Supporting Information

Forging Structural Complexity: Diastereoselective Synthesis of Densely Substituted β -Lactams with Dual Functional Handles for Enhanced Core Modifications

Agustin M. Rodriguez Treviño,^[a] Pierre Loch-Temzelides, ^{+[a]} Sanjay Pandiri, ^{+[a]} Justin K. Kirkland,^[b] Michael T. Davenport,^[b] Ulises Aguinaga,^[c] Muhammed Yousufuddin,^[c] Daniel H. Ess,^[b] László Kürti^{*[a]}

- [a] Department of Chemistry, Rice University, Houston, Texas 77030, USA. E-mail: kurti.laszlo@rice.edu
- [b] Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
- [c] Department of Natural Sciences, University of North Texas at Dallas, Dallas, Texas 75241, USA.

TABLE OF CONTENTS

1. General information
2. Preliminary experimental results:4
3. Optimization of the reaction conditions5
4. General procedures for the synthesis of α , β –unsaturated aldehydes7
5. General procedures for the synthesis of carboxylic acids7
6. General procedures for the synthesis of α , β –unsaturated esters8
7. General procedures for the synthesis of hydroxamate esters8
8. General procedures for the synthesis of silyl imino ethers9
9. General procedures for the synthesis of β –lactams9
10. Synthesis and characterization of β –lactams (2) and indolenes (3):10
11. Synthesis and characterization of silyl imino ethers (1):25
12. Synthesis and characterization of hydroxamate esters (12):45
13. Synthesis and characterization carboxylic acids (13):64
14. Synthesis and characterization of α , β –unsaturated esters (13):
15. Synthesis and characterization of α , β -unsaturated aldehydes (14):
16. Procedures and characterization of functionalized $\beta \mathbb{B}$ lactams:
17. Control experiments and procedures and characterization for the synthesis of compound 2a':84
18. X-ray data:
19. Computational studies:
20. Spectroscopic data:

1. General Information

All reactions were carried out in oven-dried glassware unless otherwise noted. When needed, nonaqueous reagents were transferred under argon via syringe or cannula and dried prior to use. Dry solvents were obtained by passing deoxygenated solvents through activated alumina columns (MBraun SPS-800 series Solvent Purification System). Other solvents and reagents were used as obtained from the supplier unless otherwise noted. 1,1,1,3,3,3-Hexafluoroisopropanol (>99.5%) was purchased from Oakwood Chemicals. Analytical TLC was performed using Merck silica gel F254 (230–400 mesh) plates and analyzed by UV light or by staining upon heating with $KMnO_4$ solution (1 g of $KMnO_4$, 6.7 g of K_2CO_3 , 1.7 mL of 1 M NaOH, 100 mL of H₂O). Flash column chromatography was performed using Biotage Isolera One automated chromatograph with pre-packed KP-Sil cartridges using p.a. grade solvents unless otherwise noted. The ¹H and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-d6 on a Bruker Avance DRX-600 spectrometer. The chemical shifts are reported in ppm relative to residual CHCl₃ (δ 7.26) or DMSO (2.50 ppm) for ¹H NMR and CDCl₃ (δ 77.16) DMSO-*d*6 (39.52) for ¹³C NMR. The diastereomeric ratios were determined by ¹H NMR analysis of crude reaction mixtures. Melting points (MP) were determined in open capillaries using a Mettler Toledo MP50 melting point system and are uncorrected. High-resolution mass spectrometric data were measured using Agilent 1290/6230 LCMS-TOF system with electrospray ionization (ESI) in negative/positive mode.

2. Preliminary experimental results:

Naskar et al., 1999:

Proposed mechanism by Zhato et al. and Chattopadhyay et al.:

3. Optimization of the reaction conditions

entry

13

14

15

16

17

18

19

20

21

22

23

Ethanol

HFIP

HFIP

HFIP

HFIP

HFIP

HFIP

HFIP:MeCN

HFIP:Toluene

HFIP:DCM

To an oven-dried 8-mL vial equipped with a magnetic stir bar was added the silyl imino ether **1** (0.5 mmol). The starting material was suspended in the indicated solvent at concentration, followed by the addition of *N*-Bromo succinimide (indicated equivalents). The reaction mixture was then either kept at room temperature or heated to the given temperature for the given time. Finally, excess solvent was evaporated under vacuum and the crude mixture was purified by flash column chromatography to obtain the pure β -lactam **2**. The full optimization table is shown next:

	/		NBS (1.2 equiv.)				
	L		MeCN (0.2 M) reflux, 16 h	Om OM	9		
		1a		2a			
L	Solvent	NBS equivalents	Concentration (M)	Temperature (°C)	Time (h)	Yield (%)	
	CH ₃ CN	1.2	0.2	r.t.	16	0^{a}	
	CH ₃ CN	1.2	0.2	Reflux (82)	16	30	
	Toluene	1.2	0.2	Reflux (110)	16	0^{a}	
	Dioxane	1.2	0.2	Reflux (110)	16	0^{b}	
	HFIP	1.2	0.2	r.t.	1	67	
	Isopropanol	1.2	0.2	r.t.	0.5	0^{b}	
	THF	1.2	0.2	r.t.	3	0^{a}	
	THF	1.2	0.2	40	16	0^{b}	
	CF ₃ CH ₂ OH	1.2	0.2	r.t.	16	31	
	DMF	1.2	0.2	r.t.	1	0^{b}	
	DCM	1.2	0.2	Reflux (40)	16	0^{a}	
	2-Me-THF	1.2	0.2	r.t.	16	0^{b}	
	Diethyl Ether	1.2	0.2	r.t.	16	0^{a}	

Table 1. Optimization of the cyclization reaction to afford monocyclic *N*-alkoxy/aryloxy β -lactams.

Br

r.t.

r.t.

r.t.

r.t.

r.t.

r.t.

r.t.

Reflux (40)

r.t.

r.t.

,0

4

1

1

1

1

1

1

16

1

1

 0^{b}

61

80

76

80

68

47

15

trace

70

отвѕ

1.2

1.0

1.5

2.0

1.5

1.5

1.5

1.5

1.5

1.5

^aThe silyl imino ether **1** remained unreacted and no desired product **2** was observed. ^bThe silyl imino ether **1** was consumed and no desired product **2** was observed.

0.2

0.2

0.2

0.2

0.1

0.5

1.0

0.2

0.2

0.2

 Table 2. Screening of different electrophiles for the cyclization reaction from optimized reaction conditions.

Ô	OTBS		E* (1.5 equiv.)		C N OMe	
	1a				2a	
	entry ^a	Reage	nt	Time (h)	Yield (%)	
	1	NBS	5	1	80	
	2	DBI	[1	78	
	3	Br ₂		0.5	42	
	4	NCS	5	1	21	
	5	DCDN	1H	6	20	
	6	TCC	A	6	31	
	7	I2		16	0^{a}	
	8	NIS		6	39	
	9	Select F	luor	6	0^{a}	
	10	mCPE	BA	3	0^{a}	

^aThe silyl imino ether **1** was consumed and no desired product **2** was observed.

4. General procedures for the synthesis of α , β –unsaturated aldehydes

Method A: Following a modified literature procedure.¹ In a round-bottom flask under Argon atmosphere, α -bromo cinnamaldehyde (1.0 equiv.), boronic acid (1.1 equiv.), Pd(PPh₃)₄ (2 mol%) and K₂CO₃ (3.0 equiv.) were dissolved in toluene-H₂O (7:3, 0.3 M) mixture. The reaction mixture was heated to 100 °C overnight. After completion of the reaction, the reaction was diluted with EtOAc and partitioned with H₂O. It was extracted twice with EtOAc and the combined organic layers were dried over Na₂SO₄. The reaction mixture was then concentrated *in vacuo* and it was purified by column chromatography on silica gel (hexanes:EtOAc) to afford the corresponding α , β -unsaturated aldehydes.

5. General procedures for the synthesis of carboxylic acids

Method A: Following a modified literature procedure.² In a round-bottom flask open to air, the corresponding cinnamaldehyde (1.0 equiv.) was dissolved in *t*-BuOH (0.5 M) at room temperature. Then NaClO₂ (3.7 equiv.) was added, followed by H₂O (0.5 M) and 2-methyl-2-butene (9.0 equiv.). Finally, NaH₂PO₄ (5.0 equiv.) was added, and the reaction mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full conversion, saturated NH₄Cl was added, and the reaction mixture was extracted with EtOAc three times. The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted three times with NaHCO₃. The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted three times with DCM. The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded the corresponding α , β -unsaturated carboxylic acids without further purification.

Method B: Following a modified literature procedure.³ In a round-bottom flask open to air, LiOH (1.2 equiv.) was dissolved in THF:H₂O (1:1, 0.25 M) at room temperature. The reaction mixture was then cooled down to 0 °C using an ice-water bath. Then the corresponding methyl ester (1.0 equiv.) was added slowly.

¹ Matsuda, T., Sakurai, Y. *Eur. J. Org. Chem.* **2013**, 2013, 4219–4222.

² Yang, C., Li, F., Wu, T.R., Cui, R., Wu, B.B., Jin, R.X., Li, Y., Wang, X.S. Org. Lett. 2021, 23, 8132–8137.

³ Niwayama, S. Cho, H., Lin, C. *Tetrahedron Lett.* **2008**, 49, 4434–4436.

After complete addition, the reaction mixture was allowed to worm to room temperature, and it was monitored by TLC. After full consumption of the starting material, the solvent was removied *in vacuo* and conc. NaHCO₃ was added to the reaction mixture. It was then partitioned in DCM, and it was extracted three times with DCM. The aqueous layer was then carefully acidified with 3 M HCl, and it was extracted three times with DCM. The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded the corresponding carboxylic acids without further purification.

6. General procedures for the synthesis of α , β -unsaturated esters

Method A: Following a modified literature procedure.⁴ In a flame-dried round bottom flask under Argon atmosphere, sodium hydride (60% dispersion in mineral oil, 1.2 equiv.) was suspended in dry THF (0.3 M). Trimethyl phosphonoacetate (1.2 equiv.) was then added slowly at room temperature. After 5 min, the appropriate aldehyde or ketone (1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature; it was partitioned with H₂O and extracted three times with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (hexanes:EtOAc) to afford the corresponding α , β -unsaturated methyl esters.

7. General procedures for the synthesis of hydroxamate esters

Method A: In an oven-dried round-bottom flask under Argon atmosphere, the hydroxylamine hydrochloride (1.0 equiv.) was suspended in THF:DCM (1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (1.5 equiv.) was added, and the reaction mixture was allowed to stir for 20 min at 0 °C. HOBt hydrate (1.0 equiv.) and the carboxylic acid (1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was washed once with HCl (3 M), followed by one wash with conc. NaHCO₃ and finally with H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (hexanes:EtOAc) to afford the corresponding hydroxamate esters.

⁴ Duan, Z.C., Hu, X.P., Zhang, C., Zheng, Z. J. Org. Chem. **2010**, 75, 8319–8321.

Method B: In a flame-dried round-bottom flask under Argon atmosphere, the hydroxylamine hydrochloride (2.0 equiv.) was suspended in dry Toluene (0.2 M). The reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, the corresponding ester (1.0 equiv.) was added, and the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with HCl (3M) until gas evolution ceased. The reaction mixture was then partitioned with H₂O and extracted three times with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (hexanes:EtOAc) to afford the corresponding hydroxamate esters.

8. General procedures for the synthesis of silyl imino ethers

In a flame-dried round bottom flask under Argon atmosphere, the corresponding hydroxamate ester (1.0 equiv.) was dissolved in dry THF (0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 30 to 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with H₂O and extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (hexanes:EtOAc) to afford the corresponding silyl imino ethers.

9. General procedures for the synthesis of β-lactams

In an 8-mL scintillation vial open to air, the corresponding silvl imino ether (0.5 mmol) was dissolved in HFIP (0.2 M). NBS (1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (hexanes:EtOAc) to afford the corresponding β -lactam.

10. Synthesis and characterization of lactams (2) and indolenes (3):

Rac 3-bromo-1-methoxy-4-phenylazetidin-2-one (2a)

Following the general procedures for the synthesis of β –lactams, in an 8-mL scintillation vial open to air, compound **1a** (145.7 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford rac 3-bromo-1-methoxy-4-phenylazetidin-2one **2a** as a colorless oil (102 mg, 80%).

¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.42 (m, 3H), 7.40 – 7.38 (m, 2H), 4.93 (d, *J* = 1.7 Hz, 1H), 4.33 (d, *J* = 1.7 Hz, 1H), 3.80 (s, 3H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 160.4, 134.4, 129.9, 129.4, 126.7, 70.6, 64.1, 46.2.

HRMS: Calculated [M+H]⁺ for C₁₀H₁₁BrNO₂⁺: 255.9968, found: 255.9959.

FTIR (cm⁻¹): 3005, 2939, 2825, 1780, 1497, 1456, 1364, 1204, 11146, 1035, 975, 724, 696.

rac 1-(benzyloxy)-3-bromo-4-pehnylazetidin-2-one (2b)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1b** (183.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-

4-pehnylazetidin-2-one **2b** as a colorless oil (132.9 mg, 80%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.32 (m, 8H), 7.22 – 7.19 (m, 2H), 5.03 (d, *J* = 11.3, 1H), 4.94 (d, *J* = 11.3, 1H), 4.42 (d, *J* = 1.6, 1H), 4.24 (d, *J* = 1.6, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 160.7, 134.5, 134.3, 129.7, 129.6, 129.4, 129.3, 128.9, 126.7, 78.7, 72.0, 46.1. HRMS: Calculated [M+H]⁺ for C₁₆H₁₅BrNO₂⁺: 332.0281, found: 332.0288

FTIR (cm⁻¹): 3033, 3005, 2948, 1785, 1522, 1497, 1456, 1360, 1204, 1076, 1034, 956, 907, 740, 696.

rac 3-bromo-1-((4-methoxybenzyl)oxy)-4-phenylazetidin-2-one (2c)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1c** (198.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by

column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 3-bromo-1-((4-methoxybenzyl)oxy)-4-phenylazetidin-2-one **2c** as a colorless oil (72.5 mg, 40%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.37 (m 3H), 7.27 – 7.24 (m, 2H), 7.22 – 7.20 (m, 2H), 6.89 – 6.86 (m 2H), 4.98 (d, *J* = 11.1 Hz, 1H), 4.87 (d, *J* = 11.1 Hz, 1H), 4.43 (d, *J* = 1.6 Hz, 1H), 4.24 (d, *J* = 1.6 Hz, 1H), 3.83 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 160.7, 160.6, 134.4, 131.4, 129.7, 129.2, 129.2, 126.7, 126.5, 114.2, 78.3, 72.0, 55.5, 46.1.

HRMS: Calculated [M+H]⁺ for C₁₇H₁₇BrNO₃⁺: 362.0386, found: 362.0386 **FTIR (cm⁻¹):** 3033, 3003, 2937, 2837, 1781. 1611, 1513, 1456, 1303, 1250, 1175, 1029, 953, 849, 819, 725, 696.

rac 3-bromo-1-((tert-butyldimethylsilyl)-oxy)-4-phenylazetidin-2-one (2d)

Following the general procedures for the synthesis of β –lactams, in an 8-mL scintillation vial open to air, compound **1d** (195.9 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 3-bromo-1-((*tert*-butyldimethylsilyl)- oxy)-4-phenylazetidin-2-one **2d** as a colorless oil (121.2 mg, 68%).

¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.41 (m, 3H), 7.35 – 7.34 (m, 2H), 4.81 (d, *J* = 1.5 Hz, 1H), 4.34 (d, *J* = 1.5 Hz, 1H), 0.89 (s, 9H), 0.22 (s, 3H), 0.16 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 160.3, 134.2 129.7, 129.3, 126.9, 126.9, 73.1, 46.2, 25.6, -4.8, -4.8.

HRMS: Calculated [M+H]⁺ for C₁₅H₂₃BrNO₂Si⁺: 356.0676, found: 356.0683

FTIR (cm⁻¹): 2952, 2931, 2886, 2886, 1785, 1472, 1457. 1255, 1033, 958, 833, 788, 734, 696.

rac 3-bromo-1-phenoxy-4-phenylazetidin-2-one (2e)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1e** (176.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 3-bromo-1-phenoxy-4-

phenylazetidin-2-one **2e** as a pale-pink solid (79.5 mg, 50%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.41 (m, 5H), 736 – 7.35 (m, 3H), 6.96 – 6.95 (m, 2H), 5.08 (d, *J* = 1.8 Hz, 1H), 4.48 (d, *J* = 1.9 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 161.3, 157.3, 133.6, 132.9, 130.0, 129.5, 126.8, 117.2, 116.7, 71.8, 45.5.

HRMS: Calculated [M+H]⁺ for C₁₅H₁₃BrNO₂⁺: 318.0124, found: 318.0126

Melting Point: 96.2 – 97.2 °C

FTIR (cm⁻¹): 3093, 3065, 3018, 2938, 1797, 1580, 1479, 1456, 1365, 1192, 1166, 1154, 1144, 1073, 1036, 1006, 949, 848, 820, 754 725, 696.

rac 1-(benzyloxy)-3-bromo-4-(naphthalen-2-yl)azetidin-2-one (2f)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1f** (208.8.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in*

vacuo and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1- (benzyloxy)-3-bromo-4-(naphthalen-2-yl)azetidin-2-one **2f** as a white solid (91.7 mg, 48%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.87 – 7.81 (m, 3H), 7.67 (s, 1H), 7.59 – 7.52 (m, 2H), 7.39 – 7.30 (m, 5H), 7.28 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.05 (d, *J* = 11.3 Hz, 1H), 4.96 (d, *J* = 11.3 Hz, 1H), 4.59 (d, *J* = 1.6 Hz, 1H), 4.33 (d, *J* = 1.7 Hz, 1H).

 13 C NMR (150 MHz, CDCl₃) δ 160.8, 134.5, 133.9, 133.2, 131.6, 129.7, 129.6, 129.4, 129.4, 128.9, 128.2, 128.0, 127.1, 127.0, 123.1, 78.7, 72.3, 46.1.

HRMS: Calculated [M+H]⁺ for C₂₀H₁₇BrNO₂⁺: 404.0257, found: 404.0257

Melting Point: 95.6 – 98.5 °C

FTIR (cm⁻¹): 33.94, 32.65, 3059, 3031, 2942, 1780, 1455, 1310, 1209, 1180, 1159, 1031, 967, 946, 905, 785, 750, 695.

rac 1-(benzyloxy)-3-bromo-4-(naphthalen-1-yl)azetidin-2-one (2g)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1g** (208.8.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and

purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-4-(naphthalen-2-yl)azetidin-2-one **2g** as a colorless oil (91.7 mg, 48%).

¹H NMR (600 MHz, CDCl₃) δ 7.91 – 7.90 (m, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.81 – 7.80 (m, 1H), 7.60 – 7.58 (m, 1H), 7.57 – 7.55 (m, 2H), 7.48 (dd, *J* = 8.2, 7.2 Hz, 1H), 7.41 – 7.39 (m, 2H), 7.38 – 7.33 (m, 3H), 5.19 (s, 1H), 5.18 (d, *J* = 11.1 Hz, 1H), 5.08 (d, *J* = 11.1 Hz, 1H), 4.20 (d, *J* = 1.6 Hz, 1H).

 13 C NMR (150 MHz, CDCl₃) δ 160.2, 134.2, 133.8, 131.1, 130.6, 129.9, 129.8, 129.6, 129.6, 129.2, 129.0, 129.0, 127.2, 126.5, 125.6, 123.5, 122.8, 78.5, 69.3, 46.1.

HRMS: Calculated [M+H]⁺ for C₂₀H₁₇BrNO₂⁺: 404.0257, found: 404.0261

FTIR (cm⁻¹): 3090, 3062, 3033, 3007, 2945, 2881, 1785, 1497, 1455, 1324, 1180, 1044, 947, 797, 792, 780, 766, 698.

rac 3-chloro-1-methoxy-4-phenylazetidin-2-one (2h)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1a** (145.7 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NCS (100.1 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford rac 3-chloro-1-methoxy-4-phenylazetidin-2one **2h** as a colorless oil (22.2 mg, 21%).

¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.42 (m, 3H), 7.39 – 7.38 (m, 2H), 4.85 (d, *J* = 1.7 Hz, 1H), 4.35 (d, *J* = 1.7 Hz, 1H), 3.81 (s, 3H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 160.2, 134.2, 129.9, 129.4, 126.8, 70.6, 64.2, 59.8.

HRMS: Calculated [M+H]⁺ for C₁₀H₁₁ClNO₂⁺: 212.0473, found: 212.0477.

FTIR (cm⁻¹): 3033, 2990, 2940, 1789, 1498, 1457, 1365, 1076, 1040, 980, 740, 698.

rac 3-iodo-1-methoxy-4-phenylazetidin-2-one (2i)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1a** (145.7 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NIS (168.7 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford rac 3-iodo-1-methoxy-4-phenylazetidin-2one **2i** as a colorless oil (59.1 mg, 39%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.42 (m, 3H), 7.41 – 7.39 (m, 2H), 4.99 (d, *J* = 1.9 Hz, 1H), 4.36 (d, *J* = 1.9 Hz, 1H), 3.78 (s, 3H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 162.1, 135.1, 129.8, 129.4, 126.5, 71.8, 63.9. 17.4

HRMS: Calculated $[M+H]^+$ for $C_{10}H_{11}INO_2^+$: 303.9829, found: 303.9832.

FTIR (cm⁻¹): 3032, 2991, 2937, 1773, 1496, 1456, 1363, 1305, 1284, 1126, 1031, 972, 840, 713, 695.

rac 1-(benzyloxy)-3,3-dibromo-4-phenylazetidin-2-one (2j)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1j** (223.23 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3,3-dibromo-4-phenylazetidin-2-one **2***j* as a yellow crystals (129.5 mg, 63%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 − 7.40 (m, 4H), 7.39 − 7.36 (m, 4H), 7.23 − 7.32 (m, 2H), 5.14 (d, *J* = 11.2 Hz, 1H), 5.03 (d, *J* = 11.2 Hz, 1H), 4.90 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 159.0, 134.0, 132.6, 130.1, 129.8, 129.7, 129.0, 128.8, 128.0, 79.5, 78.7, 53.0. HRMS: Calculated $[M+H]^+$ for $C_{16}H_{14}Br_2NO_2^+$: 411.9366, found: 411.9372.

Melting Point: 77.4 - 81.3 °C

FTIR (cm⁻¹): 3066, 0325, 2954, 2891, 1782, 1498, 1454, 1377, 1365, 1216, 1150, 1052, 942, 908, 844, 767, 748, 695.

rac 1-(benzyloxy)-3-bromo-3-chloro-4-phenylazetidin-2-one (2k)

Following the general procedures for the synthesis of β –lactams, in an 8-mL scintillation vial open to air, compound **1k** (223.23 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3,3-dibromo-4-phenylazetidin-2-one **2k** as a white solid (129.5 mg, 45%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.39 (m, 4H), 7.37 – 7.36 (m, 2H), 7.24 – 7.22 (m, 2H), 5.13 (d, *J* = 11.2 Hz, 1H), 5.01 (d, *J* = 11.2 Hz, 1H), 4.93 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 158.6, 133.9, 131.2, 130.0, 129.6, 129.6, 128.9, 128.7, 128.1, 79.8, 78.6, 66.7. HRMS: Calculated [M+H]⁺ for C₁₆H₁₄BrClNO₂⁺: 365.9891, found: 365.9898.

Melting Point: 67.9 – 70.5 °C **FTIR (cm⁻¹):** 3066, 3035, 2955, 2893, 1784, 1498, 1455, 1379, 1218, 1151, 1001, 948, 757, 749, 696.

rac 1-(benzyloxy)-3-bromo-3-methyl-4-phenylazetidin-2-one (2I)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1I** (190.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-3-methyl-4-phenylazetidin-2-one **2l** as a white crystals (90 mg, 52%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.35 (m, 8H), 7.22 – 7.20 (m, 2H), 5.10 (d, *J* = 11.1 Hz, 1H), 5.04 (d, *J* = 11.2 Hz, 1H), 4.84 (s, 1H), 1.35 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 163.4, 134.4, 132.9, 129.7, 129.4, 129.3, 129.0, 129.0, 128.9, 127.2, 78.3, 76.8, 59.4, 21.9.

HRMS: Calculated $[M+H]^+$ for $C_{17}H_{17}BrNO_2^+$: 347.0438, found: 347.0439.

Melting Point: 82.2 – 84.2 °C

FTIR (cm⁻¹): 3034, 2985, 2891, 1771, 1497, 1456, 1439, 1383, 1217, 1157, 1057, 957, 909, 752, 741, 697.

rac 1-(benzyloxy)-3-bromo-3-butyl-4-phenylazetidin-2-one (2m)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1m** (211.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-

3-bromo-3-butyl-4-phenylazetidin-2-one 2m as a colorless oil (110 mg, 57%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.32 (m, 8H), 7.25 – 7.21 (m, 2H), 5.08 (d, *J* = 11.2 Hz, 1H), 5.02 (d, *J* = 11.2 Hz, 1H), 4.84 (s, 1H), 1.59 – 1.54 (m, 1H), 1.45 – 1.34 (m, 2H), 1.07 – 0.99 (m, 2H), 0.97 – 0.90 (m, 1H), 0.63 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 163.3, 134.5, 132.8, 129.7, 129.3, 129.3, 128.9, 128.8, 127.6, 78.2, 76.9, 65.9, 33.5, 27.2, 22.3, 13.6.

HRMS: Calculated $[M+H]^+$ for $C_{20}H_{23}BrNO_2^+$: 388.0907, found: 388.0915.

FTIR (cm⁻¹): 3065, 3033, 2956, 2872, 1781, 1497, 1455, 1358, 1213, 1169, 971, 942, 907, 745, 696.

rac 1-(benzyloxy)-3-bromo-4-phenyl-3-(pyrdin-3-yl)azetidin-2-one (2n)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1n** (204.6 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-4-phenyl-3-(pyrdin-3-yl)azetidin-2-one **2n** as a colorless oil (61.4 mg, 30%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.35 (dd, *J* = 2.4, 0.8 Hz, 1H), 8.31 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.46 (ddd, *J* = 8.1, 2.4, 1.6 Hz, 1H), 7.42 – 7.38 (m, 5H), 7.21 – 7.18 (m, 1H), 7.17 – 7.14 (m, 2H), 6.99 (ddd, *J* = 8.1, 4.8, 0.9 Hz, 1H), 6.90 (d, *J* = 7.0 Hz, 1H), 5.14 (d, *J* = 11.2 Hz, 1H), 5.09 (s, 1H), 5.03 (d, *J* = 11.2 Hz, 1H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 161.3, 149.7, 149.6, 135.8, 134.4, 132.1, 131.0, 129.7, 129.7, 129.6, 129.0, 128.9, 127.9, 122.0, 78.7, 78.7, 60.1.

HRMS: Calculated $[M+H]^+$ for $C_{21}H_{18}BrN_2O_2^+$: 409.0546, found: 409.0552.

FTIR (cm⁻¹): 3034, 2932, 1786, 1497, 1456, 1417, 1364, 1060, 1029, 945, 749, 698.

rac 1-(benzyloxy)-3-(2-methoxyphenyl)-4-phenylazetidin-2-one (20)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1o** (237 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-

3-(2-methoxyphenyl)-4-phenylazetidin-2-one **2o** as a white crystalline solid (109 mg, 50%).

¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 2.5 Hz, 1H), 7.47 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.44 – 7.42 (m, 3H), 7.36 – 7.35 (m, 2H), 7.30 – 7.27 (m, 1H), 7.24 – 7.18 (m, 4H), 6.80 (d, *J* = 8.8 Hz, 1H), 5.05 (d, *J* = 11.1 Hz, 1H), 4.90 (d, *J* = 11.1 Hz, 1H), 4.64 (s, 1H), 3.83 (s, 3H).

 13 C NMR (150 MHz, CDCl₃) δ 161.8, 155.9, 134.2, 134.1, 133.6, 130.5, 129.7, 129.4, 129.3, 129.2, 128.7, 128.6, 128.1, 113.3, 113.1, 78.2, 74.1, 61.8, 55.5.

HRMS: Calculated $[M+H]^+$ for $C_{23}H_{21}BrNO_3^+$: 438.0699, found: 438.0700.

Melting Point: 114.2 – 115.5 °C

FTIR (cm⁻¹): 3061, 3038, 2940, 1783, 1489, 1456, 1394, 1379, 1265, 1235, 1021, 886, 749, 697.

(E)-1-(benzyloxy)-3-(bromo(phenyl)methylene)-6-methoxyindolin-2-one (3p)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1p** (236.9 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (95:5 Hexanes:EtOAc) to afford (*E*)-1-(benzyloxy)-3-(bromo(phenyl)methylene)-6-methoxyindolin-2-one **3p** as an orange crystalline solid

(108 mg, 50%).

¹H NMR (600 MHz, CDCl₃) δ 7.77 (s, 1H), 7.71 (s, 1H), 7.63 – 7.61 (m, 2H), 7.51 – 7.47 (m, 4H), 7.46 – 7.43 (m, 1H), 7.40 – 7.37 (m, 3H), 6.08 (s, 1H), 5.24 (s, 2H), 3.71 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 165.1, 157.2, 142.3, 136.7, 135.0, 134.6, 130.3, 130.1, 129.6 129.4, 129.0, 127.3, 123.6, 111.3, 103.8, 93.2, 79.1, 56.5.

HRMS: Calculated $[M+H]^+$ for $C_{23}H_{19}BrNO_3^+$: 436.0543, found: 403.0552.

Melting Point: 162.0 – 167.0 °C

FTIR (cm⁻¹): 3061, 3030, 2958, 2899, 1703, 1611, 1474, 1446, 1385, 1224, 1204, 1173, 1049, 1014, 957, 906, 821, 746, 692.

rac 1-(benzyloxy)-3-bromo-3,4-diphenylazetidin-2-one (2q)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1q** (221.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-3,4-diphenylazetidin-2-one **2q** as a pale-yellow oil (32.1 mg, 16%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.37 (m, 5H), 7.19 – 7.16 (m, 1H), 7.15 – 7.11 (m, 4H), 7.08 – 7.03 (m, 3H), 6.91 – 6.89 (m, 2H), 5.12 (d, *J* = 11.1 Hz, 1H), 5.10 (s, 1H), 5.01 (d, *J* = 11.1 Hz, 1H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 162.2, 134.5, 134.5, 132.8, 129.7, 129.4, 129.2, 128.9, 128.8, 128.5, 128.5, 128.3, 128.2, 79.1, 78.5, 63.1.

HRMS: Calculated [M+H]⁺ for C₂₂H₁₉BrNO₂⁺: 409.0594, found: 408.0596.

FTIR (cm⁻¹): 3063, 3032, 2940, 1780, 1497, 1455, 1448, 1364, 1047, 944, 743, 693, 656.

(E)-1-(benzyloxy)-3-(bromo(phenyl)methylene)indolin-2-one (3q)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1q** (221.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (95:5 Hexanes:EtOAc) to afford (*E*)-1-(benzyloxy)-3-(bromo(phenyl)methylene)indolin-2-one **3q** as a yellow solid (89 mg,

44%).

¹H NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.68 (d, J = 1.8 Hz, 1H), 7.64 – 7.62 (m, 2H), 7.52 -7.46 (m, 5H), 7.39 – 7.38 (m, 3H), 7.28 – 7.26 (m, 1H), 6.60 (d, J =- 8.3 Hz, 1H), 5.24 (s, 2H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 164.1, 140.0, 139.8, 134.4, 134.4, 134.2, 132.5, 130.5, 130.1, 129.5, 129.5, 129.1, 128.9, 125.5, 124.0, 119.8, 115.0, 109.4, 78.7.

HRMS: Calculated [M+H]⁺ for C₂₂H₁₇BrNO₂⁺: 406.0437, found: 406.0437.

Melting Point: 138.1 – 140.5 °C

FTIR (cm⁻¹): 3064, 3034, 2919, 2850, 1709, 1603, 1446, 1379, 1309, 1266, 1205, 1107, 1056, 942, 902, 801, 744, 691..

rac 1-(benzyloxy)-3-bromo-3-(4-nitrophenyl)-4-phenylazetidin-2-one (2r)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1r** (244 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in*

vacuo and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1- (benzyloxy)-3-bromo-3-(4-nitrophenyl)-4-phenylazetidin-2-one **2r** as a yellow oil (147 mg, 65%).

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.9 Hz, 2H), 7.43 – 7.41 (m, 1H), 7.39 – 7.38 (m, 4H), 7.32 (d, J = 8.9 Hz, 2H), 7.23 – 7.20 (m, 1H), 7.17 – 7.14 (m, 2H), 6.90 – 6.89 (m, 2H), 5.13 (d, J = 11.2 Hz, 1H), 5.07 (s, 1H), 5.03 (d, J = 11.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 161.1, 147.4, 141.5, 134.2, 131.8, 139.7, 129.6, 129.5, 129.4, 128.8, 128.8, 127.7, 123.2, 78.6, 78.6, 60.3.

HRMS: Calculated [M+H]⁺ for C₂₂H₁₈BrN₂O₄⁺: 453.044, found: 453.0456

FTIR (cm⁻¹): 3060, 3032, 2943, 2875, 1783, 1604, 1519, 1456, 1343, 1212, 1149, 1045, 943, 851, 742, 694.

rac 1-(benzyloxy)-3-bromo-4-methyl-4-(pyrdin-2-yl)azetidin-2-one (2s)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1s** (204.6 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-4-methyl-4-(pyrdin-2-yl)azetidin-2-one **2s** as a colorless oil (112.8 mg, 65%).

¹**H NMR (600 MHz, CDCl**₃) δ 8.62 (ddd, *J* = 4.7, 1.8, 0.9 Hz, 1H), 7.70 (td, *J* = 7.8, 1.9 Hz, 1H), 7.40 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.46 – 7.32 (m, 5H), 7.27 – 7.25 (m, 1H), 5.08 (d, *J* = 11.0 Hz, 1H), 5.02 (d, 11.0 Hz, 1H), 4.94 (s, 1H), 1.66 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 161.7, 158.2, 149.8, 137.1, 135.1, 129.6, 129.3, 128.7, 123.5, 120.7, 79.4, 71.2, 51.9, 20.2.

HRMS: Calculated [M+H]⁺ for C₁₆H₁₆BrN₂O₂⁺: 347.0390, found: 347.0395.

FTIR (cm⁻¹): 3059, 3028, 3004, 2940, 1784, 1588, 1470, 1434, 1380, 1294, 1213, 1062, 909, 750, 698.

rac 1-(benzyloxy)-3-bromo-4-methyl-4-(pyrdin-3-yl)azetidin-2-one (2t)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1t** (204.6 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-4-methyl-4-(pyrdin-3-yl)azetidin-2-one **2t** as a colorless oil (119.8 mg, 69%).

¹H NMR (600 MHz, CDCl₃) δ 8.64 − 8.61 (m, 2H), 7.64 (ddd, *J* = 8.1, 2.5, 1.5 Hz, 1H), 7.37 (s, 5H), 7.31 (t, 6.6 Hz), 1H), 5.10 (s, 2H), 4.54 (s, 1H), 1.63 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 161.0, 149.9, 147.1, 134.7, 133.2, 130.0, 129.6, 129.5, 128.9, 213.8, 79.5, 69.2, 52.8, 21.7.

HRMS: Calculated [M+H]⁺ for C₁₆H₁₆BrN₂O₂⁺: 347.0390, found: 347.0394.

FTIR (cm⁻¹): 3032, 2987, 2936, 1778, 1574, 1481, 1418, 1381, 1283, 1187, 1060, 1021, 907, 818, 742, 696.

rac 1-(benzyloxy)-3-bromo-4,4-diphenylazetidin-2-one (2u)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1u** (221.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by

column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-4,4diphenylazetidin-2-one **2u** as a white crystalline solid (181 mg, 89%).

¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.35 (m, 5H), 7.19 – 7.16 (m, 1H), 7.15 – 7.13 (m, 4H), 7.08 – 7.03 (m, 3H), 6.91 – 6.89 (m, 2H), 5.12 (d, *J* = 11.1 Hz, 1H), 5.10 (s, 1H), 5.01 (d, *J* = 11.1 Hz, 1H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 162.2, 134.5, 134.5, 132.8, 129.7, 129.4, 129.2, 128.9, 128.8, 128.5, 128.3, 128.2, 79.1, 78.5, 63.1.

HRMS: Calculated [M+Na]⁺ for C₂₂H₁₈BrNO₂Na⁺: 430.0413, found: 430.0409.

Melting Point: 98.4 - 100.2 °C

FTIR (cm⁻¹): 3062, 3033, 2955, 1778, 1496, 1447, 1374, 1216, 1180, 965, 906, 848, 731, 694.

rac 1-(benzyloxy)-3-bromo-4-methyl-4-phenylazetidin-2-one (2v)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1v** (190.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-4-phenyl-3-(pyrdin-3-yl)azetidin-2-one **2v** as a colorless oil (138.5 mg, 80%).

¹H NMR (600 MHz, CDCl₃) δ 7.41 − 7.33 (m, 10H), 5.09 (dd, *J* = 13.3, 2.4 Hz, 2H), 4.54 (s, 1H), 1.64 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.2, 140.3, 134.8, 129.6, 129.3, 129.1, 128.8, 128.7, 125.4, 79.3, 70.8, 53.3, 21.9.

HRMS: Calculated $[M+H]^+$ for $C_{17}H_{17}BrNO_2^+$: 346.0437, found: 346.0442.

FTIR (cm⁻¹): 3063, 3032, 2993, 1779, 1497, 1448, 1361, 1276, 1219, 1057, 907, 807, 735, 662.

rac 1-(benzyloxy)-3-bromo-4,4-dimethylazetidin-2-one (2w)

^o Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1w** (160 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60

min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-4,4-dimethylazetidin-2-one **2w** as a colorless oil (110.3mg, 78%).

¹H NMR (600 MHz, CDCl₃) δ 7.41 − 7.37 (m, 5H), 5.02 (d, *J* = 11.2 Hz, 1H), 4.97 (d, *J* = 11.2 Hz, 1H), 4.34 (s, 1H), 1.33 (s, 3H), 1.22 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 161.0, 135.3, 129.6, 129.4, 128.8, 79.3, 66.6, 51.2, 23.7, 22.7. HRMS: Calculated [M+H]⁺ for C₁₂H₁₅BrNO₂⁺: 284.0281, found: 284.0282.

FTIR (cm⁻¹): 3032, 2972, 2932, 1774, 1455, 1387, 1373, 1268, 1248, 1110, 1016, 954, 819, 748, 696.

rac methyl 1-(benzyloxy)-3-bromo-2-oxo-4-phenylazetidine-3-carboxylate (2x)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1x** (212.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for

60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* methyl 1-(benzyloxy)-3-bromo-2-oxo-4-phenylazetidine-3-**2x** as a pale-yellow oil (72 mg, 37%) as a 1:1 mixture of diastereomers.

One diastereomer:

¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.33 (m, 5H), 7.23 – 7.20 (m, 2H), 5.16 (d, *J* = 11.1 Hz, 1H), 5.06 – 5.04 (m, 1H), 4.71 (s, 1H), 3.30 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 163.9, 158.3, 134.2, 131.3, 129.9, 129.6, 129.5, 129.0, 128.8, 127.3, 76.3, 70.3, 59.2, 53.3.

Second diastereomer:

¹H NMR (600 MHz, CDCl₃) δ 7.42 − 7.33 (m, 5H), 7.23 − 7.20 (m, 2H), 5.11 (d, *J* = 11.1 Hz, 1H), 5.06 − 5.04 (m, 2H), 3.88 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 165.6, 158.4, 134.3, 132.6, 129.8, 129.7, 129.5, 128.8, 128.6, 128.2, 78.8, 70.3, 61.8, 54.4.

HRMS: Calculated [M+H]⁺ for C₁₈H₁₇BrNO₄⁺: 390.0335, found: 390.0336.

FTIR (cm⁻¹): 3065, 3034, 2954, 1796, 1753, 1732, 1497, 1455, 1434, 1264, 1200, 1002, 748, 697.

rac methyl 1-(benzyloxy)-3-bromo-2-(4-methoxyphenyl)-4-oxoazetidine-3-carboxylate (2y)

Following the general procedures for the synthesis of β –lactams, in an 8-mL scintillation vial open to air, compound **1y** (227.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction

mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* methyl 1-(benzyloxy)-3-bromo-2-(4-methoxyphenyl)-4-oxoazetidine-3-carboxylate **2y** as a colorless oil (168 mg, 80%).

