Electronic Supplementary Material for

Enhancing corannulene chemiluminescence, electrochemiluminescence and photoluminescence by means of an azabora-helicene to slow down its bowl inversion

Xiaoli Qin, ${ }^{\text {a,b|| }}$ Lin Huang, ${ }^{\text {c,dee| }}$ Ziying Zhan, ${ }^{\text {al| }}$ Peng Fu, ${ }^{\text {c,d,e }}$ Qing Wang, ${ }^{\text {c.f }}$ Congyang Zhang, ${ }^{\text {a }}$ Jianhui Huang ${ }^{\text {c,de,e,* }}$ and Zhifeng Ding ${ }^{\text {a,* }}$
${ }^{a}$ Department of Chemistry, Western University, London, ON N6A 5B7, Canada
${ }^{b}$ College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
${ }^{c}$ School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
${ }^{d}$ International Center of Chemical Science and Engineering, Tianjin 300072, China
${ }^{e}$ International Joint Research Centre for Molecular Sciences, Tianjin University, Tianjin 300072, China
${ }^{f}$ National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China

${ }^{\|}$X. Qin, L. Huang and Z. Zhan contributed equally to this work.

[^0]
Experimental Section

1. Materials and General methods

Reagents: Sodium salicylate ($\geq 99.5 \%$), bis(2-carbopentyloxy-3,5,6-trichlorophenyl) oxalate (CPPO, $\geq 96.5 \%$), N, N-dimethylformamide (DMF, $\geq 99.8 \%$), tripropylamine (TPrA, $\geq 98 \%$), benzoyl peroxide ($\mathrm{BPO}, \geq 98 \%$), tetrabutylammonium hexafluorophosphate (TBAPF_{6}, $\geq 99.0 \%$), benzene (99.8%), acetonitrile ($\geq 99.9 \%$) and ferrocene ($\mathrm{Fc}, 98 \%$) were purchased from Sigma-Aldrich Canada. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}, 30 \%\right)$ was bought from Thermo Fisher Scientific (Canada) and used as received.

Syntheses: Unless otherwise stated, all chemicals were reagent-grade or higher, obtained from commercial sources, and used for synthesis without further purification. Flash chromatography was performed on silica gel 200-300 mesh. Thin layer chromatography (TLC) was performed on glass-backed plates that were pre-coated with silica (GF254) and developed using standard visualizing agents.

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz or 600 MHz BRUKER AVANCE spectrometer at 298 K . Chemical shifts (δ) are reported in ppm with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}{ }^{1} \mathrm{H}: \delta 7.26,{ }^{13} \mathrm{C}: \delta 77.16 ; \mathrm{CD}_{2} \mathrm{Cl}_{2}{ }^{1} \mathrm{H}: \delta 5.32\right.$, ${ }^{13} \mathrm{C}: \delta 53.84$). Data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, integration, coupling constants (J) in Hz. Mass Spectrometry: High-resolution mass spectra (HRMS) recorded for accurate mass analysis were performed on a Q-TOF micro (Bruker Compass Data Analysis 4.0) spectrometer.

X-ray structure analysis: X-ray structure analyses were carried out by Rigaku, XtaLAB FRX in the Instrumental Analysis Center, School of Pharmaceutical Science and Technology, Tianjin University.

2. Synthesis and Characterization

Cor-Bpin was prepared according to literature procedures. ${ }^{1}$

2.1 Synthesis of 2-isoquinolinecorannulene (2)

To a solution of 1-chloroisoquinoline $\mathbf{I Q - C l}(70 \mathrm{mg}, 0.33 \mathrm{~mol}, 1.1$ equiv.) in DME (2.5 mL) under an inert atmosphere was added a solution of Corannulene boronic acid ester (Cor-Bpin) ($113 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(0.75 \mathrm{~mL})$ followed by a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(95 \mathrm{mg}$, $0.9 \mathrm{mmol}, 3.0$ eq. $)$ in water $(0.85 \mathrm{~mL})$. The mixture was degassed and subsequently, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 0.03$ eq.) was added. The reaction mixture was heated up to $85^{\circ} \mathrm{C}$ for overnight. Afterwards, the reaction mixture was brought to room temperature, diluted with water, and extracted with EtOAc $(10 \mathrm{ml} \times 3)$. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, hexane/EtOAc 8:2) to obtain desired compound $2(93 \mathrm{mg}, 82 \%)$ as a solid. m.p. $199-200^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.72(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $8.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{dd}, J=11.4 \mathrm{~Hz} 2 \mathrm{H}, \mathrm{ArH}), 7.85-7.83$
$(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.78(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.73(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=159.2,142.6,138.4,136.8,136.4,136.1,135.9,135.8$, $131.3,131.1,131.0,130.7,130.6,130.4,129.1,128.3,128.2,127.5,127.5,127.5,127.4,127.4$, $127.4,127.3,127.2,127.1,126.7,120.5$. A carbon signal was missed in ${ }^{13} \mathrm{C}$ NMR spectrum, possibly due to overlap of peaks. IR $(\mathrm{KBr}) v\left[\mathrm{~cm}^{-1}\right] 3192,3182,3045,3028,1580,1554,1385$, 1351, 1314, 827, 749, 660, 551. HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{~N}\left\{[\mathrm{M}+\mathrm{H}]^{+}\right\} 378.1283$, found 378.1279 .

