Supplementary Information

Divergent Catalytic Behaviors of Assembled Organogold(I) Clusters Derived from Enyne Cyclization

Qian Liu, Xiaoyi Zhai, Ruijun Jian, and Liang Zhao*

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

E-mail: zhaolchem@mail.tsinghua.edu.cn; Phone: +86-10-62786635.

Table of Contents

\qquad

1. Supplementary MethodsS2
2. Supplementary Figures S6
3. Supplementary References. S44

Synthesis of σ-aurated substrates 1a-1c, 3-3'.

Synthesis of 1a

S1, S2 were prepared according to literature procedures. ${ }^{1,2} \mathbf{S} \mathbf{2}(34.2 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$ ($49.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$. A methanol solution (1 mL) of $\mathrm{KF}(8.7 \mathrm{mg}$, $0.15 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138.2 \mathrm{mg}, 1 \mathrm{mmol})$ was then added to the solution under stirring at room temperature overnight. After removing the solvent by rotary evaporation under vacuum, the residual was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. The filtrate was concentrated under reduced pressure, which was added dropwise into 50 mL petroleum ether under vigorous stirring. A paleyellow precipitate 1a was finally obtained. Yield: $81 \%(62.1 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.66-7.63 (m, 1H), 7.55-7.42 (m, 15H), 7.40-7.36 (m, 1H), 7.27-7.22 (m, 2H), 7.03 (d, J=2.4 $\mathrm{Hz}, 2 \mathrm{H}), 6.44(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 160.05,143.31$, $138.04,136.62$, 134.57, 134.31, 131.66, 131.64, 130.17, 129.62, 129.54, 129.28, 129.24, 129.17, 128.67, 128.55, 127.10, 126.96, 123.12, 123.10, 107.53, 103.48, 103.22, 100.69 and 55.62. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 42.83$.

Synthesis of 1b

$\mathbf{S 3}$ was prepared according to literature procedures. ${ }^{3}$ To a stirred mixture of $\mathbf{S 3}(306.2 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and $\mathrm{CuI}(5.7 \mathrm{mg}, 3 \mathrm{~mol} \%)$ in $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and THF (5 mL$)$ at room temperature under an argon atmosphere, trimethylsilylacetylene ($0.28 \mathrm{~mL}, 2.0 \mathrm{mmol}, 2$ equiv.) was added dropwise. The reaction mixture was stirred for 12 h at room temperature. The reaction mixture was filtered through Celite and the solvent was removed by rotary evaporation. The residue was treated with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (petroleum ether as eluent) to afford S4. Yield: 92\% $(254.3 \mathrm{mg})$. The spectra are consistent with the compound reported in the literature. ${ }^{4} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 8 \mathrm{H}), 5.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.

The synthetic procedures for $\mathbf{1 b}$ is similar with that of $\mathbf{1 a}$ but with $\mathbf{S 4}(30.4 \mathrm{mg}, 0.11 \mathrm{mmol})$ instead of S2. A pale-yellow precipitate was finally obtained. Yield: $85 \%(61.9 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.56-7.42(\mathrm{~m}, 23 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta(\mathrm{ppm}) 149.09,144.34,141.96,138.06,136.63,134.50,134.36,134.00,131.58,131.56,130.31$, $129.76,129.65,129.21,129.10,127.99,127.74,127.05,126.54,124.43,124.41,116.52,102.91$ and 102.64. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 42.84$.

Synthesis of 1c

S5, S6 were prepared according to literature procedures. ${ }^{5}$ The synthetic procedures for 1 c is similar with that of 1a but with $\mathbf{S 6}(22.4 \mathrm{mg}, 0.11 \mathrm{mmol})$ instead of $\mathbf{S 2}$. A white precipitate was collected by filtration. Yield: $83 \%(54.8 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.58-7.4(\mathrm{~m}, 16 \mathrm{H}), 7.18-7.12$ $(\mathrm{m}, 3 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 146.09, 146.00, 134.51, $134.37,131.61,131.59,130.27,129.71,129.26,129.15,127.71,126.75,126.50,122.63$, 115.46,103.29, 103.02 and 23.52. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 42.83$.