One diastereomer:

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.34 (m, 5H), 7.15 – 7.12 (m, 2H), 6.92 (d, J = 8.7 Hz, 2H), 5.09 (d, J = 11.2 Hz, 1H), 5.03 (d, J = 11.1 Hz, 1H), 5.00 (s, 1H), 3.87 (s, 3H), 3.83 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 165.7, 160.7, 158.5, 134.4, 129.8, 129.6, 129.5, 128.8, 124.3, 114.0, 78.7, 70.2, 62.6, 55.5, 54.4.

Second diastereomer:

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.34 (m, 5H), 7.15 – 7.12 (m, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.13 (d, *J* = 11.2 Hz, 1H), 5.03 (d, *J* = 11.1 Hz, 1H), 4.66 (s, 1H), 3.80 (s, 3H), 3.37 (s, 3H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 164.0, 160.8, 158.4, 134.2, 129.8, 129.5, 129.0, 128.8, 123.0, 114.2, 78.7, 76.1, 59.2, 55.5, 53.4.

HRMS: Calculated [M+H]⁺ for C₁₉H₁₉BrNO₅⁺: 420.0441, found: 420.0444.

FTIR (cm⁻¹): 3064, 3033, 3007, 2954, 2839, 1793, 1750, 1611, 1514, 1456, 1249, 1176, 1027, 1009, 950, 837, 746, 697.

methyl rac 1-(benzyloxy)-3-bromo-2,2-diethyl-4-oxazetidine-3-carboxylate (2z)

Following the general procedures for the synthesis of β –lactams, in an 8-mL scintillation vial open to air, compound **1z** (183 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford methyl *rac* 1-(benzyloxy)-3-bromo-2,2diethyl-4-oxazetidine-3-carboxylate **2z** as a colorless oil (92 mg, 55%).

¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.34 (m, 5H), 5.05 (q_{AB}, *J* = 13.5 Hz, 2H), 3.82 (s, 3H), 1.87 (dq, *J* = 15.0, 7.5 Hz, 1H), 1.80 – 1.71 (m, 3H), 0.98 (t, *J* = 7.5 Hz, 3H), 0.94 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 166.1, 158.5, 134.5, 129.8, 129.4, 128.7, 79.5, 75.8, 63.2, 53.7, 26.7, 25.0, 8.9, 8.7.

HRMS: Calculated [M+H]⁺ for C₁₆H₂₁BrNO₄⁺: 370.0648, found: 370.0651.

FTIR (cm⁻¹): 3032, 2979, 2950, 2886, 1788, 1740, 1522, 1456, 1436, 1376, 1234, 1203, 1186, 1100, 1027, 947, 907, 748, 697.

methyl rac 1-(benzyloxy)-3-bromo-2-oxo-1-azaspiro[3.5]nonane-3-carboxylate (2aa)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1aa** (235.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford methyl *rac* 1-(benzyloxy)-3-bromo-2-oxo-1-azaspiro[3.4]nonane carboxylate **2aa** as a colorless oil (105 mg, 55%).

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.38 (m , 5H), 5.08 (s, 2H), 3.83 (s, 3H), 1.94 – 1.90 (m, 1H), 1.74 – 1.68 (m, 2H), 1.62 – 1.59 (m, 4H), 1.51 (ddt, *J* = 12.6, 6.8, 3.7 Hz, 1H), 1.43 (dddd, *J* = 13.8, 11.7, 6.6, 3.2 Hz, 1H), 1.33 – 1.25 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 166.1, 158.2, 134.4, 129.9, 129.5, 128.7, 79.7, 72.5, 64.7, 53.8, 33.5, 31.2, 24.5, 23.5, 23.1.

HRMS: Calculated [M+H]⁺ for C₁₇H₂₁BrNO₄⁺: 382.0648, found: 382.0656.

FTIR (cm⁻¹): 3033, 2939, 2863, 1788, 1745, 1455, 1435, 1245, 1014, 1002, 943, 908, 849, 744, 697.

rac 1-(benzyloxy)-2a-bromo-7b-methyl-1,2a,3,7b-tetrahydro-2H-indeno[1,2-b]azet-2-one (2ab)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1ab** (196.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by

column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford rac 1-(benzyloxy)-2a-bromo-7bmethyl-1,2a,3,7b-tetrahydro-2H-indeno[1,2-b]azet-2-one **2ab** as a white solid (125 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.37 (m, 3H), 7.35 – 7.33 (m, 2H), 7.32 – 7.27 (m, 2H), 7.27 – 7.26 (m, 1H), 7.22 (dt, *J* = 7.5, 1.0 Hz, 1H), 4.92 (d, *J* = 11.1 Hz, 1H), 4.84 (d, *J* = 11.1 Hz, 1H), 3.85 (d, *J* = 17.8 Hz, 1H), 3.37 (d, *J* = 17.8 Hz, 1H), 1.50 (s, 3H).

 13 C NMR (150 MHz, CDCl₃) δ 164.9, 140.3, 139.5, 135.3, 129.9, 129.7, 129.3, 128.8, 127.7, 125.9, 124.9, 80.6, 79.2, 64.4, 42.2, 18.5.

HRMS: Calculated [M+H]⁺ for C₁₈H₁₇BrNO₂⁺: 358.0437, found: 358.0442.

Melting Point: 89.7 – 93.9 °C

FTIR (cm⁻¹): 3062, 3033, 3008, 2984, 2889, 1770, 1487, 1455, 1378, 1251, 1214, 1126, 1114, 970, 891, 741, 694.

tert-butyl *rac* 1-(benzyloxy)-7b-bromo-2-oxo-1,2,2a,7b-tetrahydro-3H-azeto[3,2-b]indole-3-carboxylate (2ac)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1ac** (240 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by

column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *tert*-butyl *rac* 1-(benzyloxy)-7b-bromo-2-oxo-1,2,2a,7b-tetrahydro-3H-azeto[3,2-b]indole-3-carboxylate **2ac** as a white solid (95.5 mg, 43%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.78 (d, *J* = 8.4 Hz, 1H), 7.50 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.42 (dd, *J* = 7.2, 2.3 Hz, 2H), 7.38 − 7.32 (m, 4H), 7.16 (td, *J* = 7.6, 1.0 Hz, 1H), 5.25 (d, *J* = 1.6 Hz, 2H), 1.65 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 156.9, 150.0, 141.3, 133.7, 131.7, 129.7, 129.5, 128.7, 126.7, 124.7, 122.2, 115.7, 88.1, 84.8, 79.2, 70.5, 28.3.

HRMS: Calculated [M+H]⁺ for C₂₁H₂₂BrN₂O₄⁺: 445.0757, found: 445.0761.

Melting Point: 106.9 – 109.4 °C

FTIR (cm⁻¹): 3110, 3072, 3039, 2977, 2929, 1803, 1714, 1473, 1463, 1344, 1153, 1110, 1071, 956, 858, 7388, 697.

rac 1-(benzyloxy)-3-bromo-1-azaspiro[3.6]decan-2-one (2ad)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1ad** (187 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bormo-1azaspiro[3.9]decan-2-one **2ad** as a white solid (128 mg, 74%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 − 7.37 (m, 5H), 5.00 (q, *J* = 10.8 Hz, 2H), 4.34 (s, 1H), 2.05 − 1.98 (m, 2H), 1.77 − 1.71 (m, 2H), 1.68 − 1.62 (m, 1H), 1.59 − 1.38 (m, 7H).

¹³C NMR (150 MHz, CDCl₃) δ 161.2, 134.7, 129.6, 129.3, 128.7, 79.4, 72.7, 52.0, 36.7, 35.1, 29.6, 29.5, 22.9, 22.8.

HRMS: Calculated $[M+H]^+$ for $C_{16}H_{21}BrNO_2^+$: 338.0750, found: 358.0761.

FTIR (cm⁻¹): 3032, 2928, 2857, 1774, 1455, 1368, 1231, 1193, 1101, 954, 908, 745, 695.

rac 1-(benzyloxy)-3-bromo-1-azaspiro[3.5]nonan-2-one (2ae)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1ae** (178.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bormo-1azaspiro[3.5]nonan-2-one **2ae** as a colorless oil (113.2 mg, 70%).

¹**H NMR (600 MHz, CDCI**₃) δ 7.41 – 7.37 (m, 5H), 5.03 (d, J = 10.8 Hz, 1H), 4.98 (d, J = 10.8 Hz, 1H), 4.28 (s, 1H), 1.86 (ddd, J = 13.5, 12.1, 4.1 Hz, 1H), 1.82 – 1.77 (m, 2H), 1.69 – 1.65 (m, 1H), 1.61 – 1.57 (m, 2H), 1.55 – 1.46 (m, 2H), 1.33 (dtt, J = 13.5, 12.0, 3.6 Hz, 1H), 1.18 (dddd, J = 16.4, 15.0, 9.6, 3.7, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 161.3, 134.9, 129.7, 129.3, 128.8, 79.5, 69.4, 50.2, 34.2, 31.7, 24.5, 24.0, 23.5.

HRMS: Calculated [M+H]⁺ for C₁₅H₁₉BrNO₂⁺: 324.0594, found: 324.0602.

FTIR (cm⁻¹): 3032, 2934, 2856, 1775, 1453, 1364, 1168, 1051, 950, 905, 849, 740, 696.

rac 1-(benzyloxy)-3-bromo-1-azaspiro[3.4]octan-2-one (2af)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1af** (172.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min.

After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bormo-1-azaspiro[3.4]octan-2-one **2af** as a colorless oil (64.6 mg, 414%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 − 7.39 (m, 5H), 5.03 (d, *J* = 10.9 Hz, 1H), 5.00 (d, *J* = 10.9 Hz, 1H), 4.45 (s, 1H), 2.00 − 1.90 (m, 2H), 1.73 − 1.68 (m, 2H), 1.62 − 1.56 (m, 3H), 1.55 − 1.50 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 161.0, 134.9, 129.8, 129.4, 128.8, 79.2, 76.6, 51.4, 33.3, 31.9, 24.1, 24.0. HRMS: Calculated [M+H]⁺ for C₁₄H₁₇BrNO₂⁺: 310.0437, found: 310.0438.

FTIR (cm⁻¹): 3032, 2959, 2874, 1775, 1497, 1454, 1369, 1335, 1188, 1049, 950, 907, 848, 743, 696.

rac 1-(benzyloxy)-3-bromo-1-azaspiro[3.3]heptan-2-one (2ag)

Br o Following the general procedures for the synthesis of β-lactams, in an 8-mL scintillation vial open to air, compound **1ag** (166 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel

(90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bormo-1-azaspiro[3.3]hepoctan-2-one **2ag** as a colorless oil (61 mg, 41%).

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.38 (m, 5H), 5.03 (m, 2H), 4.46 (s, 1H), 2.35 (dt, *J* = 12.5, 9.5 Hz, 1H), 2.30 (ddt, *J* = 12.9, 8.6, 4.0 Hz, 1H), 2.03 (ddt, *J* = 12.4, 8.5, 3.8 Hz, 1H), 1.92 (dt, *J* = 12.9, 9.6 Hz, 1H), 1.67 – 1.61 (m, 1H), 1.57 (dt, *J* = 11.3, 8.9 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 160.2, 135.0, 129.9, 129.5, 128.8, 79.1, 70.3, 50.5, 29.8, 28.3, 13.2. HRMS: Calculated [M+H]⁺ for C₁₃H₁₅BrNO₂⁺: 296.0281, found: 296.0284.

FTIR (cm⁻¹): 3064, 3032, 2989, 2945, 2881, 1775, 1455, 1362, 1294, 1212, 1054, 906, 848, 741, 696.

rac (1r,3r,5r,7r)-1'-(benzyloxy)-3'-bromospiro[adamantine-2,2'-azetidin]-4'-one (2ah)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1ah** (205.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* (1r,3r,5r,7r)-1'-(benzyloxy)-3'bromospiro[adamantine-2,2'-azetidin]-4'-one **2ah** as a white crystalline solid (174.9 mg, 93%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.43 – 7.41 (m, 2H), 7.39 – 7.37 (m, 3H), 5.15 (s, 2H), 4.27 (s, 1H), 2.34 (ddd, *J* = 12.8, 3.7, 2.0 Hz, 1H), 2.15 (dd, *J* = 13.5, 3.2 Hz, 1H), 2.10 (dq, *J* = 6.6 3.6, 3.5 Hz, 2H), 1.96 – 1.93 (m, 2H), 1.88 (p, *J* = 3.2 Hz, 1H), 1.83 (dq, *J* = 13.0, 3.0 Hz, 1H), 1.77 (dq, *J* = 13.4, 3.1 Hz, 1H), 1.74 – 1.68 (m, 5H).

¹³C NMR (150 MHz, CDCl₃) δ 161.5, 134.2, 129.7, 129.3, 128.7, 79.4, 76.8, 50.8, 38.4, 37.0, 36.5, 35.4, 34.6, 34.3, 34.2, 26.9, 26.3.

HRMS: Calculated [M+H]⁺ for C₁₉H₂₃BrNO₂⁺: 376.0907, found: 376.0911.

Melting Point: 42.3 – 51.4 °C

FTIR (cm⁻¹): 3032, 2906, 2857, 1773, 1498, 1471, 1453, 1375, 1228, 1051, 994, 878, 737, 695.

rac 1-(benzyloxy)-3-bromo-7-oxa-1-azaspiro[3.5]nonan-2-one (2ai)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1ai** (180.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-3-bromo-7-oxa-1azaspiro[3.5]nonan-2-one **2ai** as a colorless oil (128.2 mg, 79%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.38 (s, 5H), 5.02 (d, *J* = 10.9 Hz, 1H), 4.98 (d, *J* = 10.9 Hz, 1H), 4.36 (s, 1H), 3.92 - 3.89 (m, 1H), 3.81 (dddd, *J* = 12.0, 4.8, 3.8, 1.1 Hz, 1H), 3.53 (ddd, *J* = 12.0, 10.5, 3.0 Hz, 1H), 3.44 (ddd, *J* = 12.0, 10.8, 2.8 Hz, 1H), 2.08 (ddd, *J* = 13.7, 10.8, 4.5 Hz, 1H), 1.74 (dtd, *J* = 13.9, 3.2, 3.1, 2.2 Hz, 1H), 1.67 (ddd, *J* = 13.8, 10.5, 4.7 Hz, 1H), 1.52 (ddt, *J* = 13.7, 3.7, 2.5 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 160.8, 134.6, 129.8, 129.5, 128.8, 79.4, 66.5, 66.2, 65.1, 49.6, 34.2, 31.7. HRMS: Calculated [M+H]⁺ for C₁₄H₁₇BrNO₃⁺: 326.0386, found: 326.0389.

FTIR (cm⁻¹): 3032, 2906, 2857, 1773, 1498, 1471, 1453, 1375, 1228, 1051, 994, 878, 737, 695.

rac 1-(benzyloxy)-4-bromo-5-phenylpyrrolidin-2-one (2aj)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1ai** (190.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (90:10 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-4-bromo-

5-phenylpyrrolidin-2-one **2aj** as a colorless crystal (117.7 mg, 68%).

¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.38 (m, 3H), 7.34 – 7.30 (m, 3H), 7.28 – 7.26 (m, 2H), 7.24 – 7.22 (m, 2H), 5.05 (d, *J* 10.6 Hz, 1H), 4.85 (d, *J* = 10.6 Hz, 1H), 4.65 (d, 4.2 Hz, 1H), 4.15 (dt, *J* = 7.6, 4.5 Hz, 1H), 3.14 (dd, *J* = 17.9, 7.7 Hz, 1H), 2.78 (dd, *J* = 17.9, 4.7 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.4, 136.1, 134.7, 129.8, 129.3, 129.1, 128.7, 126.9, 77.8, 72.0, 42.4, 38.5. HRMS: Calculated [M+H]⁺ for $C_{17}H_{17}BrNO_2^+$: 346.0437, found: 346.0441.

FTIR (cm⁻¹): 3058, 3034, 2956, 2892, 1681, 1453, 1367, 1267, 1160, 1030, 974, 841, 759.

rac 1-(benzyloxy)-5-(bromoethyl)-5-methylpyrrolidin-2-one (2ak)

Following the general procedures for the synthesis of β –lactams, in an 8-mL scintillation vial open to air, compound **1ak** (166.8 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column chromatography

on silica gel (70:30 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-5-(bromoethyl)-5-methylpyrrolidin-2-one **2ak** as a colorless oil (142.1 mg, 95%).

¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.34 (m, 3H), 5.12 (s, 2H), 3.50 (d, J = 10.8 Hz, 1H), 3.38 (d, J = 10.8 Hz, 1H), 2.47 (ddd, J = 17.4, 10.4, 6.0 Hz, 1H), 2.35 (ddd, J = 17.4, 10.4, 5.5 Hz, 1H), 2.22 (ddd, J = 13.1, 10.4, 5.5 Hz, 1H), 1.84 (ddd, J = 13.1, 10.4, 5.9 Hz, 1H), 1.35 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 171.7, 135.3, 129.7, 129.0, 128.7, 78.6, 63.1, 39.0, 27.78, 26.5, 23.0.

HRMS: Calculated [M+H]⁺ for C₁₃H₁₇BrNO₂⁺: 298.0437, found: 298.0445.

FTIR (cm⁻¹): 3063, 3032, 2973, 2886, 1704, 1454, 1376, 1249, 1058, 912, 752, 716, 695.

rac 1-(benzyloxy)-6-(bromoethyl)-6-phenylpiperidin-2-one (2al)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1al** (42 mg, 0.1 mmol) was dissolved in HFIP (0.5 mL, 0.2 M). NBS (27.4 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min.

Br' After completion, the reaction was concentrated *in vacuo* and purified by column chromatography on silica gel (70:30 Hexanes:EtOAc) to afford *rac* 1-(benzyloxy)-6-(bromoethyl)-6-phenylpiperidin-2-one **2al** as a white crystalline solid (28.2 mg, 73%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.43 (m, 2H), 7.36 – 7.27 (m, 8H), 5.40 (d, *J* = 9.4 Hz, 1H), 5.16 (d, *J* = 9.4 Hz, 1H), 4.18 (d, *J* = 11.3 Hz, 1H), 3.95 (d, *J* = 11.3 Hz, 1H), 2.72 (td, *J* = 13.4, 3.4 Hz, 1H), 2.63 (ddd, *J* = 17.0, 12.5, 6.6 Hz, 1H), 2.51 (ddt, *J* = 17.0, 5.5, 2.3 Hz, 1H), 2.13 (dddd, *J* = 13.5, 4.1, 3.2, 2.2 Hz, 1H), 1.68 – 1.63 (m, 1H), 1.43 – 1.35 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 171.5, 141.0, 135.7, 129.4, 129.0, 128.5, 128.5, 128.1, 126.8, 77.7, 72.3, 38.8, 36.1, 33.7, 17.0.

HRMS: Calculated [M+H]⁺ for C₁₉H₂₁BrNO₂⁺: 374.0750, found: 374.0754.

FTIR (cm⁻¹): 3030, 2957, 1678, 1496, 1446, 1356, 1331, 1207, 1048, 974, 750.

rac 1-(benzyloxy)-7-(bromoethyl)-7-phenylazepan-2-one (2am)

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1am** (119 mg, 0.3 mmol) was dissolved in HFIP (0.5 mL, 0.2 M). NBS (75 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

chromatography on silica gel (DCM as the sole eluent) to afford *rac* 1-(benzyloxy)-7-(bromoethyl)-7-phenylazepan-2-one **2am** as a colorless oil (33.1 mg, 31%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.54 – 7.52 (m, 2H), 7.37 – 7.33 (m, 5H), 7.30 – 7.27 (m, 3H), 5.35 (d, *J* = 8.9 Hz, 1H), 5.24 (d, *J* = 8.9 Hz, 1H), 4.20 (d, *J* = 10.8 Hz, 1H), 3.62 (d, *J* = 10.8 Hz, 1H), 2.60 – 2.56 (m, 2H), 2.48 (dt, *J* = 15.5, 3.8 Hz, 1H), 1.98 (ddd, *J* = 15.6, 9.4, 3.8 Hz, 1H), 1.87 (dtd, *J* = 12.2, 9.0, 7.7, 4.7 Hz, 1H), 1.65 – 1.59 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ 176.3, 141.2, 135.8, 129.6, 129.1, 128.6, 128.5, 128.1, 126.9, 78.0, 71.7, 43.2, 37.1, 36.5, 23.6, 22.0.

HRMS: Calculated [M+H]⁺ for C₂₀H₂₃BrNO₂⁺: 388.0907, found: 388.0912.

FTIR (cm⁻¹): 3062, 3032, 2936, 2865, 1666, 1497, 1447, 1313, 1215, 1015, 909, 763, 742.

11. Synthesis and characterization of silyl imino ethers (1):

tertbutyl dimethylsilyl (Z)-N-methoxycinnanimidate (1a)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12a** (695 mg, 3.92 mmol, 1.0 equiv.) was dissolved in dry THF (20 mL, 0.2 M) at room temperature. The reaction mixture

was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (5.1 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (706 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 30 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-methoxycinnanimidate **1a** as a colorless oil (646 mg, 60%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 − 7.42 (m, 2H), 7.35 − 7.33 (m, 2H), 7.30 − 7.27 (m, 1H), 7.13 (d, *J* = 16.0 Hz, 1H), 6.53 (d, *J* = 16.0 Hz, 1H), 3.83 (s, 3H), 1.02 (s, 9H), 0.25 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 152.9, 136.0, 134.3, 128.9, 128.7, 1272.2, 120.3, 61.2, 26.1, 19.1, -3.7.

HRMS: Calculated [M+H]⁺ for C₁₆H₂₆NO₂Si⁺: 292.1727, found: 292.1735.

FTIR (cm⁻¹): 3061, 6027, 2956, 2931, 2898, 2858, 1581, 1471, 1463, 1449, 1346, 1251, 1062, 1018, 921, 823. 784, 752, 690.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)cinnamimidate (1b)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12b** (12.55 g, 49.54 mmol, 1.0 equiv.) was dissolved in dry THF (250 mL, 0.2 M) at room temperature. The reaction

mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (64.5 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (9.6 g, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 200 mL of H₂O and extracted with 250 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-(benzyloxy)cinnamimidate **1b** as a crystalline white solid (13.38 g, 74%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 − 7.40 (m, 4H), 7.38 − 7.31 (m, 5H), 7.29 − 7.26 (m, 1H), 7.13 (d, *J* = 16.0 Hz, 1H), 6.54 (d, *J* = 16.0 Hz, 1H), 5.04 (s, 2H), 0.98 (s, 9H), 0.16 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 152.8, 137.1, 136.1, 134.2, 129.0, 129.0, 128.9, 128.6, 128.5, 128.2, 127.2, 120.6, 76.3, 26.1, 19.1, -3.6.

HRMS: Calculated [M+H]⁺ for C₂₂H₃₀NO₂Si⁺: 368.2040, found: 368.2049.

Melting Point: 58.1 – 61.4 °C

FTIR (cm⁻¹): 3085, 3063, 3031, 2959, 2949, 2879, 2857, 1577, 1448, 1360, 1346, 1250, 1054, 1009, 1000, 964, 783, 750, 738, 689.

tertbutyl dimethylsilyl (Z)-N-((4-methoxybenzyloxy)oxy)cinnamimidate (1c)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12c** (2.0 g, 7.06 mmol, 1.0 equiv.) was dissolved in dry THF (35 mL, 0.2 M) at room temperature. The reaction

mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (7.8 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (1.20 g, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 40 mL of H₂O and extracted with 50 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-((4-methoxybenzyloxy)oxy)cinnamimidate **1c** as a white solid (1.88 g, 67%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.44 – 7.42 (m, 2H), 7.35 – 7.32 (4H), 7.29 – 7.26 (m, 1H), 7.12 (d, *J* = 16.0 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.53 (d, *J* = 16.0 Hz, 1H), 4.97 (s, 2H), 3.82 (s, 3H), 0.97 (s, 9H), 0.13 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 159.7, 152.7, 136.1, 134.1, 130.8, 129.2, 128.9, 128.6, 127.2, 120.6, 113.8, 76.0, 55.4, 26.1, 26.1, 19.1, .01, -3.6.

HRMS: Calculated $[M+H]^+$ for $C_{23}H_{32}NO_3Si^+$: 398.2146, found: 398.2153.

Melting Point: 82.0 – 85.0 °C

FTIR (cm⁻¹): 3031, 2929, 2885, 2857, 1611, 1588, 1514, 1377, 1347, 1249, 1174, 1051, 1031, 999, 969, 825, 786, 751, 692.

tertbutyl dimethylsilyl (Z)-N-((tert-butyldimethylsilyl)oxy)cinnamimidate (1d)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12d** (3.73 g, 22.88 mmol, 1.0 equiv.) was dissolved in dry THF (115 mL, 0.2 M) at room temperature. The reaction

mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (47 mL, 2.05 equiv., 1.0 M in THF) was then added slowly. TBSCI (7.213 g, 2.1 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 30 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 100 mL of H₂O and extracted with 100 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-((tert-butyldimethylsilyl)oxy)cinnamimidate **1d** as a yellow oil (3.209 g, 36%).

¹H NMR (600 MHz, CDCl₃) δ 7.46 − 7.44 (m, 2H), 7.35 − 7.32 (m, 2H), 7.28 − 7.26 (m, 1H), 7.12 (d, *J* = 16.1 Hz, 1H), 6.54 (d, *J* = 16.1 Hz, 1H), 1.02 (s, 9H), 0.97 (s, 9H), 0.28 (s, 6H), 0.20 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 154.9, 136.3, 133.7, 128.8, 128.8, 128.8, 128.5, 127.8, 127.2, 121.5, 26.5, 26.1, -3.3, -4.9.

HRMS: Calculated [M+H]⁺ for C₂₁H₃₈NO₂Si₂⁺: 392.2436, found: 392.2444.

FTIR (cm⁻¹): 3028, 2955, 2929, 2885, 2857, 1582, 1347, 1250, 1038, 958, 871, 836, 780, 753, 690.

tertbutyl dimethylsilyl (Z)-N-phenoxycinnamimidate (1e)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12e** (1.0 g, 4.18 mmol, 1.0 equiv.) was dissolved in dry THF (21 mL, 0.2 M) at room temperature. The reaction mixture was

then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (5.0 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (753 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 25 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-phenoxycinnamimidate **1e** as a white solid (1.102 g, 75%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.50 – 7.48 (m, 2H), 7.39 – 7.37 (m, 2H), 7.34 – 7.30 (m, 3H), 7.27 – 7.23 (m, 3H), 7.03 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.68 (d, *J* = 16.0 Hz, 1H), 1.07 (s, 9H), 0.36 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 159.0, 155.0, 135.8, 129.5, 129.0, 129.0, 127.4, 122.3, 120.1, 114.8, 26.1, 19.1, -3.6.

HRMS: Calculated [M+H]⁺ for C₂₁H₂₈NO₂Si⁺: 354.1884, found: 384.1890.

Melting Point: 59.4 – 62.9 °C

FTIR (cm⁻¹): 3059, 3027, 2958, 2927, 2854, 1593, 1578, 1488, 1349, 1250, 1209, 1034, 1022, 959, 806, 787, 752, 688.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-3-(naphthalen-2-yl)acrylamidate (1f)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12f** (1.0 g, 3.3 mmol, 1.0 equiv.) was dissolved in dry THF (17 mL, 0.2 M) at room temperature. The reaction

mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.3 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCl (646 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-3-(naphthalen-2-yl)acrylamidate **1f** as a white solid (1.035 g, 75%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.82 – 7.78 (m, 4H), 7.62 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.43 – 7.42 (m, 2H), 7.39 – 7.36 (m, 2H), 7.34 – 7.31 (m, 1H), 7.28 (d, *J* = 16.0 Hz, 1H), 6.66 (d, *J* = 15.9 Hz, 1H), 5.06 (s, 2H), 1.02 (s, 9H), 0.18 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 152.9, 137.1, 134.2, 133.6, 133.6, 133.5, 139.1, 128.6, 125.8, 128.3, 128.2, 127.9, 127.8, 126.6, 126.5, 123.6, 120.9, 76.3, 26.1, 19.1, -3.6.

HRMS: Calculated [M+H]⁺ for C₂₆H₃₂NO₂Si⁺: 418.2197, found: 418.2201.

Melting Point: 79.4 - 82.8 °C

FTIR (cm⁻¹): 3057, 3034, 2956, 2927, 2879, 1580, 1468, 1461, 1364, 1321, 1247, 1054, 1008, 958, 836, 811, 746, 696.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-3-(naphthalen-1-yl)acrylamidate (1g)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12g** (303.4 mg, 1.0 mmol, 1.0 equiv.) was dissolved in dry THF (5 mL, 0.2 M) at room temperature. The reaction mixture

was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (1.2 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCl (180 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 5 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-3-(naphthalen-1-yl)acrylamidate **1g** as a colorless oil (324 mg, 69%).

¹H NMR (600 MHz, CDCl₃) δ 8.12 – 8.10 (m, 1H), 7.94 (d, J = 15.7 Hz, 1H), 7.78 – 7.85 (m, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.70 (dt, J = 7.3, 1.0 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.47 – 7.45 (m, 1H), 7.44 – 7.42 (m, 2H), 7.38 (tt, J = 6.5, 1.0 Hz, 2H), 7.35 – 7.32 (m, 1H), 6.63 (d, J = 15.7 Hz, 1H), 5.07 (s, 2H), 1.05 (s, 9H), 0.21 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 152.8, 137.1, 133.9, 133.5, 131.4, 131.0, 129.1, 129.0, 128.8, 128.5, 128.2, 126.5, 126.0, 125.8, 124.1, 123.5, 123.1, 76.4, 26.2, 19.1, -3.5.

HRMS: Calculated [M+H]⁺ for C₂₆H₃₂NO₂Si⁺: 418.2197, found: 418.2201.

FTIR (cm⁻¹): 3061, 3034, 2954, 229, 2857, 1582, 1362, 1350, 1329, 1251, 1053, 1001, 959, 786, 770, 696.

tertbutyl dimethylsilyl (1Z,2Z)-N-(benzyloxy)-2-bromo-3-phenylacrylamide (1j)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12j** (1.33 g, 4.0 mmol, 1.0 equiv.) was dissolved in dry THF (40 mL, 0.2 M) at room temperature. The reaction mixture was

then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.8 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (721 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 40 mL of H₂O and extracted with 50 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*Z*)-*N*-(benzyloxy)-2-bromo-3-phenylacrylamide **1j** as a pale-yellow oil (1.130 g, 64%).

¹H NMR (600 MHz, CDCl₃) δ 7.71 − 7.70 (m, 2H), 7.66 (s, 1H), 7.45 − 7.43 (m, 2H), 7.40 − 7.32 (m, 6H), 5.10 (s, 2H), 0.95 (s, 9H), 0.14 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 150.3, 136.7, 135.0, 133.2, 129.9, 129.5, 128.9, 128.5, 128.4, 128.4, 114.3, 26.0, -3.5.

HRMS: Calculated [M+H]⁺ for C₂₂H₂₉BrNO₂Si⁺: 446.1145, found: 446.1145.

FTIR (cm⁻¹): 3064, 3033, 2954, 2930, 2858, 1580, 1339, 1253, 1197, 1049, 991, 809, 786, 754, 688.

tertbutyl dimethylsilyl (1Z,2Z)-N-(benzyloxy)-2-chloro-3-phenylacrylamide (1k)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12k** (575.5 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture

was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.6 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (390 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*Z*)-*N*-(benzyloxy)-2-chloro-3-phenylacrylamide **1k** as a pale-yellow solid (344 mg, 43%).

¹H NMR (600 MHz, CDCl₃) δ 7.71 (ddd, *J* = 8.5, 1.3, 0.6 Hz, 2H), 7.44 – 7.42 (m, 2H), 7.41 – 7.32 (m, 7H), 5.11 (s, 2H), 0.96 (s, 9H), 0.14 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 150.1, 136.7, 134.2, 130.1, 129.6, 129.5, 128.9, 128.5, 128.4, 123.7, 26.0, 19.0, -3.6.

HRMS: Calculated [M+H]⁺ for C₂₂H₂₉ClNO₂Si⁺: 402.1651, found: 402.1659.

Melting Point: 65.5 – 68.7 °C

FTIR (cm⁻¹): 3093, 3071, 3054, 2938, 2928, 2855, 1587, 1491, 1467, 1446, 1318, 1252, 1078, 1067, 1014, 973, 793, 744, 688.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-2-methyl-3-phenylacrylimidate (11)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12I** (575.5 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.6 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (390 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-2-methyl-3-phenylacrylimidate **1I** as a white pale-yellow solid (344 mg, 43%).

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.42 (m, 2H), 7.37 – 7.34 (m, 4H), 7.33 – 7.31 (m, 3H), 7.26 – 7.24 (m, 1H), 7.23 (s, 1H), 5.04 (s, 2H), 2.06 (d, *J* = 1.3 Hz, 3H), 0.96 (s, 9H), 0.13 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 153.6, 137.4, 137.3, 130.8, 129.9, 129.5, 129.3, 128.4, 128.3, 128.1, 127.2, 76.3, 26.1, 19.1, 14.1, -3.5.

HRMS: Calculated [M+H]⁺ for C₂₃H₃₂NO₂Si⁺: 382.2197, found: 382.2209.

Melting Point: 45.1 – 46.7 °C

FTIR (cm⁻¹): 3066, 3030, 2958, 2929, 2856, 1586, 1466, 1361, 1246, 1129, 1050, 960, 837, 785, 748, 694.

tertbutyl dimethylsilyl (Z)-2-((E)-benzylidene)-N-(benzyloxy)pentanimidate (1m)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12m** (773.5 mg, 2.5 mmol, 1.0 equiv.) was dissolved in dry THF (12.5 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of

KHMDS (3.0 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (450 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 15 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-2-((*E*)-benzylidene)-*N*-(benzyloxy)pentanimidate **1m** as a colorless oil (568 mg, 54%).

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.41 (m, 2H), 7.36 – 7.33 (m, 4H), 7.33 – 7.30 (m, 1H), 7.29 – 7.27 (m, 2H), 7.26 – 7.24 (m, 1H), 5.02 (s, 2H), 2.48 – 2.46 (m, 2H), 1.53 – 1.48 (m, 2H), 1.35 (h, *J* = 7.4 Hz, 2H), 0.95 (s, 9H), 0.88 (t, *J* = 7.4 Hz, 3H), 0.15 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 152.5, 137.7, 137.3, 135.3, 130.5, 129.4, 129.1, 128.4, 128.3, 128.0, 127.2, 76.2, 31.8, 27.2, 26.1, 23.1, 19.1, 14.0, -3.6.

HRMS: Calculated [M+H]⁺ for C₂₆H₃₈NO₂Si⁺: 424.2666, found: 424.2675. **FTIR (cm⁻¹):** 3063, 3030, 2955, 2929, 2858, 1585, 1470, 1455, 1362, 1333, 1276, 1251, 1060, 1021, 993, 823, 784, 695.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-3-phenyl-2-(pyridin-3-yl)acrylimidate (1n)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12n** (120 mg, 0.36 mmol, 1.0 equiv.) was dissolved in dry THF (4 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (0.43

mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (61 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 5 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-3-phenyl-2-(pyridin-3-yl)acrylimidate **1n** as a colorless oil (94 mg, 58%).

¹H NMR (600 MHz, CDCl₃) δ 8.55 (m, 1H), 8.40 (s, 1H), 7.47 (dt, J = 7.8, 1.9 Hz, 1H), 7.40 (s, 1H), 7.34 – 7.30 (m, 3H), 7.28 – 7.26 (m, 2H), 7.24 – 7.22 (m, 1H), 7.14 – 7.12 (m, 3H), 4.87 (s, 2H), 0.95 (s, 9H), 0.16 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 153.1, 151.3, 148.4, 138.2, 137.0, 135.5, 133.1, 132.9, 131.4, 130.0, 129.6, 128.4, 128.4, 128.3, 128.2, 128.0, 123.1, 76.4, 26.1, 19.1, -3.5.

HRMS: Calculated [M+H]⁺ for C₂₇H₃₃N₂O₂Si⁺: 445.2306, found: 445.2308.

FTIR (cm⁻¹): 3031, 2929, 2857, 1670, 1586, 1472, 1363, 1253, 1058, 1039, 1002, 838, 787, 751.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-2-(2-methoxyphenyl)-3-phneylacrylimidate (10)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12o** (359 mg, 1.0 mmol, 1.0 equiv.) was dissolved in dry THF (5 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (1.2

mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (180 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 5 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-2-(2-methoxyphenyl)-3-phneylacrylimidate **10** as a colorless oil (382 mg, 81%).

¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.27 (m, 7H), 7.11 – 7.09 (m, 3H), 7.01 (dd, *J* = 7.6, 1.8 Hz, 1H), 6.96 (dd, *J* = 6.8, 2.9 Hz, 1H), 6.90 (ddd, *J* = 6.4, 3.4, 2.3 Hz, 2H), 4.87 (s, 2H), 3.62 (s, 3H), 0.90 (s, 9H), 0.13 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 157.7, 153.5, 137.6, 136.4, 132.0, 131.7, 131.3, 129.6, 129.5, 129.0, 128.2, 128.1, 127.9, 127.5, 126.4, 120.8, 111.2, 76.1, 55.5, 26.0, 19.0, -3.7.

HRMS: Calculated [M+H]⁺ for C₂₉H₃₆NO₃Si⁺: 474.2469, found: 474.2461. **FTIR (cm⁻¹):** 3029, 2958, 2930, 2884, 1598, 1582, 1470, 1461, 1295, 1247, 1055, 1003, 907, 751, 728, 693.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-2-(4-methoxyphenyl)-3-phenylacrylimidate (1p)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12p** (1.08 g, 3.0 mmol, 1.0 equiv.) was dissolved in dry THF (30 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (3.6 mL,

1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (540 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 30 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-2-(4-methoxyphenyl)-3-phenylacrylimidate **1p** as a pale-yellow oil (1.33 g, 94%).

¹H NMR (600 MHz, CDCl₃) δ 7.3 – 7.31 (m, 5H), 7.23 (s, 1H), 7.13 – 7.10 (m, 3H), 7.09 (d, J = 8.7 Hz, 2H), 6.97 – 6.95 (m, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.92 (s, 2H), 3.84 (s, 3H), 0.91 (s, 9H), 0.13 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 159.0, 154.1, 137.3, 136.3, 134.3, 131.6, 131.5, 130.0, 129.6, 129.0, 128.3, 128.1, 127.5, 113.7, 76.5, 55.4, 26.0, 19.0, -3.6.

HRMS: Calculated [M+H]⁺ for C₂₉H₃₆NO₃Si⁺: 474.2459, found: 474.2463.

FTIR (cm⁻¹): 3062, 3032, 2954, 2929, 2857, 1605, 1579, 1512, 1287, 1244, 1171, 1002, 823, 784, 693.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-2,3-diphenylacrylimidate (1q)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12q** (988.2 mg, 3.0 mmol, 1.0 equiv.) was dissolved in dry THF (15 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (3.6

mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (496 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 15 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-2,3-diphenylacrylimidate **1q** as a colorless oil (882 mg, 66%).

¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.30 (m, 8H), 7.27 (s, 1H), 7.18 – 7.16 (m, 2H), 7.12 – 7.09 (m, 3H), 6.93 – 6.91 (m, 2H), 4.90 (s, 2H), 0.91 (s, 9H), 0.13 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 153.9, 137.2, 136.9, 136.1, 134.7, 131.7, 130.4, 130.0, 139.6, 128.3, 128.3, 128.1, 127.6, 127.4, 76.3, 26.0, 19.0, -3.6.

 $\label{eq:HRMS: Calculated [M+H]^+ for $C_{28}H_{34}NO_2Si^+$: 444.2353, found: 444.2358.}$

Melting Point: 81.7 – 84.5 °C

FTIR (cm⁻¹): 3057, 3030, 2952, 2930, 2882, 2854, 1599, 1583, 1491, 1470, 1443, 1360, 1301, 1250, 1055, 1012, 964, 839, 778, 696, 690.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-2-(4-nitrophenyl)-3-phenylacrylimidate (1r)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12r** (1.3 g, 3.5 mmol, 1.0 equiv.) was dissolved in dry THF (35 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.2 mL,

1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (576 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 40 mL of H₂O and extracted with 40 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-2-(4-nitrophenyl)-3-phenylacrylimidate **1r** as a colorless oil (1.05 g, 55%).

¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 8.7 Hz, 2H), 7.38 (s, 1H), 7.33 – 7.30 (m, 5H), 7.26 – 7.24 (m, 1H), 7.16 – 7.11 (m, 3H), 6.89 – 6.87 (m, 2H), 4.85 (s, 2H), 0.96 (s, 9H), 0.18 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 152.7, 147.2, 144.4, 137.0, 135.1, 133.0, 132.8, 131.7, 129.9, 129.6, 128.4, 128.3, 128.3, 128.3, 123.4, 76.4, 26.1, 19.1, -3.5.

