ATOM X Y Z
$\begin{array}{llll}C & 0.932672 & 1.012293 & -0.418117\end{array}$
$\begin{array}{llll}C & 0.541805 & 0.084700 & 0.721936\end{array}$
C $\quad-0.340726 \quad-1.048068 \quad 0.224743$
$\begin{array}{llll}C & 0.295477 & -0.748249 & -2.075894\end{array}$
$\begin{array}{llll}C & 1.402861 & 0.160262 & -1.595094\end{array}$
H $\quad 1.463085 \quad-0.356471 \quad 1.114901$
$\begin{array}{llll}\mathrm{H} & 0.093636 \quad 1.644333 & -0.712587\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.498733 & -0.136266 & -2.515500\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.714194 & 0.799911 & -2.424907\end{array}$
$\begin{array}{llll}\text { H } & -1.142811 & -1.415211 & 0.856453\end{array}$
$0 \quad-0.383481 \quad-1.444672 \quad-0.983059$

N	-0.170054	0.837702	1.754750
N	-0.035071	0.386641	2.901165
N	0.009857	0.080951	3.984589
0	2.015462	1.792158	0.074184
C	2.317913	2.899769	-0.640701
0	1.644868	3.279755	-1.570232
C	3.540904	3.579197	-0.141559
C	4.395523	2.976017	0.785436
C	3.832403	4.845717	-0.652562
C	5.540707	3.648776	1.200312
H	4.168372	1.987669	1.171150
C	4.973411	5.516916	-0.228280
H	3.157575	5.289927	-1.377221
C	5.827496	4.917532	0.697403
H	6.210843	3.183192	1.916080
H	5.198941	6.503983	-0.619399
H	6.720915	5.440182	1.025890
0	2.496382	-0.651444	-1.163093
C	3.743073	-0.150350	-1.351259
0	3.952217	0.888900	-1.931937
C	4.791971	-1.020623	-0.764615
C	4.489500	-2.261329	-0.197493
C	6.108203	-0.549925	-0.782929
C	5.510950	-3.031620	0.348855
H	3.464575	-2.616970	-0.178142
C	7.123641	-1.323580	-0.233856
H	6.316651	0.420241	-1.223192
C	6.824541	-2.564015	0.331123
H	5.278916	-3.994410	0.793373
H	8.146675	-0.961479	-0.243310
H	7.618545	-3.166960	0.761670
C	0.739721	-1.815389	-3.049070
H	1.366371	-1.345645	-3.823972
H	1.346771	-2.569228	-2.527052
0	-0.419925	-2.382360	-3.598131
C	-0.127381	-3.491230	-4.421163
H	0.373435	-4.286759	-3.852960
H	-1.076666	-3.868491	-4.805947
H	0.513754	-3.203304	-5.265996
I	0.919078	-3.245087	1.648923
P	-3.406963	0.644099	-0.139257
0	-1.995382	0.735061	-0.677725
C	-3.487641	0.180583	1.611114
C	-3.281786	1.157293	2.594460

C	-3.590309	-1.164859	1.979870
C	-3.191743	0.789129	3.933062
H	-3.187640	2.203112	2.312909
C	-3.486962	-1.530828	3.321262
H	-3.743470	-1.929922	1.222689
C	-3.293642	-0.554825	4.295580
H	-3.035929	1.548324	4.693240
H	-3.559434	-2.576775	3.601945
H	-3.213898	-0.840642	5.340091
C	-4.277917	2.224229	-0.308328
C	-3.766720	3.139997	-1.232676
C	-5.437234	2.531969	0.412840
C	-4.416986	4.353765	-1.441994
H	-2.857640	2.899818	-1.776701
C	-6.084208	3.745862	0.199334
H	-5.828947	1.832971	1.147551
C	-5.575574	4.654664	-0.728774
H	-4.016825	5.064668	-2.158101
H	-6.981078	3.985730	0.761782
H	-6.080966	5.601943	-0.891017
C	-4.355505	-0.609624	-1.045440
C	-5.713499	-0.836291	-0.793394
C	-3.689799	-1.360635	-2.016532
C	-6.399750	-1.806977	-1.515361
H	-6.234378	-0.258902	-0.033340
C	-4.381456	-2.333476	-2.736721
H	-2.634033	-1.188336	-2.205092
C	-5.733292	-2.554598	-2.487737
H	-7.452897	-1.982838	-1.319600
H	-3.861397	-2.915907	-3.491067
H	-6.271300	-3.312644	-3.048966

