De-epimerizing DyKAT of $\beta\mbox{-Lactones}$ Generated by Isothiourea-Catalysed Enantioselective [2+2]-Cycloaddition

Aífe Conboy, Alister S. Goodfellow, Kevin Kasten, Joanne Dunne, David B. Cordes, Michael Bühl,* Andrew D. Smith*

EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.

E-mail: ads10@st-andrews.ac.uk; buehl@st-andrews.ac.uk

Contents

1.	(Gen	neral experimental				
2.	I	Reaction Optimisation					
1.	. Synthesis of Homoanhydrides						
	1.1	1.	2-Phenylacetic Anhydride S1	. 8			
	1.2	2.	2-(α-Naphthyl)acetic Anhydride S2	. 8			
	1.3	3.	2-(<i>p</i> -Chlorophenyl)acetic Anhydride S3	. 8			
	1.4	1.	2-(<i>p</i> -Bromophenyl)acetic Anhydride S4	. 9			
	1.5	5.	2-(<i>p</i> -Tolyl)acetic Anhydride S5	. 9			
	1.6	ō.	2-(<i>p</i> -Anisyl)acetic Anhydride S6	. 9			
	1.7	7.	2-(<i>m</i> -Bromophenyl)acetic Anhydride S7	10			
	1.8	3.	2-(<i>o</i> -Tolyl)acetic Anhydride S8	10			
	1.9	Э.	2-(<i>N</i> -Methylindol-3-yl)acetic Anhydride S9	10			
	1.1	10.	2-(Thiophen-3-yl)acetic Anhydride S10	11			
	1.1	11.	(<i>E</i>)-5-Methylhex-3-enioc Anhydride S11	11			
2.	9	Synt	thesis of Pyrazol-3-ones	12			
	2.1	1.	5-Methyl-2-phenyl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S12	12			
	2.2	2.	5-Isopropyl-2-phenyl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S13	12			
	2.3	3.	2,5-Diphenyl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S14	12			
	2.4	1.	2-(<i>tert</i> -Butyl)-5-methyl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S15	13			
	2.5	5.	2-(<i>p</i> -Anisyl)-5-methyl-2,4-dihydro-3 <i>H</i> -pyrazole-3-one S16	13			
	2.6	5.	5-Methyl-2-(4-(trifluoromethyl)phenyl)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S17	14			
3.	9	Synt	thesis of Pyrazol-3-one-derived ketimines	14			
	3.1	1.	5-Methyl-2-phyenyl-4-(phenylimino)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S18	14			
	3.2	2.	5-Isopropyl-2-phenyl-4-(phenylimino)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S19	15			
	3.3	3.	2,5-Diphenyl-4-(phenylimino)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S20	15			
	3.4	1.	2-(<i>tert</i> -Butyl)-5-methyl-4-(phenylimino)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one S21	16			

4.	Synt	hesis of Pyrazole-4,5-diones	17
	4.1.	3-Methyl-1-phenyl-1 <i>H</i> -pyrazole-4,5-dione S22	17
	4.2.	3-Isopropyl-1-phenyl-1 <i>H</i> -pyrazole-4,5-dione S23	17
	4.3.	1,3-Diphenyl-1 <i>H</i> -pyrazole-4,5-dione S24	18
	4.4.	1-(<i>tert</i> -Butyl)-3-methyl-1 <i>H</i> -pyrazole-4,5-dione S25	18
	4.5.	1-(p-Anisyl)-3-methyl-1H-pyrazole-4,5-dione S26	19
	4.6.	3-Methyl-1-(<i>p</i> -(trifluoromethyl)phenyl)-1 <i>H</i> -pyrazole-4,5-dione S27	20
5.	lsot 21	hiourea-catalysed formal [2+2] cycloaddition of homoanhydrides and pyrazole-4,5-dione	<u>s</u>
	5.1. phenyl	<i>N</i> -Benzyl (2' <i>R</i> ,4 <i>R</i>)-2-(4-hydroxy-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-4-yl)-2- acetamide 9	21
	5.2. phenyl	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-hydroxy-5-methyl-4-(2-oxo-1-phenyl-2-(pyrrolidine-1-yl)ethyl)-1- -2,4-dihydro-3 <i>H</i> -pyrazol-3-one 10	24
	5.3. 2,4-dih	(1' <i>R,4R</i>)- and (1' <i>S,</i> 4 <i>R</i>)-4-Hydroxy-5-methyl-4-(2-mopholino-2-oxo-1-phenylethyl)-2-pheny ydro-3 <i>H</i> -pyrazol-3-one 11	'l- 27
	5.4. and (3'	(3'R,4R)-3-Methyl-3'-(naphth-1-yl)-1-phenyl-spiro[pyrazolin[5]one-4.2-oxetan[4]one] 12 S,4R)-3-Methyl-3'-(naphth-1-yl)-1-phenyl-spiro[pyrazolin[5]one-4.2-oxetan[4]one] 13	30
	5.5. phenyl	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-hydroxy-5-methyl-4-(2-morpholino-1-(α-naphthyl)-2-oxoethyl)-2- -2,4-dihydro-3 <i>H</i> -pyrazol-3-one 14	36
	5.6. 2-pher	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-(1-(<i>p</i> -chlorophenyl)2-morpholino-2-oxoethyl)-4-hydroxy-5-methy yl-2,4-dihydro-3H-pyrazol-3-one 21	/l- 39
	5.7. methy	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-(1-(4-bromophenyl)-2-morpholino-2-oxoethyl)-4-hydroxy-5- -2-phenyl-2,4-dihydro-3 <i>H</i> -pyrazole-3-one 22	42
	5.8. 2,4-dih	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-hydroxy-5-methyl-4-(2-morphline-2-oxo-1-(<i>p</i> -tolyl)ethyl)-2-pheny hyro-3 <i>H</i> -pyrazol-3-one 23	/l- 45
	5.9. dihydr	(1' <i>R</i> ,4 <i>R</i>)-4-(1-(<i>p</i> -anisyl)-2-morpholine-2-oxoethyl)-4-hydroxy-5-methyl-2-phenyl-2,4- o-3 <i>H</i> -pyrazol-3-one 24	48
	5.10. methy	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-(1-(<i>m</i> -bromophenyl)-2-morpholine-2-oxoethyl)-4-hydroxy-5- -2-phenyl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 25	51
	5.11. phenyl	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1-(<i>o</i> -tolyl)ethyl)-2- -2,4-dihydro-3 <i>H</i> -pyrazol-3-one 26	54
	5.12. phenyl	(1' <i>R</i> ,4 <i>R</i>)-4-hydroxy-5-methyl-4-(1-(1-methyl-1 <i>H</i> -indol-3-yl)-2-morpholino-2-oxoethyl)-2 -2,4-dihydro-3 <i>H</i> -pyrazol-3-one 27	<u>?</u> - 57
	5.13. 2-pher	(1' <i>R,4R</i>)- and (1' <i>S,4R</i>)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1-thiophen-2-ylethy yl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 28	l)- 60
	5.14. 2-yl)-2-	(2' <i>R</i> ,4 <i>R</i>)- and (2' <i>S</i> ,4 <i>R</i>)-(<i>E</i>)-4-hydroxy-5-methyl-4-(5-methyl-1-morpholino-1-oxohex-3-e -phenyl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 29	n- 62
	5.15. phenyl	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-Hydroxy-5-isopropyl-4-(2-morpholino-2-oxo-1-phenylethyl)-22,4-dihydro-3 <i>H</i> -pyrazol-3-one 30	65

	5.16. oxoeth	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-Hydroxy-5-isopropyl-4-(2-morpholino-1-(naphth-1-yl)-2- iyl)-2-phenyl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 31	69
	5.17. 2,4-dih	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-Hydroxy-4-(2-morpholino-2-oxo-1-phenylethyl)-2,5-diphenyl- nydro-3 <i>H</i> -pyrazol-3-one 32	73
	5.18. diphen	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-Hydroxy-4-(2-morpholino-1-(naphtha-1-yl)-2-oxoethyl)-2,5- yl-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 33	76
	5.19. phenyl	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-2-(<i>tert</i> -Butyl)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1- ethyl)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 34	79
	5.20. yl)-2-o:	(1' <i>R,4R</i>)- and (1' <i>S,4R</i>)-2-(<i>tert</i> -Butyl)-4-hydroxy-5-methyl-4-(2-morpholino-1-(naphtha-1 xoethyl)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 35	 82
	5.21. yl)-2-o:	(1' <i>R,4R</i>)- and (1' <i>S,4R</i>)-2-(<i>p</i> -Anisyl)-4-hydroxy-5-methyl-4-(2-morpholino-1-(naphtha-1- xoethyl)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 36	85
	5.22. phenyl	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-2-(<i>p</i> -Anisyl)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1- ethyl)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 37	88
	5.23. oxoeth	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-4-hydroxy-5-methyl-4-(2-morpholino-1-(naphtha-1-yl)-2- yl)-2-(<i>p</i> -trifluoromethylphenyl)-2,4-dihydro-3 <i>H</i> -pyrazol-3-one 38	91
	5.24. yl)-2-pl	(1' <i>R</i> ,4 <i>R</i>)- and (1' <i>S</i> ,4 <i>R</i>)-2-(4-Hydroxy-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-4 henylacetate 39	 95
	5.25. 2-phen	<i>iso</i> -Propyl (2 <i>R</i>)-2-((4 <i>R</i>)-4-Hydroxy-3-methyl-5-oxy-1-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-4-y nylacetate 40	'I)- 98
	5.26. yl)-2-(r	(1' <i>R,4R</i>)- and (1' <i>S,4R</i>)-2-(4-Hydroxy-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-4 haphth-1-yl)-acetate 41	 03
6.	Epin	nerisation Experiments	14
	6.1.	Epimerisation of Amide 14 1	14
	6.2.	Epimerisation of Lactone 13	14
7.	Crys	tallographic Data	17
8.	Com	putation1	24
	8.1.	Computational details1	24
	8.2.	Interaction and Reorganisation Energies12	24
	8.3.	Computational Discussion12	25
	8.4.	Treatment of Low-Lying Vibrational Frequencies12	25
	8.5.	Computational Data	26
9.	Refe	erences	33

1. General experimental

Reactions involving moisture sensitive reagents were carried out in flame-dried glassware under an inert atmosphere (Ar or N_2) using standard vacuum line techniques. Anhydrous solvents (Et₂O, CH₂Cl₂, THF and PhMe) were obtained after passing through an alumina column (Mbraun SPS-800) or purchased in a sealed bottled under inert atomsphere. Organometallic reagents were titrated before use according to literature procedures.^[1] Room temperature (r.t.) refers to 18 ± 3 °C, Petrol refers to petroleum ether with the boiling range of 40 - 60 °C, brine refers to saturated aqueous sodium chloride solution, ether refers to diethylether (Et_2O). All chemicals and solvents used were purchased by pertinent brands (Sigma Aldrich, Alfa Aesar, Acros, Apollo Scientific, TCI, STREM) and used without further purification unless stated. For reactions conducted during the day following cooling baths were applied: $0 \,^{\circ}C$ (ice/water), -10 °C (ice/acetone), -20 °C (ice/NaCl), -45 °C (CO₂(s) or N₂(I)/MeCN), -60 °C (CO₂(s) or N₂(I)/CHCl₃) and -78 °C (CO₂(s)/acetone). Temperatures of 0 °C to -78 °C for overnight reactions were obtained using an immersion cooler (HAAKE EK 90). Reactions involving heating were performed using DrySyn blocks or oil baths and a contact thermocouple. Under reduced pressure refers to the use of either a Büchi Rotavapor R-200 with a Büchi V491 heating Bath and Büchi V-800 vacuum controller, a Büchi Rotavapor R-210 with a Büchi V-491 heating bath and Büchi V-850 vacuum controller, a Heidolph Laborota 4001 with vacuum controller, an IKA RV10 rotary evaporator with an IKA HB10 heating bath and ILMVAC vacuum controller, or an IKA RV10 rotary evaporator with an IKA HB10 heating bath and Vacuubrand CVC3000 vacuum controller. Rotary evaporator condensers are fitted to Julabo FL601 Recirculating Coolers filled with ethylene glycol and set to -6 °C.

Analytical thin layer chromatography (TLC)^[2] was performed on pre-coated aluminium plates (Kieselgel 60 F_{254} silica) plates purchased from Merck. Visualisation was achieved using ultraviolet light (254 nm) and staining with aqueous KMnO₄ or ethanolic vanillin solution followed by heating. Flash column chromatography was performed in glass columns fitted with porosity 3 sintered discs over Silica gel 60 (0.043 – 0.060 mm) using standard techniques as reported in literature with the solvent system stated.^[3] Automated chromatography was performed on a Biotage[®] SelektTM SEL-2SV with a 200 – 400 nm UV-detector using the method stated and Biotage[®] SfärTM Silica HC D or Biotage[®] SfärTM Silica D columns.

HPLC analyses were obtained on either a Shimadzu HPLC consisting of a DGU-20A5 degassing unit, LC-20AT liquid chromatography pump, SIL-20AHT autosampler, CMB-20A communications bus module, SPD-M20A diode array detector and a CTO-20A column oven or a Shimadzu HPLC consisting of a DGU-20A5R degassing unit, LC-20AD liquid chromatography pump, SIL-20AHT autosampler, SPD-20A UV/Vis detector and a CTO-20A column oven. Separation was achieved using either DAICEL CHIRALCEL OD-H and OJ-H columns or DAICEL CHIRALPAK AD-H, AS-H, IA, IB, IC and ID columns using the method stated. HPLC traces of enantiomerically enriched compounds were compared with authentic racemic spectra. Racemic compounds were synthesised under analogous reaction conditions using achiral or racemic catalysts where necessary.

Optical rotations were determined using a Perkin Elmer Precisely/Model-341 Polarimeter with a Na/Hal lamp (Na D line, 589 nm) at 20 °C.

Infrared spectra were recorded on a Shimadzu IRAffinity-1 Fourier transform IR spectrophotometer fitted with a Specac Quest ATR accessory (diamond puck). Spectra were recorded of either thin films or solids, with characteristic absorption wavenumbers (ν_{max}) reported in cm⁻¹.

¹H, ¹³C, ¹⁹F and ³²P nuclear magnetic resonance (NMR) spectra were recorded with Bruker Avance[™] 300 Cryomagnet with a BBFO probe, Bruker Avance II[™] 400 Ultrashield with a BBFO probe, Bruker Avance™ 500 Ultrashield with a SmartProbe BBFO+ probe or Bruker Avance III™ 500 Ascend[™] with a CryoProbe Prodigy BBO probe using deuterated solvents (CDCl₃, CD₂Cl₂, D₂O, CD₃OD, CD₃CN, (CD₃)₂SO, (CD₃)₂CO, C₆D₅CD₃) purchased from Sigma-Aldrich. Chemical shifts (δ) are quoted in ppm and referenced to residual solvent signals reported in literature.^[4] ¹³C(¹H) and ¹⁹F(¹H) spectra were acquired using a proton broadband decoupling sequence. ¹³C were recorded with DEPTQ or UDEFT sequences. Couplings were indicated by the use of conventional agreed abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), td (triplet of doublets), etc. Coupling constants (J) are denoted with the number of bonds involved in the upper left and with the atoms coupling in the bottom right edge of the symbol, e.g. ${}^{3}J_{HH}$. The abbreviation Ar denotes aromatic and app denotes apparent.^[5] NMR peak assignments were confirmed using 2D ¹H correlated spectroscopy (COSY), ¹D selective ¹H nuclear Overhauser effect spectroscopy (NOESY), 2D ¹H-¹³C heteronuclear multiple-bond correlation spectroscopy (HMBC), and 2D ¹H–¹³C heteronuclear single quantum coherence (HSQC) where necessary. For analysis of NMR-spectra MestReNova and tools therein were used.^[6] For Karplus analysis transformed equation 2 was used.

Melting points were recorded on an Electrothermal 9100 melting point apparatus and are not corrected; (dec) refers to decomposition.

Mass spectrometry (m/z) data were acquired using ThermoFisher Exactive Orbitrap mass spectrometer or Micromass GCT (TOF) mass spectrometer with solids probe. Ionisation techniques used are indicated for each compound. Values are quoted as a ratio of mass to charge (m/z) in Daltons [Da].^[7]

Common chemical abbreviations were used to indicate chemical groups or environments such as Ph (phenyl), *Ar* (aromatic, not confuse with Argon), Bn (benzyl), Et (ethyl), Me (methyl). To indicate atoms numbering schemes are displayed with the spectrum and deviate from IUPAC numbering for clarity. For names and numbering concerning stereodiscriptors IUPAC nomenclature was applied.^[8]

Authentic racemic samples were prepared in an analogous fashion using racemic HyperBTM.

2. Reaction Optimisation

Table S1: Reaction Optimisation Data

equiv. Catalyst	anhydride equiv.	ⁱ Pr ₂ NEtequiv.	BnNH ₂ equiv.	concentration	time	temperature	Yield (NMR)	d.r.	e.r.	
[mol%]				[M]	[h]	[°C]	[%]			_
5 HyperBTM	1.5	1.25	3	0.04	3	0	76	79:21	>99:1	ref.
5 HBTM	1.5	1.25	3	0.04	3	0	72	79:21	>99:1	
5 BTM	1.5	1.25	3	0.04	3	0	12	N/D	N/D	cat.
5 TM·HCI	1.5	1.25	3	0.04	3	0	<5	N/D	N/D	Ŭ
5 HyperBTM	1.0	1.25	3	0.04	3	0	69	80:20	>99:1	Ŀ.
5 HyperBTM	2.5	1.25	3	0.04	3	0	69	80:20	>99:1	an
5 HyperBTM	1.5	1.00	3	0.04	3	0	72	79:21	>99:1	se
5 HyperBTM	1.5	2.00	3	0.04	3	0	69	80:20	>99:1	ba
5 HyperBTM	1.5	1.25	2	0.04	3	0	71	80:20	>99:1	ౖ
5 HyperBTM	1.5	1.25	4	0.04	3	0	73	79:21	>99:1	Z
5 HyperBTM	1.5	1.25	3	0.02	3	0	76	79:21	>99:1	
5 HyperBTM	1.5	1.25	3	0.10	3	0	64	80:20	>99:1	ouo
5 HyperBTM	1.5	1.25	3	0.25	3	0	56	79:21	>99:1	0
5 HyperBTM	1.5	1.25	3	0.04	3	r.t.	77	79:21	>99:1	mp.
5 HyperBTM	1.5	1.25	3	0.04	3	-20	50	80:20	>99:1	fe
5 HyperBTM	1.5	1.25	3	0.04	1	r.t.	73	79:21	>99:1	ime
1 HyperBTM	1.5	1.25	3	0.04	3	r.t.	71	79:21	>99:1	Ę.
10 HyperBTM	1.5	1.25	3	0.04	3	r.t.	75	79:21	98:2	cat

1. Synthesis of Homoanhydrides

1.1.2-Phenylacetic Anhydride S1

To a solution of 2-phenylacetic acid (6.81 g, 50.0 mmol) in toluene (167 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (5.16 g, 25.0 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a white crystalline solid (4.30 g, 17.3 mmol, 68%) with data in accordance with the literature.^[9] **mp** 68-71 °C (Et₂O) {Lit.^[10] 70-72 °C}; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} : 3.72 (s, 4H, *CH*₂), 7.23-7.19 (4H, m, PhC^{2,6}*H*), 7.35-7.27 (6H, m, PhC^{3,4,5}*H*).

1.2.2-(α -Naphthyl)acetic Anhydride S2

To a solution of 2-(α -naphthyl)acetic acid (2.00 g, 10.7 mmol) in toluene (36 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (1.22 g, 5.91 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a white crystalline solid (1.13 g, 3.19 mmol, 59%) with data in accordance with the literature.^[10] **mp** 116-118 °C (Et₂O) {Lit.^[11] 116-117 °C}; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 4.10 (4H, s, *CH*₂), 7.20-7.24 (2H, m, ArC²H), 7.31-7.37 (2H, m, ArC³H), 7.45-7.53 (4H, m, ArC^{6,7}H), 7.76-7.84 (4H, m, ArC^{4,8}H), 7.84-7.90 (2H, m, ArC⁵H).

1.3. 2-(p-Chlorophenyl)acetic Anhydride S3

To a solution of 2-(*p*-chlorophenyl)acetic acid (853 mg, 5.00 mmol) in toluene (17 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (567 mg, 2.75 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a white crystalline solid (407 mg, 1.26 mmol, 56%) with data in accordance with the literature.^[9] **mp** 76-78 °C

(Et₂O) {Lit.^[10] 62-64 °C}; ¹H NMR (500 MHz, CDCl₃) δ_H: 3.70 (4H, s, CH₂), 7.13 (4H, m, ArC^{2,6}H), 7.29 (4H, m, ArC^{3,5}H).

1.4. 2-(p-Bromophenyl)acetic Anhydride S4

To a solution of 2-(*p*-bromophenyl)acetic acid (850 mg, 3.72 mmol) in toluene (12 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (422 mg, 2.05 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a white crystalline solid (650 mg, 1.58 mmol, 85%) with data in accordance with the literature.^[9] **mp** 92-94 °C (Et₂O) {Lit.^[10] 75-77 °C}; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$: 3.68 (4H, s, *CH*₂), 7.04-7.09 (4H, m, ArC^{2,6}*H*), 7.42-7.48 (4H, m, ArC^{3,5}*H*).

1.5.2-(p-Tolyl)acetic Anhydride S5

To a solution of 2-(*p*-tolyl)acetic acid (751 mg, 5.00 mmol) in toluene (17 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (567 mg, 2.75 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a white crystalline solid (386 mg, 1.37 mmol, 55%) with data in accordance with the literature.^[9] **mp** 52-55 °C (Et₂O) {Lit.^[12] 56-57 °C}; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 2.34 (6H, s, *CH*₃), 3.68 (4H, s, *CH*₂), 7.07-7.11 (4H, m, ArC^{3,5}H), 7.11-7.15 (4H, m, ArC^{2,6}H).

1.6.2-(p-Anisyl)acetic Anhydride S6

To a solution of 2-(*p*-anisyl)acetic acid (831 mg, 5.00 mmol) in toluene (17 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (516 mg, 2.50 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a white crystalline solid (362 mg, 1.15 mmol, 46%) with data in accordance with the literature.^[13] **mp** 74-76 °C

(Et₂O) {Lit.^[13] 77-78 °C}; ¹H NMR (400 MHz, CDCl₃) δ_H: 3.66 (4H, s, CH₂), 3.80 (6H, s, OCH₃), 6.81-6.89 (4H, m, ArC^{3,5}H), 7.08-7.15 (4H, m, ArC^{2,6}H).

1.7. 2-(m-Bromophenyl)acetic Anhydride S7

To a solution of 2-(*m*-bromophenyl)acetic acid (800 mg, 3.72 mmol) in toluene (12 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (422 mg, 2.05 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a white solid (488 mg, 1.18 mmol, 64%) with data in accordance with the literature.^[14] **mp** 44-46 °C ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 3.70 (4H, s, CH₂), 7.12-7.17 (2H, m, ArC⁶H), 7.21 (2H, app t, ³J_{HH} = 7.8 Hz, ArC⁵H), 7.38 (2H, app t, ⁴J_{HH} = 1.9 Hz, ArC²H), 7.44 (2H, ddd, ³J_{HH} = 7.9 Hz, ⁴J_{HH} = 1.9 Hz, 1.1 Hz, ArC⁴H).

1.8.2-(o-Tolyl)acetic Anhydride S8

To a solution of 2-(*o*-tolyl)acetic acid (1.00 g, 6.66 mmol) in toluene (22 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (750 mg, 3.70 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a colourless oil (365 mg, 1.37 mmol, 39%) with data in accordance with the literature.^{[10] 1}**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$: 2.24 (6H, s, *CH*₃), 3.72 (4H, s, *CH*₂), 7.10 (2H, dd, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 1.5 Hz, ArCH), 7.12-7.24 (6H, m, ArCH).

1.9. 2-(N-Methylindol-3-yl)acetic Anhydride S9

To a solution of 2-(*N*-methylindol-3-yl)acetic acid (1.00 g, 5.29 mmol) in toluene (18 ml, 0.3 M) was added N,N'-dicyclohexylcarbodiimide (600 mg, 2.90 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a brown oil (810 mg,

2.22 mmol, 85%) with data in accordance with the literature.^[15] ¹**H** NMR (500 MHz, CDCl₃) δ_{H} : 3.70 (6H, s, NCH₃), 3.87 (4H, d, ⁴J_{HH} = 0.9 Hz, CH₂), 6.93 (2H, d, ⁴J_{HH} = 0.9 Hz, ArC²H), 7.12 (2H, ddd, ³J_{HH} = 8.0 Hz, 6.8 Hz, ⁴J_{HH} = 1.2 Hz, ArH), 7.21-7.25 (2H, m, ArH), 7.28-7.30 (2H, m, ArH), 7.50 (2H, app dt, ³J_{HH} = 7.9 Hz, ⁴J_{HH} = 1.9 Hz, ArH).

1.10. 2-(Thiophen-3-yl)acetic Anhydride **S10**

To a solution of 2-(thiophen-3-yl)acetic acid (1.00 g, 7.03 mmol) in toluene (23 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (798 mg, 3.90 mmol) and the resulting mixture was stirred at room temperature for 15 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a pale yellow crystalline solid (365 mg, 1.37 mmol, 39%) with data in accordance with the literature.^[9] **mp** 39-40 °C {Lit.^[9] 40-42 °C (PhMe)}; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 3.79 (4H, s, *CH*₂), 6.99 (2H, dd, ³*J*_{HH} = 5.0 Hz, ⁴*J*_{HH} = 1.3 Hz, ArC⁵*H*), 7.15 (2H, m, ArC²*H*), 7.31 (2H, dd, ³*J*_{HH} = 5.0 Hz, ⁴*J*_{HH} = 3.0 Hz, ArC⁴*H*).

1.11. (E)-5-Methylhex-3-enioc Anhydride **S11**

To a solution of (*E*)-5-methylhex-3-enoic acid (1.50 g, 11.70 mmol) in toluene (39 ml, 0.3 M) was added *N*,*N*'-dicyclohexylcarbodiimide (1.33 g, 6.44 mmol) and the resulting mixture was stirred at room temperature for 30 minutes. The reaction mixture was filtered through Celite[®] and concentrated under reduced pressure to give the title compound as a colourless oil as a 88:12 mixture of anhydride : acid (1.30 g, 5.46 mmol, 47%) with data in accordance with the literature.^[10] ¹**H NMR** (400 MHz, CDCl₃) δ_{H} : 0.99 (12H, ³*J*_{HH} = 6.7 Hz, CH(CH₃)₂), 2.25 – 2.37 (2H, m, CH(CH₃)₂), 3.16 (4H, dt, ³*J*_{HH} = 6.7 Hz, ⁴*J*_{HH} = 1.3 Hz, CH₂COO), 5.44 (2H, dtd, ³*J*_{HH} = 15.4 Hz, 6.7 Hz, ⁴*J*_{HH} = 1.3 Hz, CH=CH-CH₂), 5.59 (2H, ddt, ³*J*_{HH} = 15.4 Hz, 6.5 Hz, CH=CH-CH(CH₃)₂); the compound was used without further purification.

2. Synthesis of Pyrazol-3-ones

2.1.5-Methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one S12

To ethyl acetoacetate (8.13 ml, 62.5 mmol) was slowly added phenylhydrazine (6.25 ml, 62.5 mmol). The mixture was stirred at 145 °C for 60 minutes to give the title compound as pale yellow solid (10.89 g, 62.5 mmol, 89%) with data in accordance with the literature.^[16] **mp** 126-128 °C {Lit.^[16] 125-128 °C}; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} : 2.21 (1H, s, *CH*₃), 3.44 (2H, q, ⁴*J*_{HH} = 0.7 Hz, *CH*₂), 7.15-7.21 (1H, m, ArC⁴H), 7.36-7.41 (2H, m, ArC^{3,5}H), 7.83-7.88 (2H, m, ArC^{2,6}H).

2.2. 5-Isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one S13

To ethyl 4-methyl-oxo-pentanoate (1.0 ml, 6.3 mmol) was slowly added phenylhydrazine (0.62 ml, 6.3 mmol). The mixture was heated at 145 °C for 60 minutes to give the title compound as yellow solid (797 mg, 3.9 mmol, 63%) with data in accordance with the literature.^[17] **mp** 84-86 °C {Lit^[18] 87 °C}; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 1.26 (6H, d, ³*J*_{HH} = 6.9 Hz, CH(CH₃)₂), 2.80 (1H, hept, ³*J*_{HH} = 6.9 Hz, CH(CH₃)₂), 3.43 (2H, s, CH₂), 7.14-7.21 (1H, m, ArC⁴H), 7.35-7.43 (2H, m, ArC^{3,5}H), 7.83-7.93 (2H, m, ArC^{2,6}H).