HRMS: Calculated [M+H]⁺ for C₂₈H₃₃N₂O₄Si⁺: 489.2204, found: 489.2209.

FTIR (cm⁻¹): 2931, 1598, 1520, 1318, 1253, 1053, 104, 852, 787, 750, 697.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-3-(pyridine-2-yl)but-2-enimidate (1s)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12s** (2.0 g, 7.45 mmol, 1.0 equiv.) was dissolved in dry THF (37 mL, 0.2 M) at room temperature. The reaction mixture was

then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (9.0 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (1.35 g, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 40 mL of H₂O and extracted with 40 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-3-(pyridine-2-yl)but-2-enimidate) **1s** as a colorless oil (497.1 mg, 17%).

¹**H NMR (600 MHz, CDCI₃)** δ 8.59 (ddd, *J* = 4.8, 1.9, 1.0 Hz, 1H), 7.65 (td, *J* = 7.6 Hz, 1H), 7.47 - 7.46 (m, 1H), 7.43 (d, *J* = 1.7 Hz, 2H), 7.37 - 7.34 (m, 2H), 7.32 - 7.30 (m, 1H), 7.17 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 6.60 (d, *J* = 1.4 Hz, 1H), 5.05 (s, 2H), 2.40 (d, *J* = 1.4 Hz, 3H), 0.92 (s, 9H), 0.14 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 159.1, 152.1, 149.1, 142.5, 137.6, 136.5, 129.1, 128.4, 128.1, 122.5, 121.4, 120.5, 76.2, 25.8, 18.8, 16.8, -3.8.

HRMS: Calculated $[M+H]^+$ for $C_{22}H_{31}N_2O_2Si^+$: 383.2149, found: 383.2150.

FTIR (cm⁻¹): 3206, 3033, 2953, 2929, 2857, 1635, 1584, 1465, 1432, 1360, 1250, 1054, 1003, 870, 833, 779, 696.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-3-(pyridine-3-yl)but-2-enimidate (1t)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12t** (658.8 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture

was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.4 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (360 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-3-(pyridine-3-yl)but-2-enimidate) **1t** as a light yellow crystalline solid (482.8 mg, 54%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.68 (dd, *J* = 2.5, 0.9 Hz, 1H), 8.52 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.69 (ddd, *J* = 8.0, 2.4, 1.6 Hz, 1H), 7.42 - 7.41 (m, 2H), 7.38 - 7.35 (m, 2H), 7.33 - 7.30 (m, 1H), 7.27 - 7.25 (m, 2H), 5.99 (q, *J* = 1.4 Hz, 1H), 5.04 (s, 2H), 2.33 (d, *J* = 1.4 Hz, 3H), 0.92 (s, 9H), 0.15 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 151.4, 149.1, 147.6, 140.9, 138.5, 137.5, 133.4, 129.1, 128.4, 128.1, 123.3, 120.6, 76.3, 25.8, 18.7, 18.4, -3.8.

HRMS: Calculated $[M+H]^+$ for $C_{22}H_{31}N_2O_2Si^+$: 383.2149, found: 383.2151.

Melting Point: 101.7 – 109.8 °C

FTIR (cm⁻¹): 3143, 3063, 3033, 2930, 2874, 1675, 1633, 1528, 1454, 1357, 1286, 1205, 1052, 943, 863, 752, 699.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-3,3-diphenylacrylimidate (1u)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12u** (533 mg, 1.62 mmol, 1.0 equiv.) was dissolved in dry THF (8 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.0

mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (292 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-(benzyloxy)-3,3-diphenylacrylimidate **1u** as a white solid (607 mg, 84%).

¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.29 (m, 8H), 7.27 (s, 1H), 7.18 – 7.16 (m, 2H), 7.12 – 7.09 (m, 3H), 6.93 – 6.91 (m, 2H), 4.90 (s, 2H), 0.91 (s, 9H), 0.13 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 153.9, 137.2, 136.9, 136.1, 134.7, 131.7, 130.4, 130.0, 139.6, 128.3, 128.3, 128.1, 128.1, 127.6, 127.4, 76.3, 26.0, 19.0, -3.6. HRMS: Calculated $[M+H]^+$ for C₂₈H₃₄NO₂Si⁺: 444.2353, found: 444.2360. Melting Point: 111.0 – 112.1 °C FTIR (cm⁻¹): 3107, 3052, 2959, 1629, 1595, 1491, 1348, 1289, 1065, 970, 765, 739, 631.

tertbutyl dimethylsilyl (1Z,2E)-N-(benzyloxy)-3-phenylbut-2-enimidate (1v)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12v** (1.0 g, 3.74 mmol, 1.0 equiv.) was dissolved in dry THF (20 mL, 0.2 M) at room temperature. The reaction mixture was

then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.86 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (733 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (1*Z*,2*E*)-*N*-(benzyloxy)-3-phenylbut-2-enimidate **1v** as a pale yellow oil (200 mg, 49%).

¹H NMR (600 MHz, CDCl₃) δ 7.43 − 7.41 (m, 4H), 7.37 − 7.27 (m, 6H), 5.97 (q, *J* = 1.4 Hz, 1H), 5.04 (s, 2H), 2.33 (d, *J* = 1.4 Hz, 3H), 0.92 (s, 9H), 0.14 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 151.9, 144.3, 143.1, 137.7, 129.1, 128.5, 128.4, 128.0, 126.2, 119.0, 76.1, 25.8, 18.7, 18.6, -3.8.

HRMS: Calculated [M+H]⁺ for C₂₃H₃₂NO₂Si⁺: 382.2202, found: 382.2203.

FTIR (cm⁻¹): 3063, 3032, 2953, 2929, 2857, 1634, 1577, 1471, 1349, 1289, 1251, 1233, 1053, 1003, 837, 784, 694.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-3-methylbut-2-enimidate (1w)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12w** (821 mg, 4.0 mmol, 1.0 equiv.) was dissolved in dry THF (20 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.8 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (721 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-(benzyloxy)-3-methylbut-2-enimidate **1w** as a colorless oil (340 mg, 27%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.35 – 7.32 (m, 2H), 7.30 – 7.28 (m, 1H), 5.46 (p, *J* = 1.4 Hz, 1H), 4.99 (s, 2H), 1.90 (d, *J* = 1.4 Hz, 3H), 1.80 (d, *J* = 1.4 Hz, 3H), 0.90 (s, 9H), 0.11 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 151.7, 143.6, 137.8, 129.0, 128.3, 127.9, 117.1, 75.9, 26.8, 25.8, 20.6, 18.7, -3.9.

HRMS: Calculated [M+H]⁺ for C₁₈H₃₀NO₂Si⁺: 320.2040, found: 320.2040.

FTIR (cm⁻¹): 3032, 2954, 2930, 2858, 1655, 1598, 1454, 1362, 1352, 1272, 1250, 1076, 1045, 996, 825, 784, 696.

methyl (*E*)-3-phenyl-2-((*Z*)-6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)acrylate (1x)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12x** (623 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.4 mL, 1.2 equiv.,

1.0 M in THF) was then added slowly. TBSCI (362 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford methyl (*E*)-3-phenyl-2-((*Z*)-6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)acrylate **1x** as a light yellow oil (351.5 mg, 41%).

¹H NMR (600 MHz, CDCl₃) δ 7.79 (s, 1H), 7.51 – 7.49 (m, 2H), 7.35 – 7.28 (m, 8H), 4.99 (s, 2H), 3.81 (s, 3H), 0.82 (s, 9H), 0.15 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 166.5, 147.8, 144.8, 137.8, 133.5, 130.5, 130.4, 128.7, 128.6, 128.4, 127.9, 124.4, 75.9, 52.4, 25.6, 18.6, -3.7.

HRMS: Calculated [M+H]⁺ for C₂₄H₃₂NO₄Si⁺: 426.2095, found: 426.2096.

FTIR (cm⁻¹): 3064, 3031, 2952, 2929, 2857, 1719, 1619, 1435, 2145, 1199, 1082, 1069, 837, 786, 690.

methyl (*E*)-3-(4-methoxyphenyl)-2-((*Z*)-6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)acrylate (1y)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12y** (682.7 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.4 mL, 1.2 equiv.,

1.0 M in THF) was then added slowly. TBSCI (362 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford methyl (*E*)-3-(4-methoxyphenyl)-2-((*Z*)-6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)acrylate **1y** as a light yellow oil (533.5 mg, 59%).
¹H NMR (600 MHz, CDCl₃) δ 7.73 (s, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.38 − 7.36 (m, 2H), 7.34 − 7.28 (m, 3H), 6.77 (d, *J* = 8.9 Hz, 2H), 5.01 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 0.83 (s, 9H), 0.16 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 166.8, 161.5, 148.1, 144.6, 138.0, 132.6, 128.8, 128.4, 127.9, 126.1, 121.6, 114.1, 75.9, 55.5, 52.2, 25.6, 18.6, -3.8.

HRMS: Calculated [M+H]⁺ for C₂₅H₃₄NO₅Si⁺: 456.2201, found: 456.2204.

FTIR (cm⁻¹): 2952, 2930, 2857, 1715, 1602, 1512, 1434, 1241, 1201, 1172, 1073, 1032, 824, 785, 697.

methyl (Z)-3-ethyl-2-(6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)pent-2-enoate (1z)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12z** (582.7 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture

was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.4 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (362 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford methyl (*Z*)-3-ethyl-2-(6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)pent-2-enoate **1z** as a colorless oil (191.2 mg, 24%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.37 (m, 2H), 7.35 – 7.32 (m, 2H), 7.30 – 7.27 (m, 1H), 5.01 (s, 2H), 3.69 (s, 3H), 2.49 (q, *J* = 7.5 Hz, 2H), 2.14 (q, *J* = 7.5 Hz, 2H), 1.09 (t, *J* = 7.5 Hz, 3H), 0.92 (t, *J* = 7.5 Hz, 3H), 0.85 (s, 9H), 0.15 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 166.3, 166.0, 150.0, 138.1, 128.7, 128.3, 127.8, 121.8, 75.7, 51.5, 28.4, 25.9, 25.6, 18.6, 13.0, -3.8.

HRMS: Calculated [M+H]⁺ for C₂₂H₃₆NO₄Si⁺: 406.2408, found: 406.2408.

FTIR (cm⁻¹): 3036, 2956, 2931, 2859, 1724, 1619, 1456, 1250, 1228, 1069, 841, 786, 697.

methyl (Z)-3-((benzyloxy(imino)-3-((tert-butyldimethylsilyl)oxy)-2-cyclohexylidenepropanoate (1aa)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12aa** (602 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture

was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.4 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (362 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford methyl (*Z*)-3-((benzyloxy(imino)-3-((tert-butyldimethylsilyl)oxy)-2-cyclohexylidenepropanoate **1aa** as a colorless oil (785 mg, 95%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.37 (m, 2H), 7.34 – 7.31 (m, 2H), 7.30 – 7.27 (m, 1H), 5.01 (s, 2H), 3.70 (s, 3H), 2.68 – 2.66 (m, 2H), 2.22 (t, *J* = 5.8 Hz, 2H), 1.64 (dd, *J* = 7.8, 4.1 Hz, 2H), 1.55 (m, 4H), 0.85 (s, 9H), 0.13 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 166.4, 162.1, 150.0, 138.0, 128.9, 128.3, 127.9, 120.0, 75.8, 51.6, 34.1, 32.0, 28.6, 28.3, 26.3, 25.6, 18.6, -3.9.

HRMS: Calculated [M+H]⁺ for C₂₃H₃₆NO₄Si⁺: 406.2408, found: 418.2414.

FTIR (cm⁻¹): 3032, 2929, 2857, 1722, 1618, 1325, 1242, 1203, 1061, 1012, 843, 823, 811, 785, 696.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-3-methyl-1H-indene-1-carbimidate (1ab)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12ab** (559 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room temperature. The reaction mixture

was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.4 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCl (362 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-3-methyl-1*H*-indene-1-carbimidate **1ab** as a pale-brown solid (554.4 mg, 70%).

¹H NMR (600 MHz, CDCl₃) δ 7.46 − 7.42 (m, 3H), 7.38 − 7.36 (m, 3H), 7.34 − 7.30 (m, 2H), 7.25 − 7.22 (m, 1H), 5.05 (s, 2H), 3.58 (d, *J* = 2.3 Hz, 2H), 2.34 (s, 3H), 0.93 (s, 9H), 0.16 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 151.2, 146.6, 142.6, 141.0, 137.5, 131.9, 129.4, 128.4, 128.1, 126.5, 125.8, 123.6, 119.9, 76.2, 39.5, 26.0, 19.0, 12.8, -3.3.

HRMS: Calculated [M+H]⁺ for C₂₄H₃₂NO₂Si⁺: 394.2197, found: 394.2209.

FTIR (cm⁻¹): 3066, 2952, 2927, 2880, 2855, 1567, 1469, 1459, 1384, 1366, 1272, 1249, 1192, 1121, 1029, 984, 963, 786, 759, 767, 699.

*tert*butyl (*Z*)-3-(6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)-1*H*-indole-1-carboxylate (1ac)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12ac** (500 mg, 1.4 mmol, 1.0 equiv.) was dissolved in dry THF (7 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (1.8 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (267 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert* butyl (*Z*)-3-(6,6,7,7-tetramethyl-1-phenyl-2,5-dioxa-3-aza-6-silaoct-3-en-4-yl)-1*H*-indole-1-carboxylate **1ac** as a pale-brown solid (460 mg, 70%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.16 (d, *J* = 7.8 Hz, 1H), 8.14 (d, *J* = 7.1 Hz, 1H), 7.92 (s, 1H), 7.49 – 7.48 (m, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.28 – 7.26 (m, 1H), 5.14 (s, 2H), 1.66 (s, 9H), 0.99 (s, 9H), 0.18 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 148.5, 137.5, 129.3, 128.4, 128.2, 127.1, 127.0, 125.0, 123.5, 123.1, 115.0, 114.9, 84.1, 76.5, 28.3, 26.1, 19.0, -3.7.

HRMS: Calculated [M+H]⁺ for C₂₇H₃₇N₂O₄Si⁺: 481.2523, found: 481.2529.

Melting Point: 114.4 – 114.7 °C

FTIR (cm⁻¹): 3060, 3034, 2959, 2933, 2886, 2856, 1730, 1613, 1554, 1450, 1399, 1361, 1284, 1211, 1146, 1072, 1004, 965, 785, 762, 703, 676.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-2-cycloheptyldeneacetimidate (1ad)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12ad** (1.6 g, 6.17 mmol, 1.0 equiv.) was dissolved in dry THF (31 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (7.4 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (1.11 g, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 30 mL of H₂O and extracted with 30 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-2-cycloheptyldeneacetimidate **1ad** as a colorless oil (527 mg, 23%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.35 – 7.32 (m, 2H), 7.30 – 7.27 (m, 1H), 5.43 (p, *J* = 1.3 Hz, 1H), 4.98 (s, 2H), 2.56 – 2.54 (m, 2H), 2.30 – 2.27 (m, 2H), 1.61 –1.55 (m, 4H), 1.52 – 1.47 (m, 4H), 0.90 (s, 9H), 0.10 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 153.6, 151.4, 138.0, 129.1, 128.3, 127.9, 116.9, 75.9, 38.6, 32.5, 29.8, 29.6, 28.7, 27.0, 25.8, 18.7, -3.9.

HRMS: Calculated [M+H]⁺ for C₂₂H₃₆NO₂Si⁺: 374.2510, found: 374.2515.

FTIR (cm⁻¹): 3032, 2927, 2856, 1641, 1594, 1472, 1456, 1251, 1056, 1005, 837, 824, 785, 969.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-2-cyclohexyldeneacetimidate (1ae)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12ae** (400 mg, 1.6 mmol, 1.0 equiv.) was dissolved in dry THF (16 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (1.9 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (288 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc

three times. The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-2-cyclohexyldeneacetimidate **1ae** as a colorless oil (260 mg, 45%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.38 (m, 2H), 7.35 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 5.41 (p, *J* = 1.3 Hz, 1H), 4.98 (s, 2H), 2.47 – 2.45 (m, 2H), 2.14 – 2.12 (m, 2H), 1.60 – 1.49 (m, 6H), 0.89 (s, 9H), 0.10 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 151.6, 151.1, 137.8, 129.1, 128.3, 127.9, 113.9, 75.9, 37.6, 30.5, 28.5, 27.7, 26.5, 25.8, 18.7, -3.9.

HRMS: Calculated [M+H]⁺ for C₂₁H₃₄NO₂Si⁺: 360.2353, found: 360.2357.

FTIR (cm⁻¹): 3065, 3032, 2928, 2856, 1653, 1602, 1448, 1362, 1281, 1249, 1226, 1050, 1002, 823, 783, 695.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-2-cyclopentyldeneacetimidate (1af)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12f** (925 mg, 4.0 mmol, 1.0 equiv.) was dissolved in dry THF (20 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.8 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (781 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-2-cyclopentyldeneacetimidate **1af** as a colorless oil (912 mg, 66%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.35 – 7.32 (m, 2H), 7.30 – 7.28 (m, 1H), 5.58 (p, *J* = 2.4 Hz, 1H), 4.97 (s, 2H), 2.49 (tdt, *J* = 7.2, 2.8, 1.5 Hz, 2H), 2.35 (tdq, *J* = 7.1, 1.6 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.62 – 1.58 (m, 2H), 0.90 (s, 9H), 0.11 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 155.4, 152.3, 137.9, 129.1, 128.3, 127.9, 112.7, 75.9, 35.5, 32.6, 26.8, 26.1, 25.9, 18.8, -3.7.

HRMS: Calculated [M+H]⁺ for C₂₀H₃₂NO₂Si⁺: 346.2197, found: 346.2200.

FTIR (cm⁻¹): 3032, 2954, 2930, 2858, 1656, 1583, 1454, 1362, 1304, 1251, 1054, 998, 835, 784, 695.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-2-cyclobutyldeneacetimidate (1ag)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12ag** (700 mg, 3.22 mmol, 1.0 equiv.) was dissolved in dry THF (20 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.2 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (631 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction

crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-2-cyclobutyldeneacetimidate **1ag** as a colorless oil (370 mg, 35%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.38 – 7.36 (m, 2H), 7.35 – 7.31 (m, 2H), 7.30 – 7.27 (s, 1H), 5.43 (p, *J* = 2.4 Hz, 1H), 4.94 (s, 2H), 2.92 (tp, *J* = 8.1, 1.4, 1.3 Hz, 2H), 2.74 (ddt, *J* = 8.2, 7.4, 2.4 Hz, 2H), 1.99 (h, *J* = 7.7 Hz, 2H), 0.98 (s, 9H), 0.10 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 152.9, 152.1, 137.6, 129.1, 128.3, 127.9, 113.1, 75.9, 33.5, 32.3, 25.9, 18.9, 17.9, -3.4.

HRMS: Calculated [M+H]⁺ for C₁₉H₃₀NO₂Si⁺: 332.2040, found: 332.2096.

FTIR (cm⁻¹): 3032, 2953, 2929, 2857, 1679, 1584, 1471, 1351, 1252, 1052, 1000, 836, 823, 810, 784, 695.

tertbutyl dimethylsilyl (Z)-2-((1r,3r,5R,7S)-adamant-2-ylidene)-N-(benzyloxy)acetimidate (1ah)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12ahg** (892 mg, 3.0 mmol, 1.0 equiv.) was dissolved in dry THF (15 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.0 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (586 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-2-((1r,3r,5R,7S)-adamant-2-ylidene)-*N*-(benzyloxy)acetimidate **1ah** as a white solid (567 mg, 46%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 − 7.38 (m, 2H), 7.34 − 7.32 (m, 2H), 7.32 − 7.27 (m, 1H), 5.37 (s, 1H), 4.95 (s, 2H), 3.40 (br, 1H), 2.37 (br, 1H), 1.93 − 1.77 (m, 12H), 0.89 (s, 9H), 0.10 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 159.0, 151.6, 137.9, 129.2, 128.3, 127.9, 109.2, 75.9, 41.0, 39.9, 39.1, 37.2, 33.2, 28.3, 25.8, 18.8, -3.7.

Melting Point: 53.4 – 87.8 °C

HRMS: Calculated [M+H]⁺ for C₂₅H₃₈NO₂Si⁺: 412.2666, found: 412.2667.

FTIR (cm⁻¹): 3032, 2953, 2922, 2901, 2849, 1651, 1593, 1366, 1262, 1243, 1211, 1054, 989, 959, 813, 783, 695.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-2-(tetrahydro-4H-pyran-4-ylidene)acetimidate (1ai)

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12ai** (742 mg, 3.0 mmol, 1.0 equiv.) was dissolved in dry THF (15 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (4.0 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (586 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc

three times. The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-2-(tetrahydro-4H-pyran-4-ylidene)acetimidate **1ai** as a white solid (512 mg, 47%).

¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.37 (m, 2H), 7.35 – 7.32 (m, 2H), 7.31 – 7.28 (m, 1H), 5.50 (p, *J* = 1.3 Hz, 1H), 4.97 (s, 2H), 3.72 (t, *J* = 5.5 Hz, 2H), 3.63 (t, *J* = 5.5 Hz, 2H), 2.64 (ddd, *J* = 6.2, 5.0, 1.3 Hz, 2H), 2.26 (ddd, *J* = 6.2, 5.0, 1.3 Hz, 2H), 0.90 (s, 9H), 0.11 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 151.0, 145.1, 137.6, 129.1, 128.4, 128.0, 115.7, 76.0, 69.3, 68.6, 37.4, 31.7, 25.8, 18.7, -3.8.

Melting Point: 44.3 – 46.3 °C

HRMS: Calculated [M+H]⁺ for C₂₀H₃₂NO₃Si⁺: 362.2146, found: 362.2148.

FTIR (cm⁻¹): 3032, 2955, 2930, 2856, 1658, 1601, 1386, 1362, 1273, 1251, 1099, 1051, 1003, 835, 810, 784, 696.

tertbutyl dimethylsilyl (1Z,3E)-N-(benzyloxy)-4-phenylbut-3-enimidate (1aj)

Following the general procedures for the synthesis of silyl imino ethers, in a flamedried round bottom flask under Argon atmosphere, compound **12aj** (1.01 g, 3.78 mmol, 1.0 equiv.) was dissolved in dry THF (20 mL, 0.2 M) at room temperature.

The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (7.6 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (1.134 g, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-4-phenylbut-3-enimidate **1aj** as a pale yellow oil (1.158 g, 80%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 − 7.29 (m, 10H), 6.49 (dd, *J* = 15.8, 1.6 Hz, 1H), 6.22 (dt, *J* = 15.9, 7.0 Hz, 1H), 4.95 (s, 2H), 3.05 (dd, *J* = 7.0, 1.5 Hz, 2H), 0.88 (s, 9H), 0.09 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 153.3, 137.3, 133.0, 129.4, 128.9, 128.5, 128.3, 127.3, 126.4, 126.2, 124.1, 75.7, 36.7, 25.7, 18.6, -3.9.

HRMS: Calculated [M+H]⁺ for C₂₃H₃₂NO₂Si⁺: 382.2197, found: 382.2203. **FTIR (cm⁻¹):** 3030, 2929, 2857, 1635, 1362, 1252, 1055, 966, 787, 696.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-4-methylpent-4-enimidate (1ak)

Me N OBn OTBS Following the general procedures for the synthesis of silyl imino ethers, in a flamedried round bottom flask under Argon atmosphere, compound **12ak** (948 mg, 4.33 mmol, 1.0 equiv.) was dissolved in dry THF (22 mL, 0.2 M) at room temperature. The

reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (5.2 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (780 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full

conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H_2O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-4-methylpent-4-enimidate **1ak** as a colorless oil (984 mg, 68%).

¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.36 (m, 2H), 7.35 – 7.32 (m, 2H), 7.31 – 7.28 m (1H), 4.92 (s, 2H), 4.72 (m, 1H), 4.70 (m, 1H), 2.26 (s, 4H), 1.72 (t, *J* = 1.72 Hz, 3H), 0.89 (s, 9H), 0.09 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 154.6, 144.7, 137.6, 128.9, 128.4, 128.0, 110.6, 75.6, 34.2, 31.6, 25.8, 22.5, 18.7, -3.8.

HRMS: Calculated [M+H]⁺ for C₁₉H₃₂NO₂Si⁺: 334.2197, found: 334.2203.

FTIR (cm⁻¹): 3068, 3033, 2955, 2930, 2858, 1635, 1472, 1362, 1251, 1052, 1003, 889, 822, 811, 696.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-5-phenylhex-5-enimidate (1al)

In a flame-dried round-bottom flask under Argon atmosphere, methyltriphenylphosphonium bromide (186 mg, 1.2 equiv.) was suspended in dry Et₂O (2.2 mL, 0.2 M). The reaction mixture was then cooled down to 0 °C using an ice-water cooling bath under vigorous stirring. Then *n*-BuLi (0.19 mL, 1.1 equiv., 2.5 M solution in hexanes) was added dropwise with vigorous stirring. The reaction turned bright yellow and was allowed to stir for 5 min. Then compound **1al'** was added slowly and the reaction was allowed to warm to room temperature and stirred overnight. The bright yellow color disappeared, and a white precipitate was formed. After the 16h, the reaction mixture was allowed to cool down to room temperature. The solids were filtered and washed thrice with Et₂O (10 mL). The filtrate was then concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (97/03 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-5-phenylhex-5-enimidate **1al** as colorless oil (50 mg, 28%).

¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.36 (m, 4H), 7.34 – 7.28 (m, 5H), 7.25 – 7.24 (m, 1H),

7.38 (s, 5H), 5.02 (d, *J* = 10.9 Hz, 1H), 4.98 (d, *J* = 10.9 Hz, 1H), 4.36 (s, 1H), 3.92 – 3.89 (m, 1H), 3.81 (dddd, *J* = 12.0, 4.8, 3.8, 1.1 Hz, 1H), 3.53 (ddd, *J* = 12.0, 10.5, 3.0 Hz, 1H), 3.44 (ddd, *J* = 12.0, 10.8, 2.8 Hz, 1H), 2.08 (ddd, *J* = 13.7, 10.8, 4.5 Hz, 1H), 1.74 (dtd, *J* = 13.9, 3.2, 3.1, 2.2 Hz, 1H), 1.67 (ddd, *J* = 13.8, 10.5, 4.7 Hz, 1H), 1.52 (ddt, *J* = 13.7, 3.7, 2.5 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 154.6, 147.9, 141.1, 137.6, 129.4, 128.9, 128.5, 128.4, 128.4, 128.0, 127.5, 126.3, 112.8, 75.6, 34.7, 32.4, 25.8, 24.7, 18.6, -3.9.

HRMS: Calculated [M+H]⁺ for C₂₅H₃₆NO₂Si⁺: 410.2510, found: 410.2515.

FTIR (cm⁻¹): 3024, 2930, 2858, 1635, 1495, 1456, 1364, 1216, 1055, 837, 779, 698.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-5-oxo-5-phenylpentanimidate (1al')

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12al** (569 mg, 1.91 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL, 0.2 M) at room

temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (2.1 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (316 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left

stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 10 mL of H₂O and extracted with 10 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-5-oxo-5-pehnylpentanimidate **1al'** as a colorless oil (178 mg, 23%).

¹H NMR (600 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.57 – 7.54 (m, 1H), 7.46 – 7.43 (m, 2H), 7.37 – 7.36 (m, 2H), 7.33 – 7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 4.92 (s, 2H), 2.97 (dd, *J* = 7.8, 7.0 Hz, 2H), 2.24 (t, *J* = 7.1 Hz, 2H), 2.01 (p, *J* – 7.2 Hz, 2H), 0.89 (s, 9H), 0.10 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 199.9, 154.2, 137.7, 137.1, 133.1, 128.9, 128.7, 128.4, 128.2, 128.0, 75.6, 37.6, 32.8, 25.8, 20.5, 18.7, -3.9.

HRMS: Calculated [M+H]⁺ for C₂₄H₃₄NO₃⁺: 412.2302, found: 412.2310.

FTIR (cm⁻¹): 3064, 3031, 2954, 2930, 2858, 1738, 1634, 1449, 1363, 1251, 1228, 1054, 824, 786.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-6-phenylhept-6-enimidate (1am)

OTBS N^{OBn}

In a flame-dried round-bottom flask under Argon atmosphere, methyltriphenylphosphonium bromide (397 mg, 1.2 equiv.) was suspended in dry Et_2O (4.6 mL, 0.2 M). The reaction mixture was then cooled down to 0 °C

using an ice-water cooling bath under vigorous stirring. Then *n*-BuLi (0.41 mL, 1.1 equiv., 2.5 M solution in hexanes) was added dropwise with vigorous stirring. The reaction turned bright yellow and was allowed to stir for 5 min. Then compound **1am'** was added slowly and the reaction was allowed to warm to room temperature and stirred overnight. The bright yellow color disappeared, and a white precipitate was formed. After the 16h, the reaction mixture was allowed to cool down to room temperature. The solids were filtered and washed thrice with Et_2O (10 mL). The filtrate was then concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (97/03 hexanes:EtOAc) to afford *tert*butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-6-phenylhept-6-enimidate **1am** as colorless oil (124 mg, 32%).

¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.37 – 7.27 (m, 7H), 7.26 – 7.24 (m, 1H), 5.26 (d, *J* = 1.5 Hz, 1H), 5.05 (q, *J* = 1.4 Hz, 1H), 4.91 (s, 2H), 2.51 (dt, *J* = 7.5, 1.3 Hz, 2H), 2.13 – 2.10 (m, 2H), 1.59 (dtd, *J* = 8.7, 7.5, 6.2 Hz, 2H), 1.50 – 1.45 (m, 2H), 0.88 (s, 9H), 0.07 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 154.9, 148.4, 141.4, 137.5, 129.0, 128.4, 128.4, 128.0, 127.4, 126.3, 112.5, 75.6, 35.1, 32.7, 27.7, 25.8, 18.7, -3.9.

HRMS: Calculated $[M+H]^+$ for $C_{26}H_{32}NO_2Si^+$: 424.2666, found: 424.2672.

FTIR (cm⁻¹): 3028, 2970, 2930, 2858, 1634, 1455, 1206, 1055, 786, 698.

tertbutyl dimethylsilyl (Z)-N-(benzyloxy)-6-oxo-6-phenylhexanimidate (1am')

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12am** (955 mg, 3.07 mmol, 1.0 equiv.) was dissolved in dry THF (16 mL, 0.2 M) at

room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (3.4 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (506 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned

with 20 mL of H_2O and extracted with 20 mL of EtOAc three times. The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford *tert* butyl dimethylsilyl (*Z*)-*N*-(benzyloxy)-6-oxo-6-phenylhexanimidate **1am'** as a colorless oil (394 mg, 30%).

¹H NMR (600 MHz, CDCl₃) δ 7.95 – 7.94 (m, 2H), 7.57 – 7.54 (m, 1H), 7.47 – 7.44 (m, 2H), 7.37 – 7.35 (m, 2H), 7.34 – 7.31 (m, 2H), 7.29 – 7.27 (m, 1H), 4.91 (s, 2H), 2.98 – 2.95 (m, 2H), 2.19 – 2.16 (m, 2H), 1.79 – 1.74 (m, 2H), 1.69 – 1.64 (m, 2H), 0.92 (s, 9H), 0.10 (s 6H).

¹³C NMR (150 MHz, CDCl₃) δ 200.2, 154.6, 137.5, 137.1, 133.1, 129.0, 128.7, 128.4, 128.2, 128.0, 75.6, 38.3, 32.7, 25.8, 23.7, 18.7, 18.1, -3.9.

HRMS: Calculated $[M+H]^+$ for $C_{25}H_{36}NO_3Si^+$: 426.2459, found: 426.2463.

FTIR (cm⁻¹): 3064, 3032, 2953, 2930, 2858, 1728, 1634, 1450, 1362, 1276, 1252, 1055, 1002, 787.

12. Synthesis and characterization of hydroxamate esters (12):

N-methoxycinnamamide (12a)

N ∕OMe

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, MeONH₂·HCl (958 mg, 11.47 mml, 2.0 equiv.) was suspended in dry Toluene (29 mL, 0.2 M). The

reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (5.7 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, methyl cinnamate (930 mg, 5.74 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80:20 hexanes:EtOAc) to afford *N*-methoxycinnamamide **12a** as a white crystalline solid. The NMR data matches the one reported in the literature.⁵

¹H NMR (600 MHz, CDCl₃) δ 8.67 (br, 1H), 7.76 (d, *J* = 15.8 Hz, 1H), 7.53 (m, 2H), 7.37 (m, 3H), 6.42 (brs, 1H), 3.84 (s, 3H).

N-methoxycinnamamide (12b)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.0 equiv.) was suspended in THF:DCM (226 mL, 1:1, 0.2 M) at room temperature.

The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (26 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 60 min at 0 °C. HOBt hydrate (10.36 g, 1.0 equiv.) and cinnamic acid (10 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 60 min at 0 °C. Finally, NEt₃ (26 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir for 48 h. The reaction was then filtered, and the obtained

⁵ K. Inamoto, J. Kawasaki, K. Hiroya, Y. Kondo, T. Doi. *Chem. Commun.* **2012**, *48*, 4332–4334.

filtrate was diluted with 100 mL of EtOAc and then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-benzyloxycinnamide **12b** as a white powder (12.55 g, 73%). The NMR data matches the one reported in the literature.⁶

¹H NMR (600 MHz, CDCl₃) δ 8.12 (br, 1H), 7.74 (d, *J* = 15.5 Hz, 1H), 7.50 − 7.49 (m, 2H), 7.44 − 7.36 (m, 8H), 4.97 (s, 2H).

N-((4-methoxybenzyl)oxy)cinnamamide (12c)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, *O*-(4-methoxybenzyl)hydroxylamine (3.1g, 1.0 equiv.) was suspended in THF:DCM (100

mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (4.2 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (3.1 g, 1.0 equiv.) and cinnamic acid (3.0 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (4.2 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and then washed once with 25 mL HCl (3 M), followed by one wash with 25 mL conc. NaHCO₃ and finally with 25 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-((4-methoxybenzyl)oxy)cinnamamide **12c** as a white powder (4.6 g, 80%). The NMR data matches the one reported in the literature.⁷

¹**H NMR (600 MHz, CDCl**₃) δ 8.10 (br, 1H), 7.75 – 7.71 (d, *J* = 15.7 Hz, 1H), 7.50 – 7.49 (m, 2H), 7.38 – 7.35 (m, 5H), 6.92 (d, *J* = 8.6 Hz, 2H), 6.27 (bs, 1H), 4.91 (s, 2H), 3.80 (s, 3H).

N-hydroxycinamamide (12d)

Following a known literature procedure⁸ *N*-hydroxycinnamamide **12d** was prepared as a pale pink powder. The NMR data matches the one reported in the literature.⁹

¹H NMR (600 MHz, CDCl₃) δ 7.69 (bs, 1H), 7.48 (bs, 2H), 7.35 (bs, 3H), 6.37 (bs, 1H).

N-phenoxycinnamamide (12e)

In an oven-dried round-bottom flask under Argon atmosphere, *O*-phenylhydroxylamine hydrochloride (1.95 g, 1.0 equiv.) was suspended in DCM (66,

⁶ Gissot, A., Volonterio, A., Zanda, M. J. Org. Chem. **2005**, 70(17), 6925–6928.

⁷ Zhang, N., Yang, R., Zhang-Negrerie, D., Du, Y., Zhao, K. J. Org. Chem. **2012**, 78(17), 8705–8711.

⁸ Usachova, N., Leitis, G., Jirgensons, A., Kalvinsh, I. Synthn. Commun. **2010**, 40, 927–935.

⁹ Porcheddu, A., Giacomelli, G. J. Org. Chem. **2006**, 71(18), 7057–7059.

0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. EDCI-HCI (3.8 g, 1.5 equiv.) and DMAP (1.93 g, 1.2 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, cinnamic acid (1.95 g, 13.17 mmol) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then washed once with 50 mL H₂O and extracted with DCM 3 x 70 mL. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (60/40 hexanes:EtOAc) to afford *N*-phenoxycinnamamide **12e** as a white powder (1.1 g, 35%).

¹H NMR (600 MHz, CDCl₃) δ 12.03 (bs, 1H), 7.65 – 7.64 (m, 2H), 7.60 (d, J = 16.0 Hz, 1H), 7.46 – 7.42 (m, 3H), 7.36 – 7.33 (m, 2H), 7.06 – 7.03 (m, 3H), 6.62 (d, J = 16.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 159.5, 140.8, 134.4, 130.0, 129.5, 129.0, 127.9, 122.4, 117.6, 112.9.

HRMS: Calculated [M+H]⁺ for C₁₅H₁₄NO₂⁺: 240.1019, found: 240.1025.

Melting Point: 149.9 - 151.8 °C

`N_́OBn

FTIR (cm⁻¹): 3118, 3055, 2925, 2857, 1667, 1625, 1589, 1487, 1343, 1118, 1044, 979, 750.

(E)-N-(benzyloxy)-3-(naphthalen-2-yl)acrylamide (12f)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.81 g, 11.32 mml, 2.0 equiv.) was suspended in dry

Toluene (28 mL, 0.2 M). The reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (5.7 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13f** (1.2 g, 5.66 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80:20 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-3-(naphthalene-2-yl)acrylamide **12f** as a white crystalline solid (601 mg, 54%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.32 (s, 1H), 8.10 (s, 1H), 7.96 – 7.92 (m, 3H), 7.72 – 7.71 (m, 1H), 7.67 (d, *J* = 15.8 Hz, 1H), 7.56 (dt, *J* = 6.2, 3.4 Hz, 2H), 7.45 – 7.35 (m, 5H), 6.58 (d, *J* = 15.8 Hz, 1H), 4.90 (s, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 163.0, 139.6, 136.0, 133.5, 133.0, 132.2, 129.0, 128.8, 128.6, 128.4, 128.3, 127.7, 127.0, 126.7, 123.5, 119.0, 77.0.

HRMS: Calculated [M+H]⁺ for C₂₀H₁₈NO₂⁺: 304.1332, found: 304.1342.

Melting Point: 140.6 – 141.2 °C

FTIR (cm⁻¹): 3193, 3058, 3035, 2994, 1648, 1622, 1509, 1497, 1050, 976, 962, 739, 694.

(E)-N-(benzyloxy)-3-(naphthalen-2-yl)acrylamide (12g)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.81 g, 11.32 mml, 2.0 equiv.) was suspended in dry Toluene (28 mL, 0.2 M). The

reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (5.7 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13g** (1.2 g, 5.66 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80:20 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-3-(naphthalene-2-yl)acrylamide **14g** as a white crystalline solid (453 mg, 26%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.41 (s, 1H), 8.28 (d, *J* = 15.6 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.60 – 7.55 (m, 2H), 7.46 (d, *J* = 7.0 Hz, 2H), 7.41 (d, *J* = 7.4 Hz, 2H), 7.36 (d, *J* = 7.2 Hz, 1H), 6.53 (d, *J* = 15.6 Hz, 1H), 4.92 (s, 2H).

¹³C NMR (150 MHz, DMSO-d₆) δ 162.8, 136.0, 133.3, 131.7, 130.7, 129.8, 128.8, 128.7, 128.4, 128.3, 127.0, 126.3, 125.7, 124.6, 123.1, 121.6, 77.1.

HRMS: Calculated [M+H]⁺ for C₂₀H₁₈NO₂⁺: 304.1332, found: 304.1332.

Melting Point: 157.8 – 160.0 °C

FTIR (cm⁻¹): 3230, 3059, 2990, 1656, 1618, 1506, 1348, 1051, 967, 790, 774, 750.

(Z)-N-(benzyloxy)-2-bromo-3-pehnylacrylamide (12j)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.27 g, 1.0 equiv.) was suspended in THF:DCM (40 mL, 1:1, 0.2 M) at room

temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (1.7 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 630 min at 0 °C. HOBt hydrate (1.22 g, 1.0 equiv.) and compound **15j** (1.8 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (1.7 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford (*Z*)-*N*-(benzyloxy)-2-bromo-3-phenylacrylamide **12j** as a yellow powder (1.6 g, 61%).

¹H NMR (600 MHz, CDCl₃) δ 9.13 (s, 1H), 8.32 (s, 1H), 7.75 – 7.74 (m, 2H), 7.46 – 7.43 (m, 2H), 7.42 – 7.39 (m, 6H), 5.02 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 160.5, 138.7, 134.9, 133.7, 130.2, 130.1, 129.6, 129.2, 128.9, 128.6, 110.8, 78.7.