2.2 Synthesis of $\mathbf{1 - B r} 2$

$1-\mathrm{Br}_{2}$

2-isoquinolinecorannulene $2\left(88 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0\right.$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.4 $\mathrm{mL})$, and i - $\mathrm{Pr}_{2} \mathrm{NEt}\left(40 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 1.0\right.$ equiv.) was added under an inert atmosphere. BBr_{3} $(68 \mu \mathrm{~L}, 0.7 \mathrm{mmol}, 176 \mathrm{mg}, 3.0$ equiv.) was added dropwise at room temperature, and the mixture was stirred for 24 h . Subsequently, the reaction was quenched with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and distilled water. The phases were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with distilled water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the
volatiles were removed under reduced pressure. The crude product was obtained as a yellow solid and used in the next step without any further purification.

2.3 Synthesis of compound 1

1

Compound $\mathbf{1 - B r} 2(110 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was dissolved in a mixture of \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and toluene (2 mL), and $\mathrm{AlEt}_{3}(1 \mathrm{M}$ solution in n-hexane, $450 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 2.2 \mathrm{eq}$.) was added dropwise under an inert atmosphere. The reaction was stirred for 2 h and subsequently quenched with water. The phases were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with distilled water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed under reduced pressure. The crude product was purified via flash chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 9$) to obtain compound $\mathbf{1}$ (60 $\mathrm{mg}, 67 \%)$ as a yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.76(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 8.29-8.27 (m, 2H, ArH), 8.13 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.06-8.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.96-7.84$ (m, 6H, ArH), $7.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 1.20-1.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.00-0.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.19\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta=158.3,137.9,137.7,136.3,136.0,135.3,133.6,132.8,132.6,132.2$, $131.0,130.6,129.8,129.4,128.5,128.1,127.6,127.5,127.4,127.0,126.9,126.9,126.8,126.8$, 125.0, 119.1, 10.2. Signals corresponding to the C atoms bound to the B atom are not visible.
${ }^{11} \mathbf{B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.2 \mathrm{ppm}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{27} \mathrm{BN}\left\{[\mathrm{M}+\mathrm{H}]^{+}\right\}$ 496.2236, found 496.2231.

3. Electrochemical and ECL Measurements

The electrochemistry and ECL experiments were carried out using an Autolab potentiostat (PGSTAT30, Metrohm, Switzerland) with a conventional three-electrode system. The working electrode was a Pt disk electrode embedded in a soft glass tubing with a diameter of 2 mm , while the counter electrode and reference electrode were Pt wire coils. The working electrode and the ECL cell were cleaned as previously reported elsewhere by us. ${ }^{2,3}$ In a N_{2}-filled glovebox, ECL experiments were performed in a 0.6 mM Cor or $\mathbf{1}$ solution of 1:1 (volume ratio) benzene:acetonitrile (benzene:MeCN) with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as the supporting electrolyte. The ECL detector was a calibrated photomultiplier tube (PMT, R3896, Hamamatsu, Japan) biased at a high-voltage of -750 V , collecting the ECL-voltage curves under the flat Pyrex window at the bottom of the cell (Figure S1A). The ECL signal in the format of photocurrent from the PMT was transformed into a voltage signal by a scale-adjustable picoammeter (Keithley 6487, Cleveland, OH). The ECL units were nA or $\mu \mathrm{A}$. All potentials in this paper were calibrated to that of the saturated calomel electrode (SCE) using ferrocenium/ferrocene $\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right)$ as the internal reference $\left({ }_{\left(E_{F c}+/ F c=0.342 \mathrm{~V}\right.} \quad\right.$ vs. SCE $) .{ }^{4}$

4. ECL and PL Spectroscopy Measurements:

ECL spectra were measured as reported elsewhere ${ }^{5}$ by a spectrograph with a grating of
$501 / \mathrm{mm}$ blazed at 600 nm (Acton 2300i, Teledyne Princeton Instruments, MA) coupled with a charge coupled device (CCD) camera (Model DU401- BR-DD-352, Andor Technology, UK) being cooled at $-65^{\circ} \mathrm{C}$. An electrochemical workstation (CHI 610A, CH Instruments, Austin, TX) was used to drive the electrochemical reactions during spectroscopic measurements (Figure S7B). The units of the ECL spectra were counts. Before ECL measurement, a commercial mercury-argon source (HG-1, Ocean Insight, Orlando, FL) was used for wavelength calibration. Both accumulated and spooling ECL spectra were collected during potential dynamic scans.

Photoluminescence (PL) spectroscopy experiments were performed in a $10 \mu \mathrm{M}$ Cor or 5 $\mu \mathrm{M} 1$ in 1:1 benzene/MeCN solution by a Fluorolog spectrophotometer (QM-7/2005, Photon Technology International, London, ON) with an excitation slit width of 0.25 mm and an emission slit width of 0.1 mm . Absolute PL quantum yields were determined on an Edinburgh FSS Fluorometer (Edinburgh Instruments Ltd., UK) utilizing an integrating sphere.