Synthesis of 1b,

$\mathbf{S 7}, \mathbf{S 8}, \mathbf{S 9}$ were prepared according to literature procedures. ${ }^{6-8}$ The synthetic procedures for $\mathbf{1 b}^{\mathbf{}}{ }^{\prime}$ is similar with that of 1a but with $\mathbf{S 9}(31.9 \mathrm{mg}, 0.11 \mathrm{mmol})$ instead of $\mathbf{S 2}$. A pale yellow precipitate was finally obtained. Yield: $77 \%(57.3 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.66-7.63(\mathrm{~m}, 1 \mathrm{H})$, 7.54-7.42 (m, 16H), 7.40-7.36 (m, 1H), 7.27-7.2 (m, 1H), 7.03-7.02 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 148.82,144.54$, $137.75,136.62,134.35,134.03,131.57,131.54,129.76,129.59,129.21,129.16,129.10,128.68$, 127.62, 126.93, 126.49, 124.39, 124.36, 115.71, 102.91, 102.65 and 21.27. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ (162 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 42.82$.

Synthesis of 3-3'

$\mathbf{S 4} / \mathbf{S 9}(1 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(691,5 \mathrm{mmol})$ were mixed together in $\mathrm{MeOH}(10 \mathrm{~mL})$. The solution was left under stirring for 2 h at room temperature. Then it was hydrolyzed with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (petroleum ether as eluent) to afford $\mathbf{3} / \mathbf{3}^{\prime}$. Yield: 85% (173.6 mg) for $\mathbf{3}$ and $81 \%(176.8 \mathrm{mg})$ for $\mathbf{3}^{\prime}$. NMR data were consistent with that reported in literature. ${ }^{3,8}$

Kinetic monitoring of the catalytic reactions.

In an NMR tube, enyne substrate $\mathbf{3}(3.7 \mathrm{mg}, 0.018 \mathrm{mmol})$, clusters $\mathbf{2 a - 2 d}(0.00054 \mathrm{mmol})$ and internal standard 1,3,5-trimethoxybenzene ($1 \mathrm{mg}, 0.006 \mathrm{mmol}$) were combined in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at 293 K . The disappearance of $\mathbf{3}$ was monitored by the ${ }^{1} \mathrm{H}$ NMR signal at 2.97 ppm and then the integrations of proton signals were converted into concentrations to obtain kinetic curves.

X-ray crystallographic analysis.

Single-crystal X-ray data for 2a, 2b, 2c and 2d was collected at $100 \mathrm{~K}, 173 \mathrm{~K}, 293 \mathrm{~K}, 293 \mathrm{~K}$ respectively, with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$) on a Rigaku Saturn 724/724+ CCD diffractometer with frames of oscillation range 0.5°. The selected crystal was mounted onto a nylon loop in polyisobutene and immersed in a low-temperature stream of dry nitrogen gas during data collection. All structures were solved by direct methods, and non-hydrogen atoms were located from difference Fourier maps. Non-hydrogen atoms were subjected to anisotropic refinement by full-matrix leastsquares on F^{2} using the SHELXTL program ${ }^{9}$ and Olex2 program ${ }^{10}$ unless otherwise noted. The diffused electron density in the remaining void was treated by SQUEEZE program on the PLATON platform. ${ }^{11}$ All figures were drawn by using Diamond program.

Crystal data for 2a (CCDC-2286449): $\mathrm{C}_{92} \mathrm{H}_{72} \mathrm{Au}_{4} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{~S}_{4}, M=2633.50$, triclinic, space group $P-1$ (No. 2), $\mathrm{a}=15.3967(2) \AA, \mathrm{b}=23.3887(2) \AA, \mathrm{c}=27.0694(3) \AA, \alpha=90.7460(10)^{\circ}, \beta=$ $91.7370(10)^{\circ}, \gamma=91.3300(10)^{\circ}, V=9739.91(19) \AA^{3}, Z=4, T=100.03(10) \mathrm{K}, D_{\mathrm{c}}=1.796 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure, refined on F^{2}, converged for 60249 unique reflections and 52739 observed reflections with I $>2 \sigma(I)$ to give $R_{1}=9.29 \%$ and $w R_{2}=25.56 \%$ and a goodness-of-fit $=1.068$. The SQUEEZE procedure of PLATON was used in the processing of 2a. 2a was refined as a two-component twin.