HRMS: Calculated [M+H]⁺ for C₁₆H₁₅BrNO₂⁺: 332.0281, found: 332.0283.

Melting Point: 55.1 – 56.1 °C

FTIR (cm⁻¹): 3228, 3057, 3033, 2954, 1654, 1610, 1481, 1445, 1268, 1082, 1064, 738, 688.

(Z)-N-(benzyloxy)-2-chloro-3-pehnylacrylamide (12k)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.05 g, 1.0 equiv.) was suspended in THF:DCM (32 mL, 1:1, 0.2 M) at room

temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (2.5 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 630 min at 0 °C. HOBt hydrate (1.0 g, 1.0 equiv.) and compound **13k** (1.2 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.5 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford (*Z*)-*N*-(benzyloxy)-2-chloro-3-phenylacrylamide **12k** as a white powder (728 mg, 38%).

¹H NMR (600 MHz, CDCl₃) δ 9.09 (bs, 1H), 8.02 (s, 1H), 7.77 – 7.75 (m, 2H), 7.46 – 7.39 (m, 8H), 5.02 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 160.6, 135.0, 134.9, 132.9, 130.7, 130.2, 129.6, 129.2, 128.9, 128.7, 120.4, 78.7.

HRMS: Calculated [M+H]⁺ for C₁₆H₁₅ClNO₂⁺: 288.0786, found: 288.0787.

Melting Point: 89.8 - 91.6 °C

FTIR (cm⁻¹): 3239, 3092, 3036, 2883, 1656, 1614, 1482, 1444, 1272, 1262, 1085, 1067, 739, 690.

(E)-N-(benzyloxy)-2-methyl-3-pehnylacrylamide (12l)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.5 g, 1.0 equiv.) was suspended in THF:DCM (46 mL, 1:1, 0.2 M) at room temperature.

The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (2.0 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (1.42 g, 1.0 equiv.) and compound **13**I (1.5 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.0 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-2-methyl-3-phenylacrylamide **12**I as a white powder (1.0 g, 40%).

¹H NMR (600 MHz, CDCl₃) δ 8.63 (bs, 1H), 7.45 – 7.43 (m, 2H), 7.40 – 7.35 (m, 5H), 7.30 – 7.28 (m, 3H), 7.17 (s, 1H), 5.00 (s, 2H), 2.04 (d, *J* = 1.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.7, 135.6, 135.5, 134.6, 129.9, 129.4, 128.9, 128.8, 128.7, 128.5, 128.4, 128.2, 78.3, 14.2.

HRMS: Calculated [M+H]⁺ for C₁₇H₁₈NO₂⁺: 268.1332, found: 268.1346.
Melting Point: 89.8 − 93.0 °C
FTIR (cm⁻¹): 3221, 3059, 2930, 1652, 1618, 1498, 1448, 1278, 1004, 910, 694.

(E)-2-benzylidene-N-(benzyloxy)hexanamide (12m)

O N H Ma Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, $BnONH_2$ ·HCl (860 mg, 1.0 equiv.) was suspended in THF:DCM (28 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath.

NEt₃ (2.1 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (827 mg, 1.0 equiv.) and compound **13m** (1.1 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.1 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 40 mL of EtOAc and then washed once with 40 mL HCl (3 M), followed by one wash with 40 mL conc. NaHCO₃ and finally with 40 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford (*E*)-2-benzylidene-*N*-(benzyloxy)hexanamide **12l** as a colorless oil (1.01 g, 61%).

¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.46 – 7.44 (m, 2H), 7.41 – 7.34 (m, 5H), 7.30 – 7.27 (m, 1H), 7.24 – 7.23 (m, 2H), 6.93 (s, 1H), 5.01 (s, 2H), 2.49 – 2.47 (m, 2H), 1.43 (ddt, *J* = 12.1, 8.0, 3.9 Hz, 2H), 1.32 (h, 7.3 Hz, 2H), 0.87 (t, *J* = 7.3 Hz).

¹³C NMR (150 MHz, CDCl₃) δ 168.8, 136.6, 135.6, 135.5, 133.1, 129.5, 129.0, 128.9, 128.7, 128.5, 128.1, 78.2, 30.9, 27.8, 22.8, 13.9.

HRMS: Calculated [M+H]⁺ for C₂₀H₂₄NO₂⁺: 310.1802, found: 310.1809.

FTIR (cm⁻¹): 3189, 3029, 2956, 2929, 2871, 1738, 1648, 1621, 1494, 1455, 1365, 1217, 910, 731, 694.

(E)-N-(benzyloxy)-3-phenyl-2-(pyridin-3-yl)acrylamide (12n)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (184.2 mg, 1.0 equiv.) was suspended in THF:DCM (12 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath.

NEt₃ (0.24 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (176.8 mg, 1.0 equiv.) and compound **15n** (260 mg, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (0.24 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 10 mL of EtOAc and then washed once with 10 mL HCl (3 M), followed by one wash with 10 mL conc. NaHCO₃ and finally with 1 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-3-phenyl-2-(pyridine-3-yl)acylamide **12n** as a white powder (1.0 g, 40%).

¹H NMR (600 MHz, CDCl₃) δ 8.48 (bs, 1H), 8.28 (bs, 1H), 8.16 (s, 1H), 7.86 (s, 1H), 7.47 – 7.45 (m, 1H), 7.37 – 7.33 (m, 5H), 7.25 – 7.22 (m, 2H), 7.20 – 7.14 (m, 2H), 6.95 – 6.93 (m, 2H), 4.97 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 165.0, 150.4, 149.7, 139.8, 137.6 135.1, 134.0, 131.2, 130.5, 129.6, 129.4, 129.1, 128.9, 128.8, 128.7, 128.6, 124.1, 78.3.

HRMS: Calculated [M+H]⁺ for C₂₁H₁₉N₂O₂⁺: 331.1441, found: 331.1449.

Melting Point: 153.8 – 155.8 °C

FTIR (cm⁻¹): 3139, 3033, 2929, 1667, 1616, 1494, 1265, 1209, 1057, 1037, 905, 730.

(E)-N-(benzyloxy)-2-(2-methoxyphenyl)-3-phenylacrylamide (120)

O N^{OBn} ØMe Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, $BnONH_2$ ·HCl (1.57 mg, 1.0 equiv.) was suspended in THF:DCM (50 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath.

NEt₃ (2.1 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (1.51 g, 1.0 equiv.) and compound **130** (2.5 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.1 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-2-(2-methoxyphenyl)-3-phenylacrylamide **120** as an off-white powder (2.57 g, 44%).

¹H NMR (600 MHz, CDCl₃) δ 8.01 (s, 1H), 7.83 (s, 1H), 7.37 − 7.32 (m, 6H), 7.19 − 7.16 (m, 1H), 7.14 − 7.12 (m, 2H), 7.01 − 6.99 (m, 3H), 6.93 − 6.90 (m, 2H), 4.95 (m, 2H), 3.67 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 165.7, 157.3, 138.3, 135.4, 135.1, 131.3, 130.6, 130.2, 129.4, 129.2, 128.8, 128.8, 128.7, 128.3, 123.8, 121.8, 111.6, 78.3, 55.7.

HRMS: Calculated [M+H]⁺ for C₂₃H₂₂NO₃⁺: 360.1594, found: 360.1599.

Melting Point: 104.8 – 107.0 °C

FTIR (cm⁻¹): 3193, 3065, 3022, 2960, 1644, 1597 1487, 1461, 1242, 1021, 762, 691.

(E)-N-(benzyloxy)-2-(4-methoxyphenyl)-3-phenylacrylamide (12p)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, $BnONH_2$ ·HCl (942 mg, 1.0 equiv.) was suspended in THF:DCM (30 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (2.2 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for

30 min at 0 °C. HOBt hydrate (905 mg, 1.0 equiv.) and compound **13p** (1.5 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.2 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and

then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-2-(4-methoxyphenyl)-3-phenylacrylamide **12p** as an off-white powder (1.12 g, 53%).

¹H NMR (600 MHz, CDCl₃) δ 7.84 (s, 1H), 7.81 (s, 1H), 7.37 – 7.34 (m, 5H), 7.20 – 7.17 (m, 1H), 7.16 – 7.13 (m, 2H), 7.04 – 7.01 (m, 4H), 6.86 (d, *J* = 8.7 Hz, 2H), 4.96 (s, 2H), 3.83 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 159.9, 137.8, 135.2, 134.8, 131.6, 130.9, 130.6, 129.5, 128.9, 128., 128.4, 126.8, 115.1, 78.3, 55.4.

HRMS: Calculated [M+H]⁺ for C₂₃H₂₂NO₃⁺: 360.1594, found: 360.1608.

Melting Point: 104.6 – 106.4 °C

FTIR (cm⁻¹): 3180, 3029, 2996, 2967, 1655, 1616, 1489, 1450, 1239, 1173, 1050, 907, 830, 751, 692.

(E)-N-(benzyloxy)-2,3-diphenylacrylamide (12q)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (6.38 mg, 1.0 equiv.) was suspended in THF:DCM (200 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath.

NEt₃ (8.4 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (6.12 g, 1.0 equiv.) and compound **13q** (8.96 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (8.4 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 100 mL of EtOAc and then washed once with 100 mL HCl (3 M), followed by one wash with 100 mL conc. NaHCO₃ and finally with 100 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-2,3-diphenylacrylamide **12q** as a white powder (4.64 g, 36%).

¹H NMR (600 MHz, CDCl₃) δ 7.85 (s, 1H), 7.79 (s, 1H), 7.37 – 7.33 (m, 7H), 7.20 – 7.17 (m, 1H), 7.14 – 7.12 (m, 4H), 6.99 – 6.97 (s, 2H), 4.96 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 165.1, 138.0, 135.1, 135.0, 134.6, 131.9, 130.6, 129.7, 129.7, 129.5, 129.0, 128.9, 128.8, 128.7, 128.4, 78.3.

HRMS: Calculated [M+H]⁺ for C₂₂H₂₀NO₂⁺: 330.1489, found: 330.1492.

Melting Point: 106.7 – 108.8 °C

FTIR (cm⁻¹): 3131, 3058, 3026, 2934, 1651, 1614, 1495, 146, 1370, 1282, 1083, 1064, 754, 689.

(E)-N-(benzyloxy)-2-(4-nitrophenyl)-3-phenylacrylamide (12r)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, $BnONH_2$ ·HCl (543 mg, 1.0 equiv.) was suspended in THF:DCM (20 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (0.8 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for

30 min at 0 °C. HOBt hydrate (568 mg, 1.0 equiv.) and compound **13r** (1.0 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (0.8 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 20 mL of EtOAc and then washed once with 20 mL HCl (3 M), followed by one wash with 20 mL conc. NaHCO₃ and finally with 20 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-2-(4-nitrophenyl)-3-phenylacrylamide **12r** as a white powder (1.3 g, 94%).

¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 8.8 Hz, 2H), 7.81 (s, 1H), 7.69 (s, 1H), 7.37 (m, 5H), 7.32 (d, J = 8.8 Hz, 2H), 7.25 – 7.22 (m, 1H), 7.18 – 7.16 (m, 2H), 6.95 – 6.94 (m, 2H), 4.97 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 164.4, 148.0, 142.2, 139.5, 134.9, 137.7, 131.1, 130.5, 130.4, 129.7, 129.5, 129.2, 128.9, 128.7, 128.6, 128.5, 124.6, 78.4.

HRMS: Calculated [M+H]⁺ for C₂₂H₁₉N₂O₄⁺: 330.1489, found: 330.1492.

Melting Point: 126.2 – 130.6 °C

FTIR (cm⁻¹): 3244, 3070, 2932, 1664, 1618, 1593, 1514, 1446, 1340, 1047, 750, 693.

(E)-N-(benzyloxy)-3-(pyridin-2-yl)but-2-enamide (12s)

^O Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (3.6 g, 22.57 mmol, 2.0 equiv.) was suspended in dry Toluene (56 mL, 0.2 M). The reaction

mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (11.3 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13s** (2.0 g, 11.3 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 60 mL H₂O and extracted three times with 60 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-3-(pyridin-2-yl)but-2-enamide **12s** as a white powder (1.17 g, 77%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.31 (s, 1H), 8.60 (d, J = 4.1 Hz, 1H), 7.85 (td, J = 7.7, 1.9 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.44 - 7.34 (m, 6H), 6.71 (s, 1H), 4.87 (s, 2H), 2.52 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.0, 156.8, 149.0, 147.6, 137.2, 136.1, 128.8, 128.3, 128.2, 123.7, 120.6, 118.5, 76.9, 15.0.

HRMS: Calculated $[M+H]^+$ for $C_{15}H_{17}N_2O_2^+$: 269.1285, found: 269.1290. **Melting Point:** 65.4 – 69.8 °C

(E)-N-(benzyloxy)-3-(pyridin-3-yl)but-2-enamide (12t)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, $BnONH_2 \cdot HCI$ (1.92 g, 12.0 mml, 2.0 equiv.) was suspended in dry Toluene (30 mL, 0.2 M). The

reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (6 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13t** (1.06 g, 6.0 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-3-(pyridin-3-yl)but-2-enamide **12t** as a white powder (790 mg, 49%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.18 (s, 1H), 8.69 (d, *J* = 2.4 Hz, 1H), 8.56 (dd, *J* = 4.7, 1.6 Hz, 1H), 7.88 (dt, *J* = 8.1, 2.1 Hz, 1H), 7.44 – 7.34 (m, 6H), 6.06 (s, 1H), 4.87 (s, 2H), 2.50 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 163.7, 149.6, 146.9, 137.3, 136.1, 133.5, 128.8, 128.3, 128.3, 118.1, 77.0, 16.6.

HRMS: Calculated [M+H]⁺ for C₁₅H₁₇N₂O₂⁺: 269.1285, found: 269.1292.

Melting Point: 121.3 – 122.1 °C

FTIR (cm⁻¹): 3142, 2931, 2874, 1675, 1633, 1527, 1454, 1356, 1204, 1052, 943, 863, 752, 699.

(E)-N-(benzyloxy)-3,3-diphenylacrylamide (12u)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (6.38 g, 1.0 equiv.) was suspended in THF:DCM (200 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath.

NEt₃ (8.4 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 60 min at 0 °C. HOBt hydrate (6.12 g, 1.0 equiv.) and β -phenyl cinnamic acid **13u** (8.96 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 60 min at 0 °C. Finally, NEt₃ (8.4 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir for 48 h. The reaction was then filtered, and the obtained filtrate was diluted with 100 mL of EtOAc and then washed once with 100 mL HCl (3 M), followed by one wash with 100 mL conc. NaHCO₃ and finally with 100 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-3,3-diphenylacrylamide **12u** as a white powder (4.64 g, 35%). The NMR data is in agreement with the one reported in the literature.¹⁰

¹H NMR (600 MHz, CDCl₃) δ 7.85 (s, 1H), 7.78 (bs, 1H), 7.36 – 7.34 (m, 8H), 7.20 – 7.17 (m, 1H), 7.14 – 7.12 (m, 4H), 6.99 – 6.97 (m, 2H), 4.96 (s, 2H).

¹⁰ Ghosh, S., Chattopadyay. S. K. Adv. Synth. Catal. **2019**, 361, 4727–4738.

(E)-N-(benzyloxy)-3-methyl-phenylacrylamide (12v)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.81 g, 11.3 mml, 2.0 equiv.) was suspended in dry Toluene (30 mL, 0.2 M). The

reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (5.7 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, methyl β -methyl cinnamate **13v** (1.0 g, 5.67 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford (*E*)-*N*-(benzyloxy)-3-methyl-3-phenylacrylamide **12v** as a white powder (1.11 g, 73%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.13 (s, 1H), 7.49 – 7.48 (m, 2H), 7.44 – 7.35 (m, 8H), 6.01 (s, 1H), 4.987 (s, 2H), 2.50 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.1, 149.9, 141.9, 136.1, 128.8, 128.7, 128.6, 128.3, 128.2, 125.9, 116.7, 77.0, 16.9.

HRMS: Calculated [M+H]⁺ for C₁₇H₁₈NO₂⁺: 268.1338, found: 268.1340.

Melting Point: 68.7 – 71.0 °C

FTIR (cm⁻¹): 3086, 3062, 3035, 2955, 1639, 1610, 1510, 1493, 1384, 1274, 1058, 969, 745, 688.

N-(benzyloxy)-3-methyl-but-2-enamide (12w)

¹H NMR (600 MHz, DMSO-d₆) δ 10.88 (s, 1H), 7.40 – 7.33 (m, 5H), 5.45 (s, 1H), 4.79 (s, 2H), 2.08 (s, 3H), 1.79 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.2, 150.7, 136.2, 128.7, 128.3, 128.2, 115.1, 76.9, 26.9, 19.5

HRMS: Calculated $[M+H]^+$ for $C_{12}H_{16}NO_2^+$: 206.1176, found: 206.1185.

Melting Point: 71.8 – 73.2 °C

FTIR (cm⁻¹): 3194, 2974, 2938, 1637, 1496, 1453, 1360, 1250, 1026, 745, 696.

Methyl 3-((benzyloxy)amino)-3-oxopropanoate (12')

MeO , MeO(6.76 g, 1.0 equiv.) was suspended in THF:DCM (212 mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (9.0 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (6.76 g, 1.0 equiv.) and compound 13' (5 g, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (9.0 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 150 mL of EtOAc and then washed once with 100 mL HCl (3 M), followed by one wash with 100 mL conc. NaHCO₃ and finally with 100 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes: EtOAc) to afford methyl 3-((benzyloxy) amino)-3-oxopropanoate 12' as a white powder (6.16 g, 65%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.24 (s, 1H), 7.40 – 7.35 (m, 5H), 4.80 (s, 2H), 3.63 (s, 3H), 3.14 (s, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 167.8, 162.3, 135.8, 128.9, 128.3, 76.9, 52.0

HRMS: Calculated [M+H]⁺ for C₁₁H₁₄NO₄⁺: 224.0917, found: 224.0921.

Melting Point: 81.6 – 82.6 °C

FTIR (cm⁻¹): 3149, 2995, 2941, 2850, 1736, 1649, 1532, 1432, 1346, 1309, 1197, 1170, 1061, 1009, 950, 795, 725, 685.

Methyl (E)-(2-(benzyloxy)carbamoyl)-3-phenylacrylate (12x)

In a flame-dried round-bottom flask under Argon atmosphere, compound 12' (2.0 g, MeO MeO MeO M Solution and a solution and so and was left stirring for 30 at the same temperature. Then, benzaldehyde (0.91 mL, 1.0

equiv.) was added, followed by N-methyl morpholine (2.96 mL, 3.0 equiv.). The reaction was allowed to slowly warm up to room temperature, and it was allowed to stirr overnight. After completion, the reaction was guenched with 30 mL H₂O and extracted three times with 40 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford methyl (E)-(2-(benzyloxy)carbamoyl)-3phenylacrylate **12x** as a white powder (1.21 g, 43%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.58 (s, 1H), 7.70 (s, 1H), 7.63 – 7.61 (m, 2H), 7.46 – 7.42 (m, 3H), 7.37 – 7.35 (m, 5H), 4.85 (s, 2H), 3.76 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.8, 162.3, 142.2, 135.8, 132.7, 13.08, 129.9, 128.9, 128.9, 128.3, 12 126.2, 79.2, 76.5, 52.4.

HRMS: Calculated [M+H]⁺ for C₁₈H₁₈NO₄⁺: 268.1338, found: 268.1340.

Melting Point: 99.5 – 100.7 °C

FTIR (cm⁻¹): 3218, 2950, 1732, 1651, 1626, 1496, 1449, 1433, 1263, 1199, 1027, 768, 752, 689.

Methyl (E)-(2-(benzyloxy)carbamoyl)-3-(4-methoxyphenyl)acrylate (12y)

In a flame-dried round-bottom flask under Argon atmosphere, compound **12'** (2.0 g, 8.96 mmol) was dissolved in dry THF (30 mL, 0.3M). The reaction was cooled down to 0 °C using a water cooling bath. TiCl₄ neat (1.14 mL, 1.20 equiv.) was then added dropwise and was left stirring for 30 at the same temperature. Then, *p*-anisaldehyde

(1.09 mL, 1.0 equiv.) was added, followed by *N*-methyl morpholine (2.96 mL, 3.0 equiv.). The reaction was allowed to slowly warm up to room temperature, and it was allowed to stirr overnight. After completion, the reaction was quenched with 30 mL H₂O and extracted three times with 40 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford methyl (*E*)-(2-(benzyloxy)carbamoyl)-3-(4-methoxyphenyl)acrylate **12y** as a white powder (1.442 g, 36%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.56 (s, 1H), 7.63 (s, 1H), 7.59 (d, *J* = 8.8 Hz, 2H), 7.42 – 7.35 (m, 5H), 6.99 (d, *J* = 8.8 Hz, 2H), 4.88 (s, 2H), 3.79 (s, 3H), 3.73 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 165.1, 162.8, 161.3, 142.0, 135.9, 132.0, 1288, 128.8, 128.3, 125.1, 123.3, 114.4, 76.5, 55.4, 52.2.

HRMS: Calculated $[M+H]^+$ for $C_{19}H_{20}NO_5^+$: 342.1336, found: 342.1345.

Melting Point: 95.6 - 96.2 °C

FTIR (cm⁻¹): 3122, 2956, 2883, 1715, 1637, 1603, 1514, 1267, 1247, 1201, 1175, 1090, 1013, 828, 693.

Methyl 2-((benzyloxy)carbamoyl)-3-ethylpent-2-enoate (12z)

MeO NHORE Compound 12' (2.0 g, MeO NHORE COMPOUND NAS dissolved in dry THF (30 mL, 0.3M). The reaction was cooled down to 0 °C using a water cooling bath. TiCl₄ neat (1.14 mL, 1.20 equiv.) was then added dropwise

and was left stirring for 30 at the same temperature. Then, 3-pentanone (0.95 mL, 1.0 equiv.) was added, followed by *N*-methyl morpholine (2.96 mL, 3.0 equiv.). The reaction was allowed to slowly warm up to room temperature, and it was allowed to stirr overnight. After completion, the reaction was quenched with 30 mL H₂O and extracted three times with 40 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford methyl 2-((benzyloxy)carbamoyl)-3-ethylpent-2-enoate **12z** as a white powder (1.027 g, 39%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.24 (s, 1H), 7.42 − 7.34 (m, 5H), 4.84 (s, 2H), 3.63 (s, 3H), 2.49 − 2.46 (m, 2H), 2.06 (q, *J* = 7.5 Hz, 2H), 1.00 (t, *J* = 7.5 Hz, 3H), 0.95 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.8, 164.2, 163.2, 136.1, 128.7, 128.2, 128.2, 123.3, 76.4, 51.4, 27.6, 24.4, 12.7, 12.6.

HRMS: Calculated [M+H]⁺ for C₁₆H₂₂NO₄⁺: 292.1543, found: 292.1552.

Melting Point: 70.7 – 80.7 °C

FTIR (cm⁻¹): 3167, 2974, 2879, 1715, 1635, 1606, 1501, 1431, 1268, 1229, 1094, 1020, 1000, 751, 695.

Methyl 3-((benzyloxy)amino)-2-cyclohexylidene-3-oxopropanoate (12aa)

In a flame-dried round-bottom flask under Argon atmosphere, compound **12'** (2.0 g, 8.96 mmol) was dissolved in dry THF (30 mL, 0.3M). The reaction was cooled down to 0 °C using a water cooling bath. TiCl₄ neat (1.14 mL, 1.20 equiv.) was then added dropwise and was left stirring for 30 at the same temperature. Then, cyclohexanone (0.93 mL, 1.0

equiv.) was added, followed by *N*-methyl morpholine (2.96 mL, 3.0 equiv.). The reaction was allowed to slowly warm up to room temperature, and it was allowed to stirr overnight. After completion, the reaction was quenched with 30 mL H₂O and extracted three times with 40 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (50/50 hexanes:EtOAc) to afford methyl 2-((benzyloxy)carbamoyl)-3-ethylpent-2-enoate **12aa** as a white powder (1.478 g, 54%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.24 (s, 1H), 7.40 – 7.34 (m, 5H), 4.83 (s, 2H), 3.62 (s, 3H), 2.68 – 2.66 (m, 2H), 2.10 (s, 2H), 1.56 – 1.53 (m, 6H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.6, 12.9, 161.0, 136.1, 128.8, 128.2, 128.2, 121.3, 76.4, 51.5, 40.1, 33.5, 30.3, 27.9, 27.7, 25.4.

HRMS: Calculated [M+H]⁺ for C₁₇H₂₂NO₄⁺: 304.1543, found: 304.1548.

FTIR (cm⁻¹): 3176, 2932, 2856, 1719, 1650, 1452, 1433, 1266, 1204, 1095, 1024, 746, 697.

N-(benzyloxy)-3-methyl-1H-indene-2-carboxamide (12ab)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (916 mg, 1.0 equiv.) was suspended in THF:DCM (29 mL, 1:1, 0.2 M) at room

temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (1.2 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (879 mg, 1.0 equiv.) and compound **13ab** (1.0 g, 5.74 mmol, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (1.2 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 30 mL of EtOAc and then washed once with 20 mL HCl (3 M), followed by one wash with 20 mL conc. NaHCO₃ and finally with 20 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-(benzyloxy)-3-methyl-1*H*-indene-2-carboxamide **12ab** as a white powder (1.03 g, 64%).

¹H NMR (600 MHz, CDCl₃) δ 8.62(s, 1H), 7.44 – 7.31 (m, 9H), 5.01 (s, 2H), 3.47 (s, 2H), 2.45 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 165.5, 148.6, 145.1, 142.3, 135.5, 129.4, 129.3, 128.7, 128.6, 127.4, 126.8, 123.9, 120.8, 78.4, 37.9, 12.4

HRMS: Calculated [M+H]⁺ for C₁₈H₁₈NO₂⁺: 280.1332, found: 280.1338.

Melting Point: 143.1 – 145.1 °C

FTIR (cm⁻¹): 3178, 2033, 2949, 1631, 1495, 1351, 1267, 1008, 899, 754, 717, 696.

tert-butyl-3-((benzyloxy)carbamoyl)-1H-indole-1-carboxylate (12ac)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (611 mg, 1.0 equiv.) was suspended in THF:DCM (20 mL, 1:1, 0.2 M) at room temperature.

The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (0.8 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (586 mg, 1.0 equiv.) and compound **13ac** (1.0 g, 5.74 mmol, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (0.8 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 30 mL of EtOAc and then washed once with 20 mL HCl (3 M), followed by one wash with 20 mL conc. NaHCO₃ and finally with 20 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *tert*-butyl-3-((benzyloxy)carbamoyl)-1*H*-indole-1-carboxylate **12ac** as a white powder (675 mg, 48%).

¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 8.08 (s, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.47 (m, 2H), 7.43 – 7.38 (m, 4H), 7.31 – 7.29 (m, 1H), 5.07 (m, 2H), 1.67 (m, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 164.0, 149.1, 135.3, 135.3, 129.3, 128.8, 128.7, 128.6, 128.6, 127.5, 125.3, 123.9, 121.3, 115.2, 112.7, 78.6, 28.1.

HRMS: Calculated [M+H]⁺ for C₂₁H₂₃N₂O₄⁺: 367.1658, found: 367.1665.

Melting Point: 52.6 - 58.7 °C

Boc

FTIR (cm⁻¹): 3145, 2979, 2935, 1739, 1641, 1450, 1248, 1217, 1147, 1081, 838, 744, 695.

N-(benzyloxy)-2-cycloheptylideneacetamide (12ad)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (2.164 g, 13.56 mmol, 2.0 equiv.) was suspended in dry Toluene (34 mL, 0.2 M). The

reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (6.8 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13ad** (1.6 g, 6.78 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-(benzyloxy)-2-cycloheptylideneacetamide **12ad** as a colorless oil (1.7 mg, 94%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.66 (bs, 1H), 7.41 – 7.32 (m, 5H), 5.51 (bs, 1H), 4.80 (s, 2H), 2.81 – 2.79 (m, 2H), 2.29 – 2.27 (m, 2H), 1.62 – 1.57 (m, 4H), 1.51 – 1.48 (m, 4H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.2, 160.3, 136.2, 128.7, 128.3, 128.1, 114.8, 76.8, 38.3, 30.9, 29.3, 27.5, 26.4.

HRMS: Calculated [M+H]⁺ for C₁₆H₂₂NO₂⁺: 260.1645, found: 260.1651.

FTIR (cm⁻¹): 3181, 2922, 2852, 1650, 1630, 1496, 1453, 1051, 736.

N-(benzyloxy)-2-cyclohexylideneacetamide (12ae)

o Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.24 g, 7.78 mmol, 2.0 equiv.) was suspended in dry Toluene (20 mL, 0.2 M). The reaction

mixture was then cooled down to –40 °C using an acetone cooling bath. Then a solution of AlMe₃ (3.9 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13ae** (600 mg, 6.78 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-(benzyloxy)-2-cyclohexylideneacetamide **12ae** as white powder (750 mg, 79%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.91 (s, 1H), 7.40 – 7.34 (m, 5H), 5.38 (s, 1H), 4.79 (m, 2H), 2.76 (t, *J* = 5.8 Hz, 2H), 2.10 (t, *J* = 5.8 Hz, 2H), 1.58 – 1.50 (m, 6H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.2, 157.6, 136.2, 128.7, 128.3, 128.2, 112.4, 76.8, 37.2, 28.9, 28.1, 27.3, 25.8.

HRMS: Calculated [M+H]⁺ for C₁₅H₂₀NO₂⁺: 246.1489, found: 246.1495.

Melting Point: 71.9 – 73.5 °C

FTIR (cm⁻¹): 3174, 2992, 2930, 2853, 1636, 1524, 1446, 1229, 1047, 980, 840, 751, 699.

N-(benzyloxy)-2-cyclopentylideneacetamide (12af)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (2.28 g, 14.27 mmol, 2.0 equiv.) was suspended in dry Toluene (36 mL, 0.2 M). The reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (7.13 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13af** (1.0 m, 7.13 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 35 mL H₂O and extracted three times with 35 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-(benzyloxy)-2-cyclopentylideneacetamide **12af** as white powder (1.38 g, 84%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.63 (bs, 1H), 7.41 – 7.33 (m, 5H), 5.67 (bs, 1H), 4.80 (m, 2H), 2.71 – 2.68 (m, 2H), 2.37 – 2.34 (m, 2H), 1.67 (p, *J* = 7.0 Hz, 2H), 1.59 (q, *J* = 7.2 Hz, 2H).

¹³C NMR (150 MHz, DMSO-d₆) δ 164.2, 162.7, 136.2, 128.7, 128.3, 128.2, 110.5, 76.9, 35.1, 31.7, 26.1, 24.9.

HRMS: Calculated $[M+H]^+$ for $C_{14}H_{18}NO_2^+$: 232.1332, found: 232.1342.

Melting Point: 78.0 − 79.6 °C FTIR (cm⁻¹): 3215, 1964, 2946, 2866, 1630, 1507, 1497, 1242, 1067, 852, 730.

N-(benzyloxy)-2-cyclobutylideneacetamide (12ag)

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (442.8 mg, 2.78 mmol, 2.0 equiv.) was suspended in dry Toluene (7 mL, 0.2 M). The reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (1.4 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13ag** (175 mg, 1.39 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 10 mL H₂O and extracted three times with 10 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-(benzyloxy)-2-cyclobutylideneacetamide **12ag** as colorless oil (202 mg, 67%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.84 (bs, 1H), 7.39 – 7.34 (m, 5H), 5.60 (bs, 1H), 4.78 (s, 2H), 3.03 (t, J = 8.1 Hz, 2H), 2.75 (t, J = 7.9 Hz, 2H), 2.01 (p, J = 7.9 Hz, 2H).

¹³C NMR (150 MHz, DMSO-d₆) δ 163.5, 161.2, 136.2, 128.7, 128.3, 128.2, 76.9, 33.1, 31.9, 17.7.

HRMS: Calculated $[M+H]^+$ for $C_{13}H_{16}NO_2^+$: 218.1176, found: 218.1180.

FTIR (cm⁻¹): 3182, 2956, 1682, 1633, 1496, 1360, 1250, 1209, 1046, 846, 741.

2-((1r,3r,3R,7S)-adamant-2-ylidene)-N-(benzyloxy)acetamide (12ah)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, OBnNH₂·HCl (996 mg, 1.0 equiv.) was suspended in THF:DCM (32 mL, 1:1, 0.2 M) at room

temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (2.4 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (957 mg, 1.0 equiv.) and compound **13ah** (1.2 g, 6.24 mmol, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.4 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 30 mL of EtOAc and then washed once with 30 mL HCl (3 M), followed by one wash with 30 mL conc. NaHCO₃ and finally with 30 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford 2-((1r,3r,3R,7S)-adamant-2-ylidene)-*N*-(benzyloxy)acetamide **12ah** as white solid (1.4 g, 75%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.89 (bs, 1H), 7.40 – 7.34 (m, 5H), 5.37 (s, 1H), 4.80 (s, 2H), 4.08 (bs, 1H), 2.32 (bs, 1H), 1.92 – 1.89 (m, 6H), 1.82 (bs, 2H), 1.76 – 1.70 (m, 4H).

¹³C NMR (150 MHz, DMSO-d₆) δ 165.9, 164.4, 136.2, 128.7, 128.3, 128.1, 108.0, 76.9, 40.4, 40.1, 39.5, 38.5, 36.3, 31.7, 27.3.

HRMS: Calculated [M+H]⁺ for C₁₉H₂₄NO₂⁺: 298.1802, found: 298.1808.

Melting Point: 111.1 − 113.8 °C FTIR (cm⁻¹): 3272, 2908, 2850, 1652, 1633, 1499, 1447, 1252, 1187, 1055, 951, 747, 738, 697.

N-(benzyloxy)-2-(tetrahydro-4H-pyran-4-ylidene)acetamide (12ai)

o o F N^{OBn} e

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, $BnONH_2 \cdot HCI$ (1.756 g, 11.0 mmol, 2.0 equiv.) was suspended in dry Toluene (28 mL, 0.2 M). The

reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (5.5 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13ai** (859 mg, 5.5 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-(benzyloxy)- 2-(tetrahydro-4*H*-pyran-4-ylidene)acetamide **12ai** as colorless oil (1.184 g, 87%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.02 (bs, 1H), 7.41 – 7.35 (m, 5H), 5.49 (bs, 1H), 4.81 (s, 2H), 3.65 (t, J = 5.5 Hz, 2H), 3.60 (t, J = 5.5 Hz, 2H), 2.92 (t, J = 5.6 Hz, 2H), 2.21 (t, J = 5.6 Hz, 2H).

¹³C NMR (150 MHz, DMSO-d₆) δ 163.8, 152.5, 138.3, 128.7, 128.3, 113.5, 76.9, 68.4, 67.7, 36.9, 30.4. HRMS: Calculated [M+H]⁺ for C₁₄H₁₈NO₃⁺: 248.1281, found: 248.1290.

FTIR (cm⁻¹): 3197, 2961, 2850, 1662, 1638, 1231, 1096, 1053, 982, 909, 729, 696.

(E)-N-(benzyloxy)-4-phenylbut-3-enamide (12aj)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, $OBnNH_2$ ·HCl (985 mg, 1.0 equiv.) was suspended in THF:DCM (30 mL,

1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (1.3 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (947 mg, 1.0 equiv.) and (E)-4-phenylbut-3-enoic acid (1.0 g, 6.17 mmol, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (1.3 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 30 mL of EtOAc and then washed once with 30 mL HCl (3 M), followed by one wash with 30 mL conc. NaHCO₃ and finally with 30 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to (E)-N-(benzyloxy)-4-phenylbut-3-enamide **12aj** as white solid (1.5 g, 95%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.12 (s, 1H), 7.41 – 7.22 (m, 10H), 6.47 (d, *J* = 15.9 Hz, 1H), 6.27 (dt, *J* = 15.9, 7.1 Hz, 1H), 4.80 (s, 2H), 2.95 – 2.94 (m, 2H).

¹³C NMR (150 MHz, DMSO-d₆) δ 167.2, 136.7, 136.0, 132.4, 128.8, 128.6, 128.3, 128.2, 127.4, 126.0, 123.5, 76.8, 36.7. **HRMS:** Calculated [M+H]⁺ for C₁₇H₁₈NO₂⁺: 268.1332, found: 268.1336. Melting Point: 81.7 – 85.7 °C FTIR (cm⁻¹): 3126, 3062, 3028, 2928, 2851, 1667, 1626, 1487, 1449, 1039, 1016, 963, 747, 693.

N-(benzyloxy)-4-methylpent-4-enamide (12ak)

Following Method B from the general procedures for the synthesis of hydroxamate $\mathbb{T}^{\mathsf{N}}_{\mathsf{OBn}}$ esters, in a flame-dried round-bottom flask under Argon atmosphere, BnONH₂·HCl (1.6 g, 10.0 mmol, 2.0 equiv.) was suspended in dry Toluene (25 mL, 0.2 M). The reaction

mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃ (5 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound 13ak (711 mg, 5 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H_2O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford N-(benzyloxy)-4-methylpent-4-enamide **12ak** as colorless oil (949 g, 87%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.98 (s, 1H), 7.38 – 7.31 (m, 5H), 4.76 (s, 2H), 4.69 (s, 1H), 4.65 (s, 1H), 2.19 (t, J = 7.6 Hz, 2H), 2.08 (dd, J = 8.6, 6.6 Hz, 2H), 1.67 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 174.0, 149.5, 141.3, 134.0, 133.5, 133.4, 115.5, 82.0, 37.9, 35.8, 27.5. **HRMS:** Calculated [M+H]⁺ for C₁₃H₁₈NO₂⁺: 220.1332, found: 220.1338.

FTIR (cm⁻¹): 3185, 3068, 3031, 2969, 2938, 1648, 1497, 1454, 1069, 1028, 975, 888, 745.

N-(benzyloxy)-5-oxo-5-phenylpentanamide (12al)

Following Method A from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, OBnNH₂·HCl (869 mg, 1.0 equiv.) was suspended in THF:DCM (52

mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (2.2 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (1.6 g, 1.0 equiv.) and 5-oxo-5phenylpentanoic acid (2.0 g, 10.4 mmol, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.2 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford N-(benzyloxy)-5-oxo-pehnylpentanamide **12al** as white solid (1.1 g, 36%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.97 (s, 1H), 7.94 – 7.93 (m, 2H), 7.65 – 7.62 (m, 1H), 7.54 - 7.52 (m, 2H), 7.39 – 7.32 (m, 5H), 4.78 (s, 2H), 3.01 (t, J = 7.1 Hz, 2H), 2.04 (t, J = 7.3 Hz, 2H), 1.84 (t, J = 7.2 Hz, 2H). ¹³C NMR (150 MHz, DMSO-d6) δ 199.5, 169.1, 136.6, 136.1, 133.1, 128.7, 128.7, 128.3, 128.2, 127.8, 76.7, 37.0, 31.4, 19.6.

HRMS: Calculated $[M+H]^+$ for $C_{18}H_{20}NO_3^+$: 298.1438, found: 298.1442.

Melting Point: 78.5 – 79.6 °C

FTIR (cm⁻¹): 3220, 3060, 3041, 2970, 2929, 2851, 1738, 1655, 1513, 1448, 1373, 1198, 968, 727, 687.

N-(benzyloxy)-6-oxo-6-phenylhexanamide (12am)

Following **Method A** from the general procedures for the synthesis of hydroxamate esters, in an oven-dried round-bottom flask under Argon atmosphere, $OBnNH_2$ ·HCl (810 mg, 1.0 equiv.) was suspended in THF:DCM (48

mL, 1:1, 0.2 M) at room temperature. The reaction mixture was cooled down to 0 °C using a water-ice bath. NEt₃ (2.1 mL, 1.5 equiv.) was added, and the reaction mixture was allowed to stir for 30 min at 0 °C. HOBt hydrate (1.5 g, 1.0 equiv.) and 6-oxo-6-phenylhexanoic acid (2.0 g, 10.4 mmol, 1.0 equiv.) were added subsequently, and the reaction was allowed to stir for an additional 30 min at 0 °C. Finally, NEt₃ (2.1 mL, 1.5 equiv.) were added, reaction was allowed to warm up to room temperature and it was allowed to stir overnight. The reaction was then filtered, and the obtained filtrate was diluted with 50 mL of EtOAc and then washed once with 50 mL HCl (3 M), followed by one wash with 50 mL conc. NaHCO₃ and finally with 50 mL H₂O. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford *N*-(benzyloxy)-6-oxo-6-pehnylhexanamide **12al** as white solid (1.5 g, 50%).