5. CL Spectroscopy Measurements

All CL measurements for $\mathbf{1}$ were conducted inside a cylindrical glass tube. The CL spectra were collected using a 6 -inch integrating sphere (Labsphere, North Sutton, NH) and spectrometer (USB2000+, Ocean Insight, Orlando, FL), while light travelled through the optical fiber and was detected by the spectrometer (Figure S1C). Light emissions were collected entirely by the integrating sphere diffusing homogeneously and sending a certain amount of the light to the spectrometer through an optical fibre. The light collection is not dependent on CL cell geometry, as long as the light is in the sphere. Calibration of the spectroscopy wavelength
on the spectrometer was performed using a mercury-argon source (model HG-1, Ocean Insight, Orlando, FL). ${ }^{5}$ The individual and spooling CL spectra were acquired and saved with OceanView software (Ocean Insight).

For the CL spectroscopy measurements of Cor, ${ }^{6}$ all analyses were conducted inside a cylindrical glass tube. The CL spectra of GQD were collected using a 6 -inch integrating sphere (Labsphere, North Sutton, NH) and a charge-coupled device (CCD) camera (iDUS401a-BRDD, Andor Technologies, Belfast, UK) cooled at $-65^{\circ} \mathrm{C}$, attached to a spectrograph (Acton SP2300i, Teledyne Princeton Instruments - Massachusetts, Acton, MA). Calibration of the spectroscopy wavelength was performed using a mercury-argon source (model HG-1, Ocean Insight, Orlando, FL). ${ }^{5}$ All accumulation emission spectra reported in this work have been baseline-corrected by numerical subtraction of an identical duration background scan and intensity-normalized to allow for meaningful comparison. The obtained CL spectra from the spectrograph and CCD camera set-up were calibrated by the Ocean Insight USB2000+ Spectrometer (OIS), which was converted to read in terms of optical power using a calibration lamp (LS-1-CAL-int) along with the integrating sphere. In total, five calibration points were collected by varying the running time of the lamp with $1,2,3,4$ and 5 s . These measurements were then repeated on the spectrograph-CCD camera set-up to corelate the OIS optical power readings, in which an optical density filter was used to reduce the radiant power of the lamp down to a scale appropriate for the calibration procedures. The measured CL spectra were interpolated to derive 2048 pixels with an interval value of 0.38 nm in a wavelength range between 341.21 and 1029.64 nm and converted from counts to power values in $\mu \mathrm{W} / \mathrm{nm}$. Total photons were obtained by integration of the power-wavelength curves with the assistance of
custom programs in MATLAB software (Version 2021b, MathWorks Inc., Natick, MA) developed in our group similar to those for determining absolute ECL quantum efficiencies.

Commission International de l'Éclairage (CIE) colour diagrams of CL, ECL, and PL emissions were calculated using a MATLAB program (2021b).

6. Absolute ECL and CL Quantum Efficiencies

The absolute ECL quantum efficiency was determined by comparing the number of photons emitted with the number of electrons injected, ${ }^{7,8}$ as represented in equation (1):

$$
\begin{align*}
& \Phi_{E C L}=100 \% \times \frac{\text { total photons }}{\text { total electrons }}=100 \% \times \frac{\int v_{\text {photons }} d t}{\int v_{\text {electrons }} d t} \\
& =100 \% \times \frac{\int P C d t}{\int\left(\left|i_{x}\right|-\left|i_{B G}\right|\right) d t} \times \frac{N_{A} \times k_{A B S} \times q_{e}}{F \times \sigma_{P M T} \times C} \tag{1}
\end{align*}
$$

where $\gamma_{\text {photons }}$ is the total ECL photon emission rate and $v_{\text {electrons }}$ is the total Faradaic electron rate flowing into the electrochemical cell, yielding total $\Phi_{\text {ECL }}$ in a percentage of photons per electron. PC is the ECL signal as photocurrent, i_{x} is the total electrochemical current including Faradaic and non-Faradaic current $\left(i_{\mathrm{BG}}\right), N_{\mathrm{A}}$ is Avogadro's number, k_{ABS} is the absorption correction factor, q_{e} is a constant related to the charges per electron, F is Faraday's constant, C is a hardware and wavelength specific factor, and $\sigma_{\text {PMT }}$ is a correction factor related to the PMT surface area, distance from PMT to electrode, and electrode reflectivity. ${ }^{7,8}$ The total photons could be obtained by the integration of PC from the calibrated R3896 PMT with a known responsive curve in the wavelength range and gain factor at its specific high voltage applied.