2.3. 2,5-Diphenyl-2,4-dihydro-3H-pyrazol-3-one S14

To ethyl 3-oxo-3-phenylpropanoate (0.9 ml, 5.2 mmol) was slowly added phenylhydrazine (0.51 ml, 5.2 mmol). The mixture was heated at 120 °C for 20 minutes to give the title compound as pale orange solid (985 mg, 4.2 mmol, 80%) with data in accordance with the

literature.^[17] **mp** 134-136 °C {Lit.^[17] 136-138 °C}; ¹**H NMR** (400 MHz, CDCl₃) δ_H: 3.87 (2H, s, CH₂), 7.20-7.25 (1H, m, ArC*H*), 7.40-7.51 (5H, m, ArC*H*), 7.75-7.82 (2H, m, ArC*H*), 7.95-8.02 (2H, m, ArC*H*).

2.4. 2-(tert-Butyl)-5-methyl-2,4-dihydro-3H-pyrazol-3-one S15

To a solution of ethyl acetoacetate (1.27 ml, 10.0 mmol) in EtOH (11.5 ml, 0.87 M), was added *tert*-butylhydrazine hydrochloride (2.49 g, 20.0 mmol) and sodium acetate (1.64 g, 20.0 mmol). The reaction mixture was refluxed overnight under a positive pressure of N₂. After cooling to room temperature, the mixture was diluted with water and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The resulting crude solid was suspended in Et₂O at -20 °C and filtered to give the title compound as a white solid (1.19 g, 7.7 mmol, 77%) with data in accordance with the literature.^[19] **mp** 127-128 °C {Lit.^[19] 125-127 °C}; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$: 1.49 (9H, s, C(CH₃)₃, 2.04 (3H, s, C⁵CH₃), 3.17 (2H, s, CH₂).

2.5. 2-(p-Anisyl)-5-methyl-2,4-dihydro-3H-pyrazole-3-one S16

To *p*-anisylhydrazine hydrochloride (1.75 mg, 10.0 mmol) and triethylamine (2.1 ml, 15.0 mmol) in EtOH (30 ml, 0.5 M) was added ethyl acetoacetate (1.26 ml, 10.0 mmol). The mixture was heated at 60 °C overnight. The solvent was removed under reduced pressure. Further purification by column chromatography (petroleum ether : ethyl acetate 4:1 to 1:1) gave the title compound as pale yellow solid (1.34 g, 6.6 mmol, 66%) with data in accordance with the literature.^[20] **mp** 130 °C (dec) (Hexane/EtOAc) {Lit.^[21] 124-126 °C, 127-128 °C (Hexane:THF)}; **IR** v_{max} (film) 2930 (C-H), 2357, 1508 (C=O), 1248, 1032, 831, 775; ¹H **NMR** (500 MHz, CDCl₃) δ_{H} : 2.19 (3H, s, C⁵CH₃), 3.41 (2H, s, CH₂), 3.81 (3H, s, OCH₃), 6.89-6.94 (2H, m, ArC^{3,5}H), 7.69-7.75 (2H, m, ArC^{2,6}H).

2.6. 5-Methyl-2-(4-(trifluoromethyl)phenyl)-2,4-dihydro-3H-pyrazol-3-one S17

To *p*-(trifluoromethyl)phenylhydrazine hydrochloride (2.13 ml, 10.0 mmol) and triethylamine (2.1 ml, 15.0 mmol) in EtOH (30 ml, 0.5 M) was added ethyl acetoacetate (1.26 ml, 10.0 mmol). The mixture was heated at 60 °C overnight. The solvent was removed under reduced pressure. Further purification by column chromatography (petroleum ether : ethyl acetate 4:1 to 1:1) gave the title compound as pale yellow solid (871 mg, 3.6 mmol, 36%) with data in accordance with the literature.^[22] **mp** 170 °C (dec) (Hexane:EtOAc) {Lit.^[22] 183-185 °C}; **IR** v_{max} (film) 2691 (O-H, enol), 2359, 1628 (C=O), 1607, 1327, 1109, 1072; ¹H **NMR** (500 MHz, CDCl₃) δ_{H} : 2.22 (3H, s, CH₃), 3.47 (2H, s, CH₂), 7.64 (2H, app d, ³J_{HH} = 8.6 Hz, ArC^{2,6}H), 8.05 (2H, app d, ³J_{HH} = 8.6 Hz, ArC^{3,5}H).

3. Synthesis of Pyrazol-3-one-derived ketimines

3.1. 5-Methyl-2-phyenyl-4-(phenylimino)-2,4-dihydro-3H-pyrazol-3-one S18

To a solution of 5-methyl-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one (8.50 g, 48.8 mmol) in MeOH (30 ml, 0.6 M) was added nitrosobenzene (5.22 g, 48.8 mmol) and K₂CO₃ (1.35 g, 9.8 mmol) and the resulting mixture was heated at reflux for 3 h. After cooling to room temperature, the solvent was removed under reduced pressure. Purification by column chromatography (petroleum ether : diethyl ether 1:0 to 3:1) gave the title compound as inseparable mixture of isomers as red solid (3.79 g, 14.4 mmol, 30%, 83:17 d.r.) with data in accordance with the literature.^[23] **mp** 101-103 °C {Lit.^[23] 101-103 °C}; ¹**H NMR** (400 MHz, CDCl₃) (*major diastereomer*) δ_{H} : 2.35 (3H, s, *CH*₃), 7.17-7.23 (1H, m, ArCH), 7.28-7.48 (7H, m, ArCH), 7.84-

7.89 (2H, m, ArCH); ¹**H NMR** (400 MHz, CDCl₃) (*minor diastereomer, selected*) δ_H: 1.80 (3H, s, CH₃), 6.94-6.99 (2H, m, ArCH), 7.92-7.96 (2H, m, ArCH).

3.2. 5-Isopropyl-2-phenyl-4-(phenylimino)-2,4-dihydro-3H-pyrazol-3-one S19

To a solution of 5-isopropyl-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one (2.50 g, 12.6 mmol) in MeOH (21 ml, 0.6 M) was added nitrosobenzene (1.35 g, 12.6 mmol) and K₂CO₃ (348 mg, 2.5 mmol) and the resulting mixture was heated at reflux for 3 h. After cooling to room temperature, the solvent was removed under reduced pressure. Purification by column chromatography (petroleum ether : diethyl ether 1:0 to 3:1) gave the title compound as an inseparable mixture of isomers as red solid (1.68 g, 5.8 mmol, 46%, 95:5 d.r.) with data in accordance with the literature.^[23] mp 79-81 °C {Lit.^[23] 77-79 °C}; ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*) δ_{H} : 1.41 (6H, d, ³*J*_{HH} = 6.9 Hz, CH(CH₃)₂), 3.19 (1H, hept, ³*J*_{HH} = 6.9 Hz, CH(CH₃)₂), 7.17-7.22 (1H, m, ArCH), 7.29-7.35 (3H, m, ArCH), 7.36-7.47 (4H, m, ArCH), 7.87-7.92 (2H, m, ArH); ¹H NMR (500 MHz, CDCl₃) (*minor diastereomer, selected*) δ_{H} : 0.98 (6H, d, ³*J*_{HH} = 6.7 Hz, CH(CH₃)₂), 7.95-8.00 (2H, d, *J*_{HH} 8.0, ArCH).

3.3. 2,5-Diphenyl-4-(phenylimino)-2,4-dihydro-3H-pyrazol-3-one S20

To a solution of 2,5-diphenyl-2,4-dihydro-3*H*-pyrazol-3-one (1.80 g, 7.6 mmol) in MeOH (4.5 ml, 0.6 M) was added nitrosobenzene (816 mg, 7.6 mmol) and K_2CO_3 (211 mg, 1.5 mmol) and the resulting mixture was heated at reflux for 3 h. After cooling to room temperature, the solvent was removed under reduced pressure. Purification by column chromatography

(petroleum ether : diethyl ether 1:0 to 3:1) gave the title compound as red solid (726 mg, 2.2 mmol, 29%) with data in accordance with the literature.^[23] **mp** 178-181 °C {Lit.^[23] 176-178 °C}; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 7.21-7.26 (1H, m, ArCH), 7.28-7.36 (3H, m, ArCH), 7.41-7.52 (7H, m, ArCH), 7.95-7.99 (2H, m, ArCH), 8.26-8.34 (2H, m, ArCH).

3.4. 2-(tert-Butyl)-5-methyl-4-(phenylimino)-2,4-dihydro-3H-pyrazol-3-one S21

To a solution of 2-(tert-butyl)-5-methyl-2,4-dihydro-3H-pyrazol-3-one (1.00 g, 6.48 mmol) in MeOH (11 ml, 0.6 м) was added nitrosobenzene (695 g, 6.48 mmol) and K₂CO₃ (179 mg, 1.3 mmol) and the resulting mixture was heated at reflux for 3 h. After cooling to room temperature, the solvent was removed under reduced pressure. Purification by column chromatography (petroleum ether : diethyl ether 1:0 to 3:1) gave the title compound as an inseparable mixture of isomers as red solid (697 mg, 2.9 mmol, 44%, 75:25 d.r.) with data in accordance with the literature.^[23] mp 60-62 °C; IR v_{max} (film) 3062, 2978 (C-H), 2932 (C-H), 1703, 1699, 1364, 1279, 1217, 1099, 1022, 916, 795, 768; **HRMS** (ESI⁺) C₁₄H₁₈N₃O [M+H]⁺ found 244.1439, requires 244.1444 (-2.3 ppm). Data for major diastereomer: ¹H NMR (500 MHz, CDCl₃) δ_H: 1.49 (9H, s, C(CH₃)₃, 2.19 (3H, s C⁵CH₃), 7.20-7.28 (3H, m, ArC^{2,4,6}H), 7.34-7.43 (2H, m, ArC^{3,5}*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 12.2 (C⁵CH₃), 28.2 (C(CH₃)₃), 58.3 (C(CH₃)₃), 120.9 (ArC^{2,6}H), 127.7 (ArC⁴H), 128.6 (ArC^{3,5}H), 146.7 (ArC¹), 147.8 (C⁵CH₃), 154.1 (C⁴=O), 154.7 (C^3 =O); Data for minor diastereomer: ¹H NMR (400 MHz, CDCl₃) (selected) δ_{H} : 1.56 (9H, s, $C(CH_3)_3$, 1.62 (3H, s, C⁵CH₃), 6.93 (2H, d, ${}^{3}J_{HH}$ = 7.4 Hz, ArC^{2,6}H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ_c: 16.3 (C⁵CH₃), 28.1 (C(CH₃)₃), 58.4 (C(CH₃)₃), 118.8 (ArC^{2,6}H), 126.4 (ArC⁴H), 128.9 (ArC^{3,5}H), 139.3 (*C*⁵CH₃), 148.7 (Ar*C*¹), 152.8 (*C*⁴(NPh)), 159.1 (*C*³(O)N).

4. Synthesis of Pyrazole-4,5-diones

4.1. 3-Methyl-1-phenyl-1*H*-pyrazole-4,5-dione **S22**

To a solution of 5-methyl-2-phenyl-4-(phenylimino)-2,4-dihydro-3*H*-pyrazol-3-one (3.56 g, 13.5 mmol) in THF (104 ml, 0.13 M) was added 2 M aq. HCl (13.5 ml, 27.0 mmol) and the resulting solution was stirred at room temperature until the reaction was complete by TLC. The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were concentrated *in vacuo*. Purification by column chromatography (petroleum ether : ethyl acetate 1:1) gave the title compound as red solid (2.01 g, 10.7 mmol, 81%).^[24] **mp** 121-123 °C {Lit.^[24] 119-121 °C}; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$: 2.24 (3H, s, CH₃), 7.24-7.33 (1H, m, ArC⁴H), 7.41-7.51 (2H, m, ArC^{3,5}H), 7.84-7.92 (2H, m, ArC^{2,6}H).

4.2. 3-Isopropyl-1-phenyl-1H-pyrazole-4,5-dione S23

To a solution of 5-isopropyl-2-phenyl-4-(phenylimino)-2,4-dihydro-3*H*-pyrazol-3-one (1.65 g, 5.7 mmol) in THF (44 ml, 0.13 M) was added 2 M aq. HCl (5.7 ml, 11.4 mmol) and the resulting solution was stirred at room temperature until the reaction was complete by TLC. The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were concentrated *in vacuo*. Purification by column chromatography (petroleum ether : ethyl acetate 1:1) gave the title compound as red solid (1.13 g, 5.2 mmol, 92%).^[24] **mp** 50-52 °C {Lit.^[24] 51-53 °C}; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 1.34 (6H, d, ³*J*_{HH} = 6.9 Hz, CH(CH₃)₂), 2.96 (1H, hept, ³*J*_{HH} = 6.9 Hz, CH(CH₃)₂), 7.25-7.30 (1H, m, ArC⁴H), 7.43-7.49 (2H, m, ArC^{3,5}H), 7.88-7.92 (2H, m, ArC^{2,6}H).

4.3.1,3-Diphenyl-1H-pyrazole-4,5-dione S24

To a solution of 2,5-diphenyl-4-(phenylimino)-2,4-dihydro-3*H*-pyrazol-3-one (725 mg, 2.2 mmol) in THF (17 ml, 0.13 M) was added 2 M aq. HCl (2.2 ml, 4.4 mmol) and the resulting solution was stirred at room temperature until the reaction was complete by TLC. The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were concentrated *in vacuo*. Purification by column chromatography (petroleum ether : ethyl acetate 1:1) gave the title compound as red solid (558 mg, 2.2 mmol, 100%).^[24] **mp** 161-163 °C {Lit.^[24] 165-166 °C}; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 7.29-7.35 (1H, m, ArC⁴H), 7.47-7.57 (5H, m, ArCH), 7.97-8.02 (2H, m, ArCH), 8.17-8.23 (2H, m, ArCH).

4.4.1-(tert-Butyl)-3-methyl-1H-pyrazole-4,5-dione S25

To a solution of 1-(*tert*-butyl)-5-methyl-4-(phenylimino)-2,4-dihydro-3*H*-pyrazol-3-one (600 mg, 2.4 mmol) in THF (19 ml, 0.13 M) was added 2 M aq. HCl (2.4 ml, 4.8 mmol) and the resulting solution was stirred at room temperature until the reaction was complete by TLC. The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were concentrated *in vacuo*. Purification by column chromatography (petroleum ether : ethyl acetate 1:1) gave the title compound as red oil (386 g, 2.3 mmol, 93%).^[25] **IR** ν_{max} (film) 1306, 2980 (C-H), 2934 (C-H), 2359, 1757, 1724 (C=O), 1701, 1368, 1026; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 1.52 (9H, s, C(CH₃)₃), 2.06 (3H, s, C³CH₃); ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ_{C} : 11.1 (C³CH₃), 27.9 (C(CH₃)₃, 59.3 (*C*(CH₃)₃), 142.0 (*C*³CH₃), 150.9 (*C*⁵(O)N), 186.4 (*C*⁴(O)); **HRMS** (ESI⁺) C₈H₁₃N₂O₂ [M+H]⁺ found 169.0970, requires 169.0972 (-0.9 ppm).

To a solution of 2-(*p*-anisyl)-5-methyl-2,4-dihydro-3*H*-pyrazol-3-one (1.40 g, 6.7 mmol) in MeOH (11 ml, 0.6 M) was added nitrosobenzene (735 mg, 6.7 mmol) and K₂CO₃ (190 mg, 1.4 mmol) and the resulting mixture was heated at reflux for 3 h. After cooling to room temperature, the solvent was removed under reduced pressure. Purification by column chromatography (petroleum ether : diethyl ether 1:0 to 3:1) gave the title compound as red solid (275 mg, 0.9 mmol, 14%) which was used directly without further purification. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 2.33 (3H, s, C⁵CH₃), 3.81 (3H, s, OCH₃), 6.90-6.93 (2H, m, N²ArC^{3,5}H), 7.30-7.34 (1H, m, C⁴=NArC⁴H), 7.24-7.38 (2H, m, C⁴=NArC^{2,6}H), 7.40-7.44 (2H, m, C⁴=NArC^{3,5}H), 7.73-7.78 (2H, m, N²ArC^{2,6}H).

To a solution of crude 2-(*p*-anisyl)-5-methyl-4-(phenylimino)-2,4-dihydro-3*H*-pyrazol-3-one (275 mg, 0.9 mmol) in THF (7 ml, 0.13 M) was added 2 M aq. HCl (0.9 ml, 1.8 mmol) and the resulting solution was stirred at room temperature until the reaction was complete by TLC. The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were concentrated *in vacuo*. Purification by column chromatography (petroleum ether : ethyl acetate 1:1) gave the title compound as red solid (271 mg, 1.2 mmol, 76%). **mp** 121-123 °C; **IR** v_{max} (film) 3327, 1771, 1699 (C=O, amide), 1514 (C=O, ketone), 1250, 831; ¹H **NMR** (500 MHz, CDCl₃) δ_{H} : 2.21 (3H, s, C³CH₃), 3.84 (3H, s, OCH₃), 6.94-7.00 (2H, m, ArC^{3.5}H), 7.73-7.79 (2H, m, ArC^{2.6}H); ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ_C : 11.2 (C⁵CH₃), 55.7 (OCH₃), 114.4 (ArC^{3.5}H), 119.8 (ArC^{2.6}H), 130.3 (ArC¹), 144.3 (C³CH₃), 148.9 (C⁵=O), 158.0 (ArC⁴OCH₃), 185.1 (C⁴=O); **HRMS** (ESI⁺) C₁₁H₁₁N₂O₃ [M+H]⁺ found 219.0765, requires 219.0764 (+0.3 ppm).

4.6.3-Methyl-1-(p-(trifluoromethyl)phenyl)-1H-pyrazole-4,5-dione S27

To a solution of 5-methyl-2-(*p*-trifluoromethyl)phenyl-2,4-dihydro-3*H*-pyrazol-3-one (712 mg, 2.9 mmol) in MeOH (5 ml, 0.6 M) was added nitrosobenzene (315 mg, 2.9 mmol) and K₂CO₃ (81 mg, 0.6 mmol) and the resulting mixture was heated at reflux for 3 h. After cooling to room temperature, the solvent was removed under reduced pressure. Purification by column chromatography (petroleum ether : diethyl ether 1:0 to 3:1) gave the title compound as red solid (195 mg, 0.6 mmol, 20%) which was used directly without further purification. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 2.37 (3H, s, CH₃), 7.33-7.39 (3H, m, C⁴=NArC^{3,4,5}H), 7.42-7.46 (2H, m, C⁴=NArC^{2,6}H), 7.64 (2H, d, ³J_{HH} = 8.6 Hz, N²ArC^{2,6}H), 8.05 (2H, d, ³J_{HH} = 8.6 Hz, N²ArC^{3,5}H).

To a solution of crude 5-methyl-2-(*p*-trifluoromethyl)phenyl-4-(phenylimino)-2,4-dihydro-3*H*pyrazol-3-one (195 mg, 0.6 mmol) in THF (4.5 ml, 0.13 M) was added 2 M aq. HCl (0.6 ml, 1.2 mmol) and the resulting solution was stirred at room temperature until the reaction was complete by TLC. The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were concentrated *in vacuo*. Purification by column chromatography (petroleum ether : ethyl acetate 1:1) gave the title compound as red solid (90 mg, 0.35 mmol, 59%) with data in accordance with the literature.^[25] **mp** 110 °C (dec) (Hexane:EtOAc); ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 2.27 (3H, s, CH₃), 7.72 (2H, d, ³J_{HH} = 8.6 Hz, ArC^{2,6}H), 8.06 (2H, d, ³J_{HH} = 8.6 Hz, ArC^{3,5}H); ¹⁹**F**{¹**H**} **NMR** (377 MHz, CDCl₃) δ_{F} : -62.3 (CF₃).

5. Isothiourea-catalysed formal [2+2] cycloaddition of homoanhydrides and pyrazole-4,5-diones

5.1. *N*-Benzyl (2'*R*,4*R*)-2-(4-hydroxy-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1*H*-pyrazol-4-yl)-2phenylacetamide **9**

To a solution of 3-methyl-1-phenyl-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Benzylamine (82 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by column chromatography (*n*-hexane : ethyl acetate 4:1 to 3:4) gave the title compound as single diastereomer as a white amorphous solid (62.2 mg, 0.15 mmol, 60%). $[\alpha]_{D}^{20}$ +190.7 (c 0.90, CHCl₃); HPLC analysis: Chiralpak AD-H (90:10 hexane:isopropanol, flow rate 1 ml·min⁻¹, 211 nm, 30 °C), t_R (2'*R*,4*R*)-**XX**: 26.4 min, t_R (2'*S*,4*S*)-**XX**: 31.2 min, >99:1 er; **IR** v_{max} (film) 3316 (O-H), 3063 (C-H), 3032 (C-H), 2024 (C-H), 1717 (C=O, pyrazolone), 1645, 1595, 1499, 1362, 1265, 1128, 750; ^1H NMR (500 MHz, CDCl_3) $\delta_{\text{H}}:$ 2.10 (3H, s, CH_3), 4.05 (1H, s, CHCONHBn), 4.46 (1H, dd, ${}^{2}J_{HH}$ = 17.8 Hz, ${}^{3}J_{HH}$ = 6.0 Hz, NHCH_AH_BPh), 4.49 (1H, dd, ${}^{2}J_{HH}$ = 17.8 Hz, ³J_{HH} = 5.8 Hz, NHCH_AH_BPh), 5.97 (1H, app t, ³J_{HH} = 5.9 Hz, NH), 7.04 (1H, s, OH), 7.11 (1H, app t, ${}^{3}J_{HH}$ = 7.4 Hz, NArC⁴H), 7.21 (2H, app d, ${}^{3}J_{HH}$ = 7.1 Hz, CH₂ArC^{2,6}H), 7.23-7.35 (10H, m, CHArC^{2,3,4,5,6}H, NArC^{3,5}H, CH₂ArC^{3,4,5}H), 7.49 (2H, d, ³J_{HH} = 8.0 Hz, NArC^{2,6}H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_C: 15.4 (CH₃), 43.9 (CH₂Ph), 54.9 (CHCONHBn), 82.3 (C-OH), 119.3 (NArC^{2,6}H), 125.5 (NArC⁴H), 127.8 (CH₂ArC^{2,6}H), 128.0 (ArC⁴H), 128.8 (NArC^{3,5}H), 129.0 (ArC^{3,5}H), 129.3 (ArC^{3,5}H), 129.4 (ArC⁴H), 129.8 (CHArC^{2,6}H), 131.4 (CHArC¹), 137.1 (CH₂ArC¹), 137.2 (NArC¹), 160.2 (C=N), 170.6 (C(OH)C=O), 172.6 (CONHBn); HRMS (ESI⁺) C₂₅H₂₂N₃O₃Na [M+Na]⁺ found 436.16206, requires 436.16316 (-0.3 ppm).

<Chromatogram>

<Peak Table>

PDA Ch1 211nm							
Pieaak##	Ret. Time	Area%					
1	26.775	50.225					
2	30.668	49.775					
Total		100.000					

<Chromatogram>

<Peak Table>

PDA Ch1 211nm						
Peak#	Ret. Time	Area%				
1	26.290	99.545				
2	31.246	0.455				
Total		100.000				

5.2. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-hydroxy-5-methyl-4-(2-oxo-1-phenyl-2-(pyrrolidine-1-yl)ethyl)-1phenyl-2,4-dihydro-3*H*-pyrazol-3-one **10**

To a solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Pyrrolidine (63 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (×1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (*n*-hexane : ethyl acetate 4:1 to 3:4) gave the title compound as a mixture of diastereomer as a white amorphous solid (72.0 mg, 0.19 mmol, 76%, 89:11 d.r.). [α]²⁰_p +254.3 (*c* 1.02, CHCl₃); **IR** ν_{max} (film) 3306 (O-H), 2974 (C-H), 2926 (C-H), 2878 (C-H), 1717 (C=O, pyrazolone), 1622, 1597, 1501, 1443, 1364, 912, 756; HRMS (ESI⁺) C₂₂H₂₃N₃O₃ [M+H]⁺ found 378.18122, requires 378.18020 (-2.7 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2 ml·min⁻¹, 211 nm, 30 °C), t_R (1'*R*,4*R*)-10: 18.1 min, t_R (1'*S*,4*S*)-10: 21.3 min, >99:1 er; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 1.74-1.91 (7H, m, CH₃, N(CH₂CH₂)₂), 2.99 (1H, app dt, ²J_{HH} = 10.3 Hz, ³J_{HH} = 6.3 Hz, $NCH_AH_BCH_2$), 3.38 (1H, app dt, ${}^{2}J_{HH}$ = 10.6 Hz, ${}^{3}J_{HH}$ = 6.4 Hz, $NCH_AH_BCH_2$), 3.45 (1H, app dt, ${}^{2}J_{HH}$ = 12.9 Hz, ³J_{HH} = 6.6 Hz, NCH_CH_DCH₂), 3.67 (1H, app dt, ²J_{HH} = 12.8 Hz, ³J_{HH} = 6.5 Hz, NCH_CH_DCH₂), 3.99 (1H, s, CHCON(CH₂CH₂)₂), 7.07 (1H, br s, OH), 7.17 (1H, app t, ³J_{HH} = 7.4 Hz, NArC⁴H), 7.30-7.39 (7H, m, NArC^{3,5}H, CHArC^{2,3,4,5,6}H), 7.74 (2H, app d, ${}^{3}J_{HH}$ = 8.0 Hz, NArC^{2,6}H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ_{C} : 15.4 (CH₃), 24.1 (NCH₂CH_CH_D), 26.0 (NCH₂CH_AH_B), 46.4 (NCH_CH_DCH₂), 46.9 (NCH_AH_BCH₂), 53.2 (CHCON(CH₂H₂)₂), 81.9 (C-OH), 119.1 (NArC^{2,6}H), 125.3 (NArC⁴H), 128.8 (CHArC⁴H), 128.9 (ArCH), 129.2 (ArCH), 129.2 (ArCH), 132.2 (CHArC¹), 137.7 (NArC¹), 160.9 (C=N), 170.2 (CON(CH₂CH₂)₂), 172.2 (CONAr); Data for minor diastereomer: ¹H NMR (500 MHz, CDCl₃) (selected) δ_{H} : 2.13 (3H, s, CH₃), 3.54 (1H, app dt, ²J_{HH} = 12.7 Hz, ³J_{HH} = 6.4 Hz, NCH_AH_BCH₂), 3.85 (1H, s, CHCON(CH₂CH₂)₂); ¹³C{¹H} NMR (126 MHz, CDCl₃) (selected) δ_c: 14.7 (CH₃), 53.0

(*C*H), 80.9 (*C*-OH), 118.9 (NAr*C*^{2,6}H), 125.0 (NAr*C*⁴H), 128.6 (Ar*C*H), 130.0 (Ar*C*H), 137.9 (NAr*C*¹). The minor diastereomer could not be resolved on HPLC.

<Chromatogram>

<Peak Table>

PDA Ch1 211nm						
¢lea₩#	Ret. Time	Area%				
1	18.291	50.084				
2	21.183	49.916				
Total		100.000				

<Chromatogram>

mAU PDA Multi 1 211nm,4nm 500-250-21.022 0-16 17 18 19 20 21 22 23 24 min 15

<Peak Table>

PDA Ch1 211nm						
Peak#	Ret. Time	Area%				
1	17.820	99.486				
2	21.022	0.514				
Total		100.000				

5.3. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-Hydroxy-5-methyl-4-(2-mopholino-2-oxo-1-phenylethyl)-2-phenyl-

2,4-dihydro-3*H*-pyrazol-3-one 11

To a solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (×1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (*n*-hexane : ethyl acetate 4:1 to 3:4) gave the title compound as a mixture of diastereomer as a white amorphous solid (78.1 mg, 0.20 mmol, 79%, 92:8 d.r.). [α]²⁰_p +247.8 (*c* 1.00, CDCl₃); **IR** v_{max} (film) 3356 (O-H), 2967 (C-H), 2924 (C-H), 2857 (C-H), 1717 (C=O, pyrazolone), 1639, 1622, 1597, 1501, 1115, 754; HRMS (ESI⁺) C₂₂H₂₃N₃O₄ [M+H]⁺ found 394.17540, requires 394.17613 (-0.2 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-11: 8.0 min, t_R (1'*S*,4*S*)-11: 9.6 min, >99:1 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.95 (3H, s, CH₃), 3.07-3.19 (2H, m, NCH_AH_BCH₂, NCH₂CH_AH_B), 3.33 (1H, ddd, ²J_{HH} = 14.7 Hz, ³J_{HH} = 7.7 Hz, 4.2 Hz, NCH_AH_BCH₂), 3.45-3.51 (1H, m, NCH₂CH_AH_B), 3.54-3.68 (2H, m, NCH₂CH₂CH₂, NCH₂CH₂CH₂), 3.69-3.78 (2H, m, NCH₂CH₂CH₂, NCH₂CH₂CH₂), 4.22 (1H, s, CHPh), 6.36 (1H, br s, OH), 7.17 (1H, app t, ³J_{HH} = 7.4 Hz, NArC⁴H), 7.24-7.28 (2H, m, CHArC^{3,5}H), 7.28-7.32 (3H, m, CHArC^{2,4,6}H), 7.35 (2H, app t, ${}^{3}J_{HH}$ = 7.9 Hz, NArC^{3,5}H), 7.70 (2H, app d, ${}^{3}J_{HH}$ = 8.0 Hz, NArC^{2,6}*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 15.7 (CH₃), 42.5 (NCH_cH_DCH₂), 46.6 (NCH_AH_BCH₂), 52.5 (CHPh), 66.1 (NCH₂CH_AH_B), 66.6 (NCH₂CH_CH_D), 81.7 (C-OH), 119.1 (NArC^{2,6}H), 125.4 (NArC⁴H), 128.7 (CHArC^{3,5}H), 128.9 (NArC^{3,5}H), 129.0 (CHArC⁴H), 129.4 (CHArC^{2,6}H), 132.0 (CHArC¹), 137.5 (NArC¹), 160.8 (C=N), 170.2 (CON(CH₂CH₂)₂O), 171.7 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*S*,4*R*)-**11**: 6.9 min, t_R (1'*R*,4*S*)-**11**: 13.1 min, >99:1 er; ¹**H NMR** (500 MHz, CDCl₃) (*selected*) $\delta_{\rm H}$: 2.00 (3H, s, CH₃), 3.02 (1H, ddd, ²J_{HH} = 10.5 Hz, ³J_{HH} = 5.1 Hz, 2.7 Hz, NCH₂CH_cH_D), 4.16 (1H, s, CHPh), 5.36 (1H, br s, OH); ¹³C{¹H} NMR (126 MHz, CDCl₃) (selected)

δ_c: 14.8 (CH₃), 42.3 (NCH₂CH₂), 46.5 (NCH₂CH₂), 52.9 (CHPh), 80.3 (C-OH), 118.9 (NAr*C*^{2,6}H), 125.1 (NAr*C*⁴H), 128.8 (Ar*C*H), 129.7 (Ar*C*H), 131.8 (CHAr*C*¹), 137.8 (NAr*C*¹), 160.3 (*C*=N), 169.2 (CON(CH₂CH₂)₂O), 171.1 (CONAr).