¹H NMR (600 MHz, DMSO-d₆) δ 10.96 (s, 1H), 7.97 – 7.95 (m, 2H), 7.64 – 7.62 (m, 1H), 7.54 – 7.51 (m, 2H), 7.40 – 7.32 (m, 5H), 4.77 (s, 2H), 3.02 (t, J = 6.7 Hz, 2H), 1.99 (t, J = 6.7 Hz, 2H), 1.59 – 1.55 (m, 4H). ¹³C NMR (150 MHz, DMSO-d6) δ 199.9, 169.2, 136.7, 136.1, 133.1, 128.8, 128.7, 128.3, 128.2, 127.9, 76.8, 37.5, 32.1, 24.5, 23.2. HRMS: Calculated [M+H]⁺ for C₁₉H₂₂NO₃⁺: 312.1594, found: 312.1601.

Melting Point: 58.6 – 60.1 °C

FTIR (cm⁻¹): 3239, 3059, 2997, 2970, 2956, 2870, 1738, 1649, 1446, 1372, 1218, 1017, 955, 754, 696.

13. Synthesis and characterization carboxylic acids (13):

(Z)-2-bromo-3-phenylacrylic acid (13j)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, (*Z*)-2-bromo-3-phenylacrylaldehyde (3.5 g, 16.6 mmol) was dissolved in *t*-BuOH (33 mL, 0.5 M). Then NaClO₂ (5.6 g, 61.4 mmol) was added, followed by H₂O (33 mL, 0.5 M) and 2-methyl-2-butene (15.8 mL, 150 mmol). Finally, NaH₂PO₄ (9.96 g, 83 mmol) was added, and the reaction mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full conversion, 50 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (50 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (50 mL x 4). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (60 mL x 4). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*Z*)-2-bromo-3-phenylacrylic acid **13j** as a white solid (2.632 g, 70%). NMR data matches the ones reported in the literature.¹¹

¹H NMR (600 MHz, CDCl₃) δ 8.36 (s, 1H), 7.92 – 7.91 (m, 2H), 7.47 – 7.46 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 143.5, 133.5, 131.0, 130.8, 128.7, 111.6.

(Z)-2-chloro-3-phenylacrylic acid (13k)

In a flame-dried round-bottom flask, benzaldehyde (1.684 g, 15.87 mmol) and 2chloroacetaldehyde (1.000 g, 10.6 mmol) were dissolved in dry THF (53 mL, 0.2 M) under Argon atmosphere. The reaction mixture was cooled down to 0 °C, using an ice-water bath. Neat TiCl₄ (2.3 mL, 2.0 equiv.) was added slowly and the reaction mixture was left stirring for 30 min at the same temperature. NEt₃ (5.9 mL, 4.0 equiv.) was then added and the reaction mixture was allowed to warm to room temperature. The reaction was left stirring overnight. After completion, the reaction was quenched with 50 mL of conc. NH₄Cl and it was extracted with EtOAc (60 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 50/50) to afford (Z)-2-chloro-3-phenylacrylalic acid **13k** as a white crystalline solid (1.553 g, 54%). NMR data matches the ones reported in the literature.¹² ¹**H NMR (600 MHz, CDCl₃)** δ 8.06 (s, 1H), 7.90 – 7.89 (m, 2H), 7.47 – 7.45 (m, 3H).

(E)-2-methyl-3-phenylacrylic acid (13l)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, (*Z*)-2-methyl-3-phenylacrylaldehyde (10.47 g, 71.6 mmol) was dissolved in *t*-BuOH (145 mL, 0.5 M). Then NaClO₂ (23.97 g, 265 mmol) was added, followed by H₂O (145 mL, 0.5

M) and 2-methyl-2-butene (69 mL, 645 mmol). Finally, NaH₂PO₄ (42.97 g, 358 mmol) was added, and the reaction mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full conversion, 100 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (8100 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (100 mL x 4). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (150 mL x 4). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*E*)-2-methyl-3-phenylacrylic acid **13l** as a white solid (1.818 g, 47%). NMR data matches the ones reported in the literature.¹³

¹H NMR (600 MHz, CDCl₃) δ 7.84 (s, 1H), 7.46 – 7.41 (m, 4H), 7.38 – 7.34 (m, 1H), 2.16 (s, 3H).

¹¹ Ma, X., Li, W., Li, X., Tao, X., Fan, W., Xie, X., Ayad, T., Ratovelomanana-Vidal, V., Zhang, Z. *Chem. Commun.* **2012**, 48, 5352–5354.

¹² Ma, X., Li, W., Li, X., Tao, X., Fan, W., Xie, X., Ayad, T., Ratovelomanana-Vidal, V., Zhang, Z. *Chem. Commun.* **2012**, 48, 5352–5354.

¹³ Su, M.D., Liu, Y.F., Nie, Z.W., Yang, T.L., Cao, Z.Z., Li, H., Luo, W.P., Liu, Q., Guo, C.C. *J. Org. Chem.* **2022**, 87, 7022–7032.

(E)-2-benzylidenehexanoic acid (13m)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, compound **14m** (1.36 g, 7.22 mmol) was dissolved in *t*-BuOH (14 mL, 0.5 M). Then NaClO₂ (1.96 g, 21.66 mmol) was added, followed by H₂O (14 mL, 0.5 M) and 2-methyl-2-butene (6.9 mL, 65 mmol). Finally, NaH₂PO₄ (4.33 g, 36 mmol) was added, and the

reaction mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full conversion, 25 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (25 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (25 mL x 3). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (50 mL x 3). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*E*)-2-benzylidenehexanoic acid **13m** as a pale yellow crystalline solid (905 mg, 61%). NMR data matches the ones reported in the literature.¹⁴

¹H NMR (600 MHz, CDCl₃) δ 7.80 (s, 1H), 7.42 – 7.40 (m, 4H), 7.37 – 7.34 (m, 1H), 2.56 – 2.53 (m, 2H), 1.61 – 1.56 (tt, *J* = 8.0, 6.3 Hz, 2H), 1.44 – 1.38 (h, *J* = 7.3 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 174.0, 141.1, 135.7, 129.6, 128.8, 128.7, 31.5, 27.2, 23.0, 14.0.

(E)-3-phenyl-2-(pyridin-3-yl)acrylic acid (13n)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, compound **14n** (750 mg, 3.58 mmol) was dissolved in *t*-BuOH (7 mL, 0.5 M). Then NaClO₂ (1.62 g, 17.9 mmol) was added, followed by H_2O (7 mL, 0.5 M) and 2-methyl-2-butene (3.4 mL, 32 mmol). Finally, NaH₂PO₄ (946 mg, 7.9 mmol) was added, and the reaction

mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full conversion, 7 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (25 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (25 mL x 3). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (50 mL x 3). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*E*)-3-phenyl-2-(pyridine-3-yl)acrylic acid **13n** as a white crystalline solid (260 mg, 32%).

¹H NMR (600 MHz, DMSO-*d*₆) δ 12.93 (s, 1H), 8.54 (dd, *J* = 4.8, 1.7 Hz, 1H), 8.32 (dd, *J* = 2.3, 0.9 Hz, 1H), 7.89 (s, 1H), 7.64 (ddd, *J* = 7.8, 2.3, 1.7 Hz, 1H), 7.42 (ddd, *J* = 7.8, 4.9, 0.9 Hz, 1H), 7.27 – 7.22 (m, 3H), 7.07 – 7.05 (m, 2H).

¹³C NMR (150 MHz, DMSO-*d*₆) δ 167.9, 149.9, 148.5, 140.6, 137.6, 134.1, 132.2, 130.2, 10.2, 129.3, 128.5, 123.5.

HRMS: Calculated [M+H]⁺ for C₁₄H₁₂NO₂⁺: 226.0868, found: 226.0884

Melting Point: 236.7 – 239.5 °C

FTIR (cm⁻¹): 3055, 3028, 2422, 1671, 1627, 1591, 1572, 1410, 1239, 1192, 1174, 1009, 776, 718, 690.

¹⁴ Fujihara, T., Xu, T., Semba, K., Terao, Tsuji, Y. *Angew. Chem. Int. Ed.* **2011**, 50, 523–527.

(E)-2-(2-methoxyphenyl)-2-phenylacrylic acid (130)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, compound **14o** (3.6 g, 15.1 mmol) was dissolved in *t*-BuOH (30 mL, 0.5 M). Then NaClO₂ (4.1 g, 45.3 mmol) was added, followed by H_2O (30 mL, 0.5 M) and 2-methyl-2-butene (14.4 mL, 136 mmol). Finally, NaH₂PO₄ (9.07 g, 75.6 mmol) was added, and the reaction

mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full conversion, 30 mL saturated NH_4CI were added, and the reaction mixture was extracted with EtOAc (50 mL x 3). The combined organic layers partitioned with conc. $NaHCO_3$ until the aqueous layer was basic. It was extracted $NaHCO_3$ (50 mL x 4). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (60 mL x 4). The combined organic layers were then dried over Na_2SO_4 . Evaporation of the solvent afforded (*E*)-2-(2-methoxyphenyl)-3-phenylacrylic acid **130** as a white solid (3.646 g, 95%).

¹H NMR (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.38 – 7.36 (m, 1H), 7.24 – 7.21 (m, 1H), 7.19 – 7.16 (m, 2H), 7.12 – 7.10 (m, 2H), 7.08 – 7.06 (m, 1H), 6.99 – 6.97 (m, 2H), 6.96 – 6.93 (m, 2H), 3.76 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 129.9, 157.6, 142.5, 134.8, 131.0, 130.7, 130.7, 130.6, 130.0, 129.5, 128.9, 128.4, 128.4, 124.8, 121.2, 111.4, 55.8.

HRMS: Calculated $[M-H]^+$ for $C_{16}H_{13}O_2^-$: 253.0870, found: 253.0876.

Melting Point: 146.9 – 147.7 °C

FTIR (cm⁻¹): 3059, 3016, 2962, 2938, 2622, 1670, 1490, 1461, 1447, 1433, 1417, 1274, 1245, 749

(E)-2-(4-methoxyphenyl) 2-phenylacrylic acid (13p)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, compound **14p** (2.0 g, 8.4 mmol) was dissolved in *t*-BuOH (8 mL, 0.5 M). Then NaClO₂ (2.3 g, 25.2 mmol) was added, followed by H_2O (8 mL, 0.5 M) and 2-methyl-2-butene (8 mL, 76 mmol). Finally, NaH₂PO₄ (5.0 g, 42 mmol) was added, and the reaction mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full

conversion, 15 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (30 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (30 mL x 4). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (40 mL x 4). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*E*)-2-(4-methoxyphenyl)-3-phenylacrylic acid **13p** as a white solid (1.912 g, 90%). NMR data matches the ones reported in the literature.¹⁵

¹H NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.25 – 7.22 (m, 1H), 7.20 – 7.16 (m, 4H), 7.12 – 7.10 (m, 2H), 6.92 – 6.91 (m, 2H), 3.84 (s, 3H).

¹⁵ Zhou, Z., Dixon, D.D., Jolit, A., Tius, M.A. Chem. Eur. J. **2016**, 22, 15929–15936.

(E)-2,3-diphenylacrylic acid (13q)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, compound **14q** (3.75 g, 18.02 mmol) was dissolved in *t*-BuOH (18 mL, 0.5 M). Then NaClO₂ (4.89 g, 54.05 mmol) was added, followed by H₂O (18 mL, 0.5 M) and 2-methyl-2-butene (17.2 mL, 162 mmol). Finally, NaH₂PO₄ (10.8 g, 90.1 mmol) was added, and the

reaction mixture was loosely capped. It was stirred vigorously at room temperature overnight. After full conversion, 30 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (50 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (50 mL x 4). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (60 mL x 4). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*E*)-2,3-diphenylacrylic acid **13q** as a white solid (3.82 g, 94%). NMR data matches the ones reported in the literature.¹⁶

¹H NMR (600 MHz, CDCl₃) δ 7.96 (s, 1H), 7.41 – 7.37 (m, 3H), 7.26 – 7.22 (m, 3H), 7.18 – 7.16 (m, 2H), 7.08 – 7.06 (m, 2H).

(E)-2-(4-nitrophenyl)-3-phenylacrylic acid (13r)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, compound **14r** (2.0 g, 7.9 mmol) was dissolved in *t*-BuOH (9 mL, 0.5 M). Then NaClO₂ (2.14 g, 29.23 mmol) was added, followed by H_2O (9 mL, 0.5 M) and 2-methyl-2-butene (7.53 mL, 71.71 mmol). Finally, NaH₂PO₄ (4.74 g, 39.5 mmol) was added, and the reaction mixture was loosely capped. It was stirred vigorously at room temperature

overnight. After full conversion, 10 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (20 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (20 mL x 4). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (30 mL x 4). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*E*)-2-(4-nitrophenyl)-3-phenylacrylic acid **13r** as a white solid (1.7 g, 80%). NMR data matches the ones reported in the literature.¹⁷

¹H NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 8.8 Hz, 2H), 8.07 (s, 1H), 7.44 (d, *J* = 8.8 Hz, 2H), 7.31 – 7.28 (m, 1H), 7.23 – 7.20 (m, 2H), 7.05 – 7.04 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 171.7, 147.7, 144.5, 142.5, 133.5, 131.4, 130.9, 130.4, 129.6, 128.8, 124.0.

(E)-3-phenylbut-2-enoic acid (13u)

Following **Method A** from the general procedures for the synthesis of carboxylic acids, compound **14u** (1.0 g, 4.8 mmol) was dissolved in *t*-BuOH (5 mL, 0.5 M). Then NaClO₂ (1.3 g, 14.4 mmol) was added, followed by H_2O (5 mL, 0.5 M) and 2-methyl-2-butene (4.6 mL, 43.2 mmol). Finally, NaH₂PO₄ (2.88 g, 24.0 mmol) was added, and the reaction mixture was loosely capped. It was stirred vigorously at room temperature overnight.

¹⁶ Wang, X., Nakajima, M., Martin, R. J. Am. Chem. Soc. **2015**, 137, 8924–8927.

¹⁷ Song, C., Chen, P., Tang, Y. *RSC. Adv.* **2017**, *7*, 11233–11243.

After full conversion, 10 mL saturated NH₄Cl were added, and the reaction mixture was extracted with EtOAc (20 mL x 3). The combined organic layers partitioned with conc. NaHCO₃ until the aqueous layer was basic. It was extracted NaHCO₃ (20 mL x 4). The combined aqueous layers were then carefully acidified with 3 M HCl, and it was extracted with DCM (30 mL x 4). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded (*E*)-3-phenylbut-2-enoic acid **13u** as a white solid (1.7 g, 80%). NMR data matches the ones reported in the literature.¹⁸

¹H NMR (600 MHz, CDCl₃) δ 7.39 − 7.36 (m, 4H), 7.34 − 7.32 (m, 2H), 7.29 − 7.27 (m, 2H), 7.23 − 7.21 (m, 2H), 6.35 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 169.3, 158.9, 140.7, 138.4, 129.8, 129.2, 128.5, 128.4, 128.3, 128.0, 116.1.

Methyl 3-oxopropanoate (13')

Following a modified literature procedure¹⁹, dimethyl malonate (20 g, 151.4 mmol) was suspended in a mixture MeCN:H₂O (15 mL, 10 M) and then cooled down to 0 °C using an ice/water bath. Then 30 mL of a 5M solution of KOH were added over 20 min (1.0 equiv.) via an addition funnel. The reaction was left stirring at 0 °C for one hour. Then it was warmed to room temperature, diluted with 50 mL of distilled H₂O and extracted with EtOAc (50 mL x 3). The aqueous layer wwas then carefully acidified with 3 M HCl, and it was extracted with EtOAc (50 mL x 4). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded methyl 3-oxopropanoate **13'** as a colorless oil (12.571 g, 70%). NMR data matches the ones reported in the literature.²⁰

¹³C NMR (150 MHz, CDCl₃) δ 170.7, 167.7, 53.0, 40.5.

1-(*tert*-butoxycarbonyl)-1*H*-indole-3-carboxylic acid (13ac)

Following a known literature procedure²¹ *N*-hydroxycinnamamide **13ac** was prepared as a pale pink powder. The NMR data matches the one reported in the literature.²²

2-((1r,3r,5R,7S)-adamantan-2-ylidene)acetic acid (13ah)

Following **Method B** from the general procedures for the synthesis of carboxylic acids, in a round-bottom flask open to air, LiOH (336 mg, 14 mmol, 1.2 equiv.) was dissolved in THF:H₂O (12:12 mL, 0.5 M) at room temperature. The reaction mixture was then

cooled down to 0 °C using an ice-water bath. Then methyl 2-((1r,3r,5R,7S)-adamantan-2-ylidene)acetate (2.4 g, 11.6 mmol, 1.0 equiv.) was added slowly. After complete addition, the reaction mixture was allowed to worm to room temperature, and it was monitored by TLC. After full consumption of the starting material, the solvent was removed *in vacuo* and conc. NaHCO₃ (20 mL) was added to the reaction mixture.

¹⁸ Tanaka, S., Watanabe, K., Tanaka, Y., Hattori, T. *Org. Lett.* **2016**, *18*, 2576–2579.

¹⁹ Niwayama, S., Cho, H., Lin, C. *Tett. Lett.* **2008**, *49*, 4434–4436.

²⁰ Niwayama, S., Cho, H., Lin, C. *Tett. Lett.* **2008**, *49*, 4434–4436.

²¹ Usachova, N., Leitis, G., Jirgensons, A., Kalvinsh, I. Synthn. Commun. **2010**, 40, 927–935.

²² Shen, Q-K, Deng, H., Wang, S-B., Tian Y-S., Quan, Z-S. *Eur. J. Med. Chem.* **2019**, *173*, 15–31.

It was then partitioned in DCM (50 mL), and it was extracted with DCM (3 x 50 mL). The aqueous layer was then carefully acidified with 3 M HCl, and it was extracted with DCM (3 x 50 mL). The combined organic layers were then dried over Na₂SO₄. Evaporation of the solvent afforded 2-((1r,3r,5*R*,7*S*)-adamantan-2-ylidene)acetic acid **13ah** as a white crystalline solid (1.79 g, 80%).

¹H NMR (600 MHz, CDCl₃) δ 11.53 (brs, 1H), 5.61 (s, 1H), 4.06 (s, 1H), 2.48 (d, *J* = 2.75 Hz, 1H), 1.98 – 1.94 (m, 5H), 1.88 – 1.81 (m, 5Hz).

¹³C NMR (150 MHz, CDCl₃) δ 175.5, 172.4, 108.3, 41.8, 40.3, 39.4, 36.9, 33.3, 28.0.

HRMS: Calculated $[M-H]^+$ for $C_{12}H_{15}O_2^-$: 191.1078, found: 191.1078.

Melting Point: 138.0 – 141.0 °C

0

OMe

FTIR (cm⁻¹): 2999, 2920, 2898, 2849, 2569, 1682, 1671, 1629, 1450, 1416, 1250, 1209, 1189, 931, 867, 701.

14. Synthesis and characterization of α , β –unsaturated esters (13):

Methyl (E)-3-(naphthalene-2-yl)acrylate (13f)

Following **Method A** from the general procedures for the synthesis of α , β unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (462 mg, 11.53 mmol, 1.2 equiv.) was suspended in dry THF (32

mL, 0.3 M). Trimethyl phosphonoacetate (1.67 mL, 11.53 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, 2-naphthaldehyde (1.5 g, 9.6 mmol, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H₂O (50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford methyl (*E*)-3-(naphthalene-2-yl)acrylate **13f** as a colorless oil (1.2 g, 59%). NMR data matches the ones reported in the literature.²³

¹H NMR (600 MHz, CDCl₃) δ 7.94 (s, 1H), 7.88 – 7.83 (m, 4H), 7.67 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.54 – 7.50 (m, 2H), 6.56 (d, *J* = 16.0 Hz, 1H), 3.84 (s, 3H).

Methyl (E)-3-(naphthalene-1-yl)acrylate (13g)

Following **Method A** from the general procedures for the synthesis of α , β unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (462 mg, 11.53 mmol, 1.2 equiv.) was suspended in dry THF (32 mL, 0.3 M). Trimethyl phosphonoacetate (1.67 mL, 11.53 mmol, 1.2 equiv.) was then

added slowly at room temperature. After 5 min, 2-naphthaldehyde (1.5 g, 9.6 mmol, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H₂O (50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc)

²³ Rozsar, D., Farley, A. J.M., McLauchlan, I., Shennan, B.D.A., Yamazaki, K., Dixon, D.J. *Angew. Chem. Int. Ed.* **2023**, *62*, e2023033.

to afford methyl (*E*)-3-(naphthalene-1-yl)acrylate **13g** as a colorless oil (1.7 g, 84%). NMR data matches the ones reported in the literature.²⁴

¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, *J* = 15.8 Hz, 1H), 8.21 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.89 (m, 2H), 7.88 (dt, *J* = 7.2, 1.0 Hz, 1H), 7.59 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 1H), 7.54 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 1H), 7.49 (ddd, *J* = 7.98, 7.7, 0.5 Hz, 1H), 6.54 (d, *J* 15.7 Hz, 1H), 3.86 (s, 3H).

Methyl (E)-3-(pyridine-2-yl)but-2-enoate (13s)

Following **Method A** from the general procedures for the synthesis of α , β –unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (594 mg, 24.76 mmol, 1.2 equiv.) was suspended in dry THF (70 mL, 0.3 M). Trimethyl

phosphonoacetate (3.6 mL, 24.76 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, 1-(pyridine-2-yl)ethan-1-one (2.3 mL, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H_2O (40 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (60:40 hexanes:EtOAc) to afford methyl (*E*)-3-(pyridine-2-yl)but-2-enoate **13s** as a colorless oil (2.34 g, 64%).

¹H NMR (600 MHz, CDCl₃) δ 8.64 (ddd, J = 4.7, 1.9, 1.0, 1H), 7.71 (td, J = 7.8, 7.7, 1.8 Hz, 1H), 7.55 (td, J = 8.0, 1.0 Hz, 1H), 7.28 – 7.25 (m, 1H), 6.70 (m, 1H), 3.78 (s, 3H), 2.63 (d, J = 1.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 167.5, 158.1, 153.6, 149.4, 136.8, 123.7, 121.1, 118.9, 51.4, 16.2.

HRMS: Calculated [M-H]⁺ for C₁₀H₁₂NO₂⁺: 178.0863, found: 178.0870.

FTIR (cm⁻¹): 3053, 3001, 2949, 1713, 1634, 1581, 1567, 1432, 1345, 1278, 1167, 1152, 1031, 785, 744.

Methyl (E)-3-(pyridine-3-yl)but-2-enoate (13t)

Me

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (594 mg, 24.76 mmol, 1.2 equiv.) was suspended in dry THF (70 mL, 0.3 M). Trimethyl phosphonoacetate (3.6 mL, 24.76 mmol, 1.2 equiv.) was then added slowly at room

temperature. After 5 min, 1-(pyridine-2-yl)ethan-1-one (2.3 mL, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H₂O (40 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (60:40 hexanes:EtOAc) to afford methyl (*E*)-3-(pyridine-3-yl)but-2-enoate **13t** as a light yellow oil (2.127 g, 58%).

¹H NMR (600 MHz, CDCl₃) δ 8.73 (d, *J* = 2.4, 0.9 Hz, 1H), 8.60 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.75 (ddd, *J* = 8.0, 2.5, 1.6 Hz, 1H), 7.31 (ddd, *J* = 8.0, 4.8, 0.9 Hz, 1H), 6.15 (d, *J* = 1.4 Hz, 1H), 3.77 (s, 3H), 2.59 (d, *J* = 1.34Hz, 3H).

²⁴ Martinez, A.M., Puet, A., Dominguez, G., Alonso, I., Castro-Biondo, R., Perez-Castells, J. Org. Let. **2023**, 25, 5923–5928.

¹³C NMR (150 MHz, CDCl₃) δ 166.9, 152.6, 150.2, 147.7, 137.8, 133.7, 123.4, 118.3m, 51.5, 17.9. HRMS: Calculated $[M-H]^+$ for $C_{10}H_{12}NO_2^+$: 178.0863, found: 178.0870. FTIR (cm⁻¹): 3033, 2950, 1713, 1627, 1435, 1347, 1279, 1193, 1164, 1020, 872, 807, 705.

Methyl (E)-3-phenylbut-2-enoate (13v)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (400 mg, 10 mmol, 1.2 equiv.) was suspended in dry THF (30 mL, 0.3 M). Trimethyl phosphonoacetate (1.33 mL, 10 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, acetophenone (1.0 g, 8.3 mmol, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H₂O (50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford methyl (*E*)-3-phenylbut-2-enoate **13v** as a yellow oil (1.1 g, 75%). NMR data matches the ones reported in the literature.²⁵

¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.47 (m, 2H), 7.69 – 7.36 (m, 3H), 6.14 (d, *J* = 1.3 Hz, 1H), 3.76 (s, 3H), 2.58 (d, *J* = 1.3 Hz, 3H).

Methyl 2-cyloheptylideneacetate (13ad)

Following **Method A** from the general procedures for the synthesis of α , β –unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (614 mg, 15.3 mmol, 1.2 equiv.) was suspended in dry THF (42 mL, 0.3 M). Trimethyl

phosphonoacetate (2.2 mL, 15.3 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, cycloheptanone (1.5 mL, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H_2O (40 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford methyl 2-cycloheptylideneacetate **13ad** as a colorless oil (1.704 g, 80%).

¹H NMR (600 MHz, CDCl₃) δ 5.67 (p, *J* = 1.3 Hz, 1H), 3.67 (s, 3H), 2.88 − 2.86 (m, 2H), 2.38 − 2.36 (m, 2H), 1.70 − 1.62 (m, 4H), 1.95 − 1.49 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ 167.3, 167.2, 115.3, 50.9, 39.1, 32.2, 30.0, 29.2, 28.2, 26.7.

HRMS: Calculated $[M-H]^+$ for $C_{10}H_{17}O_2^+$: 169.1123, found: 169.1225.

FTIR (cm⁻¹): 2924, 2853, 1714, 1634, 1433, 1379, 1194, 1174, 1145, 1027, 722.

Methyl 2-cylohexylideneacetate (13ae)

Following **Method A** from the general procedures for the synthesis of α , β –unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride

²⁵ Pugliese, G., Vaghi, F., Lonardi, G., Licini, G., Orlandi, M., *Eur. J. Org. Chem.* **2023**, *26*, e202201492.
(1.53 g, 38.2 mmol, 1.2 equiv.) was suspended in dry THF (250 mL, 0.1 M). Trimethyl phosphonoacetate (5.5 mL, 38.2 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, cyclohexanone (2.64 mL, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H_2O (200 mL) and extracted with EtOAc (3 x 300 mL). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford methyl 2-cyclohexylideneacetate **13ae** as a colorless oil (1.7 g, 43%). NMR data matches the ones reported in the literature.²⁶

¹H NMR (600 MHz, CDCl₃) δ 5.60 (p, *J* = 1.2 Hz, 1H), 3.68 (s, 3H), 2.83 − 2.81 (m, 2H), 2.20 − 2.18 (m, 2H), 1.67 − 1.57 (m, 6H).

Methyl 2-cylopentylideneacetate (13af)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (541 mg, 13.5 mmol, 1.2 equiv.) was suspended in dry THF (38 mL, 0.3 M). Trimethyl phosphonoacetate (2.0 mL, 13.5 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, cyclopentanone (1.0 mL, 11.3 mmol, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H₂O (40 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford methyl 2-cyclopentylideneacetate **13af** as a colorless oil (1.473 g, 93%). NMR data matches the ones reported in the literature.²⁷

¹H NMR (600 MHz, CDCl₃) δ 5.81 (s, 1H), 3.68 (s, 3H), 2.77 (t, *J* = 6.3 Hz, 2H), 2.44 (t, *J* = 7.2 Hz, 2H), 1.77 − 1.72 (m, 2H), 1.68 − 1.64 (m, 2H).

Methyl 2-cylobutylideneacetate (13ag)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (1.72 g, 42.8 mmol, 1.2 equiv.) was suspended in dry THF (119 mL, 0.3 M). Trimethyl phosphonoacetate (6.2 mL, 42.8 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, cyclobutanone (2.67 mL, 35.67 mmol, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H₂O (100 mL) and extracted with EtOAc (3 x 120 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford methyl 2-cyclobutylideneacetate **13ag** as a colorless oil (1.8 g, 40%). NMR data matches the ones reported in the literature.²⁸

²⁶ Jager, C., Haase, M., Koschorreck, K., Urlacher, V.B., DEska, J., Angew. Chem. Int. Ed. **2023**, 62, e202213671.

²⁷ Tadros, J., Dankers, C., Aldrich-Wright, J.R., Polyzos, A., Gordon, C.P. *Eur. J. Org., Chem.* **2021**. 4184–4194.

²⁸ Goti, A., Brandi, A., De Sarlo, F., Guarna, A. *Tetrahedron*. **1992**, *48*, 5283–5300.

¹**H NMR (600 MHz, CDCl₃)** δ 5.59 (p, *J* = 2.3 Hz, 1H), 3.68 (s, 3H), 3.12 (dddd, *J* = 8.0, 7.0, 2.4, 1.2 Hz, 2H), 2.84 (dddd, *J* = 9.3, 6.9, 2.2, 1.1 Hz, 2H), 2.09 (p, *J* = 8.0 Hz, 2H).

Methyl 2-(tetrahydro-4H-pyran-4-ylidene)acetate (13ai)

0 OMe Following **Method A** from the general procedures for the synthesis of α , β -unsaturated esters, in a flame-dried round bottom flask under Argon atmosphere, sodium hydride (719 mg, 18 mmol, 1.2 equiv.) was suspended in dry THF (50 mL, 0.3 M). Trimethyl

phosphonoacetate (2.6 mL, 18 mmol, 1.2 equiv.) was then added slowly at room temperature. After 5 min, tetrahydro-4*H*-pyran-4-one (1.03 mL, 15 mmol, 1.0 equiv.) was added to reaction mixture. The reaction mixture was then heated to reflux (66 °C) overnight. After completion, the reaction was allowed to cool down to room temperature, it was partitioned with H_2O (50 mL) and extracted with EtOAc (3 x 60 mL). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (95:5 hexanes:EtOAc) to afford methyl 2-(tetrahydro-4*H*-pyran-4-ylidene)acetate **13ai** as a colorless oil (1.051 g, 45%). NMR data matches the ones reported in the literature.²⁹

¹H NMR (600 MHz, CDCl₃) δ 5.68 (s, 1H), 3.77 (t, *J* = 5.5 Hz, 2H), 3.73 (t, *J* = 5.5 Hz, 2H), 3.69 (s, 3H), 3.01 (t, *J* = 5.6 Hz, 2H), 2.33 (t, *J* = 5.6 Hz, 2H).

Ethyl 4-methylpent-4-enoate (13ak)

 $\begin{array}{l} \overset{\text{Me}}{\underset{V}{\overset{}}} \overset{\text{OEt}}{\underset{V}{\overset{}}} & \text{In a flame-dried round-bottom flask under Argon atmosphere, NaH (720 mg, 60% in mineral oil, 1.2 equiv.) was suspended in dry Et_2O (75 mL, 0.2 M). The reaction mixture was then cooled down to 0 °C using an ice-water cooling bath under vigorous stirring. Methyltriphenylphosphonium bromide (6.43 g, 1.2 equiv.) was added and allowed to stir for 30 min until bubbling ceased. The reaction was mixture was then heated to reflux overnight (16 h). The reaction turned bright yellow. Then levulinic acid ethyl ester (2.16 g, 15 mmol) was added and the reaction was left heating at reflux for 16 h. The bright yellow color disappeared and a white precipitate was formed. The reaction mixture was allowed to cool down to room temperature. The solids were filtered and washed thrice with Et_2O (10 mL). The filtrate was then concentrated$ *in vacuo* $. The crude reaction mixture was purified by column chromatography on silica gel (95/05 hexanes:Et_2O) to afford Ethyl 4-methylpent-4-enoate$ **12ak** $as colorless oil (1.43 g, 67%). \\ \end{array}{}$

¹H NMR (600 MHz, CDCl₃) δ 4.74 (s, 1H), 4.69 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.45 (dd, *J* = 8.8, 6.4 Hz, 2H), 2.34 (dd, *J* = 9.0, 6.5 Hz, 2H), 1.74 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 173.5, 144.3, 110.5, 60.5, 32.8, 32.8, 22.6, 14.4.

HRMS: Calculated [M-H]⁺ for C₈H₁₅O₂⁺: 143.1067, found: 143.1065.

FTIR (cm⁻¹): 3078, 2952, 2924, 2855, 1737, 1446, 1371, 1231, 1154, 1030, 888.

²⁹ Kuehne, M.E., Bornmann, W.G., Marko,, I., Qin, Y., LeBoulluec, K.L., Frasier, D.A., Xu, F., Mulamba, T., Ensinger, C.L., Borman, L.S., Huot, A.E., Exon, C., Bizzaro, F.T., Cheung, J.B., Bane, S.L. *Org. Biomol. Chem.* **2003**, 1, 2120–2136.

15. Synthesis and characterization of α,β-unsaturated aldehydes (14):

(E)-2-benzylidenehexanal (14m)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated aldehydes, (*Z*)-2-bromo-3-phenylacryaldehyde (5.0 g, 23.7 mmol), *n*-butylboronic acid (3.87 g, 37.9 mmol, 1.6 equiv.), K₂CO₃ (9.83 g, 71.1 mmol, 3.0 equiv.) and Pd(PPh₃)₄ (548 mg, 0.474 mmol, 2 mol%) were dissolved in a 7:3 mixture of Toluene:H₂O (80 mL, 0.3 M)

and heated to 100 °C overnight under Argon atmosphere. After completion, the reaction was quenched with 50 mL of H₂O and extracted with EtOAc (50 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 90/10) to afford (*E*)-2-benzylidenehexanal **14m** as a yellow-orange oil (1.360 g, 30%). NMR data matches the ones reported in the literature.³⁰

¹H NMR (600 MHz, CDCl₃) δ 9.55 (s, 1H), 7.51 – 7.49 (m, 2H), 7.46 – 7.44 (m, 2H), 7.41 – 7.38 (m, 1H), 7.21 (s, 1H), 2.55 – 2.52 (m, 2H), 1.51 – 1.46 (m, 2H), 1.44 – 1.38 (m, 2H), 0.93 (t, 3H, J = 7.24 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 159.9, 149.9, 129.8, 129.7, 128.9, 30.6, 24.7, 23.2, 14.0.

(E)-3-phenyl-2-(pyridine-3-yl)acrylaldehyde (14n)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated aldehydes, (*Z*)-2-bromo-3-phenylacryaldehyde (3.0 g, 14.21 mmol), pyridin-3-ylboronic acid (1.92 g, 15.64 mmol, 1.1 equiv.), K₂CO₃ (5.9 g, 42.6 mmol, 3.0 equiv.) and Pd(PPh₃)₄ (329 mg, 0.284 mmol, 2 mol%) were dissolved in a 7:3 mixture of Toluene:H₂O (47 mL, 0.3 M) and heated to 100 °C overnight under Argon atmosphere. After completion, the

reaction was quenched with 40 mL of H_2O and extracted with EtOAc (50 mL x 3). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 50/50) to afford (*E*)-3-phenyl-2-(pyridine-3-yl)acrylaldehyde **14n** as a white-off solid (1.4 g, 47%).

¹H NMR (600 MHz, CDCl₃) δ 9.90 (s, 1H), 8.63 (dd, *J* = 4.9, 1.7 Hz, 1H), 8.43 (d, *J* = 1.4 Hz), 7.58 (dt, *J* = 7.8, 2.0 Hz, 1H), 7.51 (s, 1H), 7.36 (ddd, *J* = 7.8, 4.9, 0.9 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.28 – 7.26 (m, 2H), 7.21 – 7.20 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 193.3, 151.9, 150.4, 149.6, 148.4, 137.5, 133.6, 130.8, 130.8, 129.0, 128.9, 123.7.

HRMS: Calculated [M+H]⁺ for C₁₄H₁₂NO⁺: 210.0913, found: 210.0916

Melting Point: 93.8 – 96.2 °C

FTIR (cm⁻¹): 3056, 2948, 2845, 2727, 1676, 1623, 1563, 1406, 1313, 1223, 1099, 1070, 1024, 931, 732.

³⁰ Liu, J., Wen, X., Qin, C., Li, X., Luo, X., Sun, A., Zhu, B., Song, S., Jiao, N. Angew. Chem. Int. Ed. **2017**, 56, 11940–11944.

(E)-2-(2-methoxyphenyl)-3-phenylacrylaldehyde (140)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated aldehydes, (*Z*)-2-bromo-3-phenylacryaldehyde (5.0 g, 23.07 mmol), (2-methoxyphenyl)boronic acid (3.96 g, 26.07 mmol, 1.1 equiv.), K₂CO₃ (9.83 g, 71.1 mmol, 3.0 equiv.) and Pd(PPh₃)₄ (548 mg, 0.474 mmol, 2 mol%) were dissolved in a 7:3 mixture of Toluene:H₂O (80 mL, 0.3 M) and heated to 100 °C overnight under Argon atmosphere.

After completion, the reaction was quenched with 50 mL of H_2O and extracted with EtOAc (50 mL x 3). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 90/10) to afford (*E*)-2-(2-methoxyphenyl)-3-phenylacrylaldehyde **140** as a colorless oil (3.71 g, 68%).

¹H NMR (600 MHz, CDCl₃) δ 9.75 (s, 1H), 7.47 (s, 1H), 7.41 – 7.38 (m, 1H), 7.30 – 7.27 (m, 1H), 7.25 – 7.21 (m, 4H), 7.04 (ddd, *J* = 7.3, 2.0, 0.7 Hz, 1H), 7.01 – 6.98 (m, 2H), 3.69 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 193.9, 157.2, 149.8, 139.1, 134.7, 130.8, 130.5, 130.2, 130.1, 128.6, 123.0, 121.3, 121.3, 111.6, 55.8.

HRMS: Calculated $[M+H]^+$ for $C_{16}H_{15}O_2^+$: 239.1067, found: 239.1078

FTIR (cm⁻¹): 3059, 3008, 2938, 2835, 1679, 1624, 1596, 1492, 1245, 1067, 1023, 749, 688.

(E)-2-(4-methoxyphenyl)-3-phenylacrylaldehyde (14p)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated aldehydes, (*Z*)-2-bromo-3-phenylacryaldehyde (5.0 g, 23.07 mmol), (4-methoxyphenyl)boronic acid (3.96 g, 26.07 mmol, 1.1 equiv.), K₂CO₃ (9.83 g, 71.1 mmol, 3.0 equiv.) and Pd(PPh₃)₄ (548 mg, 0.474 mmol, 2 mol%) were dissolved in a 7:3 mixture of Toluene:H₂O (80 mL, 0.3 M) and heated to 100 °C overnight under Argon atmosphere. After completion, the reaction was guenched with 50 mL of H₂O and extracted with EtOAc

(50 mL x 3). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 90/10) to afford (*E*)-2-(4-methoxyphenyl)-3-phenylacrylaldehyde **14p** as an off-white solid (3.26 g, 59%). NMR data matches the ones reported in the literature.³¹

¹H NMR (600 MHz, CDCl₃) δ 9.77 (s, 1H), 7.35 (s, 1H), 7.32 – 7.29 (m, 1H), 7.28 – 7.25 (m, 4H), 7.14 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H).

(E)-2,3-diphenylacrylaldehyde (14q)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated aldehydes, (*Z*)-2-bromo-3-phenylacryaldehyde (1.0 g, 4.74 mmol), phenylboronic acid (595 mg, 4.88 mmol, 1.1 equiv.), K₂CO₃ (1.965 g, 14.22 mmol, 3.0 equiv.) and Pd(PPh₃)₄ (110 mg, 0.095 mmol, 2 mol%) were dissolved in a 7:3 mixture of Toluene:H₂O (16 mL, 0.3 M) and heated to 100 °C overnight under Argon atmosphere. After completion, the

reaction was quenched with 5 mL of H₂O and extracted with EtOAc (20 mL x 3). The combined organic

³¹ Chuang, T.H., Chang, W.Y., Li, C.F., Wen, T.C., Tsai, C.C. J. Org. Chem. **2011**, 76, 9678–9686.

layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 90/10) to afford (*E*)-2,3-diphenylacrylaldehyde **14q** as a white solid (756 mg, 76%). NMR data matches the ones reported in the literature.³²

¹H NMR (600 MHz, CDCl₃) δ 9.78 (s, 1H), 7.43 – 7.39 (m, 4H), 7.31 – 7.28 (m, 1H), 7.25 – 7.19 (m, 6H).
 ¹³C NMR (150 MHz, CDCl₃) δ 194.1, 150.3, 142.0, 134.2, 133.5, 130.9, 130.4, 1219.5, 129.0, 1128.7, 128.5.