According to previous reports on peroxyoxalate-based CL systems of organic dyes such as rubrene, rhodamine, and anthracene derivatives, ${ }^{9,10}$ the intensity of the CL reaction depends
solely on the concentration of the high-energy intermediate 1,2-dioxetane, which in turn is limited by the consumption rate of the rate-limiting reagent CPPO. Thus, the CL quantum efficiency $\left(\Phi_{\mathrm{CL}}\right)$ in einsteins per mole is calculated from eq. 2 with the assistance of eqs. 3-4. ${ }^{11 \text {, }}$ 12

$$
\begin{align*}
& \Phi_{C L}=\frac{\text { total photons }}{n_{C P P O} \times 6.02 \times 10^{23}} \times 100 \% \tag{2}\\
& E=\frac{\mathrm{h} c}{\lambda}=J \text { per photon }(\lambda) \tag{3}\\
& W=\frac{J}{S} \times \frac{1}{\frac{J}{p h o t o n}(\lambda)}=\frac{p h o t o n(\lambda)}{s} \tag{4}
\end{align*}
$$

where $n_{\text {CPPO }}$ is the number of CPPO moles used in the CL reaction, c is the speed of light $\left(3 \times 10^{8}\right.$ $\left.\mathrm{ms}^{-1}\right), \lambda$ is the individual photon wavelength, J is the energy of an individual photon at a wavelength of λ, and h is Planck's constant $\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)$. The total number of photons emitted by the system for eq. 2 can be determined by integration of the absolute photon response-wavelength curve over the appropriate wavelength range, from which a CL efficiency can be obtained straightforwardly via eq. 2. All of these operations can be performed with OceanView software (Ocean Insight); the results were verified with a custom-made MATLAB program.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ NMR Spectra

Figure S1 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2}$.

Figure $\mathbf{S} 2{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2}$.

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1}$.

Figure $\mathbf{S} 4{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1}$.
$\underset{\substack{\stackrel{\rightharpoonup}{N} \\ \\ 1}}{1}$

Figure $\mathbf{S 5}{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1}$.

Single Crystal X-ray Analysis

Slow evaporation of a dichloromethane solution at room temperature furnished a yellow block-like racemic crystal of $\mathbf{1}$. Single crystal X-ray diffraction data for compound $\mathbf{1}$ was collected at 160 K on a Rigaku XtaLAB FRX diffractometer equipped with a Hypix 6000 HE detector using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54184 \AA$). Data were reduced using the software package CrysAlisPro by applying an empirical absorption correction. The structure was solved using direct methods, expanded with Fourier techniques, and refined with SHELXL ${ }^{13}$ in Olex2. ${ }^{14}$

Crystal data for 1: $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{BN}, \mathrm{Mr}=445.34$, yellow block, $0.1 \times 0.07 \times 0.04 \mathrm{~mm}^{3}$, monoclinic space group $\mathrm{P} 2_{1} / n, \mathrm{a}=8.69340(10) \AA, b=21.4946(4) \AA, c=12.5425(2) \AA, \alpha=90^{\circ}, \beta=$ $94.2760(10)^{\circ}, \gamma=90^{\circ}, \mathrm{V}=2337.18(6) \AA^{3}, Z=4, \rho_{\text {calc }}=1.266 \mathrm{~g} / \mathrm{cm}^{3}, \mu=0.547 \mathrm{~mm}^{-1}, F_{(000)}=$ $936.0, \mathrm{~T}=160(2) \mathrm{K}, \operatorname{GooF}\left(F^{2}\right)=1.033, R_{l}=0.0542, w R_{2}=0.1578$ for $\mathrm{I} \geq 2 \sigma(\mathrm{I}), R_{l}=0.0680$, $w R_{2}=0.1709$ for all data, 4554 independent reflections $\left[\theta \leq 75.475^{\circ}\right]$ with a completeness of 98.4% and 318 parameters and 0 restraints.

Figure S6 (A) Molecular structure of $\mathbf{1}$ in the solid state with the selected bond lengths and angles. Thermal displacement parameters are displayed at the 50% probability. (B) Crystal packing unit and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (2.91-3.12 \AA) between the Ph ring of isoquinoline and corannulene motif. (P) - and (M)-enantiomers are colored in green and gray, respectively.

Molecular orbital description from DFT calculations

Gaussian 16 (revision B.01) program was utilized for DFT calculations using the B3LYP method with the $6-311 \mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ basis set for energy calculations (the solvation model was used with acetonitrile).

Compound 1:

Orb:	111 Ene(au/eV):	-0.273859	-7.4521 Occ: 2.000000 Type:A+B
Orb:	112 Ene(au/eV):	-0.261729	-7.1220 Occ: 2.000000 Type:A+B
Orb:	113 Ene(au/eV):	-0.253032	-6.8854 Occ: 2.000000 Type:A+B
Orb:	114 Ene(au/eV):	-0.235319	-6.4034 Occ: 2.000000 Type:A+B
Orb:	115 Ene(au/eV):	-0.233397	-6.3511 Occ: 2.000000 Type:A+B
Orb:	$\mathbf{1 1 6}$ Ene(au/eV):	$\mathbf{- 0 . 2 3 1 5 4 3}$	$\mathbf{- 6 . 3 0 0 6}$ Occ: $\mathbf{2 . 0 0 0 0 0 0}$ Type:A+B
Orb:	$\mathbf{1 1 7}$ Ene(au/eV):	$\mathbf{- 0 . 2 1 8 6 6 2}$	$\mathbf{- 5 . 9 5 0 1}$ Occ: $\mathbf{2 . 0 0 0 0 0 0}$ Type:A+B
Orb:	$\mathbf{1 1 8}$ Ene(au/eV):	$\mathbf{- 0 . 0 8 9 7 1 5}$	$\mathbf{- 2 . 4 4 1 3 ~ O c c : ~} \mathbf{0 . 0 0 0 0 0 0}$ Type:A+B
Orb:	$\mathbf{1 1 9}$ Ene(au/eV):	$\mathbf{- 0 . 0 7 0 5 2 0}$	$\mathbf{- 1 . 9 1 9 0}$ Occ: $\mathbf{0 . 0 0 0 0 0 0}$ Type:A+B
Orb:	120 Ene(au/eV):	-0.061843	-1.6828 Occ: 0.000000 Type:A+B
Orb:	121 Ene(au/eV):	-0.047443	-1.2910 Occ: 0.000000 Type:A+B
Orb:	122 Ene(au/eV):	-0.019249	-0.5238 Occ: 0.000000 Type:A+B
Orb:	123 Ene(au/eV):	-0.007712	-0.2098 Occ: 0.000000 Type:A+B
Orb:	124 Ene(au/eV):	0.004828	0.1314 Occ: 0.000000 Type:A+B

Note: Orbital	$\mathbf{1 1 7}$ is HOMO, energy:	-0.218662 a.u.	-5.950107 eV	
Orbital	$\mathbf{1 1 8}$ is LUMO, energy:	-0.089715 a.u.	-2.441276 eV	
HOMO-LUMO gap:	0.128947	a.u.	3.508831 eV	$338.550847 \mathrm{~kJ} / \mathrm{mol}$

Iso_value $=0.03$

HOMO:

LUMO:

Orbital 116:

Orbital 119:

Pristine Corannulene:

Orb:	50 Ene(au/eV):	-0.405909	-11.0453 Occ: 2.000000 Type:A+B
Orb:	51 Ene(au/eV):	-0.405902	-11.0452 Occ: 2.000000 Type:A+B
Orb:	52 Ene(au/eV):	-0.387317	-10.5394 Occ: 2.000000 Type:A+B
Orb:	53 Ene(au/eV):	-0.381861	-10.3910 Occ: 2.000000 Type:A+B

HOMO:

LUMO:

Orbital64:

Orbital67:

The pristine corannulene has a $\mathrm{C}_{5 \mathrm{v}}$ symmetry and shows quadruply degenerate HOMOs. The unoccupied orbitals begin with a doubly degenerate set of LUMOs. The principal transitions are π-to- π^{*}. The HOMO-LUMO energy gap was determined to be 4.40 eV . The above observations agree well to those obtained by Siegel et al. ${ }^{15}$

Interestingly, compound $\mathbf{1}$ breaks the $\mathrm{C}_{5 \mathrm{v}}$ symmetry, HOMO and LUMO orbitals loss the degeneracy, leading to a HOMO-LUMO energy gap of 3.51 eV . Symmetrybreaking causes a decrease in HOMO-LUMO energy gap, augment in emission peak wavelength and increase in PL quantum yield. These tendencies are very similar to those of $5,10,15,20$-tetraphenyl- $21 \mathrm{H}, 23 \mathrm{H}$-porphine zinc (ZnTPP) and 5,10,15,20-tetraphenyl- $21 \mathrm{H}, 23 \mathrm{H}$-porphine $\left(\mathrm{H}_{2} \mathrm{TPP}\right) .{ }^{16}$

Figure S7. Illustrative instrumentation of (A, B) ECL and (C, D) CL experiments for measurements of absolute ECL (A) and CL (C) efficiencies as well as ECL (B) and CL (D) spectra.

Figure S8. (A) CV with the ECL-voltage curve of 0.6 mM Cor in $1: 1$ benzene:MeCN (volume ratio) solution with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as the supporting electrolyte. The CV scan rate was at 10 V s^{-1}. (B) The current-time response along with the corresponding ECL-time curve of 0.6 mM Cor 1:1 benzene: MeCN (volume ratio) solution with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as the supporting electrolyte during a potential pulsing experiment between -2.60 and 1.60 V at a frequency of 10 Hz . The corresponding applied potentials are indicated in dashed green.

Figure S9. (A) Cyclic voltammogram with the corresponding ECL-voltage curve of 0.6 mM

Cor in the presence of 5 mM BPO in $1: 1$ benzene: MeCN (volume ratio) solution with 0.1 M TBAPF_{6} as the supporting electrolyte. (B) The current-time with the corresponding ECL-time curves of 0.6 mM Cor with 5 mM BPO as the coreactant during a potential pulsing experiment at 10 Hz frequency. (C) The accumulated ECL spectrum of the potential pulsing experiment. The inset is the CIE coordinate diagram of the ECL spectrum. (D) Spooling ECL spectra of 0.6 mM Cor in the presence of 5 mM BPO. Insets are 2 D viewings of the spectra.

Figure S10. (A) UV-vis absorption and photoluminescence spectra of $10 \mu \mathrm{M}$ Cor in $1: 1$ benzene: MeCN (volume ratio) solution, $\lambda_{\mathrm{ex}}=287 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=421 \mathrm{~nm}$. (B) The CIE coordinate diagram of the PL spectrum.