<Chromatogram>

<Peak Table>

PDA Ch1 211nm					
Peak#	Ret. Time	Area%			
Vial # ₁	7.029	25.601			
2	8.071	24.455			
3	9.745	24.356			
4	13.411	25.587			
Total		100.000			

<Chromatogram>

mAU

<Peak Table>

PDA Ch1 211nm					
Peak#	Ret. Time	Area%			
1	6.912	10.344			
2	7.953	88.922			
3	9.603	0.661			
4	13.141	0.073			
Total		100.000			

5.4. (3'*R*,4*R*)-3-Methyl-3'-(naphth-1-yl)-1-phenyl-spiro[pyrazolin[5]one-4.2-oxetan[4]one] **12** and (3'*S*,4*R*)-3-Methyl-3'-(naphth-1-yl)-1-phenyl-spiro[pyrazolin[5]one-4.2-oxetan[4]one] **13**

To a solution of 3-methyl-1-(naphth-1-yl)-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(naphth-1-yl)acetic anhydride (132.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. The solvent was removed and the crude reaction mixture was purified by column chromatography (nhexane : ethyl acetate 100:0 to 4:1) to give the title compounds in two fractions: The major diastereomer (40.9 mg, 46%, >95:5 dr) as a white amorphous solid, and a mixture of diastereomers (23.7 mg, 27%, 7:93 dr) as a yellow crystalline solid; combined (64.6 mg, 73%, 66:34 dr). Data for major diastereomer: $[\alpha]_{D}^{20}$ +179.5 (c 1.00, CHCl₃); HPLC Analysis: Chiralpak AD-H (99:1 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (3'*R*,4*R*)-12: 22.6 min, t_R (3'S,4S)-**12**: 19.6 min, 99:1 er; **IR** ν_{max} (film) 3063, 2359, 1854 (C=O, lactone), 1724 (C=O, pyrazolone), 1597, 1501, 1369, 1319, 1121, 930, 775, 758; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 1.41 (3H, s, CH₃), 6.01 (1H, s, CHCOO), 7.17 (1H, app d, ³J_{HH} = 8.4 Hz, CHArC⁸H), 7.30 (1H, app tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.2 Hz, NArC⁴H), 7.35 (1H, ddd, ³J_{HH} = 8.4 Hz, 6.9 Hz, ⁴J_{HH} = 1.2 Hz, CHArC⁷H), 7.45-7.57 (4H, m, CHArC³H + NArC^{3,5}H + CHArC⁶H), 7.83 (1H, app dt, ${}^{3}J_{HH} = 7.1$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, CHArC²*H*), 7.84-7.87 (2H, m, NArC^{2,6}*H*), 7.91 (1H, app d, ³*J*_{HH} = 8.5 Hz, CHArC⁵*H*), 7.93(1H, app d, ³J_{HH} = 8.4 Hz, CHArC⁴H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_C: 14.2 (CH₃), 63.6 (CHCOO), 78.0 (CC(O)N), 119.2 (NArC^{2,6}H), 121.4 (CHArC⁸H), 124.7 (CHArC¹), 125.4 (CHArC²H), 125.5 (CHArC³H), 126.3 (NArC⁴H), 127.1 (CHArC⁶H), 127.7 (CHArC⁷H), 129.3 (NArC^{3,5}H), 129.5 (CHArC⁵H), 130.1 (CHArC^{8a}), 130.3 (CHArC⁴H), 133.9 (CHArC^{4a}), 137.3 (NArC¹), 155.6 (C=N), 165.5 (COO), 167.2 (C(O)N); HRMS (ESI⁺) C₂₂H₁₆N₂O₃Na [M+Na]⁺ found 379.1045, requires 379.1053 (-2.2 ppm); Data for minor diastereomer (characterised as a 90:10 dr mixture): mp 158-160 °C (*dec*); $[\alpha]_{D}^{20}$ +448.5 (*c* 0.36, CHCl₃); Chiralpak AD-H (99:1 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (3'*S*,4*R*)-**13**: 58.9 min, t_R (3'*R*,4*S*)-**13**: 35.9 min, >99:1 er; IR v_{max} (film) 3063, 1850 (C=O, lactone), 1732 (C=O, pyrazolone), 1597, 1501, 1371, 1314, 1119,

932, 781, 756; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 2.62 (3H, s, CH₃), 5.95 (1H, s, CHCOO), 7.08 (1H, t, ${}^{3}J_{HH} = 7.4$ Hz, NArC⁴H), 7.13 (1H, d, ${}^{3}J_{HH} = 8.2$ Hz, CHArC⁸H), 7.21 (2H, app t, ${}^{3}J_{HH} = 8.0$ Hz, NArC^{3.5}H), 7.29-7.33 (2H, m, NArC^{2.6}H), 7.36-7.44 (2H, m, CHArC⁷H + CHArC⁶H), 7.54 (1H, app t, ${}^{3}J_{HH} = 7.7$ Hz, CHArC³H), 7.83-7.91 (3H, m, CHArC²H + CHArC⁴H + CHArC⁵H); ${}^{13}C{}^{1}H{}$ NMR (126 MHz, CDCl₃) δ_{C} : 13.2 (CH₃), 61.6 (CHCOO), 77.9 (CC(O)N), 119.0 (NArC^{2.6}H), 120.7 (CHArC⁸H), 123.7 (CHArC¹), 125.6 (CHArC³H), 125.9 (NArC⁴H), 126.4 (CHArC⁶H), 127.4 (CHArC⁷H), 127.6 (CHArC²H), 128.9 (NArC^{3.5}H), 129.6 (CHArC⁵H), 130.1 (CHArC⁴H), 130.2 (CHArC^{8a}), 133.8 (CHArC^{4a}), 136.9 (NArC¹), 155.2 (C=N), 164.8 (COO), 165.3 (CONAr).

<u>Note:</u> Upon storage of syn- and **12** under air at room temperature a gradual colour change from white to orange was observed. Following ¹H NMR analysis of these compounds after approximately one month some decomposition of **12** was observed, whilst no decomposition of **13** was apparent.

<Chromatogram>

<Peak Table>

PDA Ch1 211nm						
Pi@a##	Ret. Time	Area%				
1	19.486	50.611				
2	22.752	49.389				
Total		100.000				

<Chromatogram>

<Peak Table>

PDA Ch1 211nm						
Peak#	Ret. Time	Area%				
1	19.570	1.199				
2	22.602	98.801				
Total		100.000				

<Peak Table>

PDA Ch1 211nm				
Pieak##	Ret. Time	Area%		
1	35.595	50.197		
2	59.467	49.803		
Total		100.000		

<Chromatogram>

<Peak Table>

PDA Ch1 211nm				
Peak#	Ret. Time	Area%		
1	35.948	0.684		
2	58.892	99.316		
Total		100.000		

5.5. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-hydroxy-5-methyl-4-(2-morpholino-1-(α -naphthyl)-2-oxoethyl)-2-

To a solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(α naphthyl)acetic anhydride (132.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 $^{\circ}$ C for 3 h. Morpholine (66 μ l, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (×2), sat. aq. NaHCO₃ $(\times 2)$, and brine $(\times 1)$. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (*n*-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as a mixture of diastereomers as white amorphous solid (99.7 mg, 0.22 mmol, 90%, >95:5 d.r.). [α]²⁰_D +336.4 (*c* 0.50, CDCl₃); **IR** ν_{max} (film) 3352 (O-H), 3059, 2922 (C-H), 2857 (C-H), 1717 (C=O, pyrazolone), 1639, 1620, 1595, 1501, 1360, 1113, 781; HRMS (ESI⁺) C₂₆H₂₅N₃O₄ [M+H]⁺ found 466.17231, requires 466.17373 (-3.0 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**14**: 31.9 min, t_R (1'*S*,4*S*)-**14**: 42.4 min, >99:1 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.49 (3H, s, CH₃), 2.76 (1H, ddd, ²J_{HH} = 10.5 Hz, ³J_{HH} = 7.2 Hz, 3.0 Hz, NCH₂CH_AH_B), 2.96 (1H, ddd, ²J_{HH} =13.5 Hz, ³J_{HH} = 6.0 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.21-3.33 (2H, m, NCH_AH_BCH₂, NCH₂CH_AH_B), 3.49 (1H, ddd, ²J_{HH} = 11.6 Hz, ³J_{HH} = 7.4 Hz, 3.0 Hz, NCH₂CH_cH_D), 3.59 (1H, ddd, ²J_{HH} = 13.3 Hz, ³J_{HH} = 7.4 Hz, 3.0 Hz, NCH_CH_DCH₂), 3.65-3.69 (1H, m, NCH₂CH_CH_D), 3.81 (1H, ddd, ²J_{HH} = 13.3 Hz, ³J_{HH} = 5.8 Hz, 3.0 Hz, NCH_CH_DCH₂), 4.91 (1H, s, CHAr), 7.13-7.17 (1H, m, NArC⁴H), 7.31-7.36 (2H, m, NArC^{3,5}H), 7.48-7.55 (2H, m, CHArC^{3,7}H), 7.55-7.59 (1H, m, CHArC⁶*H*) 7.66-7.72 (2H, m, NArC^{2,6}*H*), 7.83 (1H, d, ³*J*_{HH} = 7.1 Hz, CHArC²*H*), 7.85-7.91 (2H, m, CHArC^{4,8}*H*), 7.95 (1H, d, ³*J*_{HH} = 8.6 Hz, CHAr⁵*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_C: 14.9 (*C*H₃), 42.8 (NCH_cH_pCH₂), 44.5 (CHAr), 46.3 (NCH_AH_BCH₂), 65.9 (NCH₂CH_AH_B), 66.6 (NCH₂CH_cH_p), 81.3 (C-OH), 119.0 (NArC^{2,6}H), 121.3 (CHArC⁵H), 125.3 (NArC⁴H), 125.6 (CHArC³H), 126.3 (CHArC⁷H), 127.7 (CHArC¹), 127.9 (CHArC⁶H), 128.0 (CHArC²H), 128.9 (NArC^{3,5}H), 129.8 (CHArC⁴H), 129.9 (CHArC⁶H), 130.9 (CHArC^{8a}), 134.0 (CHArC^{4a}), 137.7 (NArC¹), 160.6 (C=N), 171.0
(CON(CH₂CH₂)₂O), 172.7 (CONAr); Data for minor diastereomer: ¹H NMR (500 MHz, CDCl₃)
(selected) δ_H: 2.17 (3H, s, CH₃), 2.67 (1H, ddd, ²J_{HH} = 10.6 Hz, ³J_{HH} = 7.3 Hz, 2.8 Hz, NCH₂CH_AH_B),
4.87 (1H, s, CHAr).

7.7.95 7.7.75 7.7.55 7.7.75 7.7.55 7.7.75 7.75

vicai //

<Peak Table>

PDA Ch1 211nm		
Øieaa₩#	Ret. Time	Area%
1	31.964	50.040
2	41.795	49.960
Total		100.000

<Chromatogram>

PDA Ch1 211nm				
Peak	#	Ret.	Time	Area%
	1	3	1.928	99.084
2	2	42	2.395	0.916
Tota	al			100.000

5.6. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-(1-(*p*-chlorophenyl)2-morpholino-2-oxoethyl)-4-hydroxy-5-methyl-2phenyl-2,4-dihydro-3H-pyrazol-3-one **21**

To a solution of 3-methyl-1-phenyl-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(pchlorophenyl)acetic anhydride (121.2 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (×2), sat. aq. NaHCO₃ (×2), and brine (×1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 3:1 to 1:1) gave the title compound as a mixture of diastereomer as a white solid (56.0 mg, 0.13 mmol, 52%, >95:5 d.r.). **mp** 215-218 °C (*dec*); [α]_D²⁰ +188.5 (*c* 1.00, CDCl₃); **IR** ν_{max} (film) 3296 (O-H), 2920 (C-H), 2855 (C-H), 2361, 2342, 2330, 1717 (C=O, pyrazolone), 1622, 1595, 1489, 1111, 760; HRMS (ESI⁺) C₂₂H₂₁ClN₃O₄Na [M+Na]⁺ found 450.11791, requires 450.11910 (-2.6 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**21**: 22.3 min, t_R (1'*S*,4*S*)-**21**: 35.1 min, 98.5:1.5 er; ¹**H NMR** (500 MHz, CDCl₃) δ_H: 1.95 (3H, s, CH₃), 3.06-3.25 (2H, m, NCH_AH_BCH₂, NCH₂CH_AH_B), 3.34 (1H, ddd, ²J_{HH} = 13.3 Hz, ³J_{HH} = 6.7 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.53 (1H, ddd, ²J_{HH} = 11.3 Hz, ³J_{HH} = 6.3 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.56-3.62 (1H, m, NCH₂CH_CH_D), 3.65-3.77 (3H, m, NCH_cH_DCH₂,NCH₂CH_cH_D), 4.18 (1H, s, CHAr) 6.23 (1H, br s, OH), 7.19 (1H, app t, ³J_{HH} = 7.4 Hz, NArC⁴*H*), 7.23 (2H, app d, ${}^{3}J_{HH}$ = 8.4 Hz, CHArC^{2,6}*H*), 7.30 (2H, app d, ${}^{3}J_{HH}$ = 8.4 Hz, CHArC^{3,5}*H*), 7.35-7.41 (2H, m, NArC^{3,5}H), 7.73 (2H, d, ³J_{HH} = 7.6 Hz, NArC^{2,6}H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 15.7 (CH₃), 42.6 (NCH_cH_pCH₂), 46.6 (NCH_AH_BCH₂), 51.5 (CHAr), 66.1 (NCH₂CH_AH_B), 66.7 (NCH₂CH_cH_D), 81.5 (C-OH), 119.0 (NArC^{2,6}H), 125.6 (NArC⁴H), 129.0 (NArC^{3,5}H), 129.6 (CHArC^{3,5}H), 130.1 (CHArC^{2,6}H), 130.6 (CHArC¹), 135.2 (CHArC⁴Cl), 137.4 (NArC¹), 160.4 (C=N), 169.8 (CON(CH₂CH₂)₂O), 171.6 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'S,4R)-**21**: 27.9 min, t_R (1'*R*,4*S*)-**21**: 76.3 min (not detected); ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_H:

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
	22.345	43.118
2	27.926	6.825
3	34.902	43.312
4	76.264	6.746
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	22.298	94.076
2	27.944	4.398
3	35.074	1.526
Total		100.000

5.7. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-(1-(4-bromophenyl)-2-morpholino-2-oxoethyl)-4-hydroxy-5-methyl-2phenyl-2,4-dihydro-3*H*-pyrazole-3-one **22**

To a solution of 3-methyl-1-phenyl-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(p-bromophenyl)acetic anhydride (154.5 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 3:4) gave the title compound as a mixture of diastereomer as a white solid (47.4 mg, 0.10 mmol, 40%, >95:5 d.r.). **mp** 230-232 °C (*dec*); [α]²⁰_D +215.3 (*c* 1.00, CDCl₃); **IR** ν_{max} (film) 3335 (O-H), 2968 (C-H), 2922 (C-H), 2859 (C-H), 1717 (C=O, pyrazolone), 1643, 1626, 1489, 1115, 758; **HRMS** (ESI⁺) C₂₂H₂₂BrN₃O₄Na [M(⁷⁹Br)+Na]⁺ found 494.0683, requires 494.0686 (-0.5 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'R,4R)-22: 23.6 min, t_R (1'S,4S)-22: 36.1 min, 98:2 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.94 (3H, s, CH₃), 3.14 (1H, ddd, ²J_{HH} = 13.3 Hz, ³J_{HH} = 6.4 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.20 (1H, ddd, ²J_{HH} = 11.4 Hz, ³J_{HH} = 6.7 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.34 (1H, ddd, ²J_{HH} = 13.3 Hz, ³J_{HH} = 6.7 Hz, 3.1 Hz, NCH_AH_BCH₂), 3.53 (1H, ddd, ²J_{HH} = 11.4 Hz, ³J_{HH} = 6.4 Hz, 3.1 Hz, NCH₂CH_AH_B), 3.57-3.63 (1H, m, NCH₂CH_CH_D), 3.67-3.76 (3H, m, NCH_cH_bCH₂, NCH₂CH_cH_b), 4.17 (1H, s, CHAr), 6.22 (1H, br s, OH), 7.14-7.21 (3H, m, CHArC^{2,4,6}H), 7.38 (2H, app t, ³J_{HH} = 7.9 Hz, NArC^{3,5}H), 7.45 (2H, d, ³J_{HH} = 8.4 Hz, CHArC^{3,5}H), 7.73 (2H, app d, ${}^{3}J_{HH}$ = 8.1 Hz, NArC^{2,6}H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ_{c} : 15.7 (CH₃), 42.6 (NCH_cH_DCH₂), 46.6 (NCH_AH_BCH₂), 51.6 (CHAr), 66.1 (NCH₂CH_AH_B), 66.7 (NCH₂CH_cH_D), 81.4 (C-OH), 119.1 (NArC^{2,6}H), 123.3 (CHArC⁴Br), 125.6 (NArC⁴H), 129.0 (NArC^{3,5}H), 130.4 (CHArC^{2,6}H), 131.1 (CHArC¹), 132.6 (CHArC^{3,5}H), 137.4 (NArC¹), 160.4 (C=N), 169.7 (CON(CH₂CH₂)₂O), 171.5 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'S,4R)-22: 28.6 min, t_R (1'R,4S)-

22: 77.6 min (not detected); ¹**H NMR** (500 MHz, CDCl₃) (*selected*) δ_H: 2.02 (3H, s, CH₃), 4.06 (1H, s, CHAr), 5.31 (1H, br s, OH).

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
Vial #	23.564	30.578
2	28.584	19.299
3	35.779	30.803
4	77.551	19.320
Total		100.000

<Chromatogram>

PDA C	PDA Ch1 211nm			
Peak#	Ret. Time	Area%		
1	23.565	86.104		
2	28.649	12.345		
3	36.075	1.551		
Total		100.000		

5.8. (1'R,4R)- and (1'S,4R)-4-hydroxy-5-methyl-4-(2-morphline-2-oxo-1-(p-tolyl)ethyl)-2-phenyl-

2,4-dihyro-3*H*-pyrazol-3-one 23

To a solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(p-tolyl)acetic anhydride (105.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as a mixture of diastereomers as white solid (61.7 mg, 0.15 mmol, 61%, 91:9 d.r.). **mp** 197-199 °C (*dec*); [α]_D²⁰ +253.9 (*c* 1.00, CDCl₃); **IR** ν_{max} (film) 3368 (O-H), 2965 (C-H), 2922 (C-H), 2857 (C-H), 1719 (C=O, pyrazolone), 1622, 1597, 1501, 1115, 758; HRMS (ESI⁺) C₂₃H₂₄N₃O₄Na [M+Na]⁺ found 450.11791, requires 450.11910 (-2.6 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (80:20 hexane:isopropanol, flow rate 1.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**23**: 10.7 min, t_R (1'*S*,4*S*)-**23**: 13.3 min, >99:1 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.96 (3H, s, C⁵CH₃), 2.30 (3H, s, ArC⁴CH₃), 3.09-3.19 (2H, m, NCH_AH_BCH₂, NCH₂CH_AH_B), 3.32 (1H, ddd, ²J_{HH} = 14.0 Hz, ³J_{HH} = 7.3 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.48 (1H, ddd, ²J_{HH} = 11.4 Hz, ³J_{HH} = 6.3 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.54-3.67 (2H, m, NCH_cH_bCH₂, NCH₂CH_cH_b), 3.69-3.78 (2H, m, NCH_cH_bCH₂, NCH₂CH_cH_b), 4.19 (1H, s, CHAr), 6.33 (1H, br s, OH), 7.06-7.19 (5H, m, CHArC^{2,3,5,6)}H, NArC⁴H), 7.32-7.40 (2H, m, NArC^{3,5}H), 7.72 (2H, d, ³*J*_{HH} = 7.4 Hz, NArC^{2,6}*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 15.7 (C⁵CH₃), 21.2 (ArC⁴CH₃), 42.5 (NCH_cH_bCH₂), 46.5 (NCH_AH_BCH₂), 52.1 (CHAr), 66.1 (NCH₂CH_AH_B), 66.6 (NCH₂CH_cH_b), 81.7 (C-OH), 119.1 (NArC^{2,6}H), 125.4 (NArC⁴H), 128.5 (CHArC^{2,6}H), 128.8 (NArC¹), 128.9 (NArC^{3,5}H), 130.0 (CHArC^{3,5}H), 137.5 (CHArC¹), 138.9 (CHArC⁴CH₃), 160.9 (C=N), 170.4 (CON(CH₂CH₂)₂O), 171.8 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (80:20 hexane:isopropanol, flow rate 1.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'S,4R)-23: 9.6 min, t_R (1'R,4S)-**23**: 17.4 min, 99:1 er; ¹**H NMR** (500 MHz, CDCl₃) (selected) δ_{H} : 2.01 (3H, s, C⁵CH₃), 2.32 (3H, s, ArC⁴CH₃), 3.04 (1H, ddd, ²J_{HH} = 10.4 Hz, ³J_{HH} = 7.3 Hz, 2.5 Hz, NCH₂CH_AH_B), 4.11 (1H, s, CHAr);

¹³C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_c: 14.9 (C⁵CH₃), 42.3 (NCH₂CH₂), 52.5 (CHAr), 80.3 (C-OH), 119.0 (NArC^{2,6}H), 125.1 (NArC⁴H), 129.6 (ArCH), 129.7 (ArCH), 137.8 (CHArC¹), 138.6 (CHArC⁴CH₃), 160.5 (C=N), 169.4 (CON(CH₂CH₂)₂O), 171.1 (CONAr).

I DA C				
Peak#	Ret. Time	Area%		
1	9.675	4.696		
Vial # 2	10.765	44.883		
3	13.323	45.642		
4	17.431	4.778		
Total		100.000		

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	9.597	8.744
2	10.699	90.677
3	13.301	0.477
4	17.357	0.102
Total		100.000

5.9. (1'*R*,4*R*)-4-(1-(*p*-anisyl)-2-morpholine-2-oxoethyl)-4-hydroxy-5-methyl-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one **24**

To a solution of 3-methyl-1-phenyl-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(p-anisyl)acetic anhydride (117.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as a white solid (60.7 mg, 0.14 mmol, 57%). mp 193-195 °C (*dec*); $[\alpha]_{D}^{20}$ +147.0 (*c* 0.50, CDCl₃); **HPLC Analysis:** Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**24**: 9.8 min, t_R (1'*S*,4*S*)-**24**: 13.5 min, >99:1 er; IR v_{max} (film) 3372 (O-H), 2963 (C-H), 2924 (C-H), 2855 (C-H), 2363, 1717 (C=O, pyrazolone), 1612, 1512, 1501, 1252, 1115, 758; ¹**H NMR** (500 MHz, CDCl₃) δ_H: 1.96 (3H, s, CCH₃), 3.10-3.21 (2H, m, NCH_AH_BCH₂, NCH₂CH_AH_B), 3.33 (1H, ddd, ²J_{HH} = 14.0 Hz, ³J_{HH} = 7.4 Hz, 3.0 Hz, NCH_A*H*_BCH₂), 3.50 (1H, ddd, ²*J*_{HH} = 11.3 Hz, ³*J*_{HH} = 6.3 Hz, 3.0 Hz, NCH₂CH_A*H*_B), 3.55-3.67 (2H, m, NCH_cH_DCH₂, NCH₂CH_cH_D), 3.69-3.80 (5H, m, NCH_cH_DCH₂, NCH₂CH_cH_D, OCH₃), 4.17 (1H, s, CHAr), 6.30 (1H, br s, OH), 6.81 (2H, app d, ${}^{3}J_{HH}$ = 8.7 Hz, CHArC^{3,5}H), 7.13-7.22 (3H, m, NArC⁴H, CHArC^{2,6}*H*), 7.36 (3H, app t, ${}^{3}J_{HH}$ = 7.9 Hz, NArC^{3,5}*H*), 7.73 (2H, app d, ${}^{3}J_{HH}$ = 7.9 Hz, NArC^{2,6}*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_{c} : 15.7 (CCH₃), 42.5 (NCH_cH_bCH₂), 46.6 (NCH_AH_BCH₂), 51.6 (CHAr), 55.4 (OCH₃), 66.1 (NCH₂CH_AH_B), 66.7 (NCH₂CH_CH_D), 81.7 (C-OH), 114.7 (CHArC^{3,5}H), 119.1 (NArC^{2,6}H), 123.7 (CHArC¹), 125.4 (NArC⁴H), 128.9 (NArC^{3,5}H), 129.9 (CHArC^{2,6}H), 137.6 (NArC¹), 159.9 (CHArC⁴OCH₃), 160.9 (C=N), 170.5 (CON(CH₂CH₂)₂O), 171.8 (CONAr); HRMS (ESI⁺) C₂₃H₂₄N₃O₅Na [M+Na]⁺ found 446.16763, requires 446.16864 (-2.3 ppm).

<Peak Table>

¥iðk#c	h1 211nm	
Peak#	Ret. Time	Area%
1	9.820	49.597
2	13.458	50.403
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	9.813	99.462
2	13.541	0.538
Total		100.000

5.10. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-(1-(*m*-bromophenyl)-2-morpholine-2-oxoethyl)-4-hydroxy-5methyl-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one **25**

To a solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(m-bromophenyl)acetic anhydride (154.5 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as a mixture of diastereomer as a white amorphous solid (44.2 mg, 0.09 mmol, 37%, 89:11 d.r.). [α]_D²⁰ +153.3 (*c* 0.50, CDCl₃); **IR** ν_{max} (film) 3323 (O-H), 3057 (C-H), 2970 (C-H), 2922 (C-H), 2857 (C-H), 1715 (C=O, pyrazolone), 1622, 1595, 1364, 1113, 758; HRMS (ESI⁺) C₂₂H₂₁BrN₃O₄Na [M(⁸¹Br)+Na]⁺ found 496.06554, requires 496. 06684 (-2.6 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'R,4R)-25: 7.1 min, t_R (1'S,4S)-**25**: 11.8 min, 98.5:1.5 er; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 1.93 (3H, s, CH₃), 3.16 (1H, ddd, ²J_{HH} = 13.3 Hz, ³J_{HH} = 6.4 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.22 (1H, ddd, ²J_{HH} = 11.5 Hz, ³J_{HH} = 6.6 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.35 (1H, ddd, ²J_{HH} = 13.3 Hz, ³J_{HH} = 6.6 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.54 (1H, ddd, ²J_{HH} = 11.5 Hz, ³J_{HH} = 6.4 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.61 (1H, ddd, ²J_{HH} = 11.1 Hz, ³J_{HH} = 5.6 Hz, 3.6 Hz, NCH₂CH_cH_D), 3.68-3.77 (3H, m, NCH_cH_DCH₂, NCH₂CH_cH_D), 4.16 (1H, s, CHAr), 6.29 (1H, br s, OH), 7.16-7.25 (3H, m, NArC⁴H, 2×CHArCH), 7.35-7.40 (2H, m, NArC^{3,5}H), 7.44-7.49 (2H, m, 2×CHArCH), 7.70-7.75 (2H, m, NArC^{2,6}H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 15.6 (CH₃), 42.6 (NCH_cH_bCH₂), 46.6 (NCH_AH_BCH₂), 51.6 (CHAr), 66.1 (NCH₂CH_AH_B), 66.7 (NCH₂CH_cH_b), 81.5 (C-OH), 119.2 (NArC^{2,6}H), 123.3 (CHArC³Br), 125.6 (NArC⁴H), 127.4 (CHArCH), 129.0 (NArC^{3,5}H), 130.8 (CHArCH), 131.8 (CHArCH), 132.2 (CHArCH), 134.3 (CHArC¹), 137.3 (NArC¹), 160.3 (C=N), 169.5 (CON(CH₂CH₂)₂O), 171.5 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'S,4R)-**25**: 6.3 min, t_R (1'*R*,4*S*)-**25**: 15.7 min, 97.5:2.5 er; ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_H: 1.96

(3H, s, CH₃), 4.14 (1H, s, CHAr), 7.54 (1H, m, ArCH), 7.74-7.78 (1H, m, NAr $C^{2,6}$ H); ¹³C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_c : 15.0 (CH₃), 42.4 (NCH₂CH₂), 46.5 (NCH₂CH₂), 52.4 (CHAr), 80.0 (C-OH), 118.9 (NAr $C^{2,6}$ H), 122.9 (CHAr C^{3} Br), 125.3 (NAr C^{4} H), 128.5 (ArCH), 128.9 (NAr $C^{3,5}$ H), 130.3 (ArCH), 131.9 (ArCH), 132.8 (ArCH), 134.2 (CHAr C^{1}), 137.7 (NAr C^{1}), 168.5 (CON(CH₂CH₂)₂O), 171.0 (CONAr).