(E)-2-(4-nitrophenyl)-3-phenylacrylaldehyde (14r)

Following **Method A** from the general procedures for the synthesis of α , β -unsaturated aldehydes, (*Z*)-2-bromo-3-phenylacryaldehyde (5.0 g, 23.07 mmol), (2-nitrophenyl)boronic acid (4.35 g, 26.07 mmol, 1.1 equiv.), K₂CO₃ (9.83 g, 71.1 mmol, 3.0 equiv.) and Pd(PPh₃)₄ (548 mg, 0.474 mmol, 2 mol%) were dissolved in a 7:3 mixture of Toluene:H₂O (80 mL, 0.3 M) and heated to 100 °C overnight under Argon atmosphere. After completion, the reaction was quenched with 50 mL of H₂O and extracted with EtOAc

(50 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 60/40) to afford (*E*)-2-(2-nitrophenyl)-3-phenylacrylaldehyde **14r** as a white solid (2.42 g, 40%).

¹H NMR (600 MHz, CDCl₃) δ 9.78 (s, 1H), 8.27 (d, *J* = 8.9 Hz, 2H), 7.52 (s, 1H), 7.40 (d, *J* = 8.9 Hz, 2H), 7.37 - 7.34 (m, 1H), 7.29 - 7.27 (m, 2H), 7.18 - 7.17 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 192.7, 151.9, 147.9, 140.5, 139.9, 133.3, 131.1, 130.9, 130.8, 129.0, 124.1. HRMS: Calculated [M+H]⁺ for C₁₅H₁₂NO₃⁺: 254.0812, found: 254.0817

Melting Point: 131.9 – 135.9 °C

FTIR (cm⁻¹): 3113, 3053, 2836, 1667, 1632, 1510, 1343, 1322, 1107, 1088, 931, 857, 716, 687.

3,3-diphenylacrylaldehyde (14u)

Following a modified literature procedure³³, bromobezene (1.47 g, 1.4 mmol, 1.05 equiv.), sodium acetate (843 mg, 10.3 mmol, 1.1 equiv.), and $Pd(OAc)_2$ (20 mg, 1 mol%) and were dissolved in *N*-methylpyrrolidine (12 mL, 0.75 M) and then cinnamaldehyde (1.182 g, 8.94 mmol, 1.0 equiv.) was added. The reaction mixture was heated to 120 °C overnight under Argon atmosphere. After completion, the reaction was quenched with 10 mL of H₂O and

extracted with EtOAc (25 mL x 3). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 90/10) to afford 3,3-diphenylacrylaldehyde **14u** as a white solid (686 mg, 37%). NMR data matches the ones reported in the literature.³⁴

¹**H NMR (600 MHz, CDCl**₃) δ 9.53 (d, *J* = 8.0 Hz, 1H), 7.50 − 7.42 (d, 4H), 7.40 − 7.35 (m, 4H), 7.32 − 7.30 (d, 2H), 6.60 (d, *J* = 8.0 Hz, 1H)

³² Liu, J., Wen, X., Qin, C., Li, X., Luo, X., Sun, A., Zhu, B., Song, S., Jiao, N. *Angew. Chem. Int. Ed.* **2017**, 56, 11940–11944.

³³ Zhdanko, A., Schmauder, A., Ma, C.I., Sibley, L. D., Sept, D., Sasse, F., Maier, M.E. *Chem. Eur. J.* **2011**, *17*, 13349– 13357.

³⁴ Li, J., Tan, C., Gong, J., Yang, Z. Org. Lett. **2014**, *61*, 5370–5373.

tert-Butyl 3-formyl-1H-indole-1-carboxylate (14ac)

Indole-3-carboxaldehyde (5 g, 34.4 mmol) was dissolved in dry MeCN (344 mL, 0.2 M). Then Boc_2O (9.77 g, 44.8 mmol, 1.3 eq.) and DMAP (1.4 h, 11.5 mmol, 0.33 eq.) were added. The reaction was left stirring for 1 hour at room temperature. After completion, the reaction mixture was partitioned in 500 mL of a 1:1 mixture of DCM:H₂O and the

organic layer was separated. The organic layer was dried over Na₂SO₄. Evaporation of the solvent afforded *tert*-Butyl 3-formyl-1*H*-indole-1-carboxylate **14ac** as an off-white solid (7.67 g, 41%). NMR data matches the ones reported in the literature.³⁵

¹H NMR (600 MHz, CDCl₃) δ 10.11 (s, 1H), 8.29 (m, 1H), 8.24 (s, 1H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.42 (ddd, *J* = 8.4, 7.2, 1.4 Hz, 1H), 7.38 (td, *J* = 7.6, 7.2, 1.1 Hz, 1H), 1.71 (s, 9H).

16. Procedures and characterization of functionalized β -lactams:

rac-1-(benzyloxy)-4-phenylazetidin-2-one (4b)

In a flame-dried round-bottom flask, compound **2b** (332 mg, 1.0 mmol) and AIBN (16 mg, 0.1 equiv.) were dissolved in dry Toluene (10 mL, 0.1 M) under Argon atmosphere. $(SiMe)_3SiH$ (0.34 mL, 1.1 equiv.) was added and the reaction mixture was heated to 100 °C for 2 h. After completion, the reaction was allowed to cool down to room temperature,

and then it was concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford rac-1-(benzyloxy)-4-phenylazetidin-2-one **4b** as a pale-yellow oil (189 mg, 79%).

¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.28 (m, 8H), 7.26 – 7.25 (m, 2H), 4.94 (d, J = 11.3 Hz, 1H), 4.86 (d, J = 11.3 Hz, 1H), 4.50 (dd, J = 5.5, 2.5 Hz, 1H), 3.08 (dd, J = 13.9, 5.5 Hz, 1H), 2.60 (dd, J = 13.9, 2.5 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 164.8, 137.3, 135.3, 129.1, 129.0, 129.0, 128.8, 128.7, 126.7, 78.2, 60.6, 42.2. HRMS: Calculated [M+H]⁺ for C₁₆H₁₆NO₂⁺: 254.1176, found: 254.11777.

FTIR (cm⁻¹): 3080, 3062, 3033, 2953, 2881, 1766, 1496, 1455, 1365, 1036, 971, 742, 694.

rac-1-(benzyloxy)-3-methyl-4-phenylazetidin-2-one (4m)

In a flame-dried round-bottom flask, compound **2m** (509 mg, 1.5 mmol) and AIBN (24 mg, 0.1 equiv.) were dissolved in dry Toluene (15 mL, 0.1 M) under Argon atmosphere. (SiMe)₃SiH (0.50 mL, 1.1 equiv.) was added and the reaction mixture was heated to 100 °C

³⁵ Loy, N.S.Y., Singh, A., Xu, X., Park, C. Angew. Chem. Int. Ed. **2013**, 52, 2212–2216.

for 2 h. After completion, the reaction was allowed to cool down to room temperature, and then it was concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford rac-1-(benzyloxy)-3-methyl-4-phenylazetidin-2-one **4m** as a colorless oil (308 mg, 78%).

¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.31 (m, 8H), 7.20 – 7.18 (m, 2H), 5.05 (d, *J* = 11.2 Hz, 1H), 4.99 (d, *J* = 11.1 Hz, 1H), 4.69 (d, *J* = 5.6 Hz, 1H), 3.20 (qd, *J* = 7.3, 5.2 Hz, 1H), 0.78 (d, *J* = 7.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 167.6, 135.3, 134.7, 129.1, 128.7, 128.6, 128.3, 127.4, 77.9, 65.1, 45.5, 9.8. HRMS: Calculated [M+H]⁺ for C₁₇H₁₈NO₂⁺: 268.1332, found: 268.1337.

FTIR (cm⁻¹): 3063, 3033, 2973, 2932, 1761, 1496, 1455, 1378, 1365, 1061, 950, 736, 696.

rac-3-bromo-4-phenylazetidin-2-one (5b)

In a flame-dried round-bottom flask, compound **2b** (166 mg, 0.5 mmol) and $Mo(CO)_6$ (158 mg, 1.2 equiv.) were dissolved in a 1:1 mixture of MeCN:H₂O (2.5 mL, 0.2 M). The reaction mixture was heated to 100 °C for 16 h. After completion, the reaction was allowed to cool down to room temperature, and then it was concentrated *in vacuo*. The crude reaction

mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford rac-3bromo-4-phenylazetidin-2-one **5b** as an off-white solid (49 mg, 43%). NMR data matches the ones reported in the literature.³⁶

¹**H NMR (600 MHz, CDCl**₃) δ 7.34 − 7.38 (m, 5H), 6.31 (bs, 1H), 4.83 (d, *J* = 2.0 Hz, 1H), 4.57 (t, *J* = 2.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 164.0, 137.3, 129.4, 129.3, 125.8, 62.5, 51.5.

rac-3-bromo-1-hydroxy-4-phenylazetidin-2-one (6b)

In a round-bottom flask, compound **2b** (332 mg, 1.0 mmol) was dissolved in EtOAc (33 mL, 0.03 M) and then 10 wt% Pd/C (77 mg) was added. The reaction mixture was purged with N₂ for 30 min. Then it was evacuated and filled with 1 balloon of H₂ (1 atm). The reaction was left stirring for 1 h. After completion, it was filtered over celite and the solvent was

³⁶ Bandini, E., Favi, G., Martelli, G., Panuzio, M., Piersanti, G. Org. Lett. **2000**, *2*, 1077–1079.

concentrated *in vacuo* to afford rac-3-bromo-1-hydroxy-4-phenylazetidin-2-one **6b** as a pale-orange solid (160 mg, 66%) without further purification.

¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.43 (m, 3H), 7.41 – 7.39 (m, 2H), 5.02 (d, *J* = 1.4 Hz, 1H), 4.36 (d, *J* = 1.4 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 162.2, 133.6, 130.0, 129.5, 126.6, 72.9, 45.5.

Melting Point: 100.8 - 105.3 °C

HRMS: Calculated [M+H]⁺ for C₉H₉BrNO₂⁺: 241.9812, found: 241.9813.

FTIR (cm⁻¹): 3059, 3030, 2956, 2888, 2812, 1761, 1453, 1351, 1200, 1172, 1053, 956, 789, 756, 726, 692.

rac-1-(benzylox)-4-phenyl-3-(p-tolyl)azetidin-2-one (7b)

In a flame-dried round-bottom flask under Argon atmosphere, compound **2b** (166 mg, 0.5 mmol) was dissolved in dry THF (5.0 mL, 0.1 M). Then 1.0 mL of a 0.05 M solution of CoCl₂ in THF (10 mol%) was added, followed by TMEDA (9 μ L, 12 mol%). The reaction mixture was cooled down to 0 °C using an ice/water bath. Then *p*-tolylmagnesium bromide (0.67 mL, 1.12 M in THF) was added *via* syringe pump (rate of addition = 40

 μ L/min). The reaction was then left stirring for 3 h after the addition was done still at 0 °C. After completion, the reaction was quenched with 5 mL of conc. NH₄Cl and extracted with EtOAc (15 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford rac-1-(benzyloxy)-4-phenyl-3-(*p*-tolyl)azetidin-2-one **7b** as a colorless oil (96 mg, 54%).

¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.33 (m, 8H), 7.30 – 7.28 (m, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 5.06 (d, *J* = 11.4 Hz, 1H), 4.95 (d, *J* = 11.4 Hz, 1H), 4.40 (d, *J* = 2.2 Hz, 1H), 3.85 (d, *J* = 2.2 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 165.3, 137.7, 136.6, 135.3, 131.0, 129.7, 129.3, 129.1, 128.9, 128.7, 127.4, 126.7, 78.2, 70.1, 60.6, 21.3.

HRMS: Calculated [M+H]⁺ for C₂₃H₂₂NO₂⁺: 344.1645, found: 344.1653.

FTIR (cm⁻¹): 3063, 3031, 2924, 1771, 1515, 1455, 1365, 1034, 957, 809, 742, 696.

rac-(1-(benzylox)-3-phenylaziridin-2-yl)methanol (8b)

In a flame-dried round-bottom flask under Argon atmosphere, compound **2b** (166 mg, 0.5 mmol) was dissolved in dry THF (10.0 mL, 0.05 M). The reaction mixture was cooled down to 0 °C using an ice/water bath. Then a solution of LiBH₄ (0.27 mL, 4 M in THF) was added slowly. The reaction mixture was allowed to warm up to room temperature and

was left stirring for 3 h. After completion, the reaction was quenched with 5 mL of distilled H₂O and extracted with EtOAc (20 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (70/30 hexanes:EtOAc) to afford rac-(1-(benzyloxy)- 3-phenylaziridin-2yl)methanol **8b** as a white crystalline solid (52.2 mg, 41%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.43 (m, 2H), 7.36 – 7.33 (m,3H), 7.21 – 7.18 (m, 3H), 6.89 – 6.87 (m, 2H), 4.90 (t, *J* = 5.7 Hz, 1H), 4.48 (d, *J* = 10.7 Hz, 1H), 4.13 (d, *J* = 10.7, 1H), 3.51 (ddd, *J* = 11.9, 5.6, 4.6 Hz, 1H), 3.41 (dt, *J* = 12.1, 6.2 Hz, 1H), 3.10 (d, *J* = 6.5 Hz, 1H), 2.95 (td, *J* = 6.5, 4.6 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 136.6, 132.4, 130.1, 128.4, 127.9, 127.6, 127.6, 127.5, 73.2, 60.9, 48.0, 47.1. Melting Point: 89.8 – 91.0 °C

HRMS: Calculated [M+H]⁺ for C₁₆H₁₇NO₂⁺: 256.1332, found: 256.1336. **FTIR (cm⁻¹):** 3310, 3060, 3033, 2935, 2918, 2876, 1454, 1375, 1217, 1056, 1017, 978, 871, 751, 697.

rac-3-allyl-1-(benzyloxy)-4-phenylazetidin-2-one (9b)

In a flame-dried round-bottom flask under Argon atmosphere, compound **2m** (69.2 mg, 0.2 mmol), AIBN (5.0 mg, 15 mol%) and allyltributyltin (132 mg, 2.0 equiv.) were dissolved in dry Toluene (0.5 mL, 0.4 M). Then the reaction was heated to 80 °C and left heating overnight. After completion, the reaction was allowed to cool down to room temperature

and it was quenched with 1 mL of H_2O . The reaction mixture was extracted with EtOAc (5 mL x 3) and the combined organic layers were dried over Na_2SO_4 . The reaction mixture was then concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford rac-3-allyl-1-(benzyloxy)-4-phenylazetidin-2-one **9b** as a colorless oil (51 mg, 82%).

¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.31 (m, 8H), 7.23 – 7.22 (m, 2H), 5.72 (ddt, *J* = 17.0, 10.4, 6.7 Hz, 1H), 5.05 – 5.01 (m, 2H), 4.97 (d, *J* = 11.3 Hz, 1H), 4.87 (d, *J* = 11.3 Hz, 1H), 4.16 (d, *J* = 2.1 Hz, 1H), 2.82 (ddd, *J* = 9.0, 5.1, 2.2 Hz, 1H), 2.54 (dddt, *J* = 14.5, 6.4, 5.1, 1.4 Hz, 1H), 2.36 – 2.30 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 166.5, 137.0, 135.3, 134.0, 129.3, 129.3, 129.0, 128.7, 128.7, 126.7, 117.8, 78.1, 68.8, 54.7, 32.6.

HRMS: Calculated [M+H]⁺ for C₁₉H₂₀NO₂⁺: 294.1489, found: 294.1493.

FTIR (cm⁻¹): 3065, 3032, 3007, 2930, 1767, 1641, 1497, 1455, 1368, 995, 971, 911, 742, 696.

rac-3-allyl-1-(benzyloxy)-3-methyl-4-phenylazetidin-2-one (9m)

Me O OBn In a flame-dried round-bottom flask under Argon atmosphere, compound **2m** (69.2 mg, 0.2 mmol), AIBN (5.0 mg, 15 mol%) and allyltributyltin (132 mg, 2.0 equiv.) were dissolved in dry Toluene (0.5 mL, 0.4 M). Then the reaction was heated to 80 °C and left heating overnight. After completion, the reaction was allowed to cool down to room temperature

and it was quenched with 1 mL of H_2O . The reaction mixture was extracted with EtOAc (5 mL x 3) and the combined organic layers were dried over Na_2SO_4 . The reaction mixture was then concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford rac-3-allyl-1-(benzyloxy)-3-methyl-4-phenylazetidin-2-one **9m** as a colorless oil (51 mg, 82%).

¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.33 (m, 7H), 7.32 – 7.29 (m, 1H), 7.18 – 7.16 (m, 2H), 5.75 (ddt, J = 16.8, 10.2, 7.3 Hz, 1H), 5.15 – 5.11 (m, 2H), 5.06 (d, J = 11.2 Hz, 1H), 5.00 (d, J = 11.3 Hz, 1H), 4.45 (s, 1H), 2.37 (ddt, J = 13.9, 7.3, 1.1 Hz, 2H), 2.30 (ddt, J = 14.0, 7.4, 1.2 Hz, 1H), 0.75 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.9, 135.3, 135.3, 133.1, 129.3, 129.1, 128.7, 128.6, 128.2, 127.1, 119.3, 77.8, 70.0, 55.0, 40.5, 15.9.

HRMS: Calculated [M+H]⁺ for C₂₀H₂₂NO₂⁺: 308.1645, found: 308.1650.

FTIR (cm⁻¹): 3064, 3032, 3007, 2976, 2928, 1764, 1497, 1454, 1378, 1216, 1099, 983, 950, 914, 743, 696.

rac-3-bromo-2-oxo-4-phenylazetidin-1-yl 4-methylbenzenesulfonate (10b)

In a flame-dried round-bottom flask under Argon atmosphere, compound **6b** (711 mg, 3.0 mmol) and TsCl (841 mg, 1.5 equiv.) were dissolved in dry MeCN (15.0 mL, 0.2 M) and cooled down to 0 °C using an ice/water bath. Then Hunig's base (0.51 mL, 1.0 equiv.) was added slowly. After 30 min, the reaction was allowed to warm up to room temperature and

it was then concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80/20 hexanes:EtOAc) to afford rac-3-bromo-2-oxo-4-phenylazetidin-1-yl 4-methylbenzenesulfonate **10b** as a pale-yellow solid (1.03 g, 88%).

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.3 Hz, 2H), 7.43 − 7.40 (m, 5H), 7.30 − 7.28 (m, 2H), 5.14 (d, *J* = 1.8 Hz, 1H), 4.34 (d, *J* = 1.8 Hz, 1H), 2.49 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 160.0, 147.3, 132.9, 130.5, 130.3, 130.2, 129.5, 129.5, 126.9, 73.4, 45.5, 22.1. HRMS: Calculated [M+H]⁺ for C₁₆H₁₅BrNO₄S⁺: 395.9900, found: 395.9902.

FTIR (cm⁻¹): 3032, 2997, 2925, 1804, 1594, 1497, 1457, 1385, 1193, 1177, 1089, 1028, 941, 810, 765, 708, 695.

3-phenylisoxazol-5(4H)-one (11b)

In a flame-dried round-bottom flask, compound **2b** (166 mg, 0.5 mmol) was dissolved in dry MeCN (2.5 mL, 0.2 M). Then Hunig's base (0.51 mL, 1.0 equiv.) was added slowly and it was left stirring at room temperature for 1 h. After completion, the reaction was concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel

(60/40 hexanes:EtOAc) to afford 3-phenylisoxazolo-5(4*H*)-one **10b** as a white powder (53 mg, 66%). NMR data matches the ones reported in the literature.³⁷

¹H NMR (600 MHz, CDCl₃) δ 7.69 – 7.67 (m, 2H), 7.56 – 7.53 (m, 1H), 7.50 – 7.47 (m, 2H), 3.81 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 174.8, 163.2, 132.3, 129.4, 127.8, 126.7, 34.2.

³⁷ Chang, M-Y., Chen, H-y., Tsai, Y-L. Org. Lett. **2019**, 21, 1832–1836.

17. Control experiments and procedures and characterization for the synthesis of compound 2a':

Control Experiments:

Procedures and characterization for the synthesis of compound 2a':

(Z)-Methyl cinnamate (13a')

Following a modified literature procedure³⁸, (*E*)-methyl cinnamate (1.5 g, 1.0 equiv.) was dissolved in DCM (77 mL, 0.12 M) under Argon atmosphere. BF₃ etherate (1.3 mL, 0.5 equiv.) was added. The reaction was shone with 2 white desk lamps for 3 days at room temperature. After 3 days, the reaction was quenched with 80 mL of H₂O and extracted with DCM (80 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography (Hexane/EtOAc = 97/3) to afford (*Z*)-Methyl cinnamate **13a'** as a colorless oil (942 mg, 63%). NMR data matches the ones reported in the literature.³⁹

¹H NMR (600 MHz, CDCl₃) δ 7.60 – 7.58 (m, 2H), 7.38 – 7.32 (m, 3H), 6.96 (d, *J* = 12.6 Hz, 1H), 5.96 (d, *J* = 12.6 Hz, 1H), 3.72 (s, 3H).

 ³⁸ Lewis, F.D., Oxman, J. D., Gibson, L.L., Hampsoch, H. L., Quillen, S.L. *J. Am. Chem. Soc.* **1986**, *108(11)*, 3005–3015.
 ³⁹ Li, J., Tan, C., Gong, J., Yang, Z. Org. Lett. **2014**, *61*, 5370–5373.

(Z)-N-methoxycinnamamide (12a')

Following **Method B** from the general procedures for the synthesis of hydroxamate esters, in a flame-dried round-bottom flask under Argon atmosphere, MeONH₂·HCl (958 mg, 11.47 mml, 2.0 equiv.) was suspended in dry Toluene (29 mL, 0.2 M). The reaction mixture was then cooled down to -40 °C using an acetone cooling bath. Then a solution of AlMe₃

(5.7 mL, 2M in toluene, 2.0 equiv.) was added dropwise avoiding a spike in temperature greater than 20 °C. After the addition was done, compound **13a'** (930 mg, 5.74 mmol, 1.0 equiv.) was added, the reaction was allowed to warm to room temperature, and it was allowed to stir overnight. The reaction was then quenched with 3M HCl until gas evolution ceased. The reaction mixture was then partitioned with 30 mL H₂O and extracted three times with 30 mL EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (80:20 hexanes:EtOAc) to afford *N*-methoxycinnamamide **12a'** as a colorless oil (731 mg, 72%).

¹H NMR (600 MHz, DMSO-d₆) δ 11.27 (s, 1H), 7.59 – 7.58 (m, 2H), 7.37 – 7.32 (m, 2H), 7.31 – 7.30 (m, 1H), 6.76 (d, *J* = 12.7 Hz, 1H), 5.87 (d, *J* = 12.7 Hz, 1H), 3.61 (s, 3H).

¹³C NMR (150 MHz, DMSO-d₆) δ 163.3, 137.5, 135.0, 129.3, 128.5, 128.1, 121.1, 62.9.

HRMS: Calculated $[M+H]^+$ for $C_{10}H_{12}NO_2^+$: 178.0863, found: 178.0863.

FTIR (cm⁻¹): 3173, 2974, 2935, 1650, 1622, 1495, 1225, 1065, 978, 930, 852, 769, 691.

tertbutyl dimethylsilyl (1Z,2Z)-N-methoxycinnanimidate (1a')

Following the general procedures for the synthesis of silyl imino ethers, in a flame-dried round bottom flask under Argon atmosphere, compound **12a'** (695 mg, 3.92 mmol, 1.0 equiv.) was dissolved in dry THF (20 mL, 0.2 M) at room temperature. The reaction mixture was then cooled down to -78 °C using an acetone-dry ice bath. A solution of KHMDS (5.1 mL, 1.2 equiv., 1.0 M in THF) was then added slowly. TBSCI (706 mg, 1.2 equiv.) was then added, and the reaction was allowed to warm to room temperature. The reaction was left stirring for 60 min until full conversion was overserved by TLC. The reaction mixture was then partitioned with 20 mL of H₂O and extracted with 30 mL of EtOAc three times. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The reaction crude was then purified by column chromatography on silica gel (93:7 hexanes:EtOAc) to afford *terbutyl* dimethylsilyl (*Z*)-*N*-methoxycinnanimidate **1a'** and compound **1a** as a colorless oil (646 mg, 60%) in a 3:1 mixture of inseparable diastereomers.

Data for 1a':

¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.42 (m, 2H), 7.29 – 7.27 (m, 2H), 7.24 – 7.22 (m, 1H), 6.66 (d, *J* = 12.5 Hz, 1H), 5.94 (d, *J* = 12.5 Hz, 1H), 3.80 (s, 3H), 0.70 (s, 9H), -0.01 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 151.6, 136.2, 135.6, 129.7, 128.0, 127.9, 120.7, 61.2, 25.5, 18.6, -4.3. HRMS: Calculated [M+H]⁺ for C₁₆H₂₆NO₂Si⁺: 292.1727, found: 292.1732.

FTIR (cm⁻¹): 3060, 3028, 2952, 2931, 2898, 1579, 1471, 1463, 1297, 1252, 993, 823, 783, 693.

rac-3-bromo-1-methoxy-4-phenylazetidin-2-one (2a')

Following the general procedures for the synthesis of β -lactams, in an 8-mL scintillation vial open to air, compound **1a'** (145.7 mg, 0.5 mmol) was dissolved in HFIP (2.5 mL, 0.2 M). NBS (134.9 mg, 1.5 equiv.) was then added, and the reaction mixture was stirred for 60 min. After completion, the reaction was concentrated *in vacuo* and purified by column

czhromatography on silica gel (90:10 Hexanes:EtOAc) to afford rac-3-bromo-1-methoxy-4-phenylazetidin-2one **2a'** as a white crystalline solid (22 mg, 18%).

¹H NMR (600 MHz, CDCl₃) δ 7.46 − 7.41 (m, 3H), 7.36 − 7.35 (m, 2H), 5.26 (d, *J* = 5.2 Hz, 1H), 4.98 (d, *J* = 5.2 Hz, 1H), 3.85 (s, 3H).

 ^{13}C NMR (150 MHz, CDCl₃) δ 161.4, 133.3, 129.6, 128.6, 128.6, 128.2, 64.8, 64.2, 47.0.

HRMS: Calculated [M+H]⁺ for C₁₀H₁₁BrNO₂⁺: 255.9968, found: 255.9969.

Melting Point: 109.2 – 113.4 °C

FTIR (cm⁻¹): 3064, 3036, 3007, 2918, 1779, 1541, 1456, 1367, 1035, 968, 843, 750, 695.

18. X-Ray Data:

Data for **2j**, **2k** and **2a'** were collected using a Bruker APEX II diffractometer with Mo-K_{α} radiation (λ = 0.71073 Å). The cell parameters were obtained from the least squares refinement of the spots (from 36 collected frames) using APEX 4 (Bruker-AXS, 2022). Data collection and absorption correction were performed using APEX 4 (Bruker-AXS, 2022) and refined by least squares methods using SHELXL2018 (Sheldrick, 2015). Initial atomic positions for XXX were located using intrinsic phasing. Calculated hydrogen atom positions were input and refined in a riding manner along with attached carbons. The crystallographic details for **2j**, **2k and 2a'** are summarized below.

Table 3. Crystal data and structure refinement for C16 H13 Br2 N O2 (2j).

Identification code	2j, CCDC: 2301303	
Empirical formula	C16 H13 Br2 N O2	
Formula weight	411.09	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2₁/n	
Unit cell dimensions	a = 9.9175(14) Å	a= 90°.
	b = 17.323(3) Å	b= 115.609(2)°.
	c = 10.7669(15) Å	g = 90°.
Volume	1668.1(4) Å ³	
Z	4	
Density (calculated)	1.637 Mg/m ³	
Absorption coefficient	4.862 mm ⁻¹	
F(000)	808	

Crystal size	0.300 x 0.250 x 0.050 mm ³
Theta range for data collection	2.336 to 29.146°.
Index ranges	-13<=h<=13, -23<=k<=23, -14<=l<=14
Reflections collected	18321
Independent reflections	4466 [R(int) = 0.0367]
Completeness to theta = 25.000°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.745 and 0.441
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4466 / 0 / 190
Goodness-of-fit on F ²	1.017
Final R indices [I>2sigma(I)]	R1 = 0.0442, wR2 = 0.1051
R indices (all data)	R1 = 0.0852, wR2 = 0.1234
Largest diff. peak and hole	0.798 and -0.763 e.Å ⁻³

Table 4. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for C16 H13 Br2 N O2 (**2j**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	у	Z	U(eq)
Br(1)	7714(1)	990(1)	3078(1)	85(1)
Br(2)	7015(1)	492(1)	5556(1)	86(1)
O(1)	9537(3)	2027(2)	6164(3)	78(1)
O(2)	7070(3)	3253(1)	5095(3)	64(1)
N(1)	7126(3)	2486(2)	4797(3)	57(1)
C(1)	7183(3)	1338(2)	4502(3)	50(1)
C(2)	8248(4)	1980(2)	5355(4)	54(1)
C(3)	5904(4)	1953(2)	4015(3)	48(1)
C(4)	7352(6)	3744(2)	4137(4)	75(1)
C(5)	7397(4)	4546(2)	4634(4)	55(1)
C(6)	8668(5)	4823(3)	5697(4)	71(1)
C(7)	8718(7)	5550(3)	6191(6)	98(2)
C(8)	7515(8)	6018(3)	5671(6)	97(2)
C(9)	6236(7)	5766(3)	4609(6)	92(2)
C(10)	6168(5)	5027(3)	4093(4)	74(1)
C(11)	4698(3)	1899(2)	4496(3)	46(1)

C(12)	4951(4)	2121(2)	5814(4)	59(1)
C(13)	3829(6)	2066(3)	6235(5)	76(1)
C(14)	2448(5)	1784(3)	5350(6)	85(1)
C(15)	2197(5)	1559(3)	4056(5)	80(1)
C(16)	3308(4)	1620(2)	3622(4)	61(1)

Table 5. Bond lengths [Å] and angles [°] for C16 H13 Br2 N O2 (2j).

Br(1)-C(1)	1.922(3)
Br(2)-C(1)	1.904(3)
O(1)-C(2)	1.199(4)
O(2)-N(1)	1.375(4)
O(2)-C(4)	1.454(5)
N(1)-C(2)	1.337(5)
N(1)-C(3)	1.466(4)
C(1)-C(2)	1.536(5)
C(1)-C(3)	1.562(5)
C(3)-C(11)	1.498(4)
С(3)-Н(3)	0.9800
C(4)-C(5)	1.482(5)
С(4)-Н(4А)	0.9700
С(4)-Н(4В)	0.9700
C(5)-C(6)	1.372(5)
C(5)-C(10)	1.380(6)
C(6)-C(7)	1.361(7)
С(6)-Н(6)	0.9300
C(7)-C(8)	1.348(8)
С(7)-Н(7)	0.9300
C(8)-C(9)	1.361(8)
С(8)-Н(8)	0.9300
C(9)-C(10)	1.386(7)
С(9)-Н(9)	0.9300
С(10)-Н(10)	0.9300
C(11)-C(16)	1.377(5)
C(11)-C(12)	1.385(5)

C(12)-C(13)	1.374(6)
С(12)-Н(12)	0.9300
C(13)-C(14)	1.376(7)
С(13)-Н(13)	0.9300
C(14)-C(15)	1.363(7)
C(14)-H(14)	0.9300
C(15)-C(16)	1.374(6)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
N(1)-O(2)-C(4)	111.1(3)
C(2)-N(1)-O(2)	129.6(3)
C(2)-N(1)-C(3)	99.6(3)
O(2)-N(1)-C(3)	129.6(3)
C(2)-C(1)-C(3)	87.5(2)
C(2)-C(1)-Br(2)	114.6(2)
C(3)-C(1)-Br(2)	117.2(2)
C(2)-C(1)-Br(1)	110.5(2)
C(3)-C(1)-Br(1)	114.1(2)
Br(2)-C(1)-Br(1)	111.00(17)
O(1)-C(2)-N(1)	134.6(4)
O(1)-C(2)-C(1)	136.5(4)
N(1)-C(2)-C(1)	89.0(3)
N(1)-C(3)-C(11)	115.2(3)
N(1)-C(3)-C(1)	83.5(2)
C(11)-C(3)-C(1)	119.7(3)
N(1)-C(3)-H(3)	111.8
C(11)-C(3)-H(3)	111.8
C(1)-C(3)-H(3)	111.8
O(2)-C(4)-C(5)	106.0(3)
O(2)-C(4)-H(4A)	110.5
C(5)-C(4)-H(4A)	110.5
O(2)-C(4)-H(4B)	110.5
С(5)-С(4)-Н(4В)	110.5
H(4A)-C(4)-H(4B)	108.7
C(6)-C(5)-C(10)	117.8(4)
C(6)-C(5)-C(4)	120.1(4)

C(10)-C(5)-C(4)	122.1(4)
C(7)-C(6)-C(5)	121.0(5)
C(7)-C(6)-H(6)	119.5
C(5)-C(6)-H(6)	119.5
C(8)-C(7)-C(6)	121.2(5)
C(8)-C(7)-H(7)	119.4
C(6)-C(7)-H(7)	119.4
C(7)-C(8)-C(9)	119.5(5)
C(7)-C(8)-H(8)	120.2
C(9)-C(8)-H(8)	120.2
C(8)-C(9)-C(10)	119.9(5)
C(8)-C(9)-H(9)	120.0
С(10)-С(9)-Н(9)	120.0
C(5)-C(10)-C(9)	120.6(4)
C(5)-C(10)-H(10)	119.7
C(9)-C(10)-H(10)	119.7
C(16)-C(11)-C(12)	118.8(3)
C(16)-C(11)-C(3)	119.9(3)
C(12)-C(11)-C(3)	121.3(3)
C(13)-C(12)-C(11)	120.3(4)
C(13)-C(12)-H(12)	119.8
C(11)-C(12)-H(12)	119.8
C(12)-C(13)-C(14)	120.1(4)
C(12)-C(13)-H(13)	119.9
C(14)-C(13)-H(13)	119.9
C(15)-C(14)-C(13)	119.8(4)
C(15)-C(14)-H(14)	120.1
C(13)-C(14)-H(14)	120.1
C(14)-C(15)-C(16)	120.4(4)
C(14)-C(15)-H(15)	119.8
C(16)-C(15)-H(15)	119.8
C(15)-C(16)-C(11)	120.6(4)
C(15)-C(16)-H(16)	119.7
C(11)-C(16)-H(16)	119.7

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	67(1)	116(1)	82(1)	-45(1)	43(1)	-14(1)
Br(2)	79(1)	63(1)	123(1)	33(1)	52(1)	19(1)
O(1)	49(2)	103(2)	73(2)	-32(2)	18(1)	-6(1)
O(2)	90(2)	44(1)	76(2)	-4(1)	53(2)	-10(1)
N(1)	57(2)	45(2)	71(2)	-4(1)	29(2)	-6(1)
C(1)	42(2)	54(2)	57(2)	-3(2)	24(2)	-2(1)
C(2)	49(2)	64(2)	52(2)	-12(2)	25(2)	-6(2)
C(3)	47(2)	51(2)	44(2)	4(1)	20(1)	-2(1)
C(4)	113(3)	58(2)	70(2)	-4(2)	56(3)	-17(2)
C(5)	71(2)	49(2)	51(2)	2(2)	33(2)	-10(2)
C(6)	71(3)	66(3)	70(2)	2(2)	25(2)	-2(2)
C(7)	120(4)	79(4)	82(3)	-15(3)	31(3)	-32(3)
C(8)	160(6)	57(3)	92(4)	-6(3)	70(4)	-5(3)
C(9)	116(4)	76(3)	105(4)	31(3)	69(4)	32(3)
C(10)	67(2)	88(3)	62(2)	17(2)	24(2)	-8(2)
C(11)	45(2)	43(2)	51(2)	8(1)	23(1)	9(1)
C(12)	63(2)	61(2)	59(2)	5(2)	31(2)	8(2)
C(13)	99(3)	76(3)	79(3)	13(2)	62(3)	22(2)
C(14)	76(3)	89(3)	119(4)	34(3)	69(3)	24(2)
C(15)	49(2)	93(3)	100(3)	22(3)	35(2)	5(2)
C(16)	50(2)	69(2)	61(2)	7(2)	21(2)	4(2)

Table 6. Anisotropic displacement parameters ($Å^2x \ 10^3$) for C16 H13 Br2 N O2 (**2j**). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2hk \ a^*b^*U^{12}]$

Table 7. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10 ³)for C16 H13 Br2 N O2 (2j).

x	у	Z	U(eq)

H(3)	5495	2046	3021	57
H(4A)	6562	3687	3213	90
H(4B)	8297	3610	4127	90
H(6)	9508	4508	6085	86
H(7)	9599	5728	6901	117
H(8)	7559	6509	6035	117
H(9)	5408	6090	4230	110
H(10)	5289	4854	3376	88
H(12)	5885	2307	6418	71
H(13)	4003	2220	7119	92
H(14)	1688	1748	5635	102
H(15)	1268	1362	3462	96
H(16)	3120	1473	2732	73

 Table 8. Crystal data and structure refinement for C16 H13 Br Cl N O2 (2k).

Identification code	2k, CCDC: 2301304	2k, CCDC: 2301304		
Empirical formula	C16 H13 Br Cl N O2			
Formula weight	366.63			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P21/n			
Unit cell dimensions	a = 9.915(3) Å	a= 90°.		
	b = 17.251(6) Å	b= 115.375(5)°.		
	c = 10.682(3) Å	g = 90°.		
Volume	1650.8(9) Å ³			
Z	4			
Density (calculated)	1.475 Mg/m ³			
Absorption coefficient	2.654 mm ⁻¹			
F(000)	736	736		
Crystal size	0.200 x 0.150 x 0.100 m	0.200 x 0.150 x 0.100 mm ³		
Theta range for data collection	2.347 to 31.775°.			
Index ranges	-14<=h<=14, -25<=k<=2	5, -15<=l<=15		
Reflections collected	20864			
Independent reflections	5570 [R(int) = 0.0363]			
Completeness to theta = 25.000°	100.0 %	100.0 %		
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents		
Max. and min. transmission	0.746 and 0.602	0.746 and 0.602		

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5570 / 0 / 190
Goodness-of-fit on F ²	1.017
Final R indices [I>2sigma(I)]	R1 = 0.0476, wR2 = 0.1286
R indices (all data)	R1 = 0.0992, wR2 = 0.1519
Extinction coefficient	n/a
Largest diff. peak and hole	0.745 and -0.663 e.Å ⁻³

Table 9. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for C16 H13 Br Cl N O2 (**2k**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
Br(1)	2269(1)	904(1)	6744(1)	91(1)
Cl(1)	3019(1)	542(1)	4334(1)	86(1)
O(1)	485(2)	2002(2)	3689(2)	86(1)
O(2)	2927(2)	3235(1)	4845(2)	66(1)
N(1)	2872(2)	2456(1)	5105(2)	61(1)
C(1)	2822(3)	1299(2)	5337(3)	54(1)
C(2)	1769(3)	1951(2)	4513(3)	58(1)
C(3)	4103(3)	1918(1)	5881(3)	51(1)
C(4)	5309(3)	1878(1)	5398(2)	50(1)
C(5)	5086(3)	2131(2)	4093(3)	63(1)
C(6)	6217(5)	2083(2)	3673(4)	82(1)
C(7)	7568(4)	1781(2)	4533(5)	91(1)
C(8)	7807(4)	1524(2)	5829(4)	89(1)
C(9)	6689(3)	1574(2)	6278(3)	66(1)
C(10)	2587(4)	3705(2)	5809(3)	74(1)
C(11)	2584(3)	4522(2)	5362(3)	58(1)
C(12)	3829(4)	4992(2)	5946(3)	78(1)
C(13)	3793(6)	5744(2)	5465(5)	98(1)
C(14)	2528(6)	6019(2)	4411(5)	102(1)
C(15)	1307(6)	5565(2)	3838(4)	101(1)
C(16)	1326(4)	4821(2)	4299(3)	76(1)

Br(1)-C(1)	1.930(3)
Cl(1)-C(1)	1.752(3)
O(1)-C(2)	1.202(3)
O(2)-N(1)	1.377(3)
O(2)-C(10)	1.459(3)
N(1)-C(2)	1.327(3)
N(1)-C(3)	1.474(3)
C(1)-C(2)	1.531(4)
C(1)-C(3)	1.569(3)
C(3)-C(4)	1.493(3)
С(3)-Н(3)	0.9800
C(4)-C(5)	1.386(4)
C(4)-C(9)	1.389(4)
C(5)-C(6)	1.377(4)
C(5)-H(5)	0.9300
C(6)-C(7)	1.362(6)
C(6)-H(6)	0.9300
C(7)-C(8)	1.374(5)
C(7)-H(7)	0.9300
C(8)-C(9)	1.386(5)
C(8)-H(8)	0.9300
С(9)-Н(9)	0.9300
C(10)-C(11)	1.488(4)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-C(16)	1.378(4)
C(11)-C(12)	1.382(4)
C(12)-C(13)	1.391(6)
C(12)-H(12)	0.9300
C(13)-C(14)	1.362(6)
C(13)-H(13)	0.9300
C(14)-C(15)	1.349(6)
C(14)-H(14)	0.9300
C(15)-C(16)	1.371(5)

 Table 10.
 Bond lengths [Å] and angles [°] for C16 H13 Br Cl N O2 (2k).