Figure S11. Reaction diagram of the peroxyoxalate-based CL reaction with CPPO and $\mathrm{H}_{2} \mathrm{O}_{2}$ reagents.

Figure S12. (A) Photograph of Cor in CL reaction solution. (B) CL spectra acquired at a time interval of 5 s in the presence of Cor, CPPO, and $\mathrm{H}_{2} \mathrm{O}_{2}$. Conditions were: 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in acetonitrile added to 1 mL of an $80 \% \mathrm{DMF} / 20 \%$ acetonitrile solution containing $6 \mathrm{mg} \mathrm{mL}^{-1}$ Cor, $40 \mathrm{mg} \mathrm{mL}^{-1}$ CPPO, and $2 \mathrm{mg} \mathrm{mL}^{-1}$ sodium salicylate. (C) The CIE coordinate diagram of the CL spectrum. (D) The conversion curve of the $\mu \mathrm{W}$ as a function of the wavelength.

Table S1. Experimental photophysical properties in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{a}$

	$\lambda_{\max }(\mathbf{a b s})^{b}$	$\boldsymbol{\varepsilon}_{\max }$	$\lambda_{\max }(\mathrm{em})^{c}$	Φ_{f}^{d}	Stokes shift (nm)	Stokes shift $\left(\mathbf{c m}^{-1}\right)$
$\mathbf{1}$	304,342, $386,407,425$	26300	447,468	0.31	164	11527

${ }^{a}$ Recorded in deoxygenated anhydrous dichloromethane. ${ }^{b}$ Longest absorption maximum. ${ }^{c}$ Emission maximum upon excitation at the longest absorption maximum. ${ }^{d}$ Absolute quantum yield determined by calibrated integrating sphere systems.

${ }^{1}$ H NMR Line-shape Analysis

The variable-temperature (VT) ${ }^{1} \mathrm{H}$ NMR (600 MHz) experiments were performed in a solution of azaborahelicene corannulene 1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The field shifts of the ${ }^{1} \mathrm{H}$ NMR resonances for $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$, and CH_{3} protons were observed and used to determine the coalescence temperature $\left(T_{c}\right)$. Measurements of the rate constants (k) for the bowl and helix inversion processes of 1 were conducted by dynamic ${ }^{1} \mathrm{H}$ NMR line-shape simulations using the program MestReNova (Version 14.0.0). The Eyring equation, $\Delta G_{c}^{\ddagger}=-R T \ln \left(k h / k_{B} T\right)$, was used to calculate the ΔG_{c}^{\ddagger} values at coalescence temperature $\left(T_{c}\right)$. The ΔH^{\ddagger} and ΔS^{\ddagger} values were obtained through an Eyring plot ($1 / \mathrm{T}$ against $\ln (\mathrm{k} / \mathrm{T})$, Figure S 17$)$ that was generated using rate constants (k) determined by dynamic ${ }^{1} \mathrm{H}$ NMR line-shape simulations (Figures S15 and S16). The equation, $\Delta G^{\ddagger}=\Delta H^{\ddagger}-T \Delta S^{\ddagger}$, was used to calculate the $\Delta G_{298 K_{\text {values }}}^{\ddagger}$ at room temperature (298 K).

Figure S13 (A) Stacked ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ acquired upon heating back to 273 K from 188

K with 30 K increments ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$). (B) Spectra displaying the regions between 7.6 and 8.4 ppm . (C) Spectra displaying the regions between -0.7 and 1.8 ppm .
${ }^{1} \mathrm{H}$ NMR Line-Shape Analysis $/ \mathrm{CD}_{2} \mathrm{Cl}_{2} / 600 \mathrm{MHz}$

$\operatorname{Sim} .{ }^{k=109 \mathrm{~s}^{-1}} \sim \underbrace{k=57 \mathrm{~s}^{-1}}$ 238 K \qquad

Sim. \qquad 258 K

Figure S14 ${ }^{1} \mathrm{H}$ NMR line-shape simulations for helix inversion process of compound $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2} . \mathrm{T}=$ temperature, $k=$ rate constant, and Sim. $=$ simulated. The coalescence temperatures (T_{c}) are estimated at 273 K for CH_{3} and 268 K for H_{b}. The energy barriers ΔG_{c}^{\ddagger} for helix motif inversion are experimentally found to be $12.1 \mathrm{kcal} \mathrm{mol}^{-1}$ for CH_{3} signals and $12.4 \mathrm{kcal} \mathrm{mol}^{-1}$ for H_{b} signals at coalescence temperatures. $\Delta G_{298 K}{ }^{\ddagger}$ values at room temperature are calculated to be 12.0 kcal mol ${ }^{-1}$ for CH_{3} signals and $12.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for H_{b} signals. $\Delta G_{298 \mathrm{~K}}^{\ddagger}=12.0 \mathrm{kcal} \mathrm{mol}^{-1}$ is used for
energy barrier of helix motif inversion because helix inversion is more sensitive to changing chemical environment and better-fitted to the Eyring plot (Fig. S16B-C).