<Peak Table>

PDA Ch1 211nm			
Peak#	Ret. Time	Area%	
Vial # ₁	6.282	6.111	
2	7.070	43.961	
3	11.697	43.693	
4	15.497	6.235	
Total		100.000	

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	6.282	11.638
2	7.070	86.773
3	11.757	1.262
4	15.656	0.327
Total		100.000

5.11. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1-(*o*-tolyl)ethyl)-2phenyl-2,4-dihydro-3*H*-pyrazol-3-one **26**

To a solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(o-tolyl)acetic anhydride (105.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as a mixture of diastereomers as white amorphous solid (98.0 mg, 0.24 mmol, 96%, >95:5 d.r.). [α]_D²⁰ +238.7 (*c* 0.82, CHCl₃); **IR** ν_{max} (film) 3312 (O-H), 2965 (C-H), 2922 (C-H), 2857 (C-H), 2249, 1717 (C=O, pyrazolone), 1639, 1620, 1597, 1499, 1435, 1360, 1225, 1113, 908, 754; HRMS (ESI⁺) $C_{23}H_{26}N_3O_4$ [M+H]⁺ found 408.1910, requires 408.19178 (-1.9 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_{R} (1'*R*,4*R*)-**26**: 16.9 min, t_{R} (1'*S*,4*S*)-**26**: 36.0 min, >99:1 er; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 1.61 (3H, s, C⁵CH₃), 2.30 (3H, s, ArC²CH₃), 2.98 (1H, ddd, ²J_{HH} = 10.9 Hz, ³J_{HH} = 7.4 Hz, 2.9 Hz, NCH₂CH_AH_B), 3.08 (1H, ddd, ²J_{HH} = 13.5 Hz, ³J_{HH} = 5.8 Hz, 2.9 Hz, NCH_AH_BCH₂), 3.31 (1H, ddd, ²J_{HH} = 13.5 Hz, ³J_{HH} = 7.4 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.45-3.54 (2H, m, NCH₂CH_AH_B, NCH₂CH_CH_D), 3.59 (1H, ddd, ²J_{HH} = 13.2 Hz, ³J_{HH} = 7.5 Hz, 2.9 Hz, NCH_cH_DCH₂), 3.72 (1H, ddd, ${}^{2}J_{HH}$ = 11.6 Hz, ${}^{3}J_{HH}$ = 5.8 Hz, 2.9 Hz, NCH₂CH_cH_D), 3.79 (1H, ddd, ²J_{HH} = 13.2 Hz, ³J_{HH} = 5.8 Hz, 2.8 Hz, NCH_cH_DCH₂), 4.21 (1H, s, CHAr), 7.16-7.21 (2H, m, NArC⁴H, CHArC³H), 7.26-7.30 (2H, m, CHArC^{4,5}H), 7.36-7.44 (3H, m, OH, NArC^{3,5}H), 7.61-7.68 (1H, m, CHArC⁶H), 7.80-7.87 (2H, m, NArC^{2,6}H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ_{C} : 14.5 (C⁵CH₃), 20.0 (ArC²CH₃), 42.8 (NCH_cH_DCH₂), 44.8 (CHAr), 46.2 (NCH_AH_BCH₂), 66.0 (NCH₂CH_AH_B), 66.6 (NCH_CH_DCH₂), 81.0 (C-OH), 118.8 (NArC^{2,6}H), 125.2 (NArC⁴H), 127.2 (CHArC⁵H), 129.0 (NArC^{3,5}H, CHArC⁴H), 129.6 (CHArC⁶H), 130.5 (CHArC¹), 131.2 (CHArC³H), 135.6 (CHArC²CH₃), 137.9 (NArC¹), 160.7 (C=N), 170.8 (CON(CH₂CH₂)₂O), 173.0 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*S*,4*R*)-**26**: 24.2 min, t_R (1'*R*,4*S*)-**26**: 41.0 min (not detected); ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_{H} : 2.15 (3H, s, C⁵CH₃), 2.25 (3H, s, ArC²CH₃), 2.79 (1H, ddd, ²J_{HH} = 11.2 Hz, ³J_{HH} = 7.9 Hz, 2.8 Hz, NCH₂CH₂), 3.23 (1H, ddd, ²J_{HH} = 11.9 Hz, ³J_{HH} = 7.8 Hz, 3.0 Hz, NCH₂CH₂), 4.12 (1H, s, CHAr); ¹³C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_{C} : 15.4 (C⁵CH₃), 42.6 (NCH₂CH₂), 46.0 (NCH₂CH₂), 47.0 (CHAr), 80.9 (C-OH), 118.6 (NArC^{2,6}H), 125.1 (NArC⁴H), 126.9 (ArCH), 128.8 (ArCH).

<Peak Table>

PDA C	h1 2	211	nm
-			

Peak#	Ret. Time	Area%
Vial #	16.801	46.799
2	24.148	2.575
3	34.407	47.943
4	41.048	2.683
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	16.863	94.867
2	24.187	4.897
3	36.024	0.236
Total		100.000

5.12. (1'*R*,4*R*)-4-hydroxy-5-methyl-4-(1-(1-methyl-1*H*-indol-3-yl)-2-morpholino-2oxoethyl)-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one **27**

To a solution of 3-methyl-1-phenyl-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(1-methyl-1H-indol-3-yl)acetic anhydride (135.2 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as white amorphous solid (80.6 mg, 0.18 mmol, 72%). $[\alpha]_{D}^{20}$ +262.9 (c 0.48, CHCl₃); HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**27**: 7.1 min, t_R (1'*S*,4*S*)-**27**: 22.9 min, 96:4 er; **IR** v_{max} (film) 3354 (O-H), 3059, 2922 (C-H), 2859 (C-H), 2247, 1717 (C=O, pyrazolone), 1620, 1595, 1501, 1362, 1115, 908; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 1.81 (3H, s, C⁵CH₃), 3.11 (1H, ddd, ²J_{HH} = 11.4 Hz, ${}^{3}J_{HH}$ = 6.5 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.19 (1H, ddd, ${}^{2}J_{HH}$ = 13.4 Hz, ${}^{3}J_{HH}$ = 6.6 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.40 (1H, ddd, ²J_{HH} = 13.4 Hz, ³J_{HH} = 6.5 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.46 (1H, ddd, ${}^{2}J_{HH}$ = 11.4 Hz, ${}^{3}J_{HH}$ = 6.6 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.56-3.63 (1H, m, NCH₂CH_CH_D), 3.64-3.77 (6H, m, NCH_cH_DCH₂, NCH₂CH_cH_D, NCH₃), 4.48 (1H, s, CHAr), 6.61 (1H, br s, OH), 7.12 (1H, t, ${}^{3}J_{HH} =$ 7.5 Hz, CHArC⁵H), 7.14-7.20 (2H, m, NArC⁴H, CHArC²H), 7.24 (1H, t, ³J_{HH} = 7.5 Hz, CHArC⁶H), 7.31 (1H, d, ³J_{HH} = 8.2 Hz, CHArC⁷H), 7.36 (2H, app t, ³J_{HH} = 8.0 Hz, NArC^{3,5}H), 7.50 (1H, d, ³J_{HH} = 8.0 Hz, CHArC⁴H), 7.74 (2H, d, ${}^{3}J_{HH}$ = 7.9 Hz, NArC^{2,6}H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ_{c} : 15.3 (C⁵CH₃), 33.2 (NCH₃), 42.5 (NCH_CH_DCH₂), 42.6 (CHAr), 46.6 (NCH_AH_BCH₂), 66.2 (NCH₂CH_AH_B), 66.6 (NCH₂CH_cH_D), 81.3 (*C*-OH), 104.3 (CHAr*C*³), 110.0 (CHAr*C*⁷H), 117.8 (CHAr*C*⁴H), 119.0 (NArC^{2,6}H), 120.3 (CHArC⁵H), 122.5 (CHArC⁶H), 125.3 (NArC⁴H), 126.6 (CHArC³), 128.9 (CHArC²H), 129.1 (NArC^{3,5}H), 136.5 (CHArC⁷a), 137.7 (NArC¹), 161.3 (C=N), 171.2 (CON(CH₂CH₂)₂O), 172.6 (CONAr); **HRMS** (ESI⁺) C₂₅H₂₇N₄O₄ [M+H]⁺ found 447.2018, requires 447.20275 (-1.9 ppm).

<Peak Table>

₩i9A#Ch1 211nm		
Peak#	Ret. Time	Area%
1	14.586	49.523
2	23.019	50.477
Total		100.000

<Chromatogram>

PDA C	h1 211nm	
Peak#	Ret. Time	Area%
1	14.414	96.239
2	22.854	3.761
Total		100.000

5.13. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1-thiophen-2-ylethyl)-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one **28**

To a solution of 3-methyl-1-phenyl-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(thophen-3-yl)acetic anhydride (99.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (×1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (*n*-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as a mixture of diastereomers as white amorphous solid (49.9 mg, 0.125 mmol, 50%, 83:17 d.r.). [α]²⁰_D +193.1 (*c* 1.00, CHCl₃); **IR** ν_{max} (film) 3347 (O-H), 2967 (C-H), 2922 (C-H), 2857 (C-H), 1715 (C=O, pyrazolone), 1639, 1622, 1595, 1501, 1364, 1233, 1115, 756; HRMS (ESI⁺) C₂₀H₂₀N₃O₄SNa [M+Na]⁺ found 422.11337, requires 422.11450 (-2.7 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (98:2 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**28**: 25.6 min, t_R (1'*S*,4*S*)-**28**: 43.6 min, >99:1 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.95 (3H, s, CH₃), 3.20-3.26 (2H, m, NCH₂H_BCH₂, NCH₂CH₂H_B), 3.36 (1H, ddd, ²J_{HH} = 12.3 Hz, ³J_{HH} = 6.6 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.51-3.76 (5H, m, NCH_CH_DCH₂, NCH₂CH_AH_B, NCH₂CH_CH_D), 4.36 (1H, s, CHAr), 6.36 (1H, br s, OH), 7.01 (1H, dd, ³J_{HH} = 5.0 Hz, ⁴J_{HH} = 1.4 Hz, CHArC⁴H), 7.18 (1H, tt, ³J_{HH} 7.4, ⁴J_{HH} = 1.2, NArC⁴H), 7.21 (1H, dd, ⁴J_{HH} = 3.0 Hz, 1.4 Hz, CHArC²*H*), 7.31 (1H, dd, ³*J*_{HH} 5.0 Hz, ⁴*J*_{HH} = 3.0 Hz, CHArC⁵*H*), 7.35-7.40 (2H, m, NArC^{3,5}*H*), 7.74-7.77 (2H, m, NArC^{2,6}H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 15.4 (CH₃), 42.6 (NCH_cH_DCH₂), 46.6 (NCH_AH_BCH₂), 47.2 (CHAr), 66.2 (NCH₂CH_AH_B), 66.7 (NCH₂CH_CH_D), 81.3 (C-OH), 119.0 (NArC^{2,6}H), 124.5 (CHArC²H), 125.5 (NArC⁴H), 127.3 (CHArC⁵H), 127.4 (CHArC⁴H), 129.0 (NArC^{3,5}H), 132.0 (CHArC³), 137.6 (NArC¹), 160.8 (C=N), 170.0 (CON(CH₂CH₂)₂O), 171.8 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (98:2 hexane: isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*S*,4*R*)-**28**: 29.4 min, t_R (1'*R*,4*S*)-**28**: 89.2 min, >99:1 er; ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_H: 1.97 (3H, s, CH₃), 4.35 (1H, s CHAr), 4.93 (1H, br s, OH), 7.10 (1H, dd, ³J_{HH} = 5.0, ⁴J_{HH} = 1.4 Hz, CHArC⁴H), 7.27-7.29 (1H, m, ArCH); ¹³C{¹H} NMR (126 MHz, CDCl₃)

(selected) δ_{C} : 14.6 (CH₃), 42.2 (NCH₂CH₂), 48.4 (CHAr), 66.3 (NCH₂CH₂), 79.8 (C-OH), 118.9 (NArC^{2,6}H), 125.2 (ArCH), 126.6 (ArCH), 128.5 (ArCH), 128.9 (NArC^{3,5}H), 131.9 (CHArC³H), 137.8 (NArC¹), 160.4 (C=N), 168.8 (CON(CH₂CH₂)₂O), 171.2 (CONAr).

5.14. (2'R,4R)- and (2'S,4R)-(E)-4-hydroxy-5-methyl-4-(5-methyl-1-morpholino-1-oxohex-3-

To a solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), (E)-5-methylhex-3-enoic anhydride (89.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the title compound as white amorphous solid (23.9 mg, 0.06 mmol, 25%, 89:11 d.r.). $[\alpha]_{D}^{20}$ +183.8 (c 0.25, CHCl₃); **IR** ν_{max} (film) 3296 (O-H), 2961 (C-H), 2926 (C-H), 2866 (C-H), 1719 (C=O, pyrazolone), 1616, 1501, 1366, 1227, 1117, 756; HRMS (ESI⁺) C₂₁H₂₇N₃O₄Na [M+Na]⁺ found 408.1889, requires 408.1894 (-1.2 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (2'*R*,4*R*)-**29**: 4.4 min, t_R (2'*S*,4*S*)-**29**: 8.7 min, 98:2 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 0.87 (3H, d, ${}^{3}J_{HH}$ = 6.7 Hz, CH(CH₃)_A(CH₃)_B), 0.91 (3H, d, ${}^{3}J_{HH}$ = 6.7 Hz, CH(CH₃)_A(CH₃)_B), 2.20-2.30 (4H, m, C⁵CH₃, CH(CH₃)₂), 3.38-3.51 (2H, m, NCH_AH_BCH₂), 3.51-3.79 (7H, m, CHCONR₂, NCH_CH_DCH₂, N(CH₂CH₂)₂), 5.40 (1H, ddd, ³J_{HH} = 15.5 Hz, 9.2 Hz, ⁴J_{HH} = 1.3 Hz, HC=CHCH(CH₃)₂), 5.63 (1H, dd, ${}^{3}J_{HH}$ = 15.5 Hz, 6.7 Hz, HC=CHCH(CH₃)₂), 5.69 (1H, br s, OH), 7.17 (1H, t, ${}^{3}J_{HH}$ = 7.4 Hz, NArC⁴H), 7.33-7.43 (2H, m, NArC^{3,5}H), 7.86 (2H, d, ³J_{HH} = 7.8 Hz, NArC^{2,6}H); ¹³C{¹H} NMR (126 MHz, CDCl₃) $δ_{C}$: 16.0 (C⁵CH₃), 21.9 (CH(CH₃)_A(CH₃)_B), 22.2 (CH(CH₃)_A(CH₃)_B), 31.4 (CH(CH₃)₂), 42.5 (NCH_cH_pCH₂), 46.6 (NCH_AH_BCH₂), 49.8 (CHCONR₂), 66.5 (NCH₂CH_AH_B), 66.9 (NCH₂CH_cH_p), 81.0 (C-OH), 118.3 (HC=CHCH(CH₃)₂), 118.8 (NArC^{2,6}H), 125.3 (NArC⁴H), 129.0 (NArC^{3,5}H), 137.8 (NArC¹), 146.0 (HC=CHCH(CH₃)₂), 160.7 (C=N), 170.1 (CON(CH₂CH₂)₂O), 171.8 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.0 ml·min⁻¹, 211 nm, 30 °C) t_R (2'*S*,4*R*)-**29**: 4.0 min, t_R (2'*R*,4*S*)-**29**: 5.8 min, 94.5:5.5 er ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_H: 2.18 (3H, s, C⁵CH₃), 2.35-3.43 (1H, m, CH(CH₃)₂).

S62

<u>Note:</u> As the dr could not be determined from the crude reaction mixture, the two diastereomers were initially isolated together by column chromatography to yield a crude mixture with 75:25 dr. This was further purified by column chromatography to give the pure product in 89:11 dr.

<Peak Table>

PDA Ch1 211nm

Peak#	Ret. Time	Area%
1	26.431	40.023
Vial #₂	30.496	10.429
3	44.228	40.521
4	89.702	9.027
Total		100.000

PDA Ch1 211nm			
Peak#	Ret. Time	Area%	
1	25.625	80.628	
2	29.405	18.687	
3	43.648	0.595	
4	89.226	0.090	
Total		100.000	

5.15. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-Hydroxy-5-isopropyl-4-(2-morpholino-2-oxo-1-phenylethyl)2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one **30**

To a solution of 3-isopropyl-1-phenyl-1*H*-pyrazole-4,5-dione (54.1 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 μ l, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (×2), sat. aq. NaHCO₃ $(\times 2)$, and brine $(\times 1)$. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the major and minor diastereomer (94.9 mg, 90%, 94:6 dr) as an inseparable mixture as a white amorphous solid. [α]_D²⁰ +226.6 (*c* 1.00, CHCl₃); **IR** ν_{max} (film) 3360 (O-H), 3063, 2970 (C-H), 2928 (C-H), 2859 (C-H), 1717 (C=O, pyrazolone), 1643, 1622, 1597, 1493, 1348, 1225, 1113, 972, 864, 756; **HRMS** (ESI⁺) C₂₄H₂₇N₃O₄Na [M+Na]⁺ found 444.1883, requires 444.1894 (-2.4 ppm). Data for major diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**30**: 16.3 min, t_R (1'*S*,4*S*)-**30**: 31.3 min, >99:1 er; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 1.04 (3H, d, ³J_{HH} = 6.8 Hz, CH(CH₃)_A(CH₃)_B), 1.26 (3H, d, ³J_{HH} = 6.8 Hz, CH(CH₃)_A(CH₃)_B), 2.67 (1H, hept, ³J_{HH} = 6.8 Hz, CH(CH₃)₂), 3.07-3.22 (2H, m, NCH_AH_BCH₂ + NCH₂CH_AH_B), 3.34 (1H, ddd, ²J_{HH} = 14.5 Hz, ³J_{HH} = 7.6 Hz, 3.0 Hz, NCH_AH_BCH₂), 3.50 (1H, ddd, ²J_{HH} = 11.5 Hz, ³J_{HH} = 6.6 Hz, 3.0 Hz, NCH₂CH_AH_B), 3.59 (1H, ddd, ²J_{HH} = 11.2 Hz, ³J_{HH} = 6.9 Hz, 2.5 Hz, NCH₂CH_cH_D), 3.66 (1H, ddd, ²J_{HH} = 12.1 Hz, ³J_{HH} = 6.9 Hz, 2.3 Hz, NCH_cH_DCH₂), 3.70-3.81 (2H, m, NCH_cH_DCH₂ + NCH₂CH_cH_D), 4.22 (1H, s, CHAr), 6.21 (1H, br s, OH), 7.19 (1H, tt, ³J_{HH} = 7.5 Hz, ${}^{4}J_{HH}$ = 1.2 Hz, NArC⁴H), 7.26-7.36 (5H, m, CHArC^{2,3,4,5,6}H), 7.38 (2H, app t, ${}^{3}J_{HH}$ = 7.9 Hz, NArC^{3,5}*H*), 7.78 (2H, d, ${}^{3}J_{HH}$ = 7.9 Hz, NArC^{2,6}*H*); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ_{c} : 19.1 (CH(CH₃)_A(CH₃)_B), 22.9 (CH(CH₃)_A(CH₃)_B), 29.5 (CH(CH₃)₂), 42.5 (NCH_cH_DCH₂), 46.5 (NCH_AH_BCH₂), 53.0 (CHAr), 66.0 (NCH₂CH_AH_B), 66.6 (NCH₂CH_CH_D), 82.6 (C(4)-OH), 119.1 (NArC^{2,6}H), 125.2 (NArC⁴H), 128.8 (CHArC^{2,6}H), 128.9 (NArC^{3,5}H), 129.0 (CHArC⁴H), 129.2 (CHArC^{3,5}H), 132.1 (CHArC¹), 137.8 (NArC¹), 167.5 (C=N), 170.3 (COO), 171.8 (CONAr); Data for minor diastereomer: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'S,4R)-**30**: 21.6 min, t_R (1'R,4S)-**30**: 43.7 min (not detected); ¹H

NMR (500 MHz, CDCl₃) (*selected*) δ_{H} : 1.12 (3H, d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, CH(CH₃)_A(CH₃)_B), 1.35 (3H, d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, CH(CH₃)_A(CH₃)_B), 3.04 (1H, ddd, ${}^{2}J_{\text{HH}} = 10.8$ Hz, ${}^{3}J_{\text{HH}} = 7.2$ Hz, 2.6 Hz, NCH₂CH_AH_B), 4.18 (1H, s, CHAr), 5.42 (1H, br s, OH), 7.14 (1H, t, ${}^{3}J_{\text{HH}} = 7.5$ Hz, ${}^{4}J_{\text{HH}} = 1.1$ Hz, NArC(4)*H*), 7.74 (2H, d, ${}^{3}J_{\text{HH}} = 7.8$ Hz, NArC^{2,6}H); 13 C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_{C} : 19.8 CH(CH₃)_A(CH₃)_B), 21.8 (CH(CH₃)_A(CH₃)_B), 29.0 (CH(CH₃)₂), 42.3 (NCH₂CH₂), 53.1 (CHAr), 81.5 (C-OH), 118.9 (NArC^{2,6}H), 125.0 (NArC⁴H), 129.6 (ArCH), 132.0 (CHArC¹), 137.9 (NArC¹), 166.7 (C=N), 169.3 (COO), 171.3 (CONAr).

S67

PDA Ch1 211nm			
Peak#	Ret. Time	Area%	
1	16.551	48.026	
Vial #2	22.171	1.345	
3	31.496	49.196	
4	43.701	1.434	
Total		100.000	

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	16.278	94.138
2	21.576	5.461
3	31.276	0.401
Total		100.000

5.16. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-Hydroxy-5-isopropyl-4-(2-morpholino-1-(naphth-1-yl)-2oxoethyl)-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one **31**

To a solution of 3-isopropyl-1-phenyl-1*H*-pyrazole-4,5-dione (54.1 mg, 0.25 mmol), 2-(naphtha-1-yl)acetic anhydride (132.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the major and minor diastereomer (112.5 mg, 96%, >95:5 dr) as an inseparable mixture as a white amorphous solid. $[\alpha]_{D}^{20}$ +286.5 (*c* 1.00, CHCl₃); **IR** v_{max} (film) 3319 (O-H), 3061, 2970, 2928, 2859, 1717 (C=O, pyrazolone), 1645, 1628, 1597, 1491, 1435, 1346, 1223, 1113, 791, 781; HRMS (ESI⁺) $C_{28}H_{30}N_3O_4$ [M+H]⁺ found 472.2219, requires 472.22309 (-2.5 ppm). Data for major diastereomer anti-31: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isoproanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_{R} (1'R,4R)-**31**: 6.5 min, t_{R} (1'S,4S)-**31**: 31.5 min, >99:1 er; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 0.65 (3H, d, J_{HH} 6.6, C(5)CH(CH₃)^A(CH₃)^B), 1.11 (3H, d, J_{HH} 6.8, C(5)CH(CH₃)^A(CH₃)^B), 1.97 (1H, app br s, C(5)CH(CH₃)₂), 2.76 (1H, ddd, J_{HH} 10.6, 7.2, 3.0, NCH₂CH^AH^B), 2.94 (1H, ddd, J_{HH} 13.5, 5.8, 3.0, NCH^AH^BCH₂), 3.18-3.32 (2H, m, NCH^AH^BCH₂ + NCH₂CH^AH^B), 3.48 (1H, ddd, J_{HH} 11.5, 7.4, 3.0, NCH₂CH^CH^D), 3.57 (1H, ddd, J_{HH} 13.3, 7.4, 3.0, NCH^CH^DCH₂), 3.67 (1H, ddd, J_{HH} 11.5, 5.8, 3.0, NCH₂CH^CH^D), 3.79 (1H, ddd, J_{HH} 13.3, 5.8, 3.0, NCH^CH^DCH₂), 4.95 (1H, s, C(1')H), 6.88 (1H, br s, OH), 7.14 (1H, t, J_{HH} 7.4, NArC(4)H), 7.34 (2H, app t, J_{HH} 8.0, NArC(3,5)H), 7.45-7.58 (3H, m, C(1')HArC(3)H + C(1')HArC(7)H + C(1')HArC(6)H), 7.74 (2H, d, J_{HH} 7.8, NArC(2,6)H), 7.81 (1H, d, J_{HH} 7.3, C(1')HArC(2)H), 7.88 (2H, app d, J_{HH} 8.1, C(1')HArC(4)H + C(1')HArC(8)H), 7.95 (1H, d, J_{HH} 8.6, C(1')HArC(5)*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c : 18.7 (C(5)CH(*C*H₃)^A(CH₃)^B), 22.9 (C(5)CH(CH₃)^A(CH₃)^B), 29.5 (C(5)CH(CH₃)₂), 42.7 (NCH^CH^DCH₂), 45.5 (C(1')H), 46.2 (NCH^AH^BCH₂), 65.9 $(NCH_2CH^{A}H^{B})$, 66.5 $(NCH_2CH^{C}H^{D})$, 82.1 (C(4)-OH), 118.9 (NArC(2,6)H), 121.2

(C(1')HArC(5)H), 125.1 (NArC(4)H), 126.3 (C(1')HArC(7)H), 127.6 (C(1')HArC(3)H), 127.8 (C(1')HArC(6)H), 128.1 (C(1')HArC(2)H), 128.8 (NArC(3,5)H), 129.7 (C(1')HArC(4)H), 129.8 (C(1')HArC(8)H), 130.8 (ArC), 134.0 (ArC), 138.0 (NArC(1)), 167.4 (C(5)=N), 170.9 (C(2')=O), 172.9 (C(3)=O); *Data for minor diastereomer syn*-**31**: **HPLC Analysis:** Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*S*,4*R*)-**31**: 9.4 min, t_R (1'*R*,4*S*)-**103**: 14.5 min (not detected); ¹**H NMR** (500 MHz, CDCl₃) (*selected*) δ_{H} : 1.20 (3H, d, *J*_{HH} 6.9, C(5)CH(CH₃)^A(CH₃)^B), 1.36 (3H, d, *J*_{HH} 6.7, C(5)CH(CH₃)^A(CH₃)^B), 2.86 (1H, ddd, *J*_{HH} 12.9, 5.2, 2.2, NCH₂CH₂), 4.81 (1H, s, C(1')H), 6.27 (1H, br s, OH); ¹³C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_{C} : 20.4 (C(5)CH(CH₃)^A(CH₃)^B), 22.2 (C(5)CH(CH₃)^A(CH₃)^B).