Crystal data for 2b (CCDC-2286452): $\mathrm{C}_{178} \mathrm{H}_{130} \mathrm{Au}_{11} \mathrm{~F}_{18} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{6} \mathrm{~S}_{6}, M=5389.65$, monoclinic, space group $C 2 / c$ (No. 15), $\mathrm{a}=29.4994$ (3) $\AA, \mathrm{b}=19.4956(2) \AA, \mathrm{c}=33.2461(3) \AA, \alpha=90^{\circ}, \beta=$ $100.7470(10)^{\circ}, \gamma=90^{\circ}, V=18784.7(3) \AA^{3}, Z=4, T=173(2) \mathrm{K}, D_{\mathrm{c}}=1.906 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure, refined on F^{2}, converged for 19076 unique reflections ($R_{\text {int }}=0.0414$) and 17707 observed reflections with $I>2 \sigma(I)$ to give $R_{1}=3.42 \%$ and $w R_{2}=8.85 \%$ and a goodness-of-fit $=1.028$. The SQUEEZE procedure of PLATON was used in the processing of $\mathbf{2 b}$.

Crystal data for 2c (CCDC-2286453): $\mathrm{C}_{284} \mathrm{H}_{216} \mathrm{Au}_{28} \mathrm{~F}_{24} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{P}_{8} \mathrm{~S}_{8}, M=10416.16$, orthorhombic, space group $C 2 / c$ (No. 15), $\mathrm{a}=47.3293(7) \AA, \mathrm{b}=20.0353(5) \AA, \mathrm{c}=41.2327(6) \AA, \alpha=90^{\circ}, \beta=$ $114.081(2)^{\circ}, \gamma=90^{\circ}, V=35696.4(13) \AA^{3}, Z=4, T=293(2) \mathrm{K}, D_{\mathrm{c}}=1.730 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure, refined on F^{2}, converged for 36215 unique reflections ($R_{\text {int }}=0.0526$) and 25596 observed reflections with $I>2 \sigma(I)$ to give $R_{1}=5.91 \%$ and $w R_{2}=18.09 \%$ and a goodness-of-fit $=1.060$. Four counterions were highly disordered and could not be reasonably located. The SQUEEZE procedure of PLATON was used in the processing of $\mathbf{2 c}$.

Crystal data for 2d (CCDC-2286454): $\mathrm{C}_{190} \mathrm{H}_{135} \mathrm{Au}_{14} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{5} \mathrm{~S}_{4}, M=5842.61$, triclinic, space group $P-1$ (No. 2), $\mathrm{a}=16.0520(4) \AA, \mathrm{b}=18.4672(5) \AA, \mathrm{c}=33.1755(8) \AA, \alpha=84.197(2)^{\circ}, \beta=$ $78.827(2)^{\circ}, \gamma=76.291(2)^{\circ}, V=9357.4(4) \AA^{3}, Z=2, T=293(2) \mathrm{K}, D_{\mathrm{c}}=2.074 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure, refined on F^{2}, converged for 31332 unique reflections ($R_{\text {int }}=0.0881$) and 23694 observed reflections with $I>2 \sigma(I)$ to give $R_{1}=6.58 \%$ and $w R_{2}=18.39 \%$ and a goodness-of-fit $=1.031$. The SQUEEZE procedure of PLATON was used in the processing of 2d. There is one A alert of "Check Calcd Resid. Dens. 1.10Ang From Au0A" can be ascribed to the Fourier truncation error induced by the metal atom.

Supplementary Figures

Fig. S1 The in situ electrospray ionization mass spectroscopy (ESI-MS) spectra of the reaction between $\mathbf{1 a}$ and one equivalent $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NTf}_{2}\right)$ in 1,2-dichloroethane.

Calcd. for $\mathrm{C}_{70} \mathrm{H}_{57} \mathrm{Au}_{3} \mathrm{O}_{2} \mathrm{P}_{3} 1613.2568\left(\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{~L}^{\mathrm{OMe}}\right)\right]^{+}\right)$, found 1613.2677;
Calcd. for $\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{Au}_{3} \mathrm{O}_{2} \mathrm{P}_{2} 1351.1657\left(\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~L}^{\mathrm{OMe}}\right)\right]^{+}\right)$, found 1351.1759;
Calcd. for $\mathrm{C}_{52} \mathrm{H}_{43} \mathrm{Au}_{2} \mathrm{O}_{2} \mathrm{P}_{2} 1155.2064\left(\left[\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~L}^{\mathrm{OMe}} \mathrm{H}\right)\right]^{+}\right)$, found 1155.2177;
Calcd. for $\mathrm{C}_{88} \mathrm{H}_{72} \mathrm{Au}_{4} \mathrm{O}_{2} \mathrm{P}_{4} 1036.1567\left(\left[\mathrm{Au}_{4}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{~L}^{\mathrm{OMe}}\right)\right]^{2+}\right)$, found 1036.1656.