${ }^{1} \mathrm{H}$ NMR Line-Shape Analysis / $\mathrm{CD}_{2} \mathrm{Cl}_{2} / 600 \mathrm{MHz}$

Figure S15 ${ }^{1} \mathrm{H}$ NMR line-shape simulations for bowl inversion process of compound $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2} . \mathrm{T}=$ temperature, $k=$ rate constant, and $\mathrm{Sim} .=$ simulated. The coalescence temperature $\left(T_{c}\right)$ is estimated at 238 K for H_{a}, and the energy barrier ΔG_{c}^{\ddagger} for corannulene motif inversion is experimentally found to be $11.8 \mathrm{kcal} \mathrm{mol}^{-1}$ at the coalescence temperature $\left(T_{c}=238 \mathrm{~K}\right)$ (Fig. S16A). $\Delta G_{298 K}^{\ddagger}$ value at room temperature $(298 \mathrm{~K})$ are calculated to be $12.7 \mathrm{kcal} \mathrm{mol}^{-1}$ for H_{a} signals.

Figure S16 Eyring plots for (A) bowl inversion (Signals from H_{a} protons), $\Delta H^{\ddagger}=8.4 \mathrm{kcal}$ $\mathrm{mol}^{-1}, \Delta S^{\ddagger}=-14.2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. (B) helix inversion (Signals from CH_{3} protons), $\Delta H^{\ddagger}=11.9$ kcal mol ${ }^{-1}, \Delta S^{\ddagger}=-0.5 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1} .(\mathbf{C})$ helix inversion signals from H_{b} protons). $\Delta H^{\ddagger}=6.9$ kcal $\mathrm{mol}^{-1}, \quad \Delta S^{\ddagger}=-20.2$ cal $\mathrm{mol}^{-1} \quad \mathrm{~K}^{-1} . \quad \Delta H^{\ddagger}=-R \times($ solpe $)$. $\Delta S^{\ddagger}=R \times($ intercepet -23.76$)$.

More detail on ${ }^{1} \mathrm{H}$ NMR analysis

The chemical shift for hydrogens in two CH_{3} is easily identified by integral of the peak intensity
in room-temperature NMR spectrum such as the one in Figure S3 in ESI, while it was found that there are two types of hydrogens, Ha and Hb , with different chemical environments as demonstrated in Figure 9 of the paper. Through VT-NMR spectroscopy, it is plausible that Ha is in the vicinity of the bowl (relatively low chemical shift) while Hb in the proximity of the helicene (relatively high chemical shift), as labeled in Figures 9 in the paper and Figure S17 below.

Theoretical VT ${ }^{1} \mathrm{H}$ NMR spectrum diagram

Exprimental VT ${ }^{1} \mathrm{H}$ NMR spectrum diagram

Figure S17: Simplified sketch map of compound 1's inversion pathways from vertical view (top), and VT ${ }^{1} \mathrm{H}$ NMR spectra diagram (bottom).

As illustrated in Figure 8 in the paper, the $\mathrm{Ha} / \mathrm{Hb}$ signals for different diastereomers of compound 1, resulting from both bowl and helical inversions, are expected to display distinct hydrogen signals with varying chemical shifts in the low-temperature ${ }^{1} \mathrm{H}$ NMR spectra. In theory, eight $\mathrm{CH}_{2}(\mathrm{Ha} \& \mathrm{Hb})$ proton signals and four CH_{3} proton signals should be observed in low temperature ${ }^{1} \mathrm{H}$ NMR spectra, lower left in Figure S17 above. However, only two Ha signals, two Hb signals, and two CH_{3} signals, situated in different chemical environments, were observed in ${ }^{1} \mathrm{H}$ NMR spectrum at $-85^{\circ} \mathrm{C}$ (Figure 9 in the paper), indicating distinct effects of bowl and helicene inversions on the chemical environments of aliphatic hydrogens.