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	6.350	49.030
Vial # 2	9.105	0.790
3	13.980	0.824
4	30.642	49.356
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	6.502	97.071
2	9.425	1.847
3	14.526	0.328
4	31.458	0.754
Total		100.000
5.17. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-Hydroxy-4-(2-morpholino-2-oxo-1-phenylethyl)-2,5-diphenyl-

2,4-dihydro-3H-pyrazol-3-one 32

To a solution of 1,3-diphenyl-1H-pyrazole-4,5-dione (62.6 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 μ l, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the major and minor diastereomer (83.0 mg, 73%, 88:12 dr) as an inseparable mixture as a pale yellow amorphous solid. [α]²⁰_D +205.1 (*c* 0.75, CHCl₃); **IR** ν_{max} (film) 3316 (O-H), 3061, 2967 (C-H), 2922 (C-H), 2857 (C-H), 1724 (C=O, pyrazolone), 1639, 1597, 1493, 1111, 752; HRMS (ESI⁺) C₂₇H₂₄N₃O₄Na [M+Na]⁺ found 478.17267, requires 478.17373 (-2.2 ppm). Data for major diastereomer anti-**32**: **HPLC Analysis:** Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**32**: 17.7 min, t_R (1'*S*,4*S*)-**32**: 19.2 min, 96.5:3.5 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 2.97-3.03 (1H, m, NCH₂CH^AH^B), 3.06 (1H, ddd, J_{HH} 13.9, 6.4, 2.8, NCH^AH^BCH₂), 3.10-3.20 (2H, m, NCH^AH^BCH₂ + NCH₂CH^AH^B), 3.44-3.51 (1H, m, NCH^CH^DCH₂), 3.51-3.61 (3H, m, NCH^CH^DCH₂ + NCH₂CH^CH^D + NCH₂CH^CH^D), 4.17 (1H, s, C(1')H), 5.82 (1H, br s, OH), 7.17-7.25 (6H, m, C(5)ArC(3,5)H + C(5)ArC(4)H + C(1')HArC(2,6)H + NArC(4)H), 7.27-7.34 (3H, m, C(1')HArC(3,5)H + C(1')HArC(4)H), 7.43 (2H, app t, J_{HH} 7.8, NArC(3,5)H), 7.77 (2H, d, J_{HH} 7.4, C(5)ArC(2,6)H), 8.0 (2H, d, J_{HH} 8.0, NArC(2,6)H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 42.5 (NCH^CH^DCH₂), 46.4 (NCH^AH^BCH₂), 52.8 (*C*(1')H), 66.1 (NCH₂CH^AH^B), 66.6 (NCH₂CH^CH^D), 80.5 (*C*(4)-OH), 119.1 (NArC(2,6)H), 125.4 (C(1')HArC(2,6)H), 127.2 (C(5)ArC(2,6)H), 128.3 (ArCH), 128.6 (ArCH), 128.8 (ArCH), 129.0 (NArC(3,5)H), 130.0 (C(1')HArC(4)H), 130.4 (C(1')HArC(2,5)H), 131.0 (ArC), 131.0 (ArC), 138.1 (NArC(1)), 156.7 (C(5)=N), 168.8 (C(2')=O) 172.7 (C(3)=O); Data for minor diastereomer syn-32: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'S,4R)-**32**: 41.3 min, t_R (1'R,4S)-**32**: 46.8 min, 97:3 er; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$ (selected) δ_{H} : 2.87 (1H, ddd, J_{HH} 10.8, 7.6, 2.8, NCH₂CH₂), 2.91-2.91 (1H, m,

NCH₂CH₂), 3.28 (1H, ddd, J_{HH} 11.6, 5.6, 3.1, NCH₂CH₂), 3.75-3.85 (2H, m, NCH₂CH₂), 4.33 (1H, s, C(1')H), 6.34 (1H, br s, OH), 7.02-7.06 (2H, m, ArH), 7.57 (2H, d, J_{HH} 8.1, C(5)ArC(2,6)H); ¹³C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_{C} : 42.34 (NCH₂CH₂), 53.7 (C(1')H), 65.7 (NCH₂CH₂), 82.0 (C(4)-OH), 119.4 (NArC(2,6)H), 127.4 (ArCH), 129.4 (ArCH), 131.8 (ArC), 137.4 (NArC(1)), 155.7 (C(5)=N), 169.3 (C(2')=O), 171.8 (C(3)=O).

<Peak Table>

PDA Ch1 211nm

I I Z I II IIII	
Ret. Time	Area%
16.490	43.738
18.040	45.586
39.924	5.385
45.409	5.291
	100.000
	Ret. Time 16.490 18.040 39.924 45.409

<Chromatogram>

PDA Ch1 211nm			
Peak#	Ret. Time	Area%	
1	17.710	85.275	
2	19.235	3.350	
3	41.339	11.008	
4	46.772	0.368	
Total		100.000	

5.18. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-Hydroxy-4-(2-morpholino-1-(naphtha-1-yl)-2-oxoethyl)-2,5diphenyl-2,4-dihydro-3*H*-pyrazol-3-one **33**

To a solution of 1,3-diphenyl-1*H*-pyrazole-4,5-dione (62.6 mg, 0.25 mmol), 2-(naphth-1yl)acetic anhydride (132.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 μ l, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (×2), sat. aq. NaHCO₃ $(\times 2)$, and brine $(\times 1)$. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the major and minor diastereomer (123.6 mg, 98%, >95:5 dr) as an inseparable mixture as a pale yellow amorphous solid. $[\alpha]_{D}^{20}$ +325.2 (c 1.00, CHCl₃); **IR** v_{max} (film) 3271 (O-H), 3057, 2967 (C-H), 2920 (C-H), 2857 (C-H), 1721 (C=O, pyrazolone), 1639, 1595, 1491, 1111, 793, 779; HRMS (ESI⁺) C₃₁H₂₆N₃O₄Na [M+Na]⁺ found 528.18787, requires 528.18938 (-2.9 ppm). Data for major diastereomer anti-33: HPLC Analysis: Chiralpak IB (90:10 hexane:isopropanol, flow rate 1.00 ml·min⁻¹, 211 nm, 30 °C) t_R (2'*R*,4*R*): 18.4 min, t_R (2'*S*,4*S*): 10.9 min, 98:2 er; ¹**H NMR** (500 MHz, CDCl₃) δ_H: 2.75 (1H, ddd, J_{HH} 10.9, 7.6, 3.0, NCH₂CH^AH^B), 2.88 (1H, ddd, J_{HH} 14.2, 6.5, 3.0, NCH^AH^BCH₂), 3.05-3.19 (2H, m, NCH^AH^BCH₂ + NCH₂CH^AH^B), 3.41-3.52 (1H, m, NCH₂CH^CH^D), 3.53-3.66 (2H, m, NCH^cH^DCH₂ + NCH₂CH^cH^D), 3.66-3.80 (1H, m, NCH^cH^DCH₂), 4.94 (1H, s, C(1')H), 6.87 (2H, app t, J_{HH} 7.8, C(5)ArC(3,5)H), 6.99 (1H, t, J_{HH} 7.4, C(5)ArC(4)H), 7.23-7.27 (1H, m, NArC(4)*H*), 7.36 (1H, t, J_{HH} 7.4, C(1')HArC(6)*H*), 7.41-7.51 (6H, m, C(5)ArC(2,6)*H* + C(1')HArC(3)H + NArC(3,5)H + C(1')HArC(7)H), 7.59-7.67 (2H, m, C(1')HArC(4)H + C(1')HArC(5)H), 7.81 (1H, d, J_{HH} 8.6, C(1')HArC(8)H), 7.88 (1H, d, J_{HH} 7.2, C(1')HArC(2)H), 8.05 (2H, d, J_{HH} 7.8, NArC(2,6)H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 42.7 (NCH^CH^DCH₂), 44.6 (C(1')H), 46.2 (NCH^AH^BCH₂), 65.9 (NCH₂CH^AH^B), 66.6 (NCH₂CH^CH^D), 81.7 (C(4)-OH), 119.1 (NArC(2,6)H), 121.5 (C(1')HArC(8)H), 125.3 (ArCH), 125.4 (NArC(4)H), 125.6 (C(1')HArC(6)H), 126.5 (C(5)ArC(3,5)H), 127.2 (C(5)ArC(2,6)H), 128.9 (C(1')HArC(2)H), 129.1 (NArC(3,5)H), 129.4

(C(5)ArC(4)H), 129.5 (C(1')HArC(5)H), 129.6 (C(1')HArC(4)H), 130.6 (C(5)ArC(1)), 131.4 (ArC), 133.9 (C(1')HArC(4a)), 138.2 (NArC(1)), 157.1 (C(5)=N), 170.2 (C(2')=O), 173.3 (C(3)=O); Data for minor diastereomer syn-**33**: **HPLC Analysis:** Chiralpak IB (90:10 hexane:isopropanol, flow rate 1.00 ml·min⁻¹, 211 nm, 30 °C) t_R (2'S,4R): 9.6 min, t_R (2'R,4S): 14.3 min, 61:39 er; ¹H **NMR** (500 MHz, CDCl₃) (*selected*) δ_{H} : 5.20 (1H, s, C(1')H), 7.70 (1H, d, J_{HH} 8.1, ArH); ¹³C{¹H} **NMR** (126 MHz, CDCl₃) (*selected*) δ_{C} : 119.3 (NArC(2,6)H), 128.6 (ArCH), 128.7 (ArCH).

88.88 89.06 89.05

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
Vial #	9.601	2.207
2	10.680	47.929
3	14.250	2.143
4	18.666	47.721
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	9.593	3.410
2	10.905	1.766
3	14.288	2.166
4	18.442	92.658
Total		100.000

5.19. (1'*R*,4*R*)- and (1'*S*,4*R*)-2-(*tert*-Butyl)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1-phenylethyl)-2,4-dihydro-3*H*-pyrazol-3-one **34**

To a solution of 1-(tert-butyl)-3-methyl-1H-pyrazole-4,5-dione (42.1 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 μl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (×2), sat. aq. NaHCO₃ $(\times 2)$, and brine $(\times 1)$. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the product as a single diastereomer (48.5 mg, 52%) as a colourless semi-solid. $[\alpha]^{20}_{\rm D}$ +180.1 (c 0.49, CHCl₃); HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**34**: 4.6 min, t_R (1'*S*,4*S*)-**34**: 3.8 min, >99:1 er; **IR** v_{max} (film) 3366 (O-H), 2974 (C-H), 2926 (C-H), 2859 (C-H), 1705 (C=O, pyrazolone), 1624, 1435, 1366, 1225, 1217, 1113; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.32 (9H, s, NC(CH₃)₃), 1.95 (3H, s, C(5)CH₃), 3.05-3.16 (2H, m, NCH^AH^BCH₂ + NCH₂CH^AH^B), 3.30 (1H, ddd, J_{HH} 14.0, 7.2, 3.1, NCH^AH^BCH₂), 3.46 (1H, ddd, J_{HH} 11.3, 6.4, 3.1, NCH₂CH^AH^B), 3.52-3.66 (2H, m, NCH^CH^DCH₂ + NCH₂CH^CH^D), 3.66-3.75 (2H, m, NCH^CH^DCH₂ + NCH₂CH^CH^D), 4.16 (1H, s, C(1')H), 5.67 (1H, br s, OH), 7.23 (2H, dd, J_{HH} 6.7, 3.0, C(1')HArC(2,6)H), 7.28-7.34 (3H, m, C(1')HArC(3,4,5)H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_C: 16.0 (C(5)CH₃), 28.0 (NC(CH₃)₃, 42.4 (NCH^CH^DCH₂), 46.5 (NCH^AH^BCH₂), 53.4 (C(1')H), 57.4 (NC(CH₃)₃), 66.0 (NCH₂CH^AH^B), 66.7 (NCH₂CH^CH^D), 81.6 (C(4)-OH), 128.7 (C(1')HArC(4)H), 128.9 (C(1')HArC(2,6)H), 129.1 (C(1')HArC(3,5)H), 132.3 (C(1')HArC(1)), 158.2 (C(5)=N), 170.4 (C(2')=O), 172.9 (C(3)=O); HRMS (ESI⁺) C₂₀H₂₈N₃O₄ [M+H]⁺ found 374.2064, requires 374.20733 (-2.8 ppm).

<Peak Table>

₩i9k#c	h1 211nm	
Peak#	Ret. Time	Area%
1	3.773	50.489
2	4.577	49.511
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	3.777	0.349
2	4.563	99.651
Total		100.000

1-yl)-2-oxoethyl)-2,4-dihydro-3*H*-pyrazol-3-one **35**

To a solution of 1-(tert-butyl)-3-methyl-1H-pyrazole-4,5-dione (42.1 mg, 0.25 mmol), 2-(naphth-1-yl)acetic anhydride (132.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 µl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the major and minor diastereomer (95.7 mg, 90%, >95:5 dr) as an inseparable mixture as a white amorphous solid. $[\alpha]_D^{20}$ +233.4 (c 1.00, CHCl₃) IR v_{max} (film) 3387 (O-H), 3051, 2974 (C-H), 2926 (C-H), 2857 (C-H), 1707 (C=O, pyrazolone), 1626, 1435, 1366, 1223, 1215, 1113, 783; HRMS (ESI⁺) C₂₄H₃₀N₃O₄ [M+H]⁺ found 424.2220, requires 424.2231 (-2.7 ppm). Data for major diastereomer anti-106: HPLC Analysis: Chiralpak AD-H (85:15 hexane: isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**35**: 6.3 min, t_R (1'*S*,4*S*)-**35**: 4.9 min, >99:1 er; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 1.02 (9H, s, NC(CH₃)₃), 1.84 (3H, s, C(5)CH₃), 2.77 (1H, ddd, J_{HH} 11.5, 7.2, 3.0, NCH₂CH^AH^B), 2.91 (1H, ddd, J_{HH} 13.5, 6.1, 3.0, NCH^AH^BCH₂), 3.20 (1H, ddd, J_{HH} 13.5, 7.2, 3.1, NCH^AH^BCH₂), 3.27 (1H, ddd, J_{HH} 11.5, 6.1, 3.1, NCH₂CH^AH^B), 3.50 (1H, ddd, J_{HH} 11.3, 7.1, 2.9, NCH₂CH^CH^D), 3.59 (1H, ddd, J_{HH} 13.0, 7.1, 2.8, NCH^CH^DCH₂), 3.67 (1H, ddd, J_{HH} 11.3, 5.9, 2.8, NCH₂CH^CH^D), 3.73 (1H, ddd, J_{HH} 13.0, 5.9, 2.9, NCH^CH^DCH₂), 4.94 (1H, s, C(1')H), 6.13 (1H, br s, OH), 7.45 (1H, app t, J_{HH} 7.7, C(1')HArC(3)H), 7.51 (1H, app t, J_{HH} 7.3, C(1')HArC(7)H), 7.55-7.62 (2H, m, C(1')HArC(2)H + ArC(6)H), 7.83 (1H, d, J_{HH} 8.2, C(1')HArC(4)H), 7.86 (1H, d, J_{HH} 8.0, C(1')HArC(8)H), 8.07 (1H, d, J_{HH} 8.6, C(1')HArC(5)H); ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ_{C} : 15.9 (C(5)CH₃), 27.7 (NC(CH₃)₃), 42.6 (NCH^CH^DCH₂), 46.3 (NCH^AH^BCH₂), 47.4 (C(1')H), 57.1 (NC(CH₃)₃), 65.8 (NCH₂CH^AH^B), 66.6 (NCH₂CH^CH^D), 81.6 (C(4)=O), 122.1 (C(1')HArC(5)H), 125.3 (C(1')HArC(3)H), 126.3 (C(1')HArC(7)H), 127.2 (C(1')HArC(6)H), 127.6 (C(1')HArC(2)H), 128.3 (C(1')HArC(1)), 129.5 (C(1')HArC(8)H), 129.5

S82

(C(1')HArC(4)H), 130.9 (C(1')HArC(8a)), 133.9 (C(1')HArC(4a)), 158.4 (C(5)=N), 171.3 (C(2')=O), 173.3 (C(3)=O); *Data for minor diastereomer syn-***106**: **HPLC Analysis**: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*S*,4*R*)-**35**: 3.9 min, t_R (1'*R*,4*S*)-**35**: 3.6 min (not detected); ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_{H} : 1.31 (9H, s, NC(CH₃)₃, 2.03 (3H, s, C(5)CH₃), 4.72 (1H, s, C(1')H).

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
viai # ₁	3.613	1.148
2	3.939	0.996
3	4.880	49.382
4	6.349	48.475
Total		100.000

<Chromatogram>

mAU

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	3.932	1.552
2	4.877	0.321
3	6.342	98.127
Total		100.000

5.21. (1'R,4R)- and (1'S,4R)-2-(p-Anisyl)-4-hydroxy-5-methyl-4-(2-morpholino-1-(naphtha-

1-yl)-2-oxoethyl)-2,4-dihydro-3*H*-pyrazol-3-one 36

To a solution of 1-(p-anisyl)-3-methyl-1H-pyrazole-4,5-dione (54.6 mg, 0.25 mmol), 2-(naphth-1-yl)acetic anhydride (132.9 mg, 0.375 mmol) and (2*R*,3*S*)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 μ l, 0.31 mmol) was added and the reaction mixture was stirred at 0 $^\circ$ C for 3 h. Morpholine (66 μ l, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (×2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (*n*-hexane : ethyl acetate 4:1 to 1:1) gave the major and minor diastereomer (115.3 mg, 97%, >95:5 dr) as an inseparable mixture as a white amorphous solid. [α]_D²⁰ +319.9 (*c* 1.00, CHCl₃); **IR** ν_{max} (film) 3333 (O-H), 3053, 2963 (C-H), 2918 (C-H), 2857 (C-H), 1713 (C=O, pyrazolone), 1639, 1628, 1508, 1439, 1244, 1113, 1032, 831, 783; **HRMS** (ESI⁺) C₂₇H₂₆N₃O₅Na [M+Na]⁺ found 496.18299, requires 496.18429 (-2.6 ppm). Data for major diastereomer anti-36: HPLC Analysis: Chiralpak AD-H (85:15 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**36**: 18.1 min, t_R (1'S,4S)-**36**: 30.0 min, >99:1 er; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 1.52 (3H, s, C(5)CH₃), 2.76 (1H, ddd, J_{HH} 10.7, 7.3, 2.9, NCH₂CH^AH^B), 2.96 (1H, ddd, J_{HH} 13.6, 5.8, 2.9, NCH^AH^BCH₂), 3.21-3.34 (2H, m, NCH^AH^BCH₂ + NCH₂CH^AH^B), 3.49 (1H, ddd, J_{HH} 11.5, 7.4, 3.0, NCH₂CH^CH^D), 3.59 (1H, ddd, J_{HH} 13.3, 7.4, 3.0, NCH^cH^DCH₂), 3.70 (1H, ddd, J_{HH} 11.5, 5.8, 3.0, NCH₂CH^cH^D), 3.76-3.85 (2H, m, OCH₃ + NCH^CH^DCH₂), 4.92 (1H, s, C(1')H), 6.81-6.88 (2H, m, NAr(3,5)H), 7.18 (1H, br s, OH), 7.46-7.54 (4H, m, NAr(2,6)H + C(1')HArC(3)H + C(1')HArC(7)H), 7.57 (1H, app t, J_{HH} 7.2, C(1')HArC(6)H), 7.80 (1H, d, J_{HH} 7.3, C(1')HArC(2)H), 7.88 (2H, app t, J_{HH} 7.9, C(1')HArC(4)H + C(1')HArC(8)*H*), 7.96 (1H, d, J_{HH} 8.5, C(1')HArC(5)*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_{c} : 15.0 (C(5)CH₃), 42.8 (NCH^CH^D), 44.9 (C(1')H), 46.3 (NCH^AH^B), 55.6 (OCH₃), 65.9 (NCH₂CH^AH^B), 66.6 (NCH₂CH^CH^D), 81.3 (C(4)-OH), 114.0 (NArC(3,5)H), 120.9 (NArC(2,6)H), 121.4 (C(1')HArC(5)H),

S85

125.6 (C(1')HArC(3)H), 126.3 (C(1')HArC(7)H), 127.8 (C(1')HArC(6)H), 127.9 (C(1')HArC(2)H), 129.8 (C(1')HArC(4)H), 129.8 (C(1')HArC(8)H), 130.9 (C(1')HArC), 130.9 (NArC(1)), 134.0 (C(1')HArC(4a)), 157.2 (NArC(4)), 160.5 (C(5)=N), 171.1 (C(2')=O), 172.3 (C(3)=O); Data for minor diastereomer syn-36: HPLC Analysis: Chiralpak AD-H (85:15 hexane:IPA, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'S,4R)-**36**: 13.5 min, t_R (1'R,4S)-**36**: 15.1 min (not detected); ¹H **NMR** (500 MHz, CDCl₃) (*selected*) δ_H: 2.15 (3H, s, CH₃), 4.86 (1H, s, C(1')H).

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
Vial #	13.465	0.622
2	15.067	0.692
3	18.078	49.068
4	29.100	49.618
Total		100.000

<Chromatogram>

PDA Ch1 211nm			
Peak#	Ret. Time	Area%	
1	13.508	1.054	
2	18.083	98.232	
3	29.945	0.714	
Tota	1	100.000	

5.22. (1'*R*,4*R*)- and (1'*S*,4*R*)-2-(*p*-Anisyl)-4-hydroxy-5-methyl-4-(2-morpholino-2-oxo-1phenylethyl)-2,4-dihydro-3*H*-pyrazol-3-one **37**

To a solution of 1-(p-anisyl)-3-methyl-1H-pyrazole-4,5-dione (54.6 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 μ l, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 μl, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (×2), sat. aq. NaHCO₃ $(\times 2)$, and brine $(\times 1)$. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the product as a single diastereomer (76.8 mg, 73%) as a white amorphous solid. $[\alpha]_D^{20}$ +278.3 (c 1.00, CHCl₃); HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**37**: 57.5 min, t_R (1'*S*,4*S*)-**37**: 45.7 min, >99:1 er; **IR** v_{max} (film) 3370 (O-H), 2963 (C-H), 2920 (C-H), 2857 (C-H), 1711 (C=O, pyrazolone), 1622, 1510, 1441, 1244, 1113, 1032, 831; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.96 (3H, s, C(5)CH₃), 3.08-3.19 (2H, m, NCH^AH^BCH₂ + NCH₂CH^AH^B), 3.33 (1H, ddd, J_{HH} 14.0, 7.3, 3.1, NCH^AH^BCH₂), 3.49 (1H, ddd, J_{HH} 11.4, 6.3, 3.1, NCH₂CH^AH^B), 3.54-3.68 (2H, m, NCH^CH^DCH₂ + NCH₂CH^CH^D), 3.69-3.79 (2H, m, NCH^CH^DCH₂ + NCH₂CH^CH^D), 3.80 (3H, s, OCH₃), 4.23 (1H, s, C(1')H), 6.27 (1H, br s, OH), 6.85-6.92 (2H, m, NArC(3,5)H), 7.24-7.27 (2H, m, C(1')HArC(2,6)H), 7.29-7.34 (3H, m, C(1')HArC(3,4,5)H), 7.53-7.59 (2H, m, NArC(2,6)H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 15.7 (C(5)CH₃), 42.5 (NCH^CH^DCH₂), 46.6 (NCH^AH^BCH₂), 52.7 (C(1')H), 55.6 (OCH₃), 66.1 (NCH₂CH^AH^B), 66.7 (NCH₂CH^CH^D), 81.7 (C(4)-OH), 114.1 (NArC(3,5)H), 121.1 (NArC(2,6)H), 128.7 (C(1')HArC(2,6)H), 129.0 (C(1')HArC(4)H), 129.4 (C(1')HArC(3,5)H), 130.8 (C(1')HArC(1)), 132.1 (NArC(1)), 157.3 (NArC(4)), 160.7 (C(5)=N), 170.3 (C(2')=O), 171.3 (C(3)=O); HRMS (ESI⁺) $C_{23}H_{25}N_{3}O_{5}$ [M+H]⁺ found 446.16743, requires 446.16864 (-2.6 ppm).

S88

• • • • • • •

<Peak Table>

₩**19**Å#Ch1 211nm

Peak#	Ret. Time	Area%
1	45.148	50.363
2	57.478	49.637
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	45.678	0.385
2	57.485	99.615
Total		100.000

5.23. (1'*R*,4*R*)- and (1'*S*,4*R*)-4-hydroxy-5-methyl-4-(2-morpholino-1-(naphtha-1-yl)-2oxoethyl)-2-(*p*-trifluoromethylphenyl)-2,4-dihydro-3*H*-pyrazol-3-one **38**

To a solution of 3-methyl-1-(p-trifluoromethylphenyl)-1H-pyrazole-4,5-dione (54.6 mg, 0.25 mmol), 2-(naphth-1-yl)acetic anhydride (132.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 μ l, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. Morpholine (66 μ l, 0.75 mmol) was added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by column chromatography (*n*-hexane : ethyl acetate 4:1 to 1:1) gave the major and minor diastereomer (116.7 mg, 91%, >95:5 dr) as an inseparable mixture as a white amorphous solid. $[\alpha]^{20}_{\text{D}}$ +268.7 (c 1.00, CHCl_3); IR ν_{max} (film) 3323 (O-H), 2967 (C-H), 2924 (C-H), 2859 (C-H), 1724 (C=O, pyrazolone), 1639, 1634, 1612, 1520, 1435 1323, 1163, 1115, 1065, 908, 841, 781; **HRMS** (ESI⁺) C₂₇H₂₅N₃O₄F₃ [M+H]⁺ found 512.1779, requires 512.17917 (-2.4 ppm). Data for major diastereomer anti-38: HPLC Analysis: Chiralpak AD-H (92.5:7.5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*R*,4*R*)-**38**: 13.7 min, t_R (1'*S*,4*S*)-**38**: 31.1 min, 98.5:1.5 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.61 (1H, s, CH₃), 2.72 (1H, ddd, J_{HH} 10.2, 7.0, 2.9, NCH₂CH^AH^B), 2.92 (1H, ddd, J_{HH} 13.4, 5.5, 2.9, NCH^AH^BCH₂), 2.17-3.29 (2H, m, NCH^AH^BCH₂ + NCH₂CH^AH^B), 3.47 (1H, ddd, J_{HH} 11.5, 7.5, 3.0, NCH₂CH^cH^D), 3.55 (1H, ddd, J_{HH} 13.3, 7.5, 3.0, NCH^cH^DCH₂), 3.66 (1H, ddd, J_{HH} 11.5, 5.7, 3.0, NCH₂CH^cH^D), 3.79 (1H, ddd, J_{HH} 13.3, 5.7, 3.0, NCH^cH^DCH₂), 4.94 (1H, s, C(1')H), 6.96 (1H, br s, OH), 7.46-7.61 (5H, m, C(1')HArC(3)H + NArC(3,5)H + C(1')HArC(6)H + C(1')HArC(7)H), 7.77 (1H, d, J_{HH} 7.2, C(1')HArC(2)H), 7.83-7.90 (4H, m, NArC(2,6)H + C(1')HArC(4)H + C(1')HArC(8)H), 7.94 (1H, d, *J*_{HH} 8.6, C(1')HArC(5)H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 14.8 (CH₃), 42.7 (NCH^CH^DCH₂), 45.2 (*C*(1')H), 46.2 (NCH^AH^BCH₂), 65.8 (NCH₂CH^AH^B), 66.5 (NCH₂CH^CH^D), 81.1 (*C*(4)-OH), 118.2 (NArC(2,6)), 121.3 (C(1')HArC(5)H), 124.2 (q, ¹*J*_{CF} 272.2, ArCF₃) 125.5 (C(1')HArC(3)H), 126.1 (q,

S91

³*J_{CF}* 3.8, NAr*C*(3,5)H), 126.3 (C(1')HAr*C*(7)H), 126.6 (q, ²*J_{CF}* 32.5, NAr*C*(4)CF₃), 127.3 (C(1')HAr*C*), 127.8 (C(1')HAr*C*(6)H), 128.1 (C(1')HAr*C*(2)H), 129.8 (C(1')HAr*C*(4)H), 129.9 (C(1')HAr*C*(8)), 130.9 (NAr*C*(1)), 134.0 (C(1')HAr*C*), 140.4 (NAr*C*(1)), 161.2 (*C*(5)=N), 170.6 (C(2')=O), 172.9 (*C*(3)=O); ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ_{F} : -62.12 (*CF*₃); *Data for minor diastereomer syn*-**38**: HPLC Analysis: Chiralpak AD-H (92.5:7.5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (1'*S*,4*R*)-**38**: 15.7 min, t_R (1'*R*,4*S*)-**38**: 16.4 min (not detected); ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_{H} : 2.12 (3H, s, *CH*₃), 4.91 (1H, s, *C*(1')*H*), 5.93 (1H, br s, *OH*); ¹³C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_{C} : 15.3 (*C*H₃), 120.9 (Ar*C*H), 127.0 (Ar*C*H); ¹⁹F NMR (377 MHz, CDCl₃) δ_{F} : -62.07 (*CF*₃).

• • • • • • •

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
viai #	13.155	47.137
2	15.656	1.489
3	16.637	1.873
4	30.359	49.502
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	13.661	96.684
2	16.418	1.913
3	31.140	1.403
Total		100.000

5.24. (1'R,4R)- and (1'S,4R)-2-(4-Hydroxy-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-

4-yl)-2-phenylacetate 39

То а solution of 3-methyl-1-phenyl-1*H*-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-phenylacetic anhydride (95.4 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 µl, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. DMAP (6.1 mg, 0.05 mmol) and methanol (4.0 ml) were added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave the product as a single diastereomer (55.0 mg, 65%) as an off-white semi-solid. $[\alpha]_{D}^{20}$ +225.9 (*c* 0.39, CHCl₃); **HPLC Analysis:** Chiralpak AD-H H (85:15) hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (2'*R*,4*R*)-**39**: 5.1 min, t_R (2'*S*,4*S*)-**39**: 10.5 min, 98:2 er; **IR** v_{max} (film) 3377 (O-H), 2953 (C-H), 2361, 2342, 1738, 1717 (C=O, pyrazolone), 1699, 1597, 1501, 1360, 1202, 1167, 908, 754; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.88 (3H, s, C(3)CH₃), 3.78 (3H, s, OCH₃), 4.01 (1H, s, C(2')H), 4.98 (1H, s, OH), 7.17 (1H, t, J_{HH} 7.4, NArC(4)H), 7.30-7.43 (7H, m, C(2')HArC(2,3,4,5,6)H + NArC(3,5)H), 7.69 (2H, d, J_{HH} 8.1, NArC(2,6)*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 15.0 (C(3)CH₃), 53.0 (OCH₃), 54.9 (C(2')H), 80.4 (C(4)-OH), 119.1 (NArC(2,6)H), 125.6 (NArC(4)H), 128.9 (C(2')HArC(3,5)H), 128.9 (NArC(3,5)H), 129.1 (C(2')HArC(4)H), 129.6 (C(2')HArC(2,6)H), 131.3 (C(2')HArC(1)), 137.4 (NArC(1)), 159.7 (C(3)=N), 171.6 (C(5)=O), 172.2 (C(1')=O); HRMS (ESI⁺) C₁₉H₁₉N₂O₄ [M+H]⁺ found 339.1332, requires 339.1339 (-2.2 ppm).