Fig. S2 (a) Crystal structure of complex 2a. Hydrogen atoms, peripheral $\mathrm{NTf}_{2}{ }^{-}$counterions are omitted for clarity. Color coding: Au, orange; C, gray; P, green. Selected bond lengths (\AA): Au1-Au2 2.7825(8); Au1-Au4 3.0472(8); Au2-Au3 2.9791(7); Au3-Au4 2.7859(8); Au1-C1 2.214(12); Au2-C1 2.125(14); Au3-C2 2.177(13); Au4-C2 2.108(14). (b) Space-filling model of 2a.

Fig. S3 High resolution ESI-MS spectra of complex 2a in 1,2-dichloroethane.
Calcd. for $\mathrm{C}_{88} \mathrm{H}_{72} \mathrm{Au}_{4} \mathrm{O}_{2} \mathrm{P}_{4} 1036.1567\left(\left[\mathrm{Au}_{4}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{~L}^{\mathrm{OMe}}\right)\right]^{2+}\right)$, found 1036.1708.

Fig. S4 ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of complex 2a in $\mathrm{Cl}_{2} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{Cl}_{2}$. Only one peak in ${ }^{31} \mathrm{P}$ NMR spectrum illustrates that there is rapid exchange of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$units in solution.

Fig. S5 UV-vis (a) and emission (b) spectra of complex 2a in 1,2-dichloroethane.
(a)

(b)

(c)

$6 \mathrm{c}-2 \mathrm{e}$ ON $=1.84|\mathrm{e}|$

Fig. S6 AdNDP analysis of 2a (isovalue: 0.03). Therein, the PPh_{3} ligands were simplified as PH_{3} and the effect of proton on the organic skeleton was neglected. The two degenerate $3 c-2 e$ bonds mainly comprise $2 s, 2 p$ orbitals of central dicarbon (19.2 and 57.3%, respectively) and $6 s$ orbitals of digold (8.8 and 10.8%, respectively). The $6 c-2 e$ bonds mainly comprise $2 p$ orbitals of central dicarbon (46.5 and 43.1%, respectively) and $6 s$ orbitals of four gold atoms (about 2.0% each).

Fig. S7 The in situ ESI-MS spectra of the reaction between $\mathbf{1 b}$ and three equivalents $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NTf}_{2}\right)$ in 1,2-dichloroethane.

Calcd. for $\mathrm{C}_{52} \mathrm{H}_{41} \mathrm{Au}_{2} \mathrm{P}_{2} 1121.2009\left(\left[\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~L}^{\mathrm{Ph}} \mathrm{H}\right)\right]^{+}\right)$, found 1121.1849;
Calcd. for $\mathrm{C}_{52} \mathrm{H}_{40} \mathrm{Au}_{3} \mathrm{P}_{2} 1317.1596\left(\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~L}^{\mathrm{Ph}}\right)\right]^{+}\right)$, found 1317.1408;
Calcd. for $\mathrm{C}_{70} \mathrm{H}_{55} \mathrm{Au}_{3} \mathrm{P}_{3} 1579.2513\left(\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{~L}^{\mathrm{Ph}}\right)\right]^{+}\right)$, found 1579.2397.

Fig. S8 (a) Crystal structure of complex 2b. Hydrogen atoms, peripheral $\mathrm{NTf}_{2}{ }^{-}$counterions are omitted for clarity. Color coding: Au, orange; C, gray; PPh_{3}, green. Selected bond lengths (\AA): Au1Au2 2.7006(2); Au1-Au3 3.0766(2); Au2-Au3 3.0880(3); Au2-Au5 3.0413(3); Au2-Au6 2.7033(3); Au3-Au4 2.7141(3); Au3-Au5 2.7385(3); Au4-Au6 3.0719(3). (b) Space-filling model of 2b.