Int2

2 SCF energy: -2549.84288322 a.u.		
M06-2X enthalpy: -2549.111928 a.u.		
M06-2X free energy: -2549.248412 a.u.		
M06-2X SCF energy in solution:	-2550.52717205 a.u.	
M06-2X enthalpy in solution:	-2549.796217 a.u.	
M06-2X free energy in solution:	-2549.932701 a.u.	
Three lowest frequencies (cm-1):	8.758812 .5035	19.2369

ATOM	X	Y	Z
C	-1.622621	2.843338	-2.066320
C	-0.186033	2.406020	-2.314071
C	0.719228	3.643496	-2.373411
C	-0.715423	4.923037	-1.002533
C	-1.699229	3.773913	-0.851103
H	0.155492	1.783963	-1.478382
H	-2.018079	3.359709	-2.946071
H	-1.033239	5.536584	-1.855522
H	-2.716825	4.155107	-0.737030
0	0.604561	4.420959	-1.240472
N	-0.127494	1.679121	-3.590552
N	0.722372	0.784589	-3.631401
N	1.464786	-0.053296	-3.772607
O	-2.380776	1.665801	-1.811694
C	-3.716959	1.767719	-1.999324
0	-4.235070	2.734734	-2.506247
C	-4.448721	0.565194	-1.524949
C	-3.844536	-0.385871	-0.698328
C	-5.788299	0.430140	-1.895442
C	-4.586138	-1.472872	-0.246547
H	-2.806757	-0.267935	-0.403773
C	-6.522024	-0.663609	-1.450397
H	-6.240129	1.185999	-2.530079
C	-5.921159	-1.613779	-0.624876
H	-4.123614	-2.209265	0.403274
H	-7.561660	-0.773641	-1.742268
H	-6.495999	-2.465579	-0.273740
\bigcirc	-1.326846	3.026173	0.311333
C	-2.319171	2.441146	1.015780
\bigcirc	-3.493105	2.605478	0.774920
C	-1.798525	1.583108	2.112679
C	-0.430796	1.468324	2.377709
C	-2.728910	0.871941	2.875779
C	0.001095	0.644034	3.412004
H	0.285288	2.022745	1.780320
C	-2.291019	0.047209	3.905633
H	-3.785964	0.973067	2.650307
C	-0.926770	-0.065341	4.174050
H	1.061831	0.554178	3.623984
H	-3.011170	-0.507224	4.498974
H	-0.585751	-0.708689	4.979597
C	-0.623498	5.812323	0.216943
H	-1.637988	6.085473	0.547477