<Peak Table>

₽₽A#Ch1 211nm		
Peak#	Ret. Time	Area%
1	5.173	49.633
2	10.401	50.367
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	5.147	98.032
2	10.479	1.968
Total		100.000

5.25. iso-Propyl (2R)-2-((4R)-4-Hydroxy-3-methyl-5-oxy-1-phenyl-4,5-dihydro-1H-pyrazol-4-

yl)-2-phenylacetate 40

With 20 mol% DMAP: To a Schlenk tube was added 3-methyl-1-phenylpyrazol-4,5-dione (47.1 mg, 0.25 mmol), phenylacetic anhydride (95.5 mg, 0.375 mmol) and (2*R*,3*S*)-HyperBTM (3.9 mg, 1.25 µmol). EtOAc (6.0 ml, 0.04 M) was added at 0 °C followed by ^{*i*}Pr₂NEt (54 µl, 0.313 mmol). The reaction was stirred at 0 °C for 3 h. ^{*i*}PrOH (7.5 ml) and DMAP (6.1 mg, 50.0 µmol) were added and the mixture was left to be stirred at room temperature for 16 h. The solution was diluted with EtOAc and washed with 1 M aq. HCl twice, aq. sat. NaHCO₃ twice and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue (94:6 d.r.) was further purified by flash column chromatography (Hexanes:EtOAc 47.5:2.5 \rightarrow 45:5 \rightarrow 40:10 \rightarrow 35:15 \rightarrow 25:25) to give the title compound as sole diastereomer as an amorphous brown solid (37.2 mg, 0.102 mmol, 41%).

With 3 mol% DMAP: To a Schlenk tube was added 3-methyl-1-phenylpyrazol-4,5-dione (47.1 mg, 0.25 mmol), phenylacetic anhydride (95.5 mg, 0.375 mmol) and (2*R*,3*S*)-HyperBTM (3.9 mg, 1.25 µmol). EtOAc (6.0 ml, 0.04 M) was added at 0 °C followed by ^{*i*}Pr₂NEt (54 µl, 0.313 mmol). The reaction was stirred at 0 °C for 3 h. ^{*i*}PrOH (7.5 ml) and DMAP (1.0 mg, 8.0 µmol) were added and the mixture was left to be stirred at room temperature for 16 h. The solution was diluted with EtOAc and washed with 1 M aq. HCl twice, aq. sat. NaHCO₃ twice and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue (98:2 d.r.) was further purified by flash column chromatography (Hexanes:EtOAc 47.5:2.5 \rightarrow 45:5 \rightarrow 40:10 \rightarrow 35:15 \rightarrow 25:25) to give the title compound as sole diastereomer as an amorphous brown solid (37.5 mg, 0.102 mmol, 41%).

With 0.5 mol% DMAP: To a Schlenk tube was added 3-methyl-1-phenylpyrazol-4,5-dione (47.1 mg, 0.25 mmol), phenylacetic anhydride (95.5 mg, 0.375 mmol) and (2*R*,3*S*)-HyperBTM (3.9 mg, 1.25 μ mol). EtOAc (6.0 ml, 0.04 M) was added at 0 °C followed by ^{*i*}Pr₂NEt (54 μ l, 0.313 mmol). The reaction was stirred at 0 °C for 3 h. ^{*i*}PrOH (7.5 ml) and DMAP (0.1 M stock in EtOAc, 12 μ l, 1.3 μ mol) were added and the mixture was left to be stirred at room temperature for 16 h. The solution was diluted with EtOAc and washed with 1 M aq. HCl twice, aq. sat.

NaHCO₃ twice and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue (93:7 d.r.) was further purified by flash column chromatography (Hexanes:EtOAc 47.5:2.5 \rightarrow 45:5 \rightarrow 40:10 \rightarrow 35:15 \rightarrow 25:25) to give the title compound as sole diastereomer as an amorphous brown solid (44.1 mg, 0.120 mmol, 48%).

<Peak Table>

mAU

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	7.371	80.249
2	12.739	19.751
Total		100.000

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	7.416	97.365
2	12.877	2.635
Total		100.000

5.26. (1'*R*,4*R*)- and (1'*S*,4*R*)-2-(4-Hydroxy-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1*H*-pyrazol-

4-yl)-2-(naphth-1-yl)-acetate 41

To a solution of 3-methyl-1-(naphth-1-yl)-1H-pyrazole-4,5-dione (47.1 mg, 0.25 mmol), 2-(naphth-1-yl)acetic anhydride (132.9 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 0.125 mmol) were dissolved in ethyl acetate (6 ml, 0.04 M) at 0 °C. Diisopropylethylamine (54 μ l, 0.31 mmol) was added and the reaction mixture was stirred at 0 °C for 3 h. DMAP (6.1 mg, 0.05 mmol) and methanol (4.0 ml) were added and the reaction mixture was stirred for 16 h at rt. The reaction mixture was diluted with ethyl acetate and washed sequentially with 1 M aq. HCl (\times 2), sat. aq. NaHCO₃ (\times 2), and brine (\times 1). The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by column chromatography (n-hexane : ethyl acetate 4:1 to 1:1) gave major and minor diastereomers (55.2 mg, 57%, >95:5 dr) as an inseparable mixture as a white amorphous solid. $[\alpha]_{D}^{20}$ +187.0 (c 0.27, CHCl₃); **IR** v_{max} (film) 3395 (O-H), 3061, 2953 (C-H), 1717 (C=O), 1595, 1501, 1360, 1198, 1165, 978, 783; HRMS (ESI⁺) C₂₃H₂₁N₂O₄ [M+H]⁺ found 389.1493, requires 389.14959 (-0.8 ppm). Data for major diastereomer anti-41: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (2'*R*,4*R*)-**41**: 14.0 min, t_R (2'*S*,4*S*)-**41**: 30.6 min, 95.5:4.5 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.45 (3H, s, C(3)CH₃), 3.76 (3H, s, OCH₃), 4.87 (1H, s, C(2')H), 5.45 (1H, br s, OH), 7.19 (1H, t, J_{HH} 7.4, NArC(4)H), 7.38 (2H, app t, J_{HH} 8.0, NAr(3,5)H), 7.48-7.56 (2H, m, C(2')HArC(4)H + C(2')HArC(7)H), 7.56-7.61 (1H, m, C(2')HArC(3)H), 7.76 (2H, d, J_{HH} 7.9, NArC(2,6)*H*), 7.84-7.92 (2H, m, C(2')HArC(6)*H* + C(2')HArC(5)*H*), 7.96 (1H, d, J_{HH} 7.2, C(2')HArC(8)H), 7.99 (1H, d, J_{HH} 8.5, C(2')HArC(2)H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_c: 14.7 (C(3)*C*H₃), 46.7 (*C*(2')H), 53.1 (O*C*H₃), 80.1 (*C*(4)=O), 119.0 (NAr*C*(2,6)H), 122.3 (*C*(2')HAr*C*(2)H), 125.3 (NArC(4)H), 125.5 (C(2')HArC(4)H), 126.2 (C(2')HArC(7)H), 127.3 (C(2')HArC(8a)), 127.4 (C(2')HArC(3)H), 127.6 (C(2')HArC(8)H), 129.0 (NArC(3,5)H), 129.4 (C(2')HArC(5)H), 129.7 (C(2')HArC(6)H), 131.9 (C(2')HArC(1)), 134.0 (C(2')HArC(4a)), 137.6 (NArC(1)), 159.7 (C(3)=N), 172.2 (C(5)=O), 172.7 (C(1')=O); Data for minor diastereomer syn-41: HPLC Analysis: Chiralpak AD-H (95:5 hexane:isopropanol, flow rate 2.00 ml·min⁻¹, 211 nm, 30 °C) t_R (2'S,4R)-41: 17.3

S103

min, t_R (2'*R*,4*S*)-**41**: 23.4 min, 93.5:6.5 er; ¹H NMR (500 MHz, CDCl₃) (*selected*) δ_H: 1.88 (3H, s, C(3)CH₃), 3.80 (3H, s, OCH₃), 5.03 (1H, s, C(2')H); ¹³C{¹H} NMR (126 MHz, CDCl₃) (*selected*) δ_C: 13.7 (C(3)CH₃), 53.4 (OCH₃), 119.2 (NArC(2,6)H).

<Peak Table>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
viai #	13.431	48.492
2	16.645	0.980
3	22.857	1.048
4	30.635	49.480
Total		100.000

<Chromatogram>

PDA Ch1 211nm		
Peak#	Ret. Time	Area%
1	13.953	91.666
2	17.271	3.818
3	23.433	0.273
4	30.614	4.243
Total		100.000

5.27. Pentamethylene (2*R*)-2-((4*R*)-4-Hydroxy-3-methyl-5-oxy-1-phenyl-4,5-dihydro-1*H*-pyrazol-4-yl)-2-phenylacetamide **42**

To a Schlenk tube was added 3-methyl-1-phenylpyrazol-4,5-dione (47.1 mg, 0.25 mmol), phenylacetic anhydride (95.5 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 1.25 µmol). EtOAc (6.0 ml, 0.04 M) was added at 0 °C followed by i Pr₂NEt (54 µl, 0.313 mmol). The reaction was stirred at 0 °C for 3 h. Piperidine (74 µl, 0.750 mmol) were added and the mixture was left to be stirred at room temperature for 16 h. The solution was diluted with EtOAc and washed with 1 M aq. HCl twice, aq. sat. NaHCO3 twice and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue (92:8 d.r.) was further purified by flash column chromatography (3/5 Enzo, Hexanes:EtOAc 47.5:2.5 \rightarrow 45:5 \rightarrow 40:10 \rightarrow 35:15 \rightarrow 25:25) to give the title compound as sole diastereomer as an amorphous brown solid (66.8 mg, 0.171 mmol, 68%). Characterisation data analysed as 90:10 mixture of diasteromers: α_D^{20} = +1.83 (*c* 3.9 in CDCl₃) @ 90:10 d.r., 99:1 and 98:2 e.r.; **HPLC Analysis**: CHIRALPAK[®] AD-H (5% ⁱPrOH in hexanes, flow rate 1 ml·min⁻¹, 254 nm, 30 °C) t_R (2S,4S)-**42**: 15.1 min, t_R (2*R*,4*R*)-42: 16.9 min, 1:99 e.r. major diastereomer, t_R (2*S*,4*R*)-42: 24.7 min, t_R minor (2*R*,4*S*)-**42**: 16.9 min, 2:98 e.r. minor diastereomer; **IR** *v*_{max} (film) 3370 (br), 3063 (w), 3030 (w), 2938 (m), 2857 (w), 1717 (s), 1614 (s), 1597 (s), 1499 (s), 1445 (s), 1362 (s), 1314 (w), 1246 (m), 1225 (m), 1190 (w), 1126 (m), 1064 (w), 1024 (m), 908 (m); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 0.80 – 0.95 (0.1H, m, N(CH₂CH₂)₂CH₃H_b), 0.96 (0.9H, app dtt, ²J_{HH} = 13.4 Hz, ³J_{HH} = 7.9 Hz, 4.3 Hz, N(CH₂CH₂)₂CH_aH_b), 1.35 (1.0H, app dtt (minor obscured), ²J_{HH} = 13.4 Hz, ³J_{HH} = 7.0 Hz, 3.7 Hz, N(CH₂CH₂)₂CH_aH_b), 1.40 – 1.68 (4.0H, m, N(CH₂CH₂)₂CH₂), 1.91 (2.7H, s, N=C-CH₃), 2.06 (0.3H, s, N=CH₃), 3.15 (1.0H, ddd (minor obscured), ${}^{2}J_{HH}$ = 13.5 Hz, ${}^{3}J_{HH}$ = 6.8 Hz, 3.9 Hz, $N(CH_aH_b)_a(CH_2)_b)$, 3.22 (1.0H, ddd (minor obscured), ²J_{HH} = 13.5 Hz, ³J_{HH} = 6.8 Hz, 3.9 Hz, $N(CH_aH_b)_a(CH_2)_b)$, 3.38 (0.1H, ddd, ²J_{HH} = 12.9 Hz, ³J_{HH} = 8.5 Hz, 2.5 Hz, $N(CH_2)_a(CH_aH_b)_b)$, 3.52 (0.9H, ddd, ${}^{2}J_{HH}$ = 12.9 Hz, ${}^{3}J_{HH}$ = 7.7 Hz, 3.4 Hz, N(CH₂)_a(CH_aH_b)_b), 3.71 (1.0H, ddd (minor obscured), ²J_{HH} = 12.9 Hz, ³J_{HH} = 7.7 Hz, 3.4 Hz, N(CH₂)_a(CH_aH_b)_b), 4.08 (0.1H, s, CH-Ph), 4.23 (0.9H, s, CH-Ph), 6.10 (0.1H, s, OH), 6.75 (0.9H, s, OH), 7.09 - 7.18 (1H, m, N-PhC⁴H), 7.26 -

7.38 (7.0H, m, N-PhC^{3,5}H, CH-PhC^{2,3,4,5,6}H), 7.69 – 7.76 (2.0H, N-PhC^{2,6}H); ¹³C{¹H} NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 14.8 (N=C-CH₃, minor), 15.6 (N=C-CH₃, major), 24.3 (N(CH₂CH₂)_a(CH₂CH₂)_b), 25.4₅ (N(CH₂CH₂)_a(CH₂CH₂)_b, minor), 25.4₉ (N(CH₂CH₂)_a(CH₂CH₂)_b, major), 25.7 (N(CH₂CH₂)₂CH), 43.2 $(N(CH_2CH_2)_a(CH_2CH_2)_b)$ minor), 43.3 $(N(CH_2CH_2)_a(CH_2CH_2)_b,$ major), 47.21 (N(CH₂CH₂)_a(CH₂CH₂)_b, minor), 47.2₄ (N(CH₂CH₂)_a(CH₂CH₂)_b, major), 52.0 (CH-Ph, minor), 52.2 (CH-Ph, major), 80.7 (C-OH, minor), 81.9 (C-OH, major), 118.9 (N-PhC^{2,6}H, minor), 119.1 (N-PhC^{2,6}H, major), 124.9 (N-PhC⁴H, minor), 125.3 (N-PhC⁴H, major), 128.4 (CH-PhC₄H, minor), 128.7 (CH-PhC⁴H, major), 128.8 (N-PhC^{3,5}H, major), 128.9 (CH-PhC^{3,5}H, major), 129.1 (CH-PhC^{2,6}H, major), 129.8 (N-PhC^{3,5}H, minor), 132.1 (CH-PhC¹, minor), 132.5 (CH-PhC¹, major), 137.6 (N-PhC¹, major), 137.9 (N-PhC¹, minor), 160.9 (N=C, minor), 161.0 (N=C, major), 169.1 (CH-C(O)O, minor), 169.7 (CH-C(O)O, major), 170.8 (C(O)N, minor), 172.0 (C(O)N, major), not all signals of the minor diastereomer could be resolved; *m/z* (ESI⁺) 414 ([M+Na]⁺ 100%), 415 ([M(¹³C)+Na]⁺ 28%), 416 ([M(¹³C₂)+Na]⁺ 4%), 805 ([2M+Na]⁺ 69%), 806 ([2M(¹³C)+Na]⁺ 35%), 807 (2[M(¹³C₂)+Na]⁺ 10%); **HRMS** (ESI⁺) C₂₃H₂₅N₃O₃ [M+Na]⁺ found 414.1795, requires 414.1788 (1.6 ppm)

<Peak Table>

PDA Ch1 211nm						
Peak#	Ret. Time	Area%				
1	15.113	49.444				
2	16.885	42.090				
3	24.691	3.935				
4	35.507	4.530				
Total		100.000				

mAU

<Peak Table>

PDA C	h1 211nm	
Peak#	Ret. Time	Area%
1	15.138	0.408
2	16.905	85.795
3	24.684	13.722
4	35.350	0.074
Total		100.000

5.28. (4*R*)-4-((1*R*)-2-oxo-1-phenyl-2-(4-tert-butyloxycarbonylpiperazin-1-yl)ethyl)-4hydroxy-3-methyl-1-phenylpyrazoline-5-one **43**

To a Schlenk tube was added 3-methyl-1-phenylpyrazol-4,5-dione (47.1 mg, 0.25 mmol), phenylacetic anhydride (95.5 mg, 0.375 mmol) and (2R,3S)-HyperBTM (3.9 mg, 1.25 μ mol). EtOAc (6.0 ml, 0.04 M) was added at 0 °C followed by i Pr₂NEt (54 µl, 0.313 mmol). The reaction was stirred at 0 °C for 3 h. N-tert-Butyloxycarbonylpiperazine (139.8 mg, 0.750 mmol) were added and the mixture was left to be stirred at room temperature for 16 h. The precipitate (Ntert-butyloxycarbonyl-N'-phenacylpiperazine) was filtered off, the filtrate was diluted with EtOAc and washed with 1 M aq. HCl twice, aq. sat. NaHCO₃ twice and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue (93:7 d.r.) was further purified by flash column chromatography (3/5 Enzo, Hexanes:EtOAc $40:10 \rightarrow 30:20 \rightarrow 20:30$) to give the title compound as a 90:10 mixture of diastereomers as an amorphous brown solid (81.7 mg, 0.166 mmol, 66%). Characterisation data analysed as 90:10 mixture of diasteromers: α_D^{20} = +1.17 (c 4.9 in CDCl₃) @ 90:10 d.r. and 99:1 e.r.; HPLC analysis: CHIRALPAK® AD-H (5% ⁱPrOH in hexanes, flow rate 1 ml·min⁻¹, 254 nm, 30 °C) t_R (1*R*,4*R*)-43: 23.6 min, t_R (1*S*,4*S*)-43: 36.4 min, >99:1 e.r. major diastereomer; t_R (1*S*,4*R*)-43: 43.9 min, t_R (1*R*,4*S*)-**43**: 48.5 min, >99:1 e.r. minor diastereomer; **IR** v_{max} (film) 3353 (br), 3065 (w), 30032 (w), ,3005 (w), 2978 (m), 2926 (m), 2864 (w), 1717 (m), 1695 (s), 1624 (s), 1597 (m), 1501 (m), 1458 (m), 1418 (s), 1395 (m), 1364 (s), 1285 (m), 1250 (s), 1225 (s), 1163 (s), 1125 (s), 1092 (w), 1028 (m), 995 (m), 908 (s), 862 (m), 750 (s); ¹H NMR (400 MHz, CDCl₃) δ_H 1.41 (9H, s, C(CH₃)₃), 1.92 (2.7H, s, N=CCH₃), 1.97 (0.3H, s, N=CCH₃), 2.59 - 2.70 (0.1H, m, N(CH₂CH_aH_b)NBoc), 2.78 (0.9H, ddd, ${}^{2}J_{HH}$ = 13.4 Hz, ${}^{3}J_{HH}$ = 7.4 Hz, 3.3 Hz, N(CH₂CH_aH_b)_a(CH₂CH₂)_bNBoc), 3.08 – 3.22 (0.9H, m, N(CH_aH_bCH₂)_a(CH₂CH₂)_bNBoc), 3.22 – 3.35 (2.7H, $N(CH_aH_bCH_aH_b)_a(CH_2CH_aH_b)_bNBoc),$ 3.47 3.64 (1.8H, m, m, N(CH₂CH₂)_a(CH_aH_bCH_aH_b)_bNBoc), 3.75 (0.9H, ddd, ²J_{HH} = 14.0 Hz, ³J_{HH} = 6.6 Hz, 3.4 Hz, N(CH₂CH₂)_a(CH_aH_bCH₂)_bNBoc), 4.22 (1H, s, CH-Ph), 5.28 (0.1H, s, OH), 6.41 (0.9H, s(br), OH), 7.12 (0.1H, app t, ${}^{3}J_{HH}$ = 7.5 Hz, N-PhC⁴H), 7.16 (0.9H, app t, ${}^{3}J_{HH}$ = 7.4 Hz, N-PhC⁴H), 7.23 – 7.34 $(5H, m, CH-PhC^{2,3,4,5,6}H), 7.35 (1.8H, dd, {}^{3}J_{HH} = 8.1 Hz, 7.4 Hz, N-PhC^{3,5}H), 7.70 (1.8H, app d, {}^{3}J_{HH})$

= 8.1 Hz, N-PhC^{2,6}H), 7.72 (0.2H, app d, ${}^{3}J_{HH}$ = 8.1 Hz, N-PhC^{2,6}H), not all signals of the minor diastereomer could be resolved; ${}^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ_{C} 14.8 (minor, =CCH₃), 15.6 (major,=CCH₃), 28.4 (major, (CH₃)₃), 42.0 (major, N(CH₂CH₂)_a(CH₂CH₂)_bNBoc), 42.7 (broad, major, N(CH₂CH₂)_a(CH₂CH₂)_bNBoc), 42.7 (broad, major, N(CH₂CH₂)_a(CH₂CH₂)_bNBoc), 43.4 (broad, major, N(CH₂CH₂)_a(CH₂CH₂)_bNBoc), 46.0 (major, N(CH₂CH₂)_a(CH₂CH₂)_bNBoc), 52.6 (broad, major, CH-Ph), 80.6 (major, C(CH₃)₃), 81.7 (C-OH), 119.0 (minor, N-PhC^{2,6}H), 119.1 (major, N-PhC^{2,6}H), 125.1 (minor, N-PhC⁴H), 125.4 (major, N-PhC⁴H), 128.8 (major, CH-PhC^{2,6}H), 128.9 (major, N-PhC^{3,5}H), 129.0 (major, CH-PhC⁴H), 129.4 (major, CH-PhC^{3,5}H), 129.8 (minor, PhCH), 132.1 (major, CH-PhC¹), 137.5 (major, N-PhC¹), 154.4 (NC(=O)O^tBu), 160.7 (N=CCH₃), 170.3 (Ph-CHC(=O)N), 171.8 (Ph-NC(=O)); *m/z* (ESI⁺) 414 ([M-Boc+Na]⁺ 11%), 515 ([M+Na]⁺ 100%), 516 ([M(¹³C)+Na]⁺ 33%), 517 ([M(¹³C₂)+Na]⁺ 6%), 805 (7%); HRMS (ESI⁺) C₂₇H₃₂N₄NO₅Na [M+Na]⁺ found 515.2271, requires 515.2265 (1.1 ppm).

<Peak Table>

PDA Ch1 211nm							
Peak#	Ret. Time	Area%					
1	23.572	42.719					
2	36.410	49.588					
3	43.874	3.694					
4	48.535	3.998					
Total		100.000					

<Peak Table>

PDA Ch1 211nm						
Peak#	Ret. Time	Area%				
1	23.497	91.281				
2	36.695	0.387				
3	43.946	8.316				
4	47.017	0.016				
Total		100.000				

6. Epimerisation Experiments

6.1. Epimerisation of Amide 14

To a 5 ml round bottomed flask was charged with amide **14** (51.6 mg, 0.13 mmol) was added EtOAc (3.0 ml, 0.04 M), ^{*i*}Pr₂NEt (28 μ l, 0.16 mmol) and rac-HyperBTM (2.0 mg, 0.01 mmol). The mixture was stirred for 3 h at 0 °C. Morpholine (33 μ l, 0.38 mmol) was added and the reaction was left to be stirred overnight. The solvent was removed under reduced pressure and the mixture columned through pipette (Hexane:EtOAc 1:1). Analysis by ¹H NMR showed no change suggesting that compound **14** is stable under the reaction conditions.

6.2. Epimerisation of Lactone 13

A sample of Lactone **13** (1.47 μ mol) was transferred to an NMR tube using 750 μ l CDCl₃. Hünig's base (2.5 μ l, 14 μ mol) was added and the reaction was monitored by ¹H NMR.

Figure S1: Monitoring of epimerisation of **13** to **12** using ¹H NMR analysed with MNova.

#	Time [h]	Integral Major (6.051,6.025)	Major [M]·10 ⁸	Integral Minor (5.987,5.958)	Minor [M]·10 ⁸	Integral Hünig's base (3.114,2.979)	d.r. Minor/Major	d.e. Major/Minor
0	0.0						97.0	-0.94
1	0.1	85	2.3	1701	47.0	34654	95.2	-0.90
2	1.6	325	9.0	1460	40.3	34657	81.8	-0.64
3	2.8	490	13.5	1292	35.7	34665	72.5	-0.45
4	3.6	635	17.3	1198	32.6	35190	65.4	-0.31
5	4.6	703	19.5	1059	29.4	34464	60.1	-0.20
6	6.0	868	23.2	980	26.2	35754	53.0	-0.06
7	20.8	1564	38.3	437	10.7	39123	21.8	0.56
8	25.4	1683	40.5	342	8.3	39723	16.9	0.66
9	29.5	1710	40.5	340	8.1	40414	16.6	0.67
10	44.8	1859	41.7	294	6.6	42633	13.6	0.73

Table S2: Data for the monitoring of the epimerisation of **13** to **12** *via* ¹H NMR.

Figure S2: Plot of the change of d.e. over time. Negative d.e. indicates excess of the minor diastereomer **13**, positive d.e. indicates excess of the major diastereomer **12**.

7. Crystallographic Data

X-ray diffraction data for compound (3S,4R)-13 were collected at 125 K using a Rigaku MM-007HF High Brilliance RA generator/confocal optics [Cu K α radiation (λ = 1.54187 Å)] with XtaLAB P200 diffractometer. Diffraction data for compound (1'R,4R)-21 were collected at 173 K using a Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics [Mo Ka radiation ($\lambda = 0.71073$ Å)] with XtaLAB P200 diffractometer. Intensity data for both structures were collected using ω steps accumulating area detector images spanning at least a hemisphere of reciprocal space. Data for both compounds were collected using CrystalClear and processed (including correction for Lorentz, polarization and absorption) using either CrystalClear or CrysAlisPro.^[26] The structures were solved by dual-space methods (SHELXT)^[27] and refined by full-matrix least-squares against F² (SHELXL-2019/3).^[28] Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using a riding model, except for the hydrogen atom bound to oxygen in (1'R,4R)-21 which was located from the difference Fourier map and refined isotropically subject to a distance restraint. Crystals of (35,4R)-13 appeared to degrade under prolonged X-ray exposure, even at low temperatures, leading to lower data quality metrics, and a value of the Flack parameter showing wide error bounds. The compound was determined to be predominantly enantiopure by other analytical techniques, so the absolute structure is considered correctly assigned based on the Flack parameter, despite the value of its standard uncertainty. All calculations were performed using the Olex2 interface.^[29] Selected crystallographic data are presented in Table #. CCDC 2314276-2314277 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

, ,		1
	(3 <i>S</i> ,4 <i>R</i>)- 13	(1' <i>R,</i> 4 <i>R</i>)- 21
formula	$C_{22}H_{16}N_2O_3$	$C_{23}H_{23}Cl_4N_3O_4$
fw	356.37	547.24
crystal description	Colourless needle	Colourless prism
crystal size [mm ³]	0.24×0.02×0.01	0.21×0.12×0.03
temperature [K]	125	173
space group	P212121	P2 ₁ 2 ₁ 2 ₁
a [Å]	6.3985(3)	8.043(2)
b [Å]	11.1440(6)	10.783(3)
<i>c</i> [Å]	24.0417(10)	28.473(8)
vol [Å]³	1714.29(14)	2469.3(11)
Z	4	4
ρ (calc) [g/cm³]	1.381	1.472
μ [mm ⁻¹]	0.757	0.515
F(000)	744	1128
reflections collected	9455	32369
independent reflections (R _{int})	3412 (0.0548)	4495 (0.0574)
parameters, restraints	245, 0	312, 1
GoF on F ²	1.050	1.028
$R_1\left[l>2\sigma(l)\right]$	0.0539	0.0461
wR ₂ (all data)	0.1545	0.1386
largest diff. peak/hole [e/Å ³]	0.243, -0.342	0.477, -0.456
Flack parameter	0.1(2)	-0.02(2)

Table S3: Selected crystallographic data.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1R,4R-21, 3S,4R-13

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 3S,4R-13

Bond precision:	C-C = 0.0061 A	Waveleng	th=1.54184
Cell:	a=6.3985(3) alpha=90	b=11.1440(6)	c=24.0417(10)
Temperature:	125 K	Deca 90	gannia
	Calculated	Reporte	:d
Volume	1714.29(14)	1714.29	(14)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2	ab
Moiety formula	C22 H16 N2 O3	C22 H16	N2 03
Sum formula	C22 H16 N2 O3	C22 H16	5 N2 O3
Mr	356.37	356.37	
Dx,g cm-3	1.381	1.381	
Z	4	4	
Mu (mm-1)	0.757	0.757	
F000	744.0	744.0	
F000'	746.31		
h,k,lmax	7,13,30	7,13,29)
Nref	3474[2022]	3412	
Tmin, Tmax	0.982,0.992	0.579,1	.000
Tmin'	0.834		
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	mits: Tmin=0.579	Tmax=1.000
Data completenes	s= 1.69/0.98	Theta(max) = 74.	390
R(reflections)=	0.0539(2542)		wR2(reflections)= 0.1545(3412)
S = 1.050	Npar= 2	45	

```
The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.
```

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Datablock: 1R,4R-21

Bond precision:	C-C = 0.0063 A	Wavelengt	th=0.71073
Cell:	a=8.043(2) alpha=90	b=10.783(3) beta=90	c=28.473(8) gamma=90
Temperature:	173 K		J

Calculated Reported Volume 2469.4(12) 2469.3(11) P 21 21 21 P 21 21 21 Space group P 2ac 2ab P 2ac 2ab Hall group Moiety formula C22 H22 Cl N3 O4, C H Cl3 C22 H22 Cl N3 O4, C H Cl3 Sum formula C23 H23 C14 N3 O4 C23 H23 C14 N3 O4 547.24 Mr 547.24 1.472 1.472 Dx,g cm-3 Z 4 4 Mu (mm-1) 0.515 0.515 F000 1128.0 1128.0 F000' 1130.78 h,k,lmax 9,12,34 9,12,34 Nref 4513[2595] 4495 Tmin, Tmax 0.929,0.985 0.588,1.000 Tmin' 0.897 Correction method= # Reported T Limits: Tmin=0.588 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.73/1.00 Theta(max)= 25.338 wR2(reflections) = R(reflections) = 0.0462(3977) 0.1390(4495) S = 1.031Npar= 312 The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

 PLAT244_ALERT_4_C Low
 'Solvent' Ueq as Compared to Neighbors of
 C31 Check

 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds
 0.0063 Ang.

 PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L=
 0.600
 8 Report

 3
 3
 0,
 2
 0
 1,
 4
 6
 2,
 4
 1
 3,
 1
 4
 3,
 6
 2
 5,

 1
 6
 5,
 1
 3
 8,
 6
 2
 5,


```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
7 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 29/11/2023; check.def file version of 14/09/2023

Datablock 3S,4R-13 - ellipsoid plot

Datablock 1R,4R-21 - ellipsoid plot

8. Computation

8.1. Computational details

Geometry optimisations were performed with the *meta*-hybrid M06-2X functional^[30] using the double- ζ , def2-SVP basis set from the redefinition of the Ahlrichs family of basis sets.^[31] Implicit solvation was considered through the use of the SMD model employing the parameters of dichloromethane (ϵ = 8.93).^[32] An ultrafine integration grid (99 radial shells with 590 angular points per shell) was used for all calculations and all species were formally treated as closed-shell systems with restricted Kohn-Sham DFT used throughout. The nature of minima and transition states located were verified by the computation of harmonic frequencies at the same level of theory. Single-point energies (E_{sp}) were also evaluated using the M06-2X functional^[30] with a larger, triple- ζ , def2-TZVP basis. Implicit solvation was also included at this level of theory using the same ultrafine integration grid (99,590). Additional empirical dispersion corrections were not included as the functional implicitly accounts for dispersion due to the nature of its construction. Thermochemistry was evaluated at 1 atm and 298.15 K using thermodynamic calculations at the level of geometry optimisation (thermal corrections to enthalpy, $\delta H_{298.15}$, and entropies $S_{298.15}$) in combination with energetics obtained from single-point calculations. Quasi-rigid-rotor entropies were evaluated at 298 K with GoodVibes, $v3.2^{[33]}$ following the Truhlar method and a 100 cm⁻¹ cutoff.^[34] Gibbs free energy was calculated at 298 K using Equation 1, with additional Martin Hay Pratt empirical entropic corrections included (S_{MHP} = 3.52 kcal/mol per particle, evaluated at 382 atm to mimic bulk dichloromethane).^[35] All computations were performed using the Gaussian16, C.01 programme^[36] with visualisation of structures using CYLview20^[37] and GaussView6.1.1^[36] and of non-covalent interactions performed using NCIPlot 4.0.^[38] This and similar levels of DFT have previously been used successfully to rationalise reactivities and selectivities of organocatalytic reactions with isothioureas.^[39]

$$G_{298.15} = E_{sp} + \delta H_{298.15} - TS_{298.15} + S_{MHP}$$
⁽¹⁾

8.2. Interaction and Reorganisation Energies

Following the activation-strain model,^[40] both interaction and reorganisation energies were calculated from the respective geometry by fragmenting into the morpholine nucleophile and spirocyclic electrophile. Single-point energies of the TS and each fragment (in the geometry of the TS) were computed in the gas-phase and the interaction energy is given by Equation **2**. Reorganisation energies are calculated by the gas-phase single-point of the relaxed geometry of each fragment (*e.g.* minima of each reactant) and this is given by Equation **3**.

$$\Delta E_{interaction} = E_{complex} - \Sigma E_{rigid_fragments}$$
(2)

$$\Delta E_{reorg} = \Sigma (E_{rigid_fragment} - E_{relaxed_fragment})$$
(3)

8.3. Computational Discussion

The energy difference between $TS1_{major/minor}$ (and tetrahedral intermediates) is larger than $TS2_{major/minor}$ due to a more pronounced reorganisation required for these species. For nucleophilic attack through the minor pathway, the aromatic group is oriented towards the approaching nucleophile and must move out of the way at a significant energetic cost for this pathway. As such, the major pathway is favoured with $\Delta\Delta E_{reorg} = 10.54$, 6.77 and 2.32 kcal/mol for TS1, the tetrahedral intermediate and TS2 respectively.

Table S4. Comparison of N–H bond lengths across structures. Bond lengths in Å (M06-2X_{SMD}/def2-SVP).

	TS1	tetrahedral intermediate	TS2	morpholine (axial H) ^a	morpholine (equatorial H)	
major	1.025	1.032	1.056	1 0 2 1	1 010	
minor	1.026	1.031	1.054	1.021	1.018	

^{*a*} morpholine was assumed to react in this NH-axial conformation, so that the lactone moiety will end up in the more favourable equatorial position.

8.4. Treatment of Low-Lying Vibrational Frequencies

We found that corrections to the rigid-rotor approximation of harmonic frequencies was important for this system to accurately reproduce the experimental selectivities. These were performed using *quasi-harmonic* (*qh*) corrections from the *GoodVibes*, *v3.2* programme.^[33] In essence, in the simplest case proposed by Truhlar,^[34] vibrational modes below 100 cm⁻¹ are all scaled to 100 cm⁻¹ allow for an identical contribution of each mode towards the entropy of the system. Alternatively, proposed by Grimme,^[41] vibrational modes below 100 cm⁻¹ are treated instead as free-rotors, or rotations, alongside scaling to interpolate between the rotational and harmonic vibrations (this method is used by default in ORCA calculations). More methodological details are available in the references provided.

Regardless of the entropic corrections, calculations of the spirocyclic system gave good agreement with the *enrichment* found in the DyKAT process, with raw electronic energies, enthalpies, and free energies replicating a larger selectivity between the transition states (kinetic) compared to between the two β -lactone diastereomeric [2+2] products (thermodynamic).

Table S5. Comparison of the calculated difference in thermodynamic and kinetic selectivities derived from different energy terms and employing different *quasi-harmonic* corrections to entropy. Relative energy values are in kcal/mol.

	$\Delta\Delta E_{sp}$	ΔΔΗ (E _{sp} + δΗ)	ΔΔ <i>G</i> (E _{sp} + δ <i>H</i> –T.S)	ΔΔ <i>G</i> (<i>qh</i> -Truhlar)	ΔΔ <i>G</i> (<i>qh-</i> Grimme)	ΔΔ <i>G</i> (expt estimate)
thermodynamic	0.29	0.34	-0.22 ^a	0.31	0.07	0.50
kinetic	0.67	1.11	0.58	0.92	0.76	1.18
enrichment	0.38	0.77	0.80	0.61	0.69	0.68

^a negative value indicates that the computational "prediction" was in the wrong direction relative to experiment.

8.5. Computational Data

Raw data and cartesian coordinates obtained from geometry optimisation and frequency calculations with subsequent single-point energy calculations.

morph-axH	morph-eqH		
Frequencies, energies and thermodynamic properties:	Frequencies, energies and thermodynamic properties:		
Lowest Vibrational Mode (1/cm) = 249.9680	Lowest Vibrational Mode (1/cm) = 267.2973		
2nd Lowest Vibrational Mode (1/cm) = 270.7806	2nd Lowest Vibrational Mode (1/cm) = 274.6043		
E(RM062X) (a.u.) = -287.454708902	E(RM062X) (a.u.) = -287.455560158		
Thermal correction to Enthalpy (a.u.) = 0.142096	Thermal correction to Enthalpy (a.u.) = 0.142207		
Thermal correction to Gibbs Free Energy (a.u.) = 0.107445	Thermal correction to Gibbs Free Energy (a.u.) = 0.107658		
Total Entropy (cal/Kmol) = 72.929	Total Entropy (cal/Kmol) = 72.716		
Total Entropy qh-Truhlar (cal/Kmol) = 72.9281	Total Entropy qh-Truhlar (cal/Kmol) = 72.7155		
Total Entropy qh-Grimme (cal/Kmol) = 72.9449	Total Entropy qh-Grimme (cal/Kmol) = 72.7302		
Esp(RM062X) (a.u.) = -287.788872074	Esp(RM062X) (a.u.) = -287.789684184		
Esp(RM062X) gas (a.u.) = -287.777992668	Esp(RM062X) gas (a.u.) = -287.779425383		
Optimised cartesian coordinates (Angstrom):	Optimised cartesian coordinates (Angstrom):		
H 0.000000 1.519036 1.210537	H 0.683423 2.247305 0.000000		
N 0.000000 1.441072 0.192168	N 0.664731 1.229858 0.000000		
C -1.199597 0.718853 -0.221335	C -0.006296 0.740821 1.195832		
C -1.168692 -0.745230 0.197982	C -0.006296 -0.778825 1.166581		
O 0.000000 -1.379398 -0.275319	O -0.635498 -1.262203 0.000000		
C 1.168692 -0.745230 0.197982	C -0.006296 -0.778825 -1.166581		
C 1.199597 0.718853 -0.221335	C -0.006296 0.740821 -1.195832		
H -1.270539 0.768286 -1.321305	H -1.059312 1.086650 1.263397		
H -2.090983 1.213439 0.192125	H 0.524256 1.091294 2.093255		
H -2.027489 -1.296212 -0.211948	H -0.554946 -1.187643 2.026256		
H -1.211802 -0.812927 1.304667	H 1.039278 -1.141624 1.209945		
H 2.027489 -1.296213 -0.211948	H -0.554946 -1.187643 -2.026256		
H 1.211802 -0.812927 1.304667	H 1.039278 -1.141624 -1.209945		
H 1.270539 0.768286 -1.321305	H -1.059312 1.086650 -1.263397		
H 2.090983 1.213439 0.192125	H 0.524256 1.091294 -2.093255		

spire	o-RR	
Fred	uuencies, energies and thermodynar	nic properties:
Low	vest Vibrational Mode (1/cm) =	22 6861
200	Lowest Vibrational Mode (1/cm) =	26 178/
E/D		-1028 25180021
The	rmal correction to Enthalpy (a.u.) =	0 207/22
The	ermal correction to Entitalpy (a.u.) -	0.507452
Tot	al Entropy (col/(mol) -	y (a.u.) = 0.239175
100		143.058
100	al Entropy qn-Iruniar (cal/kmol) =	134.2616
lota	al Entropy qh-Grimme (cal/Kmol) =	135./30/
Esp	(RM062X) (a.u.) =	-1029.49/38538
Esp	(RM062X) gas (a.u.) =	-1029.46998018
Opt	imised cartesian coordinates (Angsti	rom):
0	-1.178723 -1.984905 -1.179012	
С	-0.863305 -1.217552 -0.304758	
Ν	-1.608218 -0.235086 0.305594	
С	-2.950225 0.137657 0.061946	
С	-3.499752 1.214150 0.771596	
С	-4.818262 1.594485 0.536137	
С	-5.599409 0.917053 -0.400169	
С	-5.044669 -0.152279 -1.101647	
С	-3.727497 -0.551324 -0.880093	
Ν	-0.907864 0.397641 1.328267	
С	0.279934 -0.070737 1.401769	
Ċ	1.263806 0.335408 2.437890	
c	0.521063 -1.092814 0.327000	
0	1.091581 -2.337712 0.757088	
c	2 180732 -2 184749 -0 047685	
ĉ		
c	2 515585 0 34/258 -0 663875	
c	3 878231 0 310139 -0 357886	
c	A 610297 1 A98242 -0 307286	
c	2 085548 2 710518 -0 555251	
c	2 6 2 6 2 7 1 5 1 8 -0.55 5 2 5 1	
c	2.023535 2.754577 -0.804535	
C	1.892197 1.570838 -0.923405	
0	3.12/935 -2.892284 -0.105849	
н	-2.891079 1.743459 1.501724	
н	-5.235970 2.433897 1.094795	
н	-6.631/19 1.219816 -0.580/08	
н	-5.642421 -0.694194 -1.836651	
н	-3.307105 -1.388504 -1.430714	
н	2.141949 0.812550 1.977480	
н	1.613486 -0.554250 2.983055	
н	0.795637 1.033956 3.141555	
н	1.313699 -1.130073 -1.710585	
н	4.369496 -0.644294 -0.159937	
н	5.674681 1.465774 -0.068805	
н	4.559437 3.646566 -0.510145	
н	2.129970 3.707565 -1.060981	
н	0.824492 1.593382 -1.160061	

spiro-RS			
Frequencies, ener	gies and thermodynan	nic properties:	
Lowest Vibrational Mode (1/cm) = 16 2854			
2nd Lowest Vibra	tional Mode (1/cm) =	21.6953	
F(RM062X) (a µ)	=	-1028 35135826	
Thermal correction	on to Enthalpy (a u) =	0 307509	
Thermal correction	on to Gibbs Free Energy	$(2 \mu) = 0.38365$	
Total Entropy (cal	/Kmol) =	1/15 525	
Total Entropy (car	Trublar (cal/Kmol) =	12/ 2/27	
Total Entropy qli-		134.3437	
Total Entropy qn-		1000 40602544	
Esp(RIVIOO2A) (a.t	(, , ,) -	1020 46648816	
Esp(RIVIU62X) gas	(a.u.) =	-1029.46648816	
Optimised cartesia	an coordinates (Angstr	om):	
0 -0.014851 0	.266063 -1.707498		
C -0.186077 -0	.490193 -0.785214		
N -1.314721 -0	0.704203 -0.026034		
C -2.577280 -0	.076450 -0.125335		
C -2.768916 1	.014026 -0.985907		
C -4.024284 1	.615567 -1.057337		
C -5.088819 1	.150743 -0.286268		
C -4.887079 0	.066896 0.568287		
C -3.641434 -0	.549581 0.654379		
N -1.154142 -1	760762 0.864957		
C 0.033360 -2	.228449 0.778478		
C 0.528287 -3	.392135 1.555812		
C 0.856099 -1	.427215 -0.183461		
0 1.616866 -2	.132384 -1.171060		
C 2.747514 -1	.423471 -0.889333		
C 2.156988 -0	.720448 0.323748		
C 2.230688 0.	769872 0.472955		
C 1.848946 1	345449 1.690773		
C 1.862719 2	729759 1.849226		
C 2.268369 3	548627 0.794075		
C 2 654732 2	979101 -0 419148		
C 2 631655 1	594330 -0 583315		
0 3 772333 -1	450284 -1 480045		
H -1 946858 1	384161 -1 592774		
H _A 164614 2	A63313 -1 730264		
	620102 0 250204		
	.029102 -0.330217		
	204200 1 222050		
H -3.484025 -1			
H 0.885206 -4	.1/3246 0.8681/4		
п -U.2/5810 -3	./95/31 2.182296		
н 1.3/53/3-3	.098/04 2.19394/		
н 2.509651 -1	.231256 1.233515		
н 1.539005 0	./01814 2.51//51		
н 1.561631 3	.1/0416 2.801049		
H 2.285219 4	.632652 0.919090		
H 2.974146 3	.615192 -1.246207		
H 2.931947 1	.155305 -1.536604		

spiro-TS1-RR_R			
Free	quencies, energies and thermodynar	nic properties:	
Lov	vest Vibrational Mode (1/cm) =	-109.5193	
200	Lowest Vibrational Mode (1/cm) =	20.8819	
E(K	IVIU62X (d.u.) =	-1315.8151/439	
The	ermal correction to Gibbs Free Energ	v(au) = 0.369985	
Tota	al Entropy (cal/Kmol) =	170 809	
Tot	al Entropy (da.) Trublar (cal/Kmol) =	157.3959	
Tot	al Entropy gh-Grimme (cal/Kmol) =	159,5490	
Esp	(RM062X) (a.u.) =	-1317.28568940	
Esp	(RM062X) gas (a.u.) =	-1317.25212731	
Esp	(RM062X) gas nuc (a.u.) =	-287.777479997	
Esp	(RM062X) gas spiro (a.u.) =	-1029.45120475	
Opt	imised cartesian coordinates (Angstr	om):	
0	-0.611590 -1.821219 -0.321327		
С	-0.954194 -0.789406 0.216189		
N	-2.224708 -0.308809 0.402850		
C	-3.458387 -0.884339 0.020260		
c	-3.505958 -2.128110 -0.020270		
c	-5 926468 -1 977837 -0 727781		
c	-5 868854 -0 742082 -0 083286		
c	-4 646315 -0 190942 0 291158		
N	-2.236787 0.875492 1.140544		
С	-1.035985 1.234428 1.394683		
С	-0.693909 2.404737 2.242868		
С	-0.035693 0.296116 0.774677		
0	1.000331 -0.149272 1.633158		
С	2.018690 0.275471 0.736138		
Ν	2.352623 -1.513308 -0.075053		
Н	1.468319 -1.883937 -0.437543		
С	3.352371 -1.360381 -1.128877		
С	3.903747 -2.708457 -1.573013		
0	4.407532 -3.431155 -0.474696		
C	3.412018 -3.664588 0.494958		
C	2.842372 -2.353735 1.016768		
0	3.102118 0.654526 1.103485		
c	0.965942 2.204920 -0.278041		
c	1 992396 3 177630 -0 222849		
c	1 896995 4 538805 -0 523885		
c	0.780756 5.038483 -1.192266		
C	-0.244468 4.168745 -1.572681		
С	-0.148009 2.810659 -1.281483		
Н	-2.588814 -2.671221 -0.836509		
н	-4.767831 -3.629169 -1.496609		
н	-6.887116 -2.404775 -1.019019		
н	-6.786797 -0.193010 0.133926		
н	-4.602144 0.773110 0.793274		
Н	0.000671 2.087226 3.034695		
н	-1.603631 2.819770 2.693064		
н	-0.190134 3.183916 1.651/14		
н	4.164111 -0.743239 -0.711516		
	2.900494 -0.823301 -1.979042		
п	4.729274 -2.308808 -2.284048		
п	2 874745 -4 222140 1 212071		
Н	2.598150 -4.279670 0.062704		
н	3.629174 -1.781422 1.534561		
Н	2.018049 -2.530511 1.720695		
Н	0.939240 0.248795 -1.207148		
н	2.860233 2.788110 0.308797		
н	2.703250 5.212389 -0.227757		
н	0.708335 6.103367 -1.420112		
н	-1.120787 4.550522 -2.099488		
н	-0.952900 2.130425 -1.575179		

spiro-TS1-RS_R
Frequencies, energies and thermodynamic properties:
Lowest Vibrational Mode (1/cm) = -114.3470
2nd Lowest Vibrational Mode (1/cm) = 23.1969
E(RM062X) (a.u.) = -1315.81189079
Thermal correction to Enthalpy (a.u.) = 0.451350
Thermal correction to Gibbs Free Energy (a.u.) = 0.371791
Total Entropy (cal/Kmol) = 167.446
Total Entropy gh-Truhlar (cal/Kmol) = 156.1521
Total Entropy gh-Grimme (cal/Kmol) = 157.7369
Esp(RM062X) (a.u.) = -1317.28286966
Esp(RM062X) gas (a.u.) = -1317.24728287
Esp(RM062X) gas nuc (a.u.) = -287.777406934
$E_{sp}(RM062X)$ gas spiro (a.u.) = -1029.43448115
Ontimised cartesian coordinates (Angstrom)
0 -0 529924 -1 051461 -0 634734
C -0.967524 -0.430708 0.310980
N -2 277076 -0 117287 0 571992
C -3 426344 -0 416311 -0 195833
C = 3.310/77 = 0.875731 = 1.515812
C = 4.464476 = 1.151939 = 2.247458
C = 5.729097 = 0.975690 = 1.687700
C -5 834016 -0 514388 -0 375412
C = 4.694048 = 0.222967 = 0.272265
1 - 4.094048 - 0.233907 - 0.373303
1 - 2.433007 - 0.403040 - 1.017443
C = 1.235035 = 0.040387 = 2.300004
C = -1.102000 = 1.211235 = 5.722305
C = 0.174333 = 0.171030 = 1.470303
C = 1.894080 = 0.019835 = 1.004705
N 2.241480 -0.308430 0.030173
$\square 1.513351 - 0.706082 - 0.070310$
C = 3.380038 - 0.034822 - 0.4700003
$\begin{array}{c} 0 \\ 0 \\ 3.505801 \\ -2.552545 \\ -1.125160 \\ 0 \\ 726058 \end{array}$
C 2.65910 -2.392718 0.393605
0 293/107 0.059979 2.222852
C = 0.956421 + 1.81280 + 1.52761
C 1 122152 1 930238 -0 136056
C 2 362078 2 544645 -0 371386
C 2 583798 3 280913 -1 532136
C 1 561912 3 428329 -2 473085
C 0 319229 2 845114 -2 235436
C 0.097474 2.103773 -1.072330
H -2.330132 -1.019048 -1.962093
H -4.365169 -1.509313 -3.273940
H -6.625612 -1.195018 -2.269209
H -6.815975 -0.369310 0.078388
H -4.775695 0.128353 1.396026
H -0.494448 0.521034 4.326060
H -2.072148 1.373014 4.207052
H -0.561812 2.168325 3.667698
H 4.260984 -0.687775 0.391750
H 3.578688 0.393413 -0.851918
H 5.064120 -1.383055 -1.846639
H 3.388340 -1.460002 -2.460708
H 2.677218 -4.327921 -0.410062
H 1.968127 -3.198435 -1.599131
H 2.794210 -2.527917 1.288107
H 1.129538 -2.634698 0.652428
H 1.005033 1.895061 1.990918
Н 3.157520 2.435387 0.370241
H 3.556216 3.747194 -1.700454
H 1.732419 4.006185 -3.382950
H -0.491941 2.969886 -2.954742
H -0.896087 1.686737 -0.897379

spire	p-TS2-RR_R		spi
Freq	uencies, energies and thermodyna	mic properties:	Fre
Low	vest Vibrational Mode (1/cm) =	-131.2236	Lo
	Lowest Vibrational Mode $(1/cm) =$	22.4310	2n
The	rmal correction to Enthalpy (a.u.) =	0 451050	Th
The	rmal correction to Gibbs Free Energy	zv (a.u.) = 0.371996	Th
Tota	al Entropy (cal/Kmol) =	166.383	То
Tota	al Entropy qh-Truhlar (cal/Kmol) =	155.6006	То
Tota	al Entropy qh-Grimme (cal/Kmol) =	156.9708	То
Esp	(RM062X) (a.u.) =	-1317.27479177	Es
Esp	(RM062X) gas (a.u.) =	-1317.23403868	Es
Esp	(RM062X) gas nuc (a.u.) =	-28/.//363099/	ES
Onti	mised cartesian coordinates (Angst	rom).	L3 On
0	1.111866 1.477398 -0.108336		0
С	1.044927 0.313330 0.278940		С
Ν	2.063846 -0.573763 0.373706		N
С	3.430106 -0.413148 0.050705		C
С	3.950585 0.841983 -0.297588		C
С	5.302370 0.957855 -0.617732		C
C	6.144546 -0.153118 -0.593388		C
C	5.619186 -1.396784 -0.242299		C
C N	4.2/1220 -1.534523 0.078599		C N
C	0 383406 -1 749167 1 132219		N C
c	-0.318165 -2.853297 1.840701		c
c	-0.248026 -0.397524 0.764490		C
0	-0.877306 0.228754 1.771032		0
С	-2.175429 0.729548 -0.013632		С
Ν	-1.512224 2.085787 -0.037499		N
н	-0.469628 1.946036 0.057405		Н
С	-1.751897 2.749489 -1.356711		C
C	-1.102782 4.123267 -1.339801		C
0	-1.597069 4.902904 -0.281931		0
c	-1.322198 4.310406 0.965478		C
0	-3 354946 0 717201 0 140631		0
c	-1.268753 -0.420677 -0.448357		c
c	-2.014242 -1.720394 -0.607288		C
С	-2.997116 -2.127573 0.306296		С
С	-3.609373 -3.372412 0.173917		C
С	-3.241679 -4.234534 -0.860747		С
С	-2.258279 -3.841064 -1.768482		C
C	-1.654798 -2.589205 -1.643960		C
н	3.303141 1.714239 -0.316552		н
п	7 201254 _0 050770 _0 842080		н
н	6 263781 -2 277272 -0 216979		н
н	3.860225 -2.503396 0.354409		н
н	-1.059961 -2.410423 2.519865		н
н	0.404300 -3.451679 2.410519		н
н	-0.847376 -3.510587 1.135859		н
н	-2.839226 2.828072 -1.490237		н
н	-1.324504 2.114217 -2.144474		н
н	-1.332740 4.640348 -2.280000		Н
н	-0.004216 4.013889 -1.262290		н
H U	-1./18534 4.9/1263 1./46559		н
п	-0.229289 4.21/252 1.112921		н
н	-1 692549 2 425078 2 007080		п
н	-0.802748 -0.157402 -1 413377		н
н	-3.268653 -1.472897 1.133548		н
н	-4.374430 -3.675675 0.891042		н
н	-3.721199 -5.210038 -0.959651		н
Н	-1.962892 -4.507062 -2.581242		н
н	-0.886703 -2.282331 -2.358126		Н

spir	p-TS2-RR_S
Free	juencies, energies and thermodynamic properties:
Lov	vest Vibrational Mode (1/cm) = -180.2882
2nc	I Lowest Vibrational Mode (1/cm) = 18.6614
E(R	M062X) (a.u.) = -1315.78461218
The	rmal correction to Enthalpy (a.u.) = 0.451984
The	ermal correction to Gibbs Free Energy (a.u.) = 0.372691
Tot	al Entropy (cal/Kmol) = 166.887
Tot	al Entropy qh-Truhlar (cal/Kmol) = 155.5985
Tot	al Entropy qh-Grimme (cal/Kmol) = 157.1833
Esp	(RM062X) (a.u.) = -1317.26278359
Esp	(RM062X) gas (a.u.) = -1317.21335566
Esp	(RM062X) gas nuc (a.u.) = -287.774445503
Esp	(RM062X) gas spiro (a.u.) = -1029.34241351
Opt	imised cartesian coordinates (Angstrom):
0	1.917597 -0.592881 2.126722
С	1.611285 -0.591019 0.957332
Ν	2.457921 -0.558156 -0.131544
С	3.866111 -0.536342 -0.160177
С	4.527669 -0.335396 -1.381279
С	5.919260 -0.307457 -1.420936
С	6.670263 -0.476309 -0.257446
С	6.007345 -0.677976 0.952561
С	4.615252 -0.711606 1.014173
Ν	1.759327 -0.524764 -1.336625
С	0.502800 -0.522382 -1.100415
С	-0.488380 -0.532298 -2.212048
С	0.174820 -0.636970 0.387871
0	-0.474678 -1.796111 0.711314
С	-1.950065 -0.369426 1.382567
Ν	-2.749261 -0.941187 0.209190
н	-2.020604 -1.256532 -0.447412
С	-3.464179 -2.180305 0.640355
С	-4.207526 -2.764354 -0.545210
0	-5.108657 -1.830938 -1.088810
С	-4.441421 -0.687088 -1.551154
С	-3.696281 0.019911 -0.429550
0	-2.480381 -0.425055 2.450225
С	-0.696679 0.449520 1.065878
С	-0.896021 1.846841 0.519491
С	-2.026167 2.596212 0.877619
С	-2.191627 3.902206 0.420094
С	-1.221427 4.488408 -0.394155
С	-0.082949 3.760652 -0.736588
С	0.080988 2.451226 -0.281127
Н	3.943323 -0.204435 -2.289598
н	6.419661 -0.149897 -2.378287
Н	7.760311 -0.452350 -0.293960
н	6.578382 -0.815243 1.872773
н	4.108149 -0.868340 1.962215
н	-1.229018 0.273276 -2.082359
н	-1.015727 -1.500488 -2.236795
н	0.020150 -0.399181 -3.174895
н	-4.154132 -1.889780 1.440763