Interestingly, depending on the rate of bowl and helicene inversion processes in compound $\mathbf{1}$
on the NMR timescale, Hb and CH_{3} signals split into two sets of signals at 273 K , whereas Ha signals split into two sets of signals at a different temperature (238 K), as demonstrated in Figure 9 of the paper. The most plausible explanation is that the stereoisomerism caused by helical inversion (P / M isomers) predominantly influences the chemical environments of Hb and CH_{3} hydrogens, while the effects of stereoisomerism due to bowl inversion (convex/concave isomers) are negligible. The situation is precisely the reverse for Ha. In literature, Scott et al ${ }^{17}$ utilized dimethylcarbinol and Siegel et al ${ }^{18}$ used ethyl to probe corannulene bowl-to-bowl inversion. For the first time, we employed Hb and CH_{3}, Ha to probe the inversions of both the bowel and helicene.
In details, as shown in Figure 8 in the paper, the bowl and helicene inversions of compound $\mathbf{1}$ are rapid at room temperature, resulting in only three types of proton signals $\left(\mathrm{Ha}, \mathrm{Hb}\right.$, and $\left.\mathrm{CH}_{3}\right)$ observed in the ${ }^{1} \mathrm{H}$ NMR spectra. As the temperature decreases, the dynamic inversion rates of compound $\mathbf{1}$ begin to slow down. In theory as illustrated on the lower left panel of Figure S17, when the helical inversion reaches the NMR timescale at a certain temperature $\left(T_{1}\right)$, the diastereomers can be detected by ${ }^{1} \mathrm{H}$ NMR, and the proton signals $\left(\mathrm{Ha}, \mathrm{Hb}\right.$, and $\left.\mathrm{CH}_{3}\right)$ might start to split into two sets for each of the three peaks. As the temperature continues to decrease to T_{2}, the remaining bowl inversion reaches the NMR timescale, causing the initially split six sets of peaks to further divide into twelve sets of proton signal peaks. This is the phenomenon that should theoretically be observed (lower left of Figure S17), but in reality, it is as shown in the lower right of Figure S 17 at T_{1}, only the Hb and CH_{3} hydrogen signals undergo splitting. When the temperature drops to T_{2}, the Ha peak splits, while the Hb and CH_{3} hydrogen signals remain unchanged. The plausible explanation is that the stereoisomerism caused by helical inversion (P / M isomers) and bowl inversion (convex/concave isomers) differentially influences the chemical environments of the Ha, Hb, and CH_{3} protons. As the Hb and CH_{3} signals are in closer spatial proximity to the helix motif and exhibit nearly identical coalescence temperatures ($\mathrm{T}_{1}, \sim 273 \mathrm{~K}$), they are strongly supposed to be affected by helical inversion, while the Ha signal shows a significantly lower coalescence temperature ($\mathrm{T}_{2}, 238 \mathrm{~K}$) and situates near the corannulene motif, which is expected to be affected by bowl inversion. These above enable the observations of both bowl and helical inversion processes of compound $\mathbf{1}$ affecting different proton signals in the VT ${ }^{1} \mathrm{H}$ NMR spectra.

References

1. Y. Wang, H. Jiang, X. Liu, J. Xu, Y. Gao and N. S. Finney, Chem. Commun., 2021, 57, 5818-5821.
2. L. Yang, A. D. Hendsbee, Q. Xue, S. He, C. R. De-Jager, G. Xie, G. C. Welch and Z. Ding, ACS Appl. Mater. Inter., 2020, 12, 51736-51743.
3. X. Qin, L. Yang, X. Wang, D. Patel, K. Chu, L. Kelland, J. R. Adsetts, C. Zhang, M. S. Workentin, B. L. Pagenkopf and Z. Ding, ChemElectroChem, 2022, 9, e202200605.
4. Z. Zhan, X. Qin, K. Chu, X. Sun and Z. Ding, J. Electroanal. Chem., 2023, 932, 117220.
5. M. Hesari and Z. Ding, Nat. Protoc., 2021, 16, 2109-2130.
6. X. Qin, Z. Zhan, R. Zhang, K. Chu, Z. Whitworth and Z. Ding, Nanoscale, 2023, 15, 3864-3871.
7. J. R. Adsetts, K. Chu, M. Hesari, J. Ma and Z. Ding, Anal. Chem., 2021, 93, 11626-11633.
8. L. Yang, J. R. Adsetts, R. Zhang, B. Balónová, M. T. Piqueras, K. Chu, C. Zhang, E. Zysman-Colman, B. A. Blight and Z. Ding, J. Electroanal. Chem., 2022, 906, 115891.
9. M. M. Rauhut, L. J. Bollyky, B. G. Roberts, M. Loy, R. H. Whitman, A. V. Iannotta, A. M. Semsel and R. A. Clarke, J. Am. Chem. Soc., 1967, 89, 65156522.
10. A. Eghlimi, H. Jubaer, A. Surmiak and U. Bach, J. Chem. Educ., 2019, 96, 522527.
11. M. Rauhut, D. Sheehan, R. Clarke, B. Roberts and A. Semsel, J. Org. Chem., 1965, 30, 3587-3592.
12. M. M. Rauhut, B. G. Roberts and A. M. Semsel, J. Am. Chem. Soc., 1966, 88, 3604-3617.
13. G. M. Sheldrick, Acta Crystallogr. C Struct. Chem., 2015, 71, 3-8.
14. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
15. Y.-T. Wu, D. Bandera, R. Maag, A. Linden, K. K. Baldridge and J. S. Siegel, J. Am. Chem. Soc., 2008, 130, 10729-10739.
16. R. Zhang, A. Zhang, M. J. Stillman and Z. Ding, J. Phys. Chem. C, 2020, 124, 16568-16576.
17. L. T. Scott, M. M. Hashemi and M. S. Bratcher, J. Am. Chem. Soc., 1992, 114, 1920-1921.
18. M. Juríček, N. L. Strutt, J. C. Barnes, A. M. Butterfield, E. J. Dale, K. K. Baldridge, J. F. Stoddart and J. S. Siegel, Nat. Chem., 2014, 6, 222-228.

[^0]: *To whom correspondence should be addressed.
 E-mail: zfding@uwo.ca (Z. Ding); jhuang@tju.edu.cn (J. Huang).