_

C(15)-H(15)	0.9300
С(16)-Н(16)	0.9300
N(1)-O(2)-C(10)	111.0(2)
C(2)-N(1)-O(2)	129.8(2)
C(2)-N(1)-C(3)	99.7(2)
O(2)-N(1)-C(3)	129.3(2)
C(2)-C(1)-C(3)	87.47(19)
C(2)-C(1)-Cl(1)	115.06(19)
C(3)-C(1)-Cl(1)	116.70(17)
C(2)-C(1)-Br(1)	110.87(17)
C(3)-C(1)-Br(1)	114.01(17)
Cl(1)-C(1)-Br(1)	110.87(14)
O(1)-C(2)-N(1)	134.4(3)
O(1)-C(2)-C(1)	136.2(3)
N(1)-C(2)-C(1)	89.4(2)
N(1)-C(3)-C(4)	115.3(2)
N(1)-C(3)-C(1)	82.95(18)
C(4)-C(3)-C(1)	118.8(2)
N(1)-C(3)-H(3)	112.2
C(4)-C(3)-H(3)	112.2
C(1)-C(3)-H(3)	112.2
C(5)-C(4)-C(9)	119.1(3)
C(5)-C(4)-C(3)	121.8(2)
C(9)-C(4)-C(3)	119.1(2)
C(6)-C(5)-C(4)	120.5(3)
C(6)-C(5)-H(5)	119.7
C(4)-C(5)-H(5)	119.7
C(7)-C(6)-C(5)	120.4(3)
C(7)-C(6)-H(6)	119.8
C(5)-C(6)-H(6)	119.8
C(6)-C(7)-C(8)	119.9(3)
C(6)-C(7)-H(7)	120.1
С(8)-С(7)-Н(7)	120.1
C(7)-C(8)-C(9)	120.7(3)
C(7)-C(8)-H(8)	119.6
C(9)-C(8)-H(8)	119.6

C(8)-C(9)-C(4)	119.4(3)
С(8)-С(9)-Н(9)	120.3
C(4)-C(9)-H(9)	120.3
O(2)-C(10)-C(11)	105.6(2)
O(2)-C(10)-H(10A)	110.6
C(11)-C(10)-H(10A)	110.6
O(2)-C(10)-H(10B)	110.6
C(11)-C(10)-H(10B)	110.6
H(10A)-C(10)-H(10B)	108.8
C(16)-C(11)-C(12)	118.0(3)
C(16)-C(11)-C(10)	119.8(3)
C(12)-C(11)-C(10)	122.2(3)
C(11)-C(12)-C(13)	120.3(3)
C(11)-C(12)-H(12)	119.9
C(13)-C(12)-H(12)	119.9
C(14)-C(13)-C(12)	119.9(4)
C(14)-C(13)-H(13)	120.0
C(12)-C(13)-H(13)	120.0
C(15)-C(14)-C(13)	120.2(4)
C(15)-C(14)-H(14)	119.9
C(13)-C(14)-H(14)	119.9
C(14)-C(15)-C(16)	120.6(4)
C(14)-C(15)-H(15)	119.7
C(16)-C(15)-H(15)	119.7
C(15)-C(16)-C(11)	121.0(4)
C(15)-C(16)-H(16)	119.5
C(11)-C(16)-H(16)	119.5

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	71(1)	120(1)	90(1)	46(1)	42(1)	9(1)
Cl(1)	81(1)	67(1)	119(1)	-34(1)	51(1)	-22(1)
O(1)	50(1)	115(2)	79(1)	32(1)	13(1)	2(1)
O(2)	90(1)	50(1)	77(1)	3(1)	52(1)	10(1)
N(1)	56(1)	51(1)	74(1)	5(1)	26(1)	7(1)
C(1)	50(1)	58(1)	57(1)	5(1)	26(1)	-2(1)
C(2)	50(1)	72(2)	56(1)	15(1)	25(1)	4(1)
C(3)	50(1)	54(1)	48(1)	-2(1)	20(1)	1(1)
C(4)	49(1)	49(1)	51(1)	-9(1)	22(1)	-9(1)
C(5)	69(2)	65(2)	58(2)	-5(1)	31(1)	-9(1)
C(6)	101(3)	87(2)	80(2)	-19(2)	61(2)	-27(2)
C(7)	82(2)	106(3)	111(3)	-39(2)	67(2)	-28(2)
C(8)	53(2)	106(3)	106(3)	-22(2)	32(2)	0(2)
C(9)	52(2)	78(2)	66(2)	-4(1)	22(1)	0(1)
C(10)	105(2)	66(2)	68(2)	9(1)	51(2)	22(2)
C(11)	71(2)	56(1)	50(1)	-3(1)	31(1)	10(1)
C(12)	74(2)	90(2)	66(2)	-17(2)	26(2)	6(2)
C(13)	119(3)	83(2)	110(3)	-36(2)	65(3)	-31(2)
C(14)	162(5)	62(2)	95(3)	-1(2)	68(3)	2(2)
C(15)	126(3)	88(3)	80(2)	21(2)	35(2)	41(2)
C(16)	77(2)	73(2)	70(2)	2(2)	24(2)	9(2)

Table 11. Anisotropic displacement parameters ($Å^2x 10^3$) for C16 H13 Br Cl N O2 (**2k**). The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	х	У	Z	U(eq)
H(3)	4500	1995	6885	61
H(5)	4166	2335	3496	75
H(6)	6058	2258	2797	98
H(7)	8328	1749	4243	109
H(8)	8728	1315	6411	107
H(9)	6862	1405	7161	80
H(10A)	3338	3631	6751	89
H(10B)	1619	3566	5765	89
H(12)	4694	4804	6664	94
H(13)	4632	6059	5862	118
H(14)	2506	6521	4086	122
H(15)	444	5757	3124	122
H(16)	477	4514	3888	91

Table 12. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10 ³)for C16 H13 Br Cl N O2 (**2k**).

Table 13. Crystal data and structure refinement for	°C10 H10 Br N O2 (2a').		
Identification code	2a', CCDC: 2302628		
Empirical formula	C10 H10 Br N O2		
Formula weight	256.10		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 5.6110(6) Å	a= 90°.	
	b = 7.1772(8) Å	b= 90°.	
	c = 25.602(3) Å	g = 90°.	
Volume	1031.0(2) Å ³		
Z	4		
Density (calculated)	1.650 Mg/m ³		
Absorption coefficient	3.959 mm ⁻¹		
F(000)	512		
Crystal size	$0.200 \times 0.150 \times 0.100 \text{ mm}^3$		
Theta range for data collection	2.948 to 31.875°.		
Index ranges	-8<=h<=8, -10<=k<=10, -37<=l<	=37	
Reflections collected	13720		
Independent reflections	3540 [R(int) = 0.0290]		
Completeness to theta = 25.000°	99.9 %		

 Fable 13. Crystal data and structure refinement for C10 H10 Br N O2 (2a').

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.741 and 0.546
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3540/0/129
Goodness-of-fit on F ²	1.013
Final R indices [I>2sigma(I)]	R1 = 0.0360, wR2 = 0.0807
R indices (all data)	R1 = 0.0547, wR2 = 0.0873
Absolute structure parameter	0.272(14)
Extinction coefficient	n/a
Largest diff. peak and hole	0.691 and -0.528 e.Å ⁻³

Table 14. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for C10 H10 Br N O2 (**2a'**). U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	х	У	Z	U(eq)
Br(1)	2011(1)	10502(1)	3815(1)	62(1)
O(1)	6339(6)	8912(4)	4718(1)	66(1)
O(2)	7023(5)	5146(4)	4155(1)	58(1)
N(1)	5240(5)	6449(4)	4166(1)	44(1)
C(1)	5044(7)	8069(5)	4430(1)	44(1)
C(2)	2502(6)	8278(5)	4221(1)	43(1)
C(3)	2871(6)	6396(5)	3924(1)	39(1)
C(4)	2805(6)	6341(4)	3335(1)	34(1)
C(5)	4634(5)	7105(5)	3040(1)	38(1)
C(6)	4497(6)	7100(5)	2502(1)	40(1)
C(7)	2541(5)	6320(4)	2255(1)	39(1)
C(8)	732(5)	5542(5)	2546(1)	41(1)
C(9)	872(5)	5550(5)	3086(1)	38(1)
C(10)	6678(10)	3740(6)	4536(2)	65(1)

Br(1)-C(2)	1.925(3)
O(1)-C(1)	1.199(4)
O(2)-N(1)	1.369(4)
O(2)-C(10)	1.417(5)
N(1)-C(1)	1.350(5)
N(1)-C(3)	1.466(4)
C(1)-C(2)	1.531(5)
C(2)-C(3)	1.564(5)
C(2)-H(2)	0.9800
C(3)-C(4)	1.508(4)
C(3)-H(3)	0.9800
C(4)-C(9)	1.380(4)
C(4)-C(5)	1.388(4)
C(5)-C(6)	1.378(5)
C(5)-H(5)	0.9300
C(6)-C(7)	1.385(5)
C(6)-H(6)	0.9300
C(7)-C(8)	1.378(5)
C(7)-H(7)	0.9300
C(8)-C(9)	1.386(4)
C(8)-H(8)	0.9300
С(9)-Н(9)	0.9300
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
C(10)-H(10C)	0.9600
N(1)-O(2)-C(10)	111.9(3)
C(1)-N(1)-O(2)	131.1(3)
C(1)-N(1)-C(3)	99.2(3)
O(2)-N(1)-C(3)	129.5(3)
O(1)-C(1)-N(1)	133.9(4)
O(1)-C(1)-C(2)	136.9(4)
N(1)-C(1)-C(2)	89.2(3)
C(1)-C(2)-C(3)	87.8(3)

Table 15.	Bond lengths [Å] and angles [°] for C10 H10 Br N O2 (2a').	

C(1)-C(2)-Br(1)	113.8(2)
C(3)-C(2)-Br(1)	118.2(2)
C(1)-C(2)-H(2)	111.7
C(3)-C(2)-H(2)	111.7
Br(1)-C(2)-H(2)	111.7
N(1)-C(3)-C(4)	116.4(3)
N(1)-C(3)-C(2)	83.8(2)
C(4)-C(3)-C(2)	120.3(3)
N(1)-C(3)-H(3)	111.2
C(4)-C(3)-H(3)	111.2
C(2)-C(3)-H(3)	111.2
C(9)-C(4)-C(5)	119.5(3)
C(9)-C(4)-C(3)	119.4(3)
C(5)-C(4)-C(3)	121.1(3)
C(6)-C(5)-C(4)	120.1(3)
C(6)-C(5)-H(5)	119.9
C(4)-C(5)-H(5)	119.9
C(5)-C(6)-C(7)	120.1(3)
C(5)-C(6)-H(6)	119.9
C(7)-C(6)-H(6)	119.9
C(8)-C(7)-C(6)	120.0(3)
C(8)-C(7)-H(7)	120.0
C(6)-C(7)-H(7)	120.0
C(7)-C(8)-C(9)	119.8(3)
C(7)-C(8)-H(8)	120.1
C(9)-C(8)-H(8)	120.1
C(4)-C(9)-C(8)	120.5(3)
C(4)-C(9)-H(9)	119.8
C(8)-C(9)-H(9)	119.8
O(2)-C(10)-H(10A)	109.5
O(2)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
O(2)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U ³³	U ²³	U13	U12
Br(1)	91(1)	51(1)	43(1)	-1(1)	-12(1)	26(1)
O(1)	77(2)	63(2)	58(2)	4(1)	-28(2)	-13(2)
O(2)	48(1)	68(2)	57(1)	18(1)	7(1)	19(1)
N(1)	40(1)	49(2)	43(1)	4(1)	-7(1)	5(1)
C(1)	52(2)	45(2)	35(2)	11(1)	-6(1)	-3(2)
C(2)	47(2)	49(2)	33(1)	2(1)	-2(1)	5(1)
C(3)	36(1)	43(2)	37(1)	4(1)	1(1)	-2(1)
C(4)	34(1)	31(1)	38(1)	-2(1)	0(1)	0(1)
C(5)	31(2)	38(2)	44(2)	-2(1)	2(1)	-5(1)
C(6)	39(2)	38(2)	42(2)	1(1)	7(1)	0(1)
C(7)	44(2)	36(1)	37(1)	-4(1)	-2(1)	4(1)
C(8)	35(2)	40(2)	48(2)	-7(2)	-7(1)	-1(2)
C(9)	31(1)	37(1)	47(2)	2(1)	3(1)	-2(1)
C(10)	84(3)	46(2)	66(2)	14(2)	-10(2)	6(2)

Table 16. Anisotropic displacement parameters (Å²x 10³) for C10 H10 Br N O2 (**2a'**). The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	х	У	Z	U(eq)
H(2)	1317	8158	4500	51
H(3)	1890	5403	4075	47
H(5)	5955	7620	3205	45
H(6)	5720	7620	2305	48
H(7)	2449	6323	1892	47
H(8)	-579	5013	2380	49
H(9)	-345	5018	3283	46
H(10A)	7140	4205	4873	98
H(10B)	7632	2673	4450	98
H(10C)	5027	3388	4544	98

Table 17. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (Å²x 10³) for C10 H10 Br N O2 (**2a'**).

19. Computational Studies:

In the main manuscript geometry optimizations were performed in Gaussian 16 revision B.01⁴⁰ with M06-2X⁴¹/6-31G**[LANL2DZ for Br]^{42,43} with SMD⁴⁴ solvation model for acetonitrile. In Figure S1 below the same method and basis set was used, but the SMD model for trifluoroethanol was used instead of acetonitrile. Conformational structure searching was carried out using the CREST⁴⁵ code (6.2.3) with GFN2-xTB⁴⁶ and the lowest 10 were then optimized with M06-2X. Vibrational frequencies were calculated for verification of minima or transition states. The carbocation C-C bond rotation transition state was located using the nudged elastic band (NEB) method in ORCA 5.0⁴⁷ with M06-2X/def2-SVP (see Figure below for NEB profile). The resulting NEB structure was then further optimized in Gaussian 16 keeping the dihedral angle restrained. This provided the ability to have a M06-2X/6-31G**[LANL2DZ for Br] energy with SMD solvation.

Because HFIP solvent is not available in Gaussian 16, for an estimate of a fluorinated alcohol solvent we re-optimized all structures presented in the main manuscript with the SMD solvent model for trifluoroethanol. The energy surface is shown in Figure S1. Comparison with the main manuscript shows very small energy differences compared to acetonitrile solvent.

⁴⁰ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G.

A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.

P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,

B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.

Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.

Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.

Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision B.01; Gaussian Inc., Wallingford CT, 2016.

⁴¹ Y. Zhao and D. G. Truhlar., *Theor. Chem. Acc.*, **2008**, 120, 215–241.

⁴² R. Ditchfield, W. J. Hehre and J. A. Pople, *J. Chem. Phys.*, **1971**, 54, 724–728.

⁴³ P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, **1985**, 82, 270–283.

⁴⁴ A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B.*, **2009**, 113, 6378–6396.

⁴⁵ P. Pracht, F. Bohle and S. Grimme, *Phys. Chem. Chem. Phys.*, **2020**, 22, 7169–7192.

⁴⁶ C. Bannwarth, S. Ehlert and S. Grimme, *J. Chem. Theory Comput.*, **2019**, 15, 1652–1671.

⁴⁷ F. Neese, Software update: The ORCA program system—Version 5.0, WIREs Computational Molecular Science, 2022, 12, e1606.

Figure S1. Energy surface for ring closing transition states and C–C bond rotation (derived from 1y and 1a') using the SMD trifluoroethanol solvent model.

Figure S2. Lowest energy structure profile obtained from nudge elastic band calculations for C²C bond rotation.
Because there is no HFIP continuum solvent model in Gaussian, for the bromination reaction step we evaluated the thermodynamics for generating the carbocation intermediate. Assuming NBS is a source of Br₂, Figure S3a shows the energy for forming the benzylic cation in the gas phase and implicit trifluoroethanol. Figure S3b shows the energy using two explicit HFIP molecules, which shows 16 kcal/mol reduction in the thermodynamic energy change that is likely linked to the kinetics of bromination.

Figure S3. a) Thermodynamics for formation of the benzylic carbocation from 1a' in the gas phase and implicit trifluoroethanol b) with 2 explicit HFIP moleucles. 3D depiction of explicitly solvated Br2 and benzylic carbocation are included.

Absolute Energies and Xyz Structures

		1a' Int-Syn
Zero-point correction=	0.384761	(Hartree/Particle)
Thermal correction to Energy=	0.41	0480
Thermal correction to Enthalpy=	0.41	.1424
Thermal correction to Gibbs Free En	ergy=	0.326391
Sum of electronic and zero-point En	ergies=	-1131.605445
Sum of electronic and thermal Energy	gies=	-1131.579727
Sum of electronic and thermal Entha	alpies=	-1131.578782
Sum of electronic and thermal Free	Energies=	-1131.663815

С	4.321136000000	1.505084000000	-0.557945000000
С	5.632573000000	1.284832000000	-0.206830000000
С	3.309019000000	0.563565000000	-0.180379000000
Н	6.407233000000	1.988247000000	-0.487149000000
С	5.957825000000	0.132063000000	0.520907000000
С	3.670301000000	-0.605225000000	0.565365000000
Н	2.916624000000	-1.323242000000	0.867498000000
С	4.984529000000	-0.807738000000	0.906488000000
Н	5.276852000000	-1.684858000000	1.471368000000
Н	4.030360000000	2.385201000000	-1.123237000000
С	2.014248000000	0.852571000000	-0.562785000000
С	0.822377000000	0.008189000000	-0.336338000000
С	-0.387610000000	0.768900000000	0.105755000000
Ν	-0.276262000000	2.043732000000	0.147989000000
0	-1.417919000000	2.624570000000	0.647745000000
Br	0.483101000000	-0.739821000000	-2.210427000000
С	-1.416729000000	4.015728000000	0.346100000000
Н	-0.537753000000	4.499323000000	0.781778000000
Н	-1.433761000000	4.175640000000	-0.736024000000
0	-1.424153000000	0.023671000000	0.443288000000
Si	-3.118750000000	0.365352000000	0.255287000000
С	-3.807525000000	-1.377136000000	0.020523000000
С	-3.782426000000	1.118328000000	1.830225000000
Н	-3.277680000000	0.689667000000	2.702063000000
Н	-3.638679000000	2.200779000000	1.850874000000
Н	-4.852924000000	0.909107000000	1.929560000000
С	-3.338856000000	1.413164000000	-1.280985000000
Н	-3.595912000000	2.443200000000	-1.017841000000
Н	-2.415961000000	1.440753000000	-1.871818000000
Н	-4.129802000000	1.014958000000	-1.924055000000
С	-3.130505000000	-2.049220000000	-1.180315000000
Н	-2.056646000000	-2.179244000000	-1.012199000000
Н	-3.566850000000	-3.042014000000	-1.353862000000
Н	-3.257073000000	-1.466125000000	-2.100649000000
С	-5.320233000000	-1.292370000000	-0.231072000000
Н	-5.733634000000	-2.301365000000	-0.359946000000
Н	-5.850602000000	-0.825706000000	0.606645000000
Н	-5.554224000000	-0.724322000000	-1.138577000000
С	-3.551271000000	-2.211285000000	1.283201000000
Н	-4.059550000000	-1.788931000000	2.157450000000
Н	-3.928261000000	-3.233302000000	1.143876000000
Н	-2.481887000000	-2.280054000000	1.512212000000
Н	1.834920000000	1.780410000000	-1.102997000000
Н	-2.325282000000	4.416453000000	0.797116000000

Н	6.993372000000	-0.042089000000	0.797678000000
Н	0.974122000000	-0.873621000000	0.282343000000

1a' Int-Anti

Zei	ro-point correction=	0.3	884861 (Hartree/Particle)
Th	ermal correction to	Energy=	0.410583
Th	ermal correction to	Enthalpy=	0.411527
Th	ermal correction to	Gibbs Free Energy	/= 0.326780
Su	m of electronic and	zero-point Energi	es= -1131.605187
Su	m of electronic and	thermal Energies=	-1131.579465
Su	m of electronic and	thermal Enthalpie	es= -1131.578521
Su	m of electronic and	thermal Free Ener	rgies= -1131.663268
С	-0.211787000000	0.74971700000	0 -0.009867000000
С	1.142242000000	0.78228700000	0 -0.603926000000
Ν	-0.011046000000	-1.58470700000	0 -0.248678000000
С	-0.775918000000	-0.62958800000	0 0.127356000000
Н	1.283719000000	0.15267500000	0 -1.48037000000
0	-1.970719000000	-0.69451900000	0 0.68495000000
Br	-1.294323000000	1.78698900000	0 -1.397210000000
С	2.211023000000	1.54677800000	0 -0.179997000000
С	2.170739000000	2.39409500000	0.974553000000
С	3.413587000000	1.45900400000	0 -0.954399000000
С	3.286881000000	3.11475400000	1.32082000000
С	4.521454000000	2.18888100000	0 -0.591546000000
С	4.453290000000	3.01194500000	0.540839000000
Н	1.272025000000	2.46442800000	0 1.577002000000
Н	3.426395000000	0.81019600000	0 -1.82503000000
Н	3.276348000000	3.76021200000	0 2.190968000000
Н	5.436109000000	2.13251300000	0 -1.169248000000
0	-0.565726000000	-2.81188600000	0 0.024025000000
Si	-3.264424000000	-1.82747200000	0 0.446488000000
С	-3.161938000000	-3.17912400000	0 1.728509000000
Н	-3.958637000000	-3.91044500000	0 1.552758000000
Н	-2.203340000000	-3.70007000000	0 1.678290000000
Н	-3.290536000000	-2.78131900000	0 2.740089000000
С	-3.218140000000	-2.44338600000	0 -1.318972000000
Н	-4.234439000000	-2.58353800000	0 -1.702378000000
Н	-2.715329000000	-1.72274600000	0 -1.974264000000
Н	-2.68873600000	-3.39679900000	0 -1.393249000000
С	-4.777698000000	-0.73842300000	0 0.749551000000
С	-4.94884000000	0.25654000000	0 -0.405397000000
Н	-5.828642000000	0.89013900000	0 -0.230670000000
Н	-4.078450000000	0.91493800000	0 -0.50010000000

Н	-5.092882000000	-0.252377000000	-1.365135000000
С	-6.018085000000	-1.641043000000	0.831204000000
Н	-6.149367000000	-2.243312000000	-0.075910000000
Н	-5.967917000000	-2.323839000000	1.686573000000
Н	-6.920754000000	-1.027373000000	0.949930000000
С	-4.628222000000	0.036560000000	2.065214000000
Н	-4.501828000000	-0.634237000000	2.922673000000
Н	-3.769650000000	0.715582000000	2.035761000000
Н	-5.526741000000	0.640525000000	2.249319000000
С	0.137659000000	-3.823412000000	-0.689275000000
Н	-0.329921000000	-4.765565000000	-0.400964000000
Н	0.041400000000	-3.672039000000	-1.768461000000
Н	5.327993000000	3.588323000000	0.827274000000
Н	1.193713000000	-3.826527000000	-0.404938000000
Н	-0.341776000000	1.316100000000	0.910008000000

1a' TS-Rot

Zero-point correction=	0.384213 (Hartree/Particle)
Thermal correction to Energy=	0.409082
Thermal correction to Enthalpy=	0.410026
Thermal correction to Gibbs Free En	ergy= 0.328648
Sum of electronic and zero-point En	ergies= -1131.600073
Sum of electronic and thermal Energy	gies= -1131.575204
Sum of electronic and thermal Entha	alpies= -1131.574260
Sum of electronic and thermal Free	Energies= -1131.655637

Frequency = -34.3262

С	4.533932000000	1.011820000000	-1.953724000000	
С	5.657970000000	1.332422000000	-1.227569000000	
С	3.394396000000	0.442478000000	-1.296684000000	
Н	6.525112000000	1.766231000000	-1.710582000000	
С	5.667526000000	1.088893000000	0.151579000000	
С	3.433558000000	0.201322000000	0.116743000000	
н	2.583745000000	-0.244720000000	0.623640000000	
С	4.564615000000	0.523551000000	0.821770000000	
н	4.618065000000	0.345192000000	1.889056000000	
н	4.485948000000	1.186302000000	-3.024386000000	
С	2.298576000000	0.159136000000	-2.082746000000	
С	1.028444000000	-0.449534000000	-1.594259000000	
С	0.225606000000	0.464833000000	-0.709364000000	
Ν	0.487666000000	1.714183000000	-0.808205000000	
0	-0.288934000000	2.450283000000	0.059579000000	
Br	-0.129004000000	-1.011658000000	-3.149739000000	

С	-0.262563000000	3.819830000000	-0.326622000000
Н	0.762813000000	4.200474000000	-0.312943000000
Н	-0.695053000000	3.948818000000	-1.323343000000
0	-0.671168000000	-0.129520000000	0.055333000000
Si	-2.270794000000	0.423980000000	0.457439000000
С	-3.181585000000	-1.221478000000	0.623458000000
С	-2.228912000000	1.308749000000	2.101937000000
Н	-1.475936000000	0.861013000000	2.758577000000
Н	-1.991543000000	2.368258000000	1.983890000000
Н	-3.199296000000	1.224523000000	2.602849000000
С	-2.910794000000	1.443159000000	-0.976966000000
Н	-2.963661000000	2.502385000000	-0.708894000000
Н	-2.250584000000	1.351938000000	-1.847461000000
Н	-3.909034000000	1.116258000000	-1.284420000000
С	-3.05090000000	-2.026405000000	-0.675294000000
Н	-2.006974000000	-2.280451000000	-0.885527000000
Н	-3.617251000000	-2.964184000000	-0.597333000000
Н	-3.440791000000	-1.474507000000	-1.539158000000
С	-4.666544000000	-0.951320000000	0.906496000000
Н	-5.203151000000	-1.902321000000	1.021701000000
Н	-4.811518000000	-0.379591000000	1.830121000000
Н	-5.145834000000	-0.401614000000	0.088643000000
С	-2.584106000000	-2.027595000000	1.785142000000
Н	-2.700361000000	-1.506433000000	2.742175000000
Н	-3.092857000000	-2.996840000000	1.873162000000
Н	-1.517061000000	-2.225448000000	1.633433000000
Н	2.402182000000	0.329763000000	-3.153229000000
Н	-0.866525000000	4.347243000000	0.412785000000
Н	6.555067000000	1.340054000000	0.724882000000
Н	1.237183000000	-1.382146000000	-1.060835000000

1a' TS-Cis

Zero-point correction=	0.384020 (Hartree/Particle)
Thermal correction to Energy=	0.409057
Thermal correction to Enthalpy=	0.410001
Thermal correction to Gibbs Free En	nergy= 0.326401
Sum of electronic and zero-point En	ergies= -1131.595511
Sum of electronic and thermal Energy	gies= -1131.570474
Sum of electronic and thermal Entha	alpies= -1131.569530
Sum of electronic and thermal Free	Energies= -1131.653130

Frequency = -211.8450

C -0.766525000000 0.753003000000 -1.097925000000

С	-2.052326000000	-0.017125000000	-1.222313000000
Ν	-0.444365000000	-1.411147000000	-0.59831600000
С	0.221639000000	-0.327317000000	-0.810115000000
Н	-0.548226000000	1.223751000000	-2.059508000000
Н	-2.210722000000	-0.366972000000	-2.24200800000
0	1.501606000000	-0.117562000000	-0.89740700000
Br	-0.657875000000	2.263915000000	0.213293000000
С	-3.138191000000	-0.153105000000	-0.341194000000
С	-3.057269000000	0.075130000000	1.058625000000
С	-4.364771000000	-0.581508000000	-0.913933000000
С	-4.180454000000	-0.090092000000	1.839804000000
С	-5.491320000000	-0.712060000000	-0.123287000000
С	-5.396086000000	-0.465287000000	1.247850000000
Н	-2.110123000000	0.330993000000	1.516946000000
Н	-4.408402000000	-0.780360000000	-1.98041000000
Н	-4.125868000000	0.065917000000	2.910986000000
Н	-6.435413000000	-1.015751000000	-0.560254000000
Н	-6.276517000000	-0.579409000000	1.872679000000
0	0.309864000000	-2.544870000000	-0.54780500000
Si	2.833099000000	-0.952524000000	-0.123289000000
С	3.424686000000	-2.302453000000	-1.261264000000
Н	3.738940000000	-1.901782000000	-2.229672000000
Н	4.284442000000	-2.810535000000	-0.81080400000
Н	2.640468000000	-3.044835000000	-1.428465000000
С	2.245775000000	-1.552690000000	1.546395000000
Н	3.030304000000	-1.412662000000	2.297527000000
Н	1.364873000000	-0.993127000000	1.882246000000
Н	1.987371000000	-2.614559000000	1.518631000000
С	4.078705000000	0.452270000000	0.028577000000
С	3.542734000000	1.508764000000	1.004145000000
Н	3.386741000000	1.095719000000	2.007167000000
Н	4.259508000000	2.335468000000	1.093983000000
Н	2.591282000000	1.928848000000	0.658778000000
С	5.40020000000	-0.118699000000	0.564182000000
Н	6.128479000000	0.691275000000	0.700372000000
Н	5.271996000000	-0.611008000000	1.535323000000
Н	5.839555000000	-0.844294000000	-0.129422000000
С	4.323063000000	1.101084000000	-1.340391000000
Н	4.718330000000	0.382730000000	-2.067274000000
Н	3.404721000000	1.532860000000	-1.752145000000
Н	5.058317000000	1.910663000000	-1.243497000000
С	-0.365487000000	-3.541256000000	0.224569000000
Н	-0.519673000000	-3.189440000000	1.248382000000
Н	-1.324231000000	-3.788265000000	-0.238942000000

	1	la' TS-Trans
Zero-point correction=	0.384227	(Hartree/Particle)
Thermal correction to Energy=	0.40	9231
Thermal correction to Enthalpy=	0.41	.0175
Thermal correction to Gibbs Free En	ergy=	0.327484
Sum of electronic and zero-point En	ergies=	-1131.600322
Sum of electronic and thermal Energy	gies=	-1131.575318
Sum of electronic and thermal Entha	alpies=	-1131.574374
Sum of electronic and thermal Free	Energies=	-1131.657065

Frequency = -202.2218

С	-0.533693000000	1.330441000000	-0.314670000000
С	0.826108000000	1.025259000000	-0.880170000000
Ν	-0.064984000000	-0.839599000000	-0.250545000000
С	-1.022670000000	-0.034749000000	0.043349000000
Н	0.850852000000	0.682791000000	-1.911342000000
0	-2.179985000000	-0.236901000000	0.598572000000
Br	-1.696200000000	2.175204000000	-1.716250000000
С	2.054900000000	1.370832000000	-0.290126000000
С	2.162845000000	1.898733000000	1.023301000000
С	3.224618000000	1.155390000000	-1.064853000000
С	3.408189000000	2.206085000000	1.530423000000
С	4.464901000000	1.472967000000	-0.546281000000
С	4.552070000000	1.995279000000	0.747623000000
Н	1.278168000000	2.057729000000	1.630709000000
Н	3.125878000000	0.746741000000	-2.066299000000
Н	3.504838000000	2.609692000000	2.531654000000
Н	5.362319000000	1.318149000000	-1.133878000000
0	-0.221276000000	-2.136998000000	0.139948000000
Si	-3.207697000000	-1.654909000000	0.545845000000
С	-2.783229000000	-2.738028000000	1.999695000000
Н	-3.425054000000	-3.625788000000	1.996345000000
Н	-1.743470000000	-3.070471000000	1.948333000000
Н	-2.936163000000	-2.214166000000	2.948032000000
С	-2.970976000000	-2.467997000000	-1.119825000000
Н	-3.930665000000	-2.832649000000	-1.501094000000
Н	-2.574735000000	-1.758052000000	-1.855174000000
Н	-2.285317000000	-3.316995000000	-1.056795000000
С	-4.908765000000	-0.863895000000	0.711239000000
С	-5.202793000000	-0.014426000000	-0.532463000000
Н	-6.192593000000	0.452069000000	-0.443337000000

Н	-4.466228000000	0.787736000000	-0.654401000000
Н	-5.201991000000	-0.617210000000	-1.447695000000
С	-5.957738000000	-1.979536000000	0.832600000000
Н	-5.944692000000	-2.653703000000	-0.031960000000
Н	-5.806772000000	-2.581811000000	1.735472000000
Н	-6.962528000000	-1.541443000000	0.891699000000
С	-4.965895000000	0.025088000000	1.960665000000
Н	-4.773571000000	-0.545787000000	2.875873000000
Н	-4.238105000000	0.841741000000	1.908717000000
Н	-5.963943000000	0.472781000000	2.054611000000
С	0.512118000000	-2.999092000000	-0.735311000000
Н	0.356338000000	-4.005390000000	-0.346927000000
Н	0.129047000000	-2.921584000000	-1.756425000000
Н	5.526597000000	2.243487000000	1.156833000000
Н	1.574773000000	-2.743660000000	-0.708647000000
н	-0.542842000000	2.021369000000	0.526390000000

1a' Int-Cis

Zero-point correction=	0.387358 (Hartree/Particle)
Thermal correction to Energy=	0.411966
Thermal correction to Enthalpy=	0.412910
Thermal correction to Gibbs Free En	ergy= 0.331670
Sum of electronic and zero-point En	ergies= -1131.632348
Sum of electronic and thermal Energy	gies= -1131.607740
Sum of electronic and thermal Entha	alpies= -1131.606795
Sum of electronic and thermal Free	Energies= -1131.688035

С	0.760346000000	1.024842000000	0.112468000000
С	1.370963000000	-0.151907000000	0.954566000000
Ν	0.042783000000	-0.780605000000	0.733018000000
С	-0.473424000000	0.171378000000	0.000913000000
0	-1.568710000000	0.338902000000	-0.60400400000
Br	1.582020000000	1.425064000000	-1.636529000000
С	2.532499000000	-0.941694000000	0.435831000000
С	3.797774000000	-0.689369000000	0.968218000000
С	2.372628000000	-1.900089000000	-0.567232000000
С	4.904718000000	-1.382691000000	0.487176000000
С	3.480658000000	-2.599124000000	-1.037361000000
С	4.746381000000	-2.338815000000	-0.514492000000
Н	3.911498000000	0.049707000000	1.756503000000
Н	1.388403000000	-2.112280000000	-0.977124000000
Н	5.887843000000	-1.182622000000	0.900656000000
Н	3.354363000000	-3.348314000000	-1.81210200000
0	-0.445595000000	-1.984802000000	1.080731000000

Si	-2.955229000000	-0.711038000000	-1.032204000000
С	-3.538276000000	0.138905000000	-2.575207000000
Н	-2.811867000000	0.008995000000	-3.383248000000
Н	-4.490987000000	-0.288244000000	-2.905451000000
Н	-3.683358000000	1.209981000000	-2.407910000000
С	-2.284409000000	-2.415987000000	-1.349022000000
Н	-2.174403000000	-3.006915000000	-0.437592000000
Н	-2.980575000000	-2.935472000000	-2.017265000000
Н	-1.315424000000	-2.369884000000	-1.857917000000
С	-4.138227000000	-0.572192000000	0.418999000000
С	-4.711095000000	0.849637000000	0.494192000000
Н	-5.273239000000	1.108145000000	-0.409333000000
Н	-5.397282000000	0.925916000000	1.347011000000
Н	-3.924321000000	1.599955000000	0.632760000000
С	-5.276889000000	-1.576658000000	0.173902000000
Н	-4.909555000000	-2.608483000000	0.141130000000
Н	-6.007586000000	-1.509459000000	0.989659000000
Н	-5.809678000000	-1.372533000000	-0.762061000000
С	-3.430543000000	-0.914887000000	1.735902000000
Н	-2.614746000000	-0.214433000000	1.955324000000
Н	-4.146014000000	-0.849897000000	2.565339000000
Н	-3.023869000000	-1.932017000000	1.727792000000
С	-0.305353000000	-2.196364000000	2.505422000000
Н	-0.791542000000	-3.153794000000	2.684923000000
Н	0.753814000000	-2.255641000000	2.767924000000
Н	1.501208000000	0.137882000000	1.999363000000
Н	-0.804976000000	-1.396528000000	3.055515000000
Н	5.608120000000	-2.885714000000	-0.883657000000
Н	0.626043000000	1.961442000000	0.650240000000

1a' Int-Trans

Zero-point correction=	0.387039 (Hartree/Particle)
Thermal correction to Energy=	0.411987	
Thermal correction to Enthalpy=	0.412932	
Thermal correction to Gibbs Free Er	nergy= 0.330380	
Sum of electronic and zero-point En	nergies= -1131.631974	
Sum of electronic and thermal Energy	rgies= -1131.607025	
Sum of electronic and thermal Enth	alpies= -1131.606081	
Sum of electronic and thermal Free	Energies= -1131.688632	

С	0.602329000000	-0.740447000000	0.715812000000
С	1.720682000000	0.295124000000	1.070731000000
Ν	0.576537000000	1.241091000000	1.189001000000
С	-0.373154000000	0.395635000000	0.899094000000

0	-1.622955000000	0.581083000000	0.845750000000
Br	0.313225000000	-2.207444000000	2.015409000000
С	2.715004000000	0.661899000000	0.011495000000
С	2.290131000000	1.088919000000	-1.250560000000
С	4.076998000000	0.576714000000	0.299908000000
С	3.230162000000	1.420100000000	-2.220119000000
С	5.015662000000	0.905710000000	-0.675534000000
С	4.592783000000	1.326997000000	-1.933812000000
Н	1.228650000000	1.168049000000	-1.477302000000
Н	4.398149000000	0.252833000000	1.285922000000
Н	2.900536000000	1.753282000000	-3.198698000000
Н	6.074720000000	0.837136000000	-0.449644000000
0	0.523149000000	2.576222000000	1.313094000000
Si	-2.909661000000	-0.343187000000	0.019022000000
С	-2.077572000000	-1.662878000000	-0.99396100000
Н	-1.337499000000	-1.250120000000	-1.686833000000
Н	-1.603474000000	-2.432297000000	-0.377591000000
Н	-2.847921000000	-2.163036000000	-1.591917000000
С	-3.949424000000	-0.984388000000	1.414684000000
Н	-4.879917000000	-1.408123000000	1.022185000000
Н	-3.427502000000	-1.771850000000	1.96687600000
Н	-4.207365000000	-0.182710000000	2.112624000000
С	-3.706742000000	1.004437000000	-1.016206000000
С	-4.740279000000	0.348001000000	-1.945639000000
Н	-5.506824000000	-0.200911000000	-1.386192000000
Н	-5.251687000000	1.122740000000	-2.53050700000
Н	-4.270227000000	-0.344484000000	-2.652241000000
С	-4.407457000000	2.019006000000	-0.102062000000
Н	-5.215506000000	1.554481000000	0.473122000000
Н	-3.709158000000	2.484290000000	0.602767000000
Н	-4.848617000000	2.819173000000	-0.709626000000
С	-2.638474000000	1.717156000000	-1.857878000000
Н	-1.901537000000	2.230959000000	-1.230064000000
Н	-2.104387000000	1.022130000000	-2.51590100000
Н	-3.115217000000	2.473382000000	-2.49403100000
С	1.214179000000	2.998726000000	2.511532000000
Н	2.274453000000	2.742426000000	2.441131000000
Н	1.088082000000	4.079698000000	2.529363000000
Н	2.187277000000	0.115941000000	2.041195000000
Н	0.754147000000	2.538150000000	3.387932000000
Н	5.323711000000	1.587631000000	-2.692561000000
Н	0.663984000000	-1.164852000000	-0.285568000000