H	-0.125531	5.273491	1.035748
0	0.108552	6.953930	-0.156211
C	0.291246	7.842270	0.923585
H	0.868186	7.373602	1.733062
H	0.839005	8.708250	0.546304
H	-0.672815	8.179625	1.329606
0	0.299129	4.407494	-3.519500
P	1.275485	4.979160	-4.667065
C	0.181299	6.092725	-5.532167
C	-1.119175	5.663472	-5.833359
C	0.624536	7.364084	-5.904559
C	-1.974424	6.519987	-6.515159
H	-1.455137	4.672300	-5.539867
C	-0.242974	8.211667	-6.588247
H	1.633757	7.687909	-5.669604
C	-1.534792	7.790267	-6.891898
H	-2.982827	6.198025	-6.753499
H	0.095498	9.198437	-6.885763
H	-2.206555	8.454739	-7.426743
C	1.841015	3.639337	-5.708973
C	2.778828	2.722366	-5.210584
C	1.317530	3.487903	-6.997573
C	3.173103	1.647680	-5.998458
H	3.207918	2.850451	-4.219920
C	1.722825	2.410127	-7.778683
H	0.615363	4.211826	-7.398193
C	2.642799	1.491591	-7.279513
H	3.894851	0.935212	-5.613043
H	1.323844	2.296399	-8.780976
H	2.955703	0.652784	-7.893406
C	2.631958	5.819993	-3.864011
C	2.348422	6.556888	-2.703725
C	3.926892	5.780548	-4.394375
C	3.376973	7.242370	-2.068691
H	1.345839	6.588103	-2.285509
C	4.943337	6.482037	-3.752134
H	4.138345	5.223766	-5.302405
C	4.669548	7.204955	-2.592538
H	3.165779	7.803737	-1.164117
H	5.948214	6.461134	-4.160485
H	5.469111	7.743799	-2.093486
H	1.771795	3.357243	-2.456330
I	3.541615	6.431745	-8.297469

TS6

```
M06-2X SCF energy: -2704.78552799 a.u.
M06-2X enthalpy: -2703.967556 a.u.
M06-2X free energy: -2704.111036 a.u.
M06-2X SCF energy in solution: -2705.52827226 a.u.
M06-2X enthalpy in solution: -2704.710300 a.u.
M06-2X free energy in solution: -2704.853780 a.u.
Three lowest frequencies (cm-1): -180.9363 15.6515 21.3606
Imaginary frequency: -180.9363 cm-1
```

Cartesian coordinates
ATOM X Y Z
$\begin{array}{llll}C & -1.472728 & 1.339200 & 0.042927\end{array}$
C $\quad-0.945842 \quad 0.472191 \quad-1.092241$
C $\quad 0.152252-0.441802 \quad-0.620516$
C $\quad-0.486200 \quad-0.248410 \quad 1.690242$
$\begin{array}{llll}C & -1.770407 & 0.427860 \quad 1.227970\end{array}$
H $\quad-1.770269 \quad-0.187187 \quad-1.391797$
$\begin{array}{llll}\mathrm{H} & -0.747358 & 2.104583 & 0.322309\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.187704 & 0.521237 & 2.082591\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.173573 & 1.001702 \quad 2.066102\end{array}$
$0 \quad 0.262669 \quad-0.840842 \quad 0.577717$
$\begin{array}{llll}\mathrm{N} & -0.450472 & 1.239444 & -2.236241\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.348911 & 1.562575 & -3.023776\end{array}$
$\begin{array}{llll}\mathrm{N} & -2.080110 & 1.913271 & -3.806575\end{array}$
$0 \quad-2.658593 \quad 1.930390 \quad-0.474700$
$\begin{array}{llll}C & -3.120589 & 3.023351 & 0.174131\end{array}$
$0 \quad-2.595899 \quad 3.456870 \quad 1.173148$
$\begin{array}{llll}\mathrm{C} & -4.321447 & 3.601554 & -0.480325\end{array}$
C $\quad-4.864516 \quad 3.054895-1.646715$
$\begin{array}{llll}C & -4.902821 & 4.726694 & 0.109921\end{array}$
$\begin{array}{llll}C & -5.990630 & 3.638392 & -2.218118\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.410990 & 2.181182 & -2.102386\end{array}$
$\begin{array}{llll}C & -6.027712 & 5.305533 & -0.465706\end{array}$
H $\quad-4.465556 \quad 5.134748 \quad 1.015557$
C $\quad-6.571250 \quad 4.761028 \quad-1.629301$
$\begin{array}{llll}\mathrm{H} & -6.414910 \quad 3.217249 & -3.123895\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.481494 & 6.179142 & -0.008771\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.450317 & 5.213151 & -2.078645\end{array}$
$0 \quad-2.724193 \quad-0.528816 \quad 0.776951$
C $\quad-3.547160 \quad-1.046666 \quad 1.717160$
$\begin{array}{llll}0 & -3.641959 & -0.587664 & 2.832270\end{array}$