н	-2.698301 -2.862611 1.027794
н	-4.783831 -3.636713 -0.212627
н	-3.488259 -3.100352 -1.316847
н	-5.188781 -0.000963 -1.969302
н	-3.728133 -0.953588 -2.354941
н	-4.387317 0.360943 0.353479
н	-3.126291 0.872358 -0.817841
н	-0.258189 0.542884 2.074280
н	-2.786867 2.155131 1.526756
н	-3.080884 4.466170 0.707250
н	-1.348977 5.511189 -0.752479
H	0.690111 4.212790 -1.360315
н	0.989832 1.908061 -0.547535

spiro-TS2-RS_R			
Frec	quencies, energies and thermodynar	nic properties:	
Lov	vest Vibrational Mode (1/cm) =	-82.6504	
2nc	Lowest Vibrational Mode (1/cm) =	13.9111	
E(R	MU62X) (a.u.) =	-1315./9/01844	
The	ermal correction to Gibbs Free Energ	v(au) = 0.3718/6	
Tota	al Entropy (cal/Kmol) =	168 176	
Tota	al Entropy (ed.) (cal/Kmol) =	156.2341	
Tota	al Entropy gh-Grimme (cal/Kmol) =	158.1578	
Esp	(RM062X) (a.u.) =	-1317.27372088	
Esp	(RM062X) gas (a.u.) =	-1317.23300290	
Esp	(RM062X) gas nuc (a.u.) =	-287.773529552	
Esp	(RM062X) gas spiro (a.u.) =	-1029.33482033	
Opti	imised cartesian coordinates (Angsti	rom):	
0	-0.116063 -1.456943 -0.134836		
C	-0.602841 -0.611615 0.612937		
N C	-1.919474 -0.353264 0.810626		
c	-3.050272 -0.931765 0.192663		
c	-4.062800 -2.583203 -1.249571		
c	-5.323029 -2.032208 -1.021340		
c	-5.439192 -0.926457 -0.178736		
C	-4.314601 -0.373100 0.427681		
Ν	-2.122386 0.618626 1.807841		
С	-0.982585 1.012172 2.229010		
С	-0.809211 1.983383 3.336857		
С	0.195950 0.329439 1.541057		
0	1.081642 -0.302194 2.326209		
C	2.414048 0.676627 0.751310		
N	2.514638 -0.685606 0.094673		
н	1.542861 -1.077338 -0.019349		
c	3.109153 -0.507911 -1.249203		
0	A 032889 -2 810765 -1 035969		
c	3.410638 -2.969408 0.216638		
C	3.282155 -1.647248 0.948798		
0	3.442026 1.178963 1.081874		
С	1.050506 1.371079 0.746072		
С	0.572160 2.035173 -0.529967		
С	0.190083 1.326370 -1.679988		
С	-0.267733 2.000112 -2.812514		
С	-0.356726 3.392003 -2.818098		
C	0.015344 4.108509 -1.681219		
C	0.474320 3.434047 -0.550732		
п	-1.947295 -2.485880 -0.829583		
н	-6 207346 -2 461622 -1 494325		
н	-6.417918 -0.482402 0.011839		
н	-4.403142 0.489208 1.085060		
н	-0.079336 1.562608 4.044170		
н	-1.761621 2.180212 3.843644		
Н	-0.398844 2.933763 2.961673		
н	4.157241 -0.119081 -1.082149		
н	2.565432 0.098158 -1.877961		
Н	3.826617 -1.865541 -2.822733		
н	2.289878 -2.366771 -2.061962		
н	4.028909 -3.649731 0.815951		
н	2.411933 -3.430140 0.093413		
н	4.205244 -1.195209 1.131/45		
н	2.713733 -1.736301 1.881/44 1 230232 2 172700 1 775766		
н	0 241774 0 236935 -1 705748		
н	-0.559926 1.429036 -3.695435		
н	-0.717174 3.915688 -3.705125		
н	-0.051709 5.197778 -1.671732		
н	0.764593 4.001019 0.336850		

spiro-TS2-RS_S	
Erequencies energies and thermodyna	amic properties:
Lowest Vibrational Mode (1/cm) -	-227 4478
2 and 1 areas to Vibrational Mode (1/cm) =	-227.4478
	= 12.4531
E(RM062X) (a.u.) =	-1315./91/96/8
Thermal correction to Enthalpy (a.u.)	= 0.451506
Thermal correction to Gibbs Free Ener	rgy (a.u.) = 0.370007
Total Entropy (cal/Kmol) =	171.529
Total Entropy qh-Truhlar (cal/Kmol) =	157.8337
Total Entropy gh-Grimme (cal/Kmol) =	160.1951
Esp(RM062X) (a.u.) =	-1317.26759682
$E_{sp}(RM062X)$ gas (a.u.) =	-1317.21402866
$Fsp(BM062X)$ gas nuc (a μ) =	-287 774715981
$E_{sp}(RM062X)$ gas spiro (a.u.) =	-1029 36218281
Ontimised cartesian coordinates (Angs	trom):
	arony.
0 -0.919407 -0.075995 -2.032965	
C -0.868349 -0.975318 -0.864625	
N -1.934541 -1.173139 -0.001401	
C -3.301955 -0.921089 -0.209224	
C -4.205945 -1.110571 0.848133	
C -5.559981 -0.845610 0.661695	
C -6.035774 -0.387512 -0.567279	
C -5.133329 -0.198390 -1.613404	
C -3.774306 -0.461556 -1.449954	
N -1 523324 -1 695277 1 226648	
C = 0.245472 = 1.754478 = 1.242569	
0 1.485336 -1.689559 -0.546361	
C 1.950654 0.339313 -0.715160	
N 3.334206 -0.058840 -0.186290	
H 3.126734 -0.841459 0.452708	
C 4.189382 -0.599799 -1.277707	
C 5.537977 -0.987752 -0.699027	
O 6.150698 0.105585 -0.058390	
C 5.372982 0.585153 1.007176	
C 4.013404 1.062579 0.522859	
0 1 912479 0 857655 -1 788091	
C 0.878298 0.320316 0.374998	
C -0.709242 1.701824 1.699032	
C -1.740538 2.631646 1.822766	
C -2.203833 3.311676 0.696425	
C -1.631253 3.052523 -0.549478	
C -0.607374 2.113993 -0.678276	
H -3.835535 -1.462549 1.808577	
H -6.249932 -0.998700 1.493821	
H -7.097641 -0.180348 -0.707588	
H -5.487197 0.159000 -2.582402	
H _3 079321 _0 316066 _2 272244	
H 1 222446 -1 587281 2 700070	
H 1.159753 -3.157453 1.970808	
H -0.122992 -2./15201 3.14842/	
H 4.288776 0.193401 -2.028344	
H 3.650584 -1.454811 -1.703375	
H 6.198773 -1.315429 -1.511097	
H 5.416909 -1.829637 0.009249	
H 5.908243 1.424771 1.467848	
H 5.235225 -0.202768 1.772950	
H 4.117090 1.881429 -0.201890	
H 3 380066 1 388250 1 358/33	
H 1 386075 0 225624 1 247406	
п -2.181932 2.825550 2.802000	
н -3.010/14 4.040786 0.788892	
H _1 990974 3 570657 _1 /25115	

H -0.180473 1.895558 -1.656198

spir Fred	p-prod-RR juencies, energies and thermodynamic pro	perties:
Lov	vest Vibrational Mode (1/cm) =	19.0296
2nc	l Lowest Vibrational Mode (1/cm) =	24.2115
E(R	M062X) (a.u.) = -1315.	86393967
The	rmal correction to Enthalpy (a.u.) =	0.452861
The	rmal correction to Gibbs Free Energy (a.u.)	= 0.370589
Tot	al Entropy (cal/Kmol) = 173	3.157
lot	al Entropy qh-Iruhlar (cal/Kmol) =	159.7973
lot	al Entropy qh-Grimme (cal/Kmol) =	162.0030
Esp	(RMU62X) (a.u.) = -131/	.33385951
Opt	Imised cartesian coordinates (Angstrom):	
0	0.326903 2.156157 1.887187	
0	1.208508 1.030981 -0.880505	
0	-4 421809 -2 640928 -0 941272	
N	2 /81805 0 205/15 0 /8997/	
N	2 300316 -0 376048 1 734204	
N	-2 057456 -1 758468 0 286154	
c	0.406287 0.891514 1.283004	
c	1.393641 0.958920 0.105135	
c	1.166203 -0.034132 2.209014	
c	-1.009559 0.375227 0.938752	
н	-1.520463 0.307592 1.910381	
С	-0.937298 -0.998458 0.279857	
С	-3.357227 -1.389311 0.834302	
н	-3.328115 -0.402112 1.305746	
н	-3.637638 -2.131512 1.600389	
С	-4.397060 -1.398582 -0.279717	
н	-5.398207 -1.227249 0.138131	
н	-4.168581 -0.585026 -0.995895	
С	-3.170975 -2.955391 -1.510121	
н	-2.894072 -2.194588 -2.265603	
н	-3.272810 -3.926803 -2.012152	
С	-2.086793 -3.021035 -0.444077	
н	-2.313334 -3.836338 0.262650	
н	-1.102192 -3.195274 -0.890140	
C	-1.784969 1.354089 0.073133	
C	-2.562489 2.348797 0.678530	
н	-2.612069 2.401583 1.768891	
C II	-3.278903 3.259813 -0.099186	
п С	-3.003735 4.020342 0.303103	
c	-2 454885 2 191262 -2 101186	
н	-2 409760 2 126145 -3 189634	
c	-1.733899 1.285654 -1.325106	
н	-1.116711 0.524007 -1.806935	
C	3.663428 -0.068586 -0.226998	
С	3.892746 0.496991 -1.491029	
Н	3.153903 1.159430 -1.933085	
С	5.073648 0.202483 -2.170855	
н	5.240092 0.648238 -3.153333	
С	6.032557 -0.643905 -1.616229	
н	6.953223 -0.867100 -2.157184	
С	5.797306 -1.201585 -0.359218	
н	6.535185 -1.867440 0.092210	
С	4.624542 -0.921442 0.336546	
н	4.442256 -1.358469 1.315934	
С	0.660363 -0.477746 3.533251	
Н	0.357872 0.397155 4.127793	
Н	1.436254 -1.038402 4.068060	
Н	-0.225878 -1.120709 3.409934	
н	-3./92798 3.888007 -2.100276	

spire	o-prod-RS
Frec	quencies, energies and thermodynamic properties:
Lov	vest Vibrational Mode (1/cm) = 19.3398
2nc	Lowest Vibrational Mode (1/cm) = 22.0651
E(R	M062X) (a.u.) = -1315.86124153
The	ermal correction to Enthalpy (a.u.) = 0.452812
The	ermal correction to Gibbs Free Energy (a.u.) = 0.370137
Tota	al Entropy (cal/Kmol) = 174.003
Tota	al Entropy gh-Truhlar (cal/Kmol) = 160.0499
Tota	al Entropy gh-Grimme (cal/Kmol) = 162.4744
Esp	(RM062X) (a.u.) = -1317.33208952
Opti	imised cartesian coordinates (Angstrom):
o	0.309106 -2.358201 1.478301
н	0.270381 -2.030335 2.391845
0	1.661164 0.272798 2.039497
ō	0.164835 1.007759 -0.883685
0	-3.913016 3.490196 -0.177404
N	2.538671 -0.585651 0.056069
N	2 079497 -1 417900 -0 955844
N	-1 638941 1 882534 0 168163
C	0 384927 -1 245405 0 619950
ĉ	1 591381 -0 384835 1 026197
c	0.875478 -1.769637 -0.716595
c	-0.9120/6 -0.412118 0.698631
ц	-1 002971 -0 170866 1 771546
Ċ	-0.775999 0.894901 -0.072843
c	-2 716760 1 857806 1 140428
ц	-2.487164 2.585180 1.046036
	2 210/10 0 257252 1 502825
п С	-2.813413 0.807202 1.003880
L L	-4.023401 2.247937 0.474402
п	-4.510595 1.459520 -0.249071
п С	-4.021005 2.353412 1.225000
L L	-2.910/11 3.400830 -1.10/032
н	-2.888640 4.459019 -1.637737
п С	-3.139304 2.713034 -1.942139
C II	-1.555098 5.140455 -0.504705
	-0.787200 5.044751 -1.341507
п С	-1.25/405 3.94302/ 0.132105
C	-2.143102 -1.191000 0.2/1/22
C	-2.709547 -1.017608 -0.996980
н	-2.269511 -0.304701 -1.699448
C	-3.829166 -1./554/8 -1.382312
н	-4.257965 -1.608591 -2.375134
C	-4.396563 -2.677598 -0.502854
C	-3.842542 -2.852693 0.765867
н	-4.284971 -3.566192 1.463231
C	-2.726499 -2.111082 1.151569
н	-2.3021/1 -2.245819 2.14/954
C	3.834274 -0.037320 -0.041352
C	4.608845 -0.306971 -1.178888
н	4.198438 -0.932128 -1.968976
С	5.890782 0.225675 -1.285745
Н	6.482905 0.007533 -2.176433
С	6.416905 1.028459 -0.273355
н	7.421851 1.443317 -0.362862
С	5.640/63 1.292965 0.854323
Н	6.036454 1.918903 1.656302
С	4.355632 0.768471 0.982170
Н	3.759307 0.980765 1.865359
С	0.130939 -2.707391 -1.597812
Н	-0.642794 -2.173106 -2.167301
Н	-0.371863 -3.474393 -0.990688
Н	0.825138 -3.183546 -2.301326
н	-5.272901 -3.254560 -0.803106

spir	o-tet-RR_R	
Free	quencies, energies and thermodynar	nic properties:
Lov	vest Vibrational Mode (1/cm) =	23.8670
2nc	Lowest Vibrational Mode (1/cm) =	26.0521
E(K	INIU62X) (a.u.) =	-1315.81623477
The	armal correction to Gibbs Free Energy	0.452750
Tot	al Entrony (cal/Kmol) =	169 201
Tot	al Entropy (cal/Kinol) =	157 4969
Tot	al Entropy gh-Grimme (cal/Kmol) =	159 1238
Esp	(RM062X) (a.u.) =	-1317.28747204
Esp	(RM062X) gas (a.u.) =	-1317.25031249
Esp	(RM062X) gas nuc (a.u.) =	-287.776614922
Esp	(RM062X) gas spiro (a.u.) =	-1029.42806291
Opt	imised cartesian coordinates (Angsti	rom):
0	-0.708141 -1.784268 -0.281690	
С	-0.989353 -0.716183 0.228507	
N	-2.223700 -0.156556 0.407067	
C	-3.492219 -0.658890 0.037205	
C	-3.61/891 -1.906691 -0.5909/0	
c	-4.883579 -2.300790 -0.950740	
c	-5.880036 -0.368706 -0.066008	
c	-4 634050 0 110880 0 299035	
N	-2 154536 1 047954 1 111506	
c	-0.930575 1.332093 1.352808	
C	-0.513196 2.517112 2.146345	
С	0.005901 0.310099 0.763489	
0	0.993112 -0.214902 1.618468	
С	2.072636 0.012952 0.636711	
Ν	2.222030 -1.546572 0.005108	
н	1.288946 -1.849576 -0.314904	
С	3.182276 -1.546111 -1.115224	
С	3.456551 -2.966525 -1.582686	
0	3.911263 -3.770224 -0.522582	
C	2.964459 -3.835547 0.516441	
0	2.670068 -2.456100 1.080222	
c	1 0/8/// 0 7299/9 -0 322062	
c	1 188137 2 200402 -0 612536	
c	2.179358 3.007816 -0.042296	
C	2.209936 4.377509 -0.314624	
С	1.253369 4.957109 -1.146884	
С	0.264135 4.156250 -1.722253	
С	0.238575 2.788280 -1.461534	
Н	-2.735712 -2.507761 -0.793644	
н	-4.971924 -3.338802 -1.439300	
н	-7.009957 -1.977764 -0.978699	
н	-6.770853 0.239424 0.142468	
н	-4.528360 1.077646 0.786566	
н	0.308550 2.234513 2.819861	
н	4 097625 -1 073163 -0 734303	
н	2 777503 -0 934261 -1 933190	
н	4.237516 -2.955998 -2.354066	
н	2.538542 -3.399561 -2.025921	
н	3.378051 -4.476285 1.306032	
н	2.027058 -4.298879 0.151042	
н	3.573054 -2.003850 1.512973	
н	1.882719 -2.491324 1.842937	
Н	0.872970 0.191392 -1.264617	
н	2.918780 2.551046 0.613995	
Н	2.988785 4.996819 0.134484	
Н	1.278816 6.029003 -1.351168	
Н	-0.486759 4.598427 -2.379570	
н	-0.536346 2.163153 -1.914029	

spiro-tet-RS R Frequencies, energies and thermodynamic properties: Lowest Vibrational Mode (1/cm) = 22.2416 2nd Lowest Vibrational Mode (1/cm) = 25,5032 -1315.81225293 E(RM062X) (a.u.) = Thermal correction to Enthalpy (a.u.) = 0.452620 Thermal correction to Gibbs Free Energy (a.u.) = 0.371597 Total Entropy (cal/Kmol) = 170.526 Total Entropy qh-Truhlar (cal/Kmol) = 158.2399 Total Entropy qh-Grimme (cal/Kmol) = 160 0793 -1317.28435345 Esp(RM062X) (a.u.) = Esp(RM062X) gas (a.u.) = -1317.24682809 Esp(RM062X) gas nuc (a.u.) = -287.776590530 Esp(RM062X) gas spiro (a.u.) = -1029.41730018 Optimised cartesian coordinates (Angstrom): 0 -0.534848 -1.063222 -0.663435 -0.960973 -0.448092 0.295797 С -2.260559 -0.121266 0.569706 Ν -3.421608 -0.395311 -0.189982 С -3.324644 -0.860097 -1.509588 С -4.489294 -1.113883 -2.232396 С -5.745885 -0.910082 -1.663984 С -5.831812 -0.443653 -0.352138 C -4.680975 -0.185037 0.387877 С -2.402300 0.480418 1.822464 Ν -1.250175 0.601833 2.362545 С -1.031881 1.159904 3.720206 C -0.144442 0.111639 1.465105 C 0.741630 -0.831465 2.028708 0 C 1.946971 -0.136744 1.495235 2.205068 -1.038864 0.087932 Ν 1.390635 -0.923899 -0.534380 н С 3.447623 -0.611334 -0.588813 С 3.778882 -1.537978 -1.747711 0 3.877032 -2.875196 -1.327126 С 2.670417 -3.311960 -0.751680 С 2.292846 -2.471984 0.454844 0 2.974709 -0.088133 2.159510 1.013740 1.085631 1.145066 С 1.152741 1.933458 -0.084713 С С 2.362101 2.630442 -0.247834 2.573573 3.446391 -1.354782 С 1.569793 3.596170 -2.315744 С 0.356900 2.932583 -2.149831 С 0.146725 2.108473 -1.040550 С -2.350554 -1.025227 -1.962039 н -4.404835 -1.475827 -3.258601 н -6.650946 -1.112252 -2.238436 н -6.807289 -0.277325 0.108310 н -4.747600 0.180957 1.410278 н -0.426680 0.455104 4.309177 н -1.992140 1.334958 4.219459 н -0.475183 2.107266 3.663919 н 4.235811 -0.632881 0.175461 н н 3.322998 0.417325 -0.945680 н 4.746596 -1.249324 -2.178404 н 3.007901 -1.440751 -2.536991 н 2.803851 -4.357095 -0.443221 н 1.853766 -3.274664 -1.499390 н 3.056048 -2.545250 1.242756 1.324585 -2.780331 0.863089 н 1.135241 1.726485 2.031788 н 3.144339 2.514840 0.506956 н 3.522711 3.973699 -1.466182 н 1.731228 4.237809 -3.183542 н -0.441493 3.057331 -2.883360 н н -0.826368 1.628951 -0.924508

9. References

- a) A. Krasovskiy, P. Knochel, Synthesis 2006, 2006, 890-891; b) A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281-283.
- [2] Pure Appl. Chem. **1974**, 37, 445-462.
- [3] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923-2925.
- [4] a) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, *29*, 2176-2179; b) H. E. Gottlieb, V. Kotlyar, A. Nudelman, *J. Org. Chem.* 1997, *62*, 7512-7515; c) R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, *Pure Appl. Chem.* 2008, *80*, 59-84; d) R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, *Pure Appl. Chem.* 2001, *73*, 1795-1818.
- [5] a) Pure Appl. Chem. 1976, 45, 217-220; b) Pure Appl. Chem. 1972, 29, 625-628; c) R. K. Harris, J. Kowalewski, S. M. Cabral de Menezes, Pure Appl. Chem. 1997, 69, 2489-2496.
- [6] a) T. R. Hoye, H. Zhao, J. Org. Chem. 2002, 67, 4014-4016; b) T. R. Hoye, P. R. Hanson, J. R. Vyvyan, J. Org. Chem. 1994, 59, 4096-4103.
- [7] a) K. K. Murray, R. K. Boyd, M. N. Eberlin, G. J. Langley, L. Li, Y. Naito, *Pure Appl. Chem.* 2013, 85, 1515-1609; b) J. F. J. Todd, *Pure Appl. Chem.* 1991, 63, 1541-1566.
- [8] a) H. A. Favre, W. H. Powell, Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013, Royal Society of Chemistry, Cambridge, UK, 2014; b) M. A. Brimble, D. S. Black, R. Hartshorn, A. P. Rauter, C.-K. Sha, L. K. Sydnes, Pure Appl. Chem. 2013, 85, 307-313; c) W. Mormann, K.-H. Hellwich, Pure Appl. Chem. 2008, 80, 201-232; d) J. Brecher, Pure Appl. Chem. 2008, 80, 277-410; e) J. Brecher, Pure Appl. Chem. 2006, 78, 1897-1970; f) G. P. Moss, Pure Appl. Chem. 1999, 71, 531-558; g) H. A. Favre, K.-H. Hellwich, G. P. Moss, W. H. Powell, J. G. Trynham, Pure Appl. Chem. 1999, 71, 1327-1330; h) G. P. Moss, Pure Appl. Chem. 1998, 70, 143-216; i) G. P. Moss, Pure Appl. Chem. 1996, 68, 2193-2222; j) W. H. Powell, Pure Appl. Chem. 1993, 65, 1357-1455; k) W. Drenth, Pure Appl. Chem. 1992, 64, 989-990; I) G. P. Moss, Pure Appl. Chem. 1989, 61, 1783-1822; m) J. S. Littler, Pure Appl. Chem. 1989, 61, 57-81; n) R. A. Y. Jones, J. F. Bunnett, Pure Appl. Chem. 1989, 61, 725-768; o) R. D. Guthrie, Pure Appl. Chem. 1989, 61, 23-56; p) W. H. Powell, Pure Appl. Chem. 1988, 60, 1395-1401; q) J. F. Bunnett, R. A. Y. Jones, Pure Appl. Chem. 1988, 60, 1115-1116; r) G. P. Moss, Pure Appl. Chem. 1987, 59, 779-832; s) N. Lozac'h, Pure Appl. Chem. 1986, 58, 1693-1696; t) W. H. Powell, Pure Appl. Chem. 1984, 56, 769-778; u) Pure Appl. Chem. 1984, 56, 595-624; v) W. H. Powell, Pure Appl. Chem. 1983, 55, 409-416; w) J. E. Merritt, K. L. Loening, Pure Appl. Chem. 1983, 51, 2251-2304; x) N. Lozac'h, Pure Appl. Chem. 1983, 55, 1463-1466; y) W. H. Powell, Pure Appl. Chem. 1982, 54, 217-228; z) Pure Appl. Chem. 1982, 54, 211-216; aa) Pure Appl. Chem. 1982, 54, 207-210; ab) J. F. Bunnett, Pure Appl. Chem. 1981, 53, 305-322; ac) Pure Appl. Chem. 1981, 53, 1901-1905; ad) Pure Appl. Chem. 1979, 51, 1995-2003; ae) Pure Appl. Chem. 1979, 51, 353-380; af) L. C. Cross, W. Klyne, Pure Appl. Chem. 1976, 45, 11-30; ag) Pure Appl. Chem. 1974, 40, 315-332; ah) Pure Appl. Chem. 1972, 31, 283-322; ai) Pure Appl. Chem. 1972, 31, 639-646; aj) Pure Appl. Chem. 1971, 28, 1-110; ak) Pure Appl. Chem. 1965, 11, 1-260.
- [9] L. C. Morrill, L. A. Ledingham, J.-P. Couturier, J. Bickel, A. D. Harper, C. Fallan, A. D. Smith, *Org. Biomol. Chem.* **2014**, *12*, 624-636.
- [10] D. G. Stark, L. C. Morrill, D. B. Cordes, A. M. Z. Slawin, T. J. C. O'Riordan, A. D. Smith, Chem. Asian J. 2016, 11, 395-400.
- [11] J. A. King, F. H. McMillan, J. Am. Chem. Soc. **1951**, 73, 4911-4915.
- [12] A. A. M. Roof, H. F. van Woerden, H. Cerfontain, *Tetrahedron* **1976**, *32*, 2967-2971.
- [13] C. Rüchardt, O. Krätz, S. Eichler, *Chem. Ber.* **1969**, *102*, 3922-3946.
- [14] Y. Abdelhamid, K. Kasten, J. Dunne, W. C. Hartley, C. M. Young, D. B. Cordes, A. M. Z. Slawin, S. Ng, A. D. Smith, Org. Lett. 2022, 24, 5444-5449.

- [15] D.-J. Barrios Antúnez, M. D. Greenhalgh, A. C. Brueckner, D. M. Walden, P. Elías-Rodríguez, P. Roberts, B. G. Young, T. H. West, A. M. Z. Slawin, P. Ha-Yeon Cheong, A. D. Smith, *Chem. Sci.* 2019, *10*, 6162-6173.
- [16] H. Sharghi, J. Aboonajmi, M. Mozaffari, M. M. Doroodmand, M. Aberi, *Appl. Organomet. Chem.* **2018**, *32*, e4124.
- [17] Y.-Y. Huang, H.-C. Lin, K.-M. Cheng, W.-N. Su, K.-C. Sung, T.-P. Lin, J.-J. Huang, S.-K. Lin, F. F. Wong, *Tetrahedron* **2009**, *65*, 9592-9597.
- [18] A. L. Nivorozhkin, M. S. Korobov, L. E. Konstantinovskii, L. E. Nivorozhkin, V. I. Minkin, *J. Gen. Chem.* **1985**, *55*, 757-768.
- [19] J. P. Phelan, J. A. Ellman, *Adv. Synth. Catal.* **2016**, *358*, 1713-1718.
- [20] S. Fuse, M. Inaba, S. Sato, M. Joshi, H. Nakamura, *Synthesis* **2018**, *50*, 1493-1498.
- [21] a) A. Kimata, H. Nakagawa, R. Ohyama, T. Fukuuchi, S. Ohta, T. Suzuki, N. Miyata, *J. Med. Chem.* **2007**, *50*, 5053-5056; b) S. Zhou, J. Ren, M. Liu, L. Ren, Y. Liu, P. Gong, *Bioorg. Chem.* **2014**, *57*, 30-42.
- [22] F. Marchetti, C. Pettinari, A. Cingolani, L. Brocanelli, M. Rossi, F. Caruso, J. Organomet. Chem. **1999**, *580*, 344-353.
- [23] S. Mahajan, P. Chauhan, U. Kaya, K. Deckers, K. Rissanen, D. Enders, *Chem. Commun.* **2017**, *53*, 6633-6636.
- [24] P. Chauhan, S. Mahajan, U. Kaya, A. Peuronen, K. Rissanen, D. Enders, J. Org. Chem. 2017, 82, 7050-7058.
- [25] R.-H. Wang, Y.-L. Li, H.-J. He, Y.-C. Xiao, F.-E. Chen, *Chem. Eur. J.* **2021**, *27*, 4302-4306.
- a) CrystalClear-SM Expert, v2.1.: Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan, 2015; b) CrysAlisPro, v1.171.42.49, v1.171.42.82a, v1.171.42.93a: Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, U.K., 2020-2023.
- [27] G. Sheldrick, Acta Crystallogr. A **2015**, 71, 3-8.
- [28] G. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
- [29] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- [30] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* **2008**, *120*, 215-241.
- [31] a) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571-2577; b) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835; c) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065; d) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [32] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [33] G. Luchini, J. Alegre-Requena, I. Funes-Ardoiz, R. Paton, *F1000Research* **2020**, *9*.
- [34] R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* **2011**, *115*, 14556-14562.
- [35] R. L. Martin, P. J. Hay, L. R. Pratt, J. Phys. Chem. A 1998, 102, 3565-3573.
- [36] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox *Gaussian 16 Rev. C.01*: Wallingford, CT, **2016**.
- [37] C. Y. Legault *CYLview20*, Build 0001; Université de Sherbrooke: Sherbrooke, Canada, **2020**.
- [38] R. A. Boto, F. Peccati, R. Laplaza, C. Quan, A. Carbone, J.-P. Piquemal, Y. Maday, J. Contreras-García, J. Chem. Theory Comput. **2020**, *16*, 4150-4158.

- [39] a) C. Wang, S.-J. Li, Q.-C. Zhang, D. Wei, L. Ding, *Catal. Sci. Technol.* 2020, *10*, 3664-3669; b) J.
 Wu, C. M. Young, A. A. Watts, A. M. Z. Slawin, G. R. Boyce, M. Bühl, A. D. Smith, *Org. Lett.* 2022, *24*, 4040-4045.
- [40] F. M. Bickelhaupt, K. N. Houk, *Angew. Chem. Int. Ed.* **2017**, *56*, 10070-10086.
- [41] S. Grimme, *Chem. Eur. J.* **2012**, *18*, 9955-9964.