			1y Int-Syn	
Zer	o-point correction=	0.543	.543235 (Hartree/Particle)	
Thermal correction to Energy=		Energy=	0.580046	
Th	ermal correction to	Enthalpy=	0.580991	
Th	ermal correction to	Gibbs Free Energy=	0.470530	
Su	m of electronic and	zero-point Energies	-1704.696240	
Su	m of electronic and	thermal Energies=	-1704.659429	
Su	m of electronic and	thermal Enthalpies=	-1704.658485	
Su	m of electronic and	thermal Free Energi	ies= -1704.768945	
c	2 967/3100000	-2 323894000000		
c c	4 209765000000	-2 082233000000	-0 139094000000	
c c	1 792524000000	-1 650214000000	-0 120268000000	
н	5 07681000000	-2 586145000000	-0 545937000000	
c	4 341006000000	-1 156110000000	0.936503000000	
c c	1 969641000000	-0 712211000000	0.97429000000	
н	1 115769000000	-0 202327000000	1 399219000000	
c	3 199412000000	-0.496538000000	1 495453000000	
н	3,365009000000	0.190428000000	2,317036000000	
н	2.836001000000	-3.031820000000	-1.446840000000	
c	0.609261000000	-1.957163000000	-0.720176000000	
C	-0.742067000000	-1.381965000000	-0.398542000000	
C	-0.769125000000	0.128677000000	-0.273676000000	
N	0.118241000000	0.777021000000	-0.919854000000	
0	0.002204000000	2.133768000000	-0.720293000000	
Br	-1.987718000000	-1.827626000000	-1.938777000000	
с.	1.039212000000	2.799069000000	-1.45280100000	
H	0.960896000000	2.527755000000	-2.510266000000	
Н	0.803490000000	3.859566000000	-1.334665000000	
0	-1.729063000000	0.590925000000	0.511096000000	
Si	-2.757644000000	1.977582000000	0.339690000000	
С	-4.294994000000	1.350098000000	1.237225000000	
С	-2.002510000000	3.434632000000	1.229363000000	
Н	-1.504693000000	3.108644000000	2.148285000000	
Н	-1.265662000000	3.945207000000	0.605038000000	
Н	-2.780174000000	4.154226000000	1.506566000000	
С	-3.058604000000	2.251870000000	-1.481720000000	
н	-2.201262000000	2.737687000000	-1.954881000000	
н	-3.245884000000	1.303618000000	-1.996287000000	
Н	-3.938261000000	2.888365000000	-1.627224000000	
С	-5.364652000000	2.449943000000	1.278280000000	
н	-6.264254000000	2.078924000000	1.786956000000	
Н	-5.020719000000	3.335525000000	1.823929000000	
Н	-5.663961000000	2.766137000000	0.272290000000	

С	-3.911858000000	0.954771000000	2.670310000000
Н	-3.127091000000	0.189330000000	2.679386000000
Н	-3.551323000000	1.815428000000	3.245484000000
Н	-4.784918000000	0.546470000000	3.196874000000
С	-4.852981000000	0.123606000000	0.502953000000
Н	-5.724407000000	-0.273299000000	1.041181000000
Н	-5.178349000000	0.374219000000	-0.513491000000
Н	-4.108584000000	-0.677214000000	0.430684000000
0	5.477747000000	-0.845952000000	1.483840000000
С	6.709572000000	-1.376026000000	0.955298000000
Н	6.810119000000	-1.099547000000	-0.096403000000
Н	7.495471000000	-0.913393000000	1.547425000000
Н	6.729800000000	-2.460571000000	1.077127000000
Н	0.629351000000	-2.719353000000	-1.495191000000
С	-1.264498000000	-1.970120000000	0.940987000000
0	-0.574191000000	-1.899139000000	1.926710000000
0	-2.468204000000	-2.485955000000	0.876942000000
С	-3.004808000000	-2.962478000000	2.126607000000
Н	-4.005631000000	-3.318515000000	1.892710000000
Н	-2.384016000000	-3.774146000000	2.509076000000
Н	-3.043711000000	-2.146908000000	2.850304000000
С	2.411855000000	2.484122000000	-0.914968000000
С	3.279507000000	1.647700000000	-1.620089000000
С	2.827902000000	3.030221000000	0.303423000000
С	4.560374000000	1.386252000000	-1.133356000000
С	4.104336000000	2.768534000000	0.793831000000
С	4.976902000000	1.954263000000	0.069605000000
Н	2.951965000000	1.211772000000	-2.560555000000
Н	2.150206000000	3.675037000000	0.858060000000
Н	5.233569000000	0.746288000000	-1.696789000000
Н	4.424327000000	3.206645000000	1.734249000000
Н	5.977362000000	1.760638000000	0.445546000000

1y Int-Anti

Zero-point correction=	0.543476 (Hartree/Particle)
Thermal correction to Energy=	0.580226
Thermal correction to Enthalpy=	0.581170
Thermal correction to Gibbs Free En	ergy= 0.472730
Sum of electronic and zero-point Ene	ergies= -1704.698285
Sum of electronic and thermal Energy	gies= -1704.661535
Sum of electronic and thermal Entha	alpies= -1704.660591
Sum of electronic and thermal Free I	Energies= -1704.769031

C 3.06824000000 -2.00369600000 0.93940800000

С	4.270908000000	-1.812965000000	0.333118000000
С	1.833862000000	-1.543561000000	0.344754000000
Н	5.187863000000	-2.144691000000	0.802290000000
С	4.292834000000	-1.178458000000	-0.941939000000
С	1.896694000000	-0.903440000000	-0.954383000000
Н	0.989305000000	-0.569660000000	-1.444143000000
С	3.085035000000	-0.741216000000	-1.579720000000
Н	3.166908000000	-0.277361000000	-2.555707000000
Н	3.018147000000	-2.497221000000	1.905236000000
С	0.692383000000	-1.733822000000	1.064814000000
С	-0.689315000000	-1.275038000000	0.708694000000
С	-0.796019000000	0.182726000000	0.303537000000
Ν	0.145279000000	0.932045000000	0.733056000000
0	-0.048923000000	2.243984000000	0.361143000000
Br	-1.315240000000	-2.459066000000	-0.834835000000
С	1.024991000000	3.035792000000	0.879375000000
Н	0.735023000000	4.061433000000	0.636816000000
Н	1.065051000000	2.921414000000	1.967277000000
0	-1.848499000000	0.519858000000	-0.410999000000
Si	-2.850716000000	1.931631000000	-0.343598000000
С	-4.50873000000	1.194702000000	-0.869074000000
С	-2.888358000000	2.581706000000	1.408183000000
Н	-2.653918000000	1.775718000000	2.110600000000
Н	-2.160182000000	3.384990000000	1.547030000000
Н	-3.882305000000	2.967357000000	1.658020000000
С	-2.246335000000	3.161461000000	-1.614571000000
Н	-1.412960000000	3.754294000000	-1.229913000000
Н	-1.91037000000	2.646280000000	-2.520256000000
Н	-3.053617000000	3.844892000000	-1.899485000000
С	-4.386226000000	0.620626000000	-2.287314000000
Н	-3.609695000000	-0.150903000000	-2.34180200000
Н	-5.335825000000	0.160869000000	-2.592581000000
Н	-4.145934000000	1.398789000000	-3.020753000000
С	-5.586951000000	2.287407000000	-0.854675000000
Н	-5.346402000000	3.111083000000	-1.536386000000
Н	-6.549829000000	1.867468000000	-1.174652000000
Н	-5.729806000000	2.708141000000	0.147022000000
С	-4.907686000000	0.073085000000	0.098222000000
Н	-4.990468000000	0.434834000000	1.129663000000
Н	-5.882501000000	-0.343395000000	-0.189898000000
Н	-4.174869000000	-0.740676000000	0.089119000000
0	5.379709000000	-0.962620000000	-1.620284000000
С	6.665772000000	-1.294335000000	-1.060411000000
Н	6.813393000000	-0.748771000000	-0.125740000000

Н	6.734517000000	-2.371479000000	-0.897104000000
Н	7.391036000000	-0.975877000000	-1.805134000000
Н	0.772083000000	-2.280881000000	2.001648000000
С	-1.696365000000	-1.548034000000	1.837196000000
0	-2.486056000000	-0.720984000000	2.218099000000
0	-1.568629000000	-2.770421000000	2.322439000000
С	-2.479841000000	-3.114575000000	3.383119000000
Н	-3.507230000000	-3.054145000000	3.020471000000
Н	-2.229766000000	-4.135689000000	3.661640000000
Н	-2.341499000000	-2.438096000000	4.227752000000
С	2.347858000000	2.680815000000	0.249739000000
С	3.342358000000	2.04003000000	0.990361000000
С	2.586596000000	2.990183000000	-1.093261000000
С	4.575558000000	1.743966000000	0.409251000000
С	3.813508000000	2.689912000000	-1.678069000000
С	4.814586000000	2.075551000000	-0.923402000000
Н	3.152288000000	1.785438000000	2.030077000000
Н	1.808933000000	3.480619000000	-1.674084000000
Н	5.349410000000	1.259081000000	0.998079000000
Н	3.995180000000	2.943167000000	-2.718032000000
Н	5.776466000000	1.852418000000	-1.375773000000

1y TS-Rot

Zero-point correction=	0.543543 (Hartree/Particle)
Thermal correction to Energy=	0.579371
Thermal correction to Enthalpy=	0.580315
Thermal correction to Gibbs Free En	ergy= 0.474301
Sum of electronic and zero-point En	ergies= -1704.685564
Sum of electronic and thermal Energy	gies= -1704.649736
Sum of electronic and thermal Entha	alpies= -1704.648792
Sum of electronic and thermal Free	Energies= -1704.754806

Frequency = -15.4802

С	1.870288000000	-3.736398000000	-1.705677000000
С	3.171450000000	-3.730620000000	-2.099763000000
С	1.222683000000	-2.554687000000	-1.169408000000
Н	3.623516000000	-4.616814000000	-2.525660000000
С	3.924839000000	-2.533341000000	-1.933352000000
С	2.042240000000	-1.379960000000	-0.957946000000
Н	1.631672000000	-0.516506000000	-0.458622000000
С	3.345872000000	-1.375548000000	-1.325724000000
Н	3.980849000000	-0.511423000000	-1.158639000000
Н	1.277350000000	-4.638173000000	-1.825943000000

С	-0.105984000000	-2.698673000000	-0.889471000000
С	-1.183299000000	-1.759339000000	-0.436027000000
С	-0.967077000000	-0.263354000000	-0.323234000000
Ν	-0.321613000000	0.318701000000	-1.257715000000
0	-0.332393000000	1.688729000000	-1.085876000000
Br	-2.660756000000	-2.030216000000	-1.812025000000
С	0.548874000000	2.305342000000	-2.018145000000
Н	0.374336000000	1.894609000000	-3.017658000000
Н	0.246582000000	3.357510000000	-2.016964000000
0	-1.587210000000	0.281458000000	0.709962000000
Si	-2.334473000000	1.823562000000	0.990298000000
С	-3.492933000000	1.345318000000	2.402843000000
С	-1.061770000000	3.064923000000	1.558316000000
Н	-0.366099000000	2.612973000000	2.272864000000
Н	-0.485985000000	3.463482000000	0.719675000000
Н	-1.558028000000	3.901472000000	2.062180000000
С	-3.283524000000	2.321122000000	-0.539194000000
Н	-2.656292000000	2.888333000000	-1.230908000000
Н	-3.661526000000	1.438009000000	-1.065649000000
Н	-4.146951000000	2.937929000000	-0.267142000000
С	-4.203760000000	2.593105000000	2.945217000000
Н	-4.909328000000	2.307782000000	3.736742000000
Н	-3.497228000000	3.309979000000	3.377556000000
Н	-4.777338000000	3.109471000000	2.166559000000
С	-2.680065000000	0.694745000000	3.531017000000
Н	-2.125026000000	-0.182012000000	3.178590000000
Н	-1.957674000000	1.397323000000	3.962827000000
Н	-3.347937000000	0.369178000000	4.340050000000
С	-4.541234000000	0.352908000000	1.880686000000
Н	-5.174640000000	0.000760000000	2.706247000000
Н	-5.197597000000	0.817494000000	1.135790000000
Н	-4.075840000000	-0.524003000000	1.417222000000
0	5.170824000000	-2.410620000000	-2.286095000000
С	5.867436000000	-3.515198000000	-2.897547000000
Н	5.369164000000	-3.799765000000	-3.826064000000
Н	6.867645000000	-3.141189000000	-3.102342000000
Н	5.910316000000	-4.356560000000	-2.203480000000
Н	-0.466639000000	-3.727187000000	-0.890051000000
С	-1.598745000000	-2.272703000000	0.965533000000
0	-0.751024000000	-2.345773000000	1.82030000000
0	-2.863173000000	-2.600404000000	1.093399000000
С	-3.252425000000	-3.061271000000	2.402341000000
Н	-4.315052000000	-3.281331000000	2.326267000000
Н	-2.688126000000	-3.958913000000	2.659910000000

Н	-3.072122000000	-2.280145000000	3.142717000000
С	1.999789000000	2.173394000000	-1.620411000000
С	2.996332000000	2.245179000000	-2.595601000000
С	2.363430000000	2.035501000000	-0.278371000000
С	4.341450000000	2.203895000000	-2.233718000000
С	3.708790000000	1.982607000000	0.083328000000
С	4.701311000000	2.076430000000	-0.892436000000
Н	2.716381000000	2.339590000000	-3.641828000000
Н	1.588319000000	1.967063000000	0.481064000000
Н	5.108394000000	2.265960000000	-2.999662000000
Н	3.981947000000	1.874197000000	1.128542000000
Н	5.748803000000	2.042089000000	-0.609698000000

1y TS-Cis

0.542897 (Hartree/Particle)
0.579045
0.579989
ergy= 0.472917
ergies= -1704.684359
gies= -1704.648211
alpies= -1704.647266
Energies= -1704.754338

Frequency = -281.9809

С	0.569175000000	1.444180000000	-0.490421000000
С	-0.767932000000	1.227893000000	-1.196454000000
Ν	0.134176000000	-0.605018000000	-1.051065000000
С	0.985805000000	0.010062000000	-0.311644000000
Н	-0.723997000000	1.440624000000	-2.262246000000
0	1.987769000000	-0.398674000000	0.394647000000
Br	0.530739000000	2.485410000000	1.219505000000
С	-2.052224000000	1.144507000000	-0.634389000000
С	-2.314631000000	0.791477000000	0.721229000000
С	-3.149955000000	1.331484000000	-1.511674000000
С	-3.600761000000	0.675845000000	1.166272000000
С	-4.451037000000	1.226380000000	-1.071762000000
С	-4.683426000000	0.887031000000	0.275061000000
Н	-1.500173000000	0.569052000000	1.400962000000
Н	-2.954528000000	1.575877000000	-2.551713000000
Н	-3.825415000000	0.387710000000	2.186801000000
Н	-5.271036000000	1.385050000000	-1.760083000000
0	0.292119000000	-1.940478000000	-1.265284000000
Si	3.174723000000	-1.640963000000	0.045494000000

С	3.496087000000	-1.528695000000	-1.786709000000
Н	2.612447000000	-1.826344000000	-2.359179000000
Н	3.772013000000	-0.509176000000	-2.075197000000
Н	4.318672000000	-2.195057000000	-2.067428000000
С	2.492074000000	-3.280379000000	0.611604000000
Н	3.299054000000	-4.019435000000	0.664242000000
Н	2.052329000000	-3.195010000000	1.610295000000
Н	1.729308000000	-3.656512000000	-0.074298000000
С	4.619710000000	-1.072386000000	1.107786000000
С	4.191868000000	-1.032857000000	2.581615000000
Н	5.030820000000	-0.695597000000	3.204158000000
Н	3.358771000000	-0.339451000000	2.742374000000
Н	3.888369000000	-2.021473000000	2.943714000000
С	5.780387000000	-2.064415000000	0.937164000000
Н	6.117936000000	-2.123039000000	-0.104083000000
Н	6.636669000000	-1.741097000000	1.543060000000
Н	5.508352000000	-3.073993000000	1.264454000000
С	5.075672000000	0.325268000000	0.668687000000
Н	4.268393000000	1.060181000000	0.758419000000
Н	5.912025000000	0.658814000000	1.296890000000
Н	5.422565000000	0.324467000000	-0.371220000000
С	1.521238000000	2.227678000000	-1.404115000000
0	1.129202000000	3.017716000000	-2.224212000000
0	2.779783000000	1.915131000000	-1.158925000000
С	3.759890000000	2.612402000000	-1.951821000000
Н	3.614185000000	2.380471000000	-3.008026000000
Н	3.670535000000	3.687443000000	-1.787999000000
Н	4.725180000000	2.249898000000	-1.605443000000
0	-5.887168000000	0.720216000000	0.800784000000
С	-7.034452000000	0.877357000000	-0.038911000000
Н	-7.086546000000	1.896845000000	-0.429956000000
Н	-7.008083000000	0.158364000000	-0.862173000000
Н	-7.894129000000	0.680365000000	0.598695000000
С	-0.950758000000	-2.508949000000	-1.706149000000
Н	-1.290714000000	-1.978763000000	-2.601535000000
Н	-0.677853000000	-3.530910000000	-1.981828000000
С	-2.002290000000	-2.494967000000	-0.626554000000
С	-3.347166000000	-2.349952000000	-0.97083000000
С	-1.649764000000	-2.683716000000	0.713174000000
С	-4.335248000000	-2.425049000000	0.009634000000
С	-2.637231000000	-2.750672000000	1.693221000000
С	-3.981826000000	-2.630021000000	1.342353000000
Н	-3.619930000000	-2.184552000000	-2.010243000000
Н	-0.601073000000	-2.784944000000	0.982708000000

Н	-5.379985000000	-2.313604000000	-0.266136000000
Н	-2.357412000000	-2.899974000000	2.731515000000
Н	-4.750927000000	-2.684132000000	2.106825000000

1y TS-Trans

0.542720 (Hartree/Particle)
0.579123
0.580067
nergy= 0.471041
ergies= -1704.684588
gies= -1704.648185
alpies= -1704.647241
Energies= -1704.756267

Frequency = -242.5638

С	-0.614811000000	1.312169000000	-0.263051000000
С	0.752615000000	0.937738000000	-0.831007000000
Ν	-0.122482000000	-0.814191000000	-0.226195000000
С	-1.097809000000	-0.054578000000	0.124041000000
Н	0.759471000000	0.724275000000	-1.896553000000
0	-2.252920000000	-0.311079000000	0.646832000000
Br	-1.799878000000	2.003790000000	-1.746859000000
С	2.001717000000	1.148030000000	-0.231334000000
С	2.199506000000	1.373291000000	1.162925000000
С	3.140879000000	1.029508000000	-1.070020000000
С	3.461854000000	1.503071000000	1.667380000000
С	4.415873000000	1.174767000000	-0.575769000000
С	4.584143000000	1.402745000000	0.804754000000
Н	1.357539000000	1.390546000000	1.848083000000
Н	2.994692000000	0.833051000000	-2.128460000000
Н	3.638917000000	1.655289000000	2.726078000000
Н	5.268275000000	1.090237000000	-1.237478000000
0	-0.228433000000	-2.150616000000	0.024125000000
Si	-3.262830000000	-1.738722000000	0.518781000000
С	-2.780381000000	-2.913264000000	1.879822000000
Н	-2.942516000000	-2.469739000000	2.866781000000
Н	-3.388062000000	-3.822205000000	1.812733000000
Н	-1.729449000000	-3.201552000000	1.795407000000
С	-3.046306000000	-2.426080000000	-1.204013000000
Н	-3.984860000000	-2.875624000000	-1.546096000000
Н	-2.781368000000	-1.638334000000	-1.918260000000
Н	-2.269090000000	-3.193865000000	-1.234520000000
С	-4.963794000000	-0.978623000000	0.783554000000

С	-5.319661000000	-0.085884000000	-0.412803000000
Н	-6.306953000000	0.369284000000	-0.260608000000
Н	-4.594662000000	0.726462000000	-0.537729000000
Н	-5.357234000000	-0.654130000000	-1.348986000000
С	-5.993016000000	-2.112345000000	0.905672000000
Н	-6.006303000000	-2.753873000000	0.016511000000
Н	-5.797089000000	-2.745144000000	1.778488000000
Н	-6.999905000000	-1.690926000000	1.021487000000
С	-4.975108000000	-0.137451000000	2.067363000000
Н	-4.734894000000	-0.738922000000	2.951248000000
Н	-4.259219000000	0.689731000000	2.012852000000
Н	-5.973526000000	0.292099000000	2.221755000000
С	-0.617316000000	2.431840000000	0.780900000000
0	-0.017011000000	3.462579000000	0.623082000000
0	-1.362676000000	2.112086000000	1.822436000000
С	-1.456351000000	3.123534000000	2.845082000000
Н	-1.886973000000	4.033601000000	2.424828000000
Н	-2.107639000000	2.704198000000	3.608419000000
Н	-0.465556000000	3.332203000000	3.252178000000
0	5.762006000000	1.517156000000	1.394881000000
С	6.948104000000	1.412962000000	0.600022000000
Н	7.777147000000	1.523558000000	1.296175000000
Н	6.997196000000	0.435867000000	0.112631000000
Н	6.978857000000	2.210415000000	-0.147124000000
С	0.702585000000	-2.872426000000	-0.792950000000
Н	0.465389000000	-3.919179000000	-0.582983000000
Н	0.493565000000	-2.669201000000	-1.848360000000
С	2.137912000000	-2.559455000000	-0.447567000000
С	3.131089000000	-2.746334000000	-1.411785000000
С	2.496109000000	-2.138809000000	0.835470000000
С	4.471121000000	-2.540968000000	-1.090397000000
С	3.835991000000	-1.926613000000	1.153570000000
С	4.826749000000	-2.134254000000	0.194934000000
Н	2.852460000000	-3.060090000000	-2.414634000000
Н	1.725253000000	-1.980357000000	1.584834000000
Н	5.236184000000	-2.692236000000	-1.845623000000
Н	4.106982000000	-1.597425000000	2.152511000000
Н	5.870628000000	-1.973145000000	0.447517000000

1y Int-Cis

Zero-point correction=	0.544849 (Hartree/Particle)
Thermal correction to Energy=	0.581008
Thermal correction to Enthalpy=	0.581952
Thermal correction to Gibbs Free En	ergy= 0.475462

Sum of electronic and zero-point Energies=	-1704.705682
Sum of electronic and thermal Energies=	-1704.669523
Sum of electronic and thermal Enthalpies=	-1704.668579
Sum of electronic and thermal Free Energies=	-1704.775069

С	-0.442496000000	1.094004000000	-0.978419000000
С	0.792989000000	0.195817000000	-0.539052000000
Ν	-0.245092000000	-0.536295000000	0.263502000000
С	-1.251485000000	0.247468000000	-0.026385000000
0	-2.441662000000	0.320225000000	0.378584000000
Br	-1.040708000000	0.980254000000	-2.846262000000
С	1.584759000000	-0.596578000000	-1.516729000000
С	2.941684000000	-0.296794000000	-1.676358000000
С	1.033110000000	-1.658013000000	-2.233285000000
С	3.732358000000	-1.047882000000	-2.529244000000
С	1.815911000000	-2.428279000000	-3.084810000000
С	3.176846000000	-2.129199000000	-3.226743000000
Н	3.382352000000	0.521953000000	-1.114221000000
Н	-0.014167000000	-1.922365000000	-2.105413000000
Н	4.788522000000	-0.833689000000	-2.652509000000
Н	1.367758000000	-3.262537000000	-3.610196000000
0	-0.145033000000	-1.414506000000	1.28174600000
Si	-3.103634000000	0.590793000000	2.031423000000
С	-1.651610000000	0.550266000000	3.190571000000
Н	-0.810915000000	1.126021000000	2.789738000000
Н	-1.953904000000	1.024710000000	4.131111000000
Н	-1.315160000000	-0.465739000000	3.409798000000
С	-3.889099000000	2.263822000000	1.866248000000
Н	-4.484371000000	2.489056000000	2.757713000000
Н	-3.124178000000	3.038100000000	1.759762000000
Н	-4.549705000000	2.303540000000	0.995238000000
С	-4.319721000000	-0.819552000000	2.244000000000
С	-5.513176000000	-0.639613000000	1.296338000000
Н	-5.200668000000	-0.615260000000	0.246103000000
Н	-6.210036000000	-1.478728000000	1.416026000000
Н	-6.063411000000	0.282842000000	1.509880000000
С	-3.630237000000	-2.160267000000	1.962957000000
Н	-4.331541000000	-2.983725000000	2.147926000000
Н	-3.302404000000	-2.234140000000	0.920068000000
Н	-2.760693000000	-2.315224000000	2.611954000000
С	-4.806524000000	-0.786890000000	3.702478000000
Н	-5.292712000000	0.163439000000	3.951688000000
Н	-5.542493000000	-1.584839000000	3.862088000000
н	-3.984640000000	-0.947174000000	4.409285000000

С	-0.337223000000	-2.801838000000	0.884819000000
Н	-0.678926000000	-3.264091000000	1.814740000000
Н	-1.147254000000	-2.851565000000	0.151358000000
0	4.028052000000	-2.833893000000	-4.00041000000
С	3.516641000000	-3.977232000000	-4.671429000000
Н	3.115848000000	-4.705505000000	-3.957714000000
Н	2.736575000000	-3.700248000000	-5.388227000000
Н	4.359705000000	-4.416061000000	-5.204220000000
С	0.916696000000	-3.461729000000	0.375722000000
С	2.185774000000	-2.950513000000	0.645712000000
С	0.787665000000	-4.633604000000	-0.372917000000
С	3.316776000000	-3.591975000000	0.143736000000
С	1.919256000000	-5.285907000000	-0.855432000000
С	3.186968000000	-4.760181000000	-0.606402000000
Н	2.290333000000	-2.037800000000	1.225679000000
Н	-0.202640000000	-5.028652000000	-0.585554000000
Н	4.300869000000	-3.176749000000	0.338685000000
Н	1.810949000000	-6.195179000000	-1.438774000000
Н	4.069609000000	-5.257073000000	-0.997344000000
Н	1.440254000000	0.759170000000	0.138703000000
С	-0.356485000000	2.519187000000	-0.446994000000
0	-0.661218000000	2.749530000000	0.702130000000
0	0.107647000000	3.379877000000	-1.317903000000
С	0.258804000000	4.731826000000	-0.835211000000
Н	-0.710425000000	5.119339000000	-0.518627000000
Н	0.962009000000	4.749185000000	-0.001491000000
Н	0.644747000000	5.297679000000	-1.679560000000

1y Int-Trans

Zer	ro-point correction=		0.5452	69 (Hartree/Pa	article)
Th	ermal correction to	Energy=	0.5	581390	
Th	ermal correction to	Enthalpy=	0.	582334	
Th	ermal correction to	Gibbs Free En	ergy=	0.475293	
Su	m of electronic and	zero-point Ene	ergies=	-1704.710	277
Su	m of electronic and	thermal Energ	;ies=	-1704.6741	156
Su	m of electronic and	thermal Entha	Ipies=	-1704.673	212
Su	m of electronic and	thermal Free I	Energies	-1704.78	80253
С	-0.153826000000	1.361531000	0000 -	0.7363970000	00
С	0.961311000000	0.422602000	- 0000	0.1235150000	00
Ν	-0.178895000000	-0.10609100	0000	0.6875150000	000
С	-1.111065000000	0.665272000	0000	0.1944780000	00
0	-2.344040000000	0.81025100	0000	0.4080400000	00
Br	-0.584600000000	1.06495400	0000	-2.6407690000	000

С	2.067822000000	1.045271000000	0.660477000000
С	1.838996000000	1.656445000000	1.901755000000
С	3.356966000000	1.023172000000	0.135087000000
С	2.888246000000	2.230441000000	2.596760000000
С	4.419251000000	1.607023000000	0.820582000000
С	4.185043000000	2.211554000000	2.059723000000
Н	0.845025000000	1.666209000000	2.342921000000
Н	3.539417000000	0.537927000000	-0.820005000000
Н	2.732314000000	2.694871000000	3.564560000000
Н	5.413462000000	1.572529000000	0.392311000000
0	-0.251362000000	-0.944113000000	1.737674000000
Si	-3.311955000000	0.594143000000	1.909099000000
С	-2.170923000000	1.183589000000	3.253505000000
Н	-1.782032000000	2.177232000000	3.007660000000
Н	-2.733415000000	1.268435000000	4.190102000000
Н	-1.333524000000	0.502247000000	3.426993000000
С	-4.68669600000	1.783210000000	1.539212000000
Н	-5.410946000000	1.801967000000	2.359542000000
Н	-4.284534000000	2.793295000000	1.414324000000
Н	-5.216731000000	1.505583000000	0.623037000000
С	-3.835220000000	-1.223800000000	1.991724000000
С	-3.460666000000	-1.952671000000	0.692865000000
Н	-2.376428000000	-1.98178000000	0.535390000000
Н	-3.812509000000	-2.990544000000	0.742617000000
Η	-3.917979000000	-1.486589000000	-0.186827000000
С	-3.166853000000	-1.917274000000	3.188306000000
Η	-3.492262000000	-2.96410400000	3.232886000000
Н	-2.075493000000	-1.907756000000	3.111937000000
Н	-3.441844000000	-1.442545000000	4.136599000000
С	-5.361506000000	-1.283546000000	2.176303000000
Н	-5.894432000000	-0.836699000000	1.330876000000
Н	-5.675831000000	-2.331701000000	2.254582000000
Н	-5.684069000000	-0.772761000000	3.090488000000
С	0.331444000000	-2.252394000000	1.433223000000
Η	-0.067879000000	-2.871777000000	2.239568000000
Н	-0.063822000000	-2.598428000000	0.474625000000
0	5.140311000000	2.792983000000	2.814028000000
С	6.471956000000	2.777340000000	2.319160000000
Н	6.83204000000	1.751177000000	2.188730000000
Н	6.546797000000	3.314580000000	1.367738000000
Н	7.078280000000	3.282729000000	3.070205000000
С	1.833146000000	-2.193267000000	1.449618000000
С	2.494308000000	-1.686695000000	2.573617000000
С	2.571188000000	-2.624483000000	0.348000000000

С	3.882384000000	-1.605757000000	2.589291000000
С	3.964568000000	-2.554880000000	0.368398000000
С	4.618938000000	-2.042734000000	1.485932000000
Н	1.915773000000	-1.343869000000	3.427777000000
Н	2.053933000000	-3.011599000000	-0.526218000000
Н	4.391671000000	-1.202419000000	3.459095000000
Н	4.535008000000	-2.892374000000	-0.491077000000
Н	5.702656000000	-1.978131000000	1.498433000000
Н	1.31803000000	-0.322804000000	-0.836762000000
С	0.028303000000	2.832137000000	-0.393877000000
0	-0.586386000000	3.349754000000	0.507096000000
0	0.951389000000	3.393939000000	-1.14100000000
С	1.292408000000	4.748954000000	-0.786079000000
Н	0.413126000000	5.388961000000	-0.869799000000
Н	1.679134000000	4.771069000000	0.234660000000
Н	2.058666000000	5.050679000000	-1.496079000000

Br₂ with 2 HFIP

Zero-point correction=	0.130886 (Hartree/Particle)
Thermal correction to Energy=	0.155061
Thermal correction to Enthalpy=	0.156005
Thermal correction to Gibbs Free Ene	ergy= 0.069030
Sum of electronic and zero-point Ene	ergies= -1605.179315
Sum of electronic and thermal Energ	ies= -1605.155140
Sum of electronic and thermal Entha	lpies= -1605.154196
Sum of electronic and thermal Free E	energies= -1605.241171

С	0.260215000000	-0.302466000000	-0.463167000000
Н	-0.348732000000	-1.204767000000	-0.350243000000
С	-0.347171000000	0.554468000000	-1.565875000000
F	0.458836000000	1.578550000000	-1.869345000000
F	-0.514099000000	-0.173360000000	-2.670842000000
F	-1.532381000000	1.046948000000	-1.206079000000
С	0.292861000000	0.423851000000	0.879778000000
F	0.896428000000	-0.346961000000	1.789219000000
F	0.972120000000	1.573141000000	0.796743000000
F	-0.936211000000	0.697322000000	1.320266000000
0	1.574352000000	-0.581005000000	-0.878627000000
Н	1.928737000000	-1.332056000000	-0.376196000000
С	4.390421000000	1.583851000000	-0.462745000000
Н	4.925342000000	0.677055000000	-0.773300000000
С	4.193232000000	1.504174000000	1.046373000000
F	3.578852000000	2.587660000000	1.527701000000
F	3.424659000000	0.442512000000	1.331029000000

F	5.349833000000	1.358100000000	1.700338000000
С	5.239653000000	2.777774000000	-0.866849000000
F	5.429335000000	2.775617000000	-2.188892000000
F	4.650262000000	3.932920000000	-0.543048000000
F	6.438605000000	2.746667000000	-0.276225000000
0	3.156237000000	1.757254000000	-1.086397000000
Н	2.643898000000	0.931836000000	-1.013789000000
Br	2.557622000000	-0.950883000000	-3.52602000000
Br	3.691514000000	-1.279436000000	-5.716329000000

Br with 1 HFIP

Zero-point correction=	0.064092 (Hartree/Particle)
Thermal correction to Energy=	0.075126
Thermal correction to Enthalpy=	0.076071
Thermal correction to Gibbs Free En	ergy= 0.023271
Sum of electronic and zero-point Ene	ergies= -802.773377
Sum of electronic and thermal Energ	gies= -802.762343
Sum of electronic and thermal Entha	lpies= -802.761398
Sum of electronic and thermal Free I	Energies= -802.814198

С	4.319987000000	1.677138000000	-0.283701000000
Н	4.326355000000	0.799157000000	-0.943247000000
С	5.018512000000	1.296525000000	1.011401000000
F	5.043032000000	2.316103000000	1.880098000000
F	4.369529000000	0.285790000000	1.598482000000
F	6.284041000000	0.907578000000	0.807972000000
С	5.035113000000	2.808207000000	-1.006868000000
F	4.405636000000	3.083647000000	-2.153568000000
F	5.050829000000	3.932107000000	-0.277911000000
F	6.305112000000	2.498639000000	-1.300973000000
0	3.028826000000	2.095405000000	0.023502000000
Н	2.419758000000	1.500923000000	-0.496143000000
Br	1.637713000000	-0.037232000000	-1.805126000000

1a with 1 HFIP

Zero-point correction=	0.451228 (Hartree/Particle)	
Thermal correction to Energy=	0.487043	
Thermal correction to Enthalpy=	0.487987	
Thermal correction to Gibbs Free En	nergy= 0.382895	
Sum of electronic and zero-point En	nergies= -1921.098964	
Sum of electronic and thermal Energy	gies= -1921.063150	
Sum of electronic and thermal Entha	alpies= -1921.062206	
Sum of electronic and thermal Free	Energies= -1921.167298	

С	1.947668000000	0.055189000000	-0.754194000000
С	1.146824000000	-0.709728000000	0.220868000000
Н	1.692358000000	-1.369141000000	0.889409000000
Н	1.392631000000	0.801989000000	-1.319395000000
С	3.294947000000	-0.114839000000	-1.033775000000
С	4.118172000000	-1.068375000000	-0.362869000000
С	3.867635000000	0.763541000000	-2.002714000000
С	5.456804000000	-1.137885000000	-0.670168000000
С	5.212465000000	0.688511000000	-2.289446000000
С	5.998052000000	-0.262807000000	-1.626556000000
Н	3.696108000000	-1.738586000000	0.378006000000
Н	3.226815000000	1.490509000000	-2.493539000000
Н	6.096692000000	-1.859176000000	-0.175562000000
Н	5.661175000000	1.353757000000	-3.017686000000
Н	7.057704000000	-0.325627000000	-1.855883000000
С	0.148415000000	0.108443000000	0.968178000000
Ν	0.056334000000	-0.168102000000	2.213516000000
0	-0.874873000000	0.636817000000	2.825137000000
С	-0.922684000000	0.349911000000	4.218056000000
Н	-1.234267000000	-0.685087000000	4.385199000000
Н	0.052142000000	0.526906000000	4.679699000000
Н	-1.663765000000	1.033589000000	4.634276000000
0	-0.515090000000	0.999679000000	0.254394000000
Si	-1.680072000000	2.228422000000	0.618720000000
С	-0.978241000000	3.448090000000	1.850907000000
Н	-1.291173000000	4.469290000000	1.609222000000
Н	-1.300302000000	3.219121000000	2.869950000000
Н	0.115749000000	3.415571000000	1.828540000000
С	-1.816636000000	3.020530000000	-1.092391000000
С	-3.288841000000	1.422301000000	1.119088000000
Н	-3.404127000000	0.456736000000	0.615246000000
Н	-3.332264000000	1.250001000000	2.197387000000
Н	-4.140215000000	2.050225000000	0.835592000000
С	-0.450916000000	3.582074000000	-1.510614000000
Н	-0.084652000000	4.333226000000	-0.79879200000
Η	0.301760000000	2.788687000000	-1.594245000000
Н	-0.522116000000	4.069627000000	-2.491983000000
С	-2.273520000000	1.973839000000	-2.117038000000
Н	-2.341638000000	2.423984000000	-3.116479000000
Н	-1.572956000000	1.133102000000	-2.176695000000
Н	-3.262601000000	1.571454000000	-1.869064000000
С	-2.837911000000	4.166056000000	-1.050469000000
Н	-2.920579000000	4.630468000000	-2.042038000000
Н	-3.837142000000	3.814370000000	-0.770243000000

Н	-2.546055000000	4.952083000000	-0.344822000000
Br	0.149823000000	-1.942021000000	-1.086144000000
С	3.009997000000	2.768776000000	1.521840000000
Н	2.767847000000	3.751201000000	1.940752000000
С	4.424142000000	2.843504000000	0.945572000000
F	4.948151000000	1.627208000000	0.735116000000
F	4.404016000000	3.483054000000	-0.226568000000
F	5.246867000000	3.498774000000	1.768246000000
С	2.926001000000	1.745763000000	2.644635000000
F	1.757851000000	1.852815000000	3.281380000000
F	3.020620000000	0.495895000000	2.169377000000
F	3.908313000000	1.921510000000	3.532580000000
0	2.106532000000	2.351408000000	0.542657000000
Н	1.738228000000	3.123830000000	0.088315000000

20. Spectroscopic Data:

.2

10

.2

6 6

4 6

					- I - I		·		· · · ·							· · · · ·		·	· · · · ·		1	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-:
f1 (ppm)																S-180						

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) S-1

`OBn

Mé 2w 1H NMR (CDCl₃)

	- I I	1 1	- I I	- I I	1 1	- I - I	1 1	1 1	- I I					1 1	- I I	- I - I		1 1	· ·			
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-:
f1 (ppm)														S-184								

10

1															· ·		' '	· · ·	· ·			· ·
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	S-196

	- I - I	· · ·	· · ·						· · ·	1 1									· · · ·			
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
10	200	100	100	1/0	100	150	110	100	120	110	100	50	00	70	00	50	10	50	20	10	0	•
	f1 (nnm)																					
											· - (PP····)											

∞ ∞ ∞ **∩**

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -7 f1 (ppm)

f1 (ppm) -10 . 50 Ó S-230

20

20 210 -10 Ö f1 (ppm) S-248

		1 1		1 1	1 1	1 1	1 1				1 1			1 1	1 1		1 1	1 1		1 1	1	·	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-:	
											f1 (ppm)											S-260	

10

7.95 7.95 7.95 7.94 7.94 7.94 7.94 7.57 7.57 7.57 7.55 7.55 7.55

45 45 45 45 45

1.65 0.92 0.10

69 68 68 68 68 68 68

f1 (ppm)

.5

Ó

 $<^{2.04}_{2.04}$

10

3.49 3.49 7.45 7.45 7.44 7.44 7.41 7.40 7.40 7.40 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.3	7.23 7.23 7.23 7.23 7.23 7.23 7.22 7.22	5.01 2.49 2.48 48 48 47 44 44 44 44 1.45 1.45 1.45 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43

10

Ö

f1 (ppm) S-318

.5

.5

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
f1 (ppm)																						

							1 1												- I - I		<u> </u>	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	Ō	-
f1 (ppm)															S-342							

10

.5

1 1				1 1		1 1		1 1		' '			1 1		1 1	1 1	'	1 1	1 1	1 1	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											f1 (ppm)									5-350	0
																				2,220	9

3.10 3.09 3.07 3.07 3.07 2.61 2.61 2.61 2.59 2.59

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3

 7.3
</

10

10