C	-4.329838	-2.201594	1.213183
C	-3.917891	-2.940323	0.100197
C	-5.473769	-2.565167	1.926803
C	-4.670656	-4.041467	-0.299716
H	-3.003806	-2.669368	-0.421823
C	-6.226709	-3.658281	1.514213
H	-5.760986	-1.983910	2.797216
C	-5.824483	-4.395500	0.400522
H	-4.355222	-4.628983	-1.156439
H	-7.121100	-3.938221	2.061632
H	-6.408245	-5.253919	0.081862
C	-0.638471	-1.347574	2.721084
H	0.361418	-1.665072	3.051086
H	-1.170074	-0.923532	3.585979
0	-1.339761	-2.424861	2.157158
C	-1.693886	-3.385279	3.130058
H	-2.391327	-2.958730	3.864947
H	-2.179715	-4.211509	2.607571
H	-0.805893	-3.762144	3.655656
H	0.974077	-0.714906	-1.279049
C	-0.967391	-3.574417	-3.510863
H	-0.248781	-4.322913	-3.161245
H	-1.974369	-3.889704	-3.220807
H	-0.914870	-3.530928	-4.603056
C	-0.646035	-2.215907	-2.921136
H	0.363317	-1.891402	-3.210306
H	-1.362873	-1.464811	-3.268727
0	-0.755938	-2.233934	-1.491401
H	-0.092992	-2.881688	-1.162247
0	1.412938	1.575930	-0.067312
P	2.872811	1.424194	0.319919
C	3.114430	0.537866	1.881034
C	3.145689	-0.861954	1.888323
C	3.122664	1.240632	3.092462
C	3.204879	-1.549977	3.097813
H	3.122195	-1.420956	0.955181
C	3.172705	0.547340	4.299150
H	3.092758	2.327129	3.094932
C	3.218400	-0.846540	4.301758
H	3.236417	-2.635533	3.094086
H	3.182167	1.095471	5.236070
H	3.264847	-1.384718	5.243866
C	3.647584	3.049194	0.525265
C	4.973204	3.176362	0.955666

C	2.895134	4.185234	0.222354
C	5.540448	4.439993	1.081188
H	5.557781	2.291731	1.198500
C	3.468192	5.449720	0.350278
H	1.867301	4.072322	-0.110436
C	4.787667	5.575871	0.777767
H	6.567909	4.540461	1.416785
H	2.883962	6.333998	0.115467
H	5.233177	6.561008	0.877843
C	3.785919	0.528878	-0.961128
C	3.223463	0.500433	-2.241635
C	5.014439	-0.094735	-0.720541
C	3.884381	-0.158727	-3.275093
H	2.265506	0.984862	-2.419033
C	5.670974	-0.750231	-1.758154
H	5.449851	-0.087254	0.275498
C	5.105843	-0.783326	-3.032320
H	3.442610	-0.190574	-4.266327
H	6.618221	-1.245506	-1.569615
H	5.616366	-1.304584	-3.836226
I	2.500005	-3.520840	-1.149452

Spectroscopic Data

(

201

SKX－4－100．1．fị
PROTON CDC13 E NへべN

(10)

303

344

Core 1 O-glycan (2) (TF antigen)

Core 3 O-glycan (4)

401

407

409

PROTON D20 E: IT xiaoguozhi 11

 (

xqz1851
hsqczl D20 D:
 root 51

500

[^0]: p-methylphenyl $\quad O$-(2-azido-3,4-di- O-benzoyl-6- O-benzyl-2-deoxy- α-D-galacto-pyranosyl)-(1 $\boldsymbol{\rightarrow}$ 5)-2-O-benzoyl-3-benzyl-1-thio- α-D-arabinoglycoside (21m)