Fig. S9 High resolution ESI-MS spectra of complex 2b in 1,2-dichloroethane.
Calcd. for $\mathrm{C}_{172} \mathrm{H}_{130} \mathrm{Au}_{11} \mathrm{P}_{6} 1515.8306\left(\left[\mathrm{Au}_{11}\left(\mathrm{PPh}_{3}\right)_{6}\left(\mathrm{~L}^{\mathrm{Ph}}\right)_{4}\right]^{3+}\right)$, found 1515.8289;
Calcd. for $\mathrm{C}_{70} \mathrm{H}_{55} \mathrm{Au}_{3} \mathrm{P}_{3} 1579.2513\left(\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{~L}^{\mathrm{Ph}}\right)\right]^{+}\right)$, found 1579.2397;
Calcd. for $\mathrm{C}_{136} \mathrm{H}_{100} \mathrm{Au}_{10} \mathrm{P}_{4} 1913.1710\left(\left[\mathrm{Au}_{10}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{~L}^{\mathrm{Ph}}\right)_{4}\right]^{2+}\right)$, found 1913.1624;
Calcd. for $\mathrm{C}_{154} \mathrm{H}_{115} \mathrm{Au}_{10} \mathrm{P}_{5} 2044.2166\left(\left[\mathrm{Au}_{10}\left(\mathrm{PPh}_{3}\right)_{5}\left(\mathrm{~L}^{\mathrm{Ph}}\right)_{4}\right]^{2+}\right)$, found 2044.7019;
Calcd. for $\mathrm{C}_{118} \mathrm{H}_{85} \mathrm{Au}_{9} \mathrm{P}_{3} 3368.2932\left(\left[\mathrm{Au}_{9}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{~L}^{\mathrm{Ph}}\right)_{4}\right]^{+}\right)$, found 3368.2555;
Calcd. for $\mathrm{C}_{136} \mathrm{H}_{100} \mathrm{Au}_{9} \mathrm{P}_{4} 3629.3765\left(\left[\mathrm{Au}_{9}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{~L}^{\mathrm{Me}}\right)_{4}\right]^{+}\right)$, found 3629.3374 .

Fig. $\mathbf{S 1 2}$ High resolution ESI-MS spectra of the reaction between 1c and three equivalents $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NTf}_{2}\right)$ in 1,2-dichloroethane.

Calcd. for $\mathrm{C}_{147} \mathrm{H}_{38} \mathrm{Au}_{2} \mathrm{P}_{2} 1059.1853\left(\left[\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~L}^{\mathrm{Me}} \mathrm{H}\right)\right]^{+}\right)$, found 1059.1897;
Calcd. for $\mathrm{C}_{65} \mathrm{H}_{53} \mathrm{Au}_{3} \mathrm{P}_{3} 1517.2351\left(\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{~L}^{\mathrm{Me}}\right)\right]^{+}\right)$, found 1517.2395.

Fig. S13 (a) Crystal structure of complex 2c. Hydrogen atoms, peripheral $\mathrm{NTf}_{2}{ }^{-}$counterions are omitted for clarity. Color coding: Au, orange; C, gray; PPh_{3}, green. Selected bond lengths (\AA): Au1Au2 3.1930(8); Au1-Au3 2.7002(6); Au1-Au4 3.546; Au2-Au3 3.518; Au2-Au4 3.2087(9); Au2-Au5 2.8046(7); Au2-Au10 2.8913(9); Au3-Au4 3.0682(7); Au3-Au8 2.6841(6); Au3-Au9 2.9897(8); Au4Au6 2.7410(7); Au4-Au7 2.7269(6); Au5-Au10 2.8828(11); Au5-Au6 2.9011(11); Au5-Au11 2.7989(7); Au6-Au7 2.9308(7); Au6-Au11 2.8861(9); Au7-Au8 3.1686(7); Au7-Au13 3.0030(7); Au8-Au9 3.1638(7); Au8-Au13 2.6774(6); Au9-Au10 2.9945(7); Au9-Au12 2.7120(6); Au10-Au12 2.7464(7); Au11-Au12 3.2249(9); Au11-Au13 3.505; Au11-Au14 3.1106(7); Au12-Au13 3.0934(7); Au12-Au14 3.490; Au13-Au14 2.6900(6). (b) Space-filling model of 2c, indicating the $\pi-\pi$ stacking of methylnaphthalene and the steric hindrance of the peripheral ligand is responsible for the loss of one-fold C-Au bond.

Fig. S14 DFT calculation for the energy of the dissociation of Au_{28} to ${ }^{\mathrm{Me}} \mathrm{Au}_{14}$. This can be seen as the energy of breaking one $\mathrm{Au}-\mathrm{Au}$ bond and two-fold $\pi-\pi$ stacking interaction.

Fig. S15 Noncovalent interaction (NCI) map of $\mathbf{2 c}$. Isosurfaces of $\mathrm{RDG}=0.5$ are colored by $\operatorname{sign}\left(\lambda_{2}\right) \rho$ according to the color bar. ${ }^{12}$

Fig. S16 High resolution ESI-MS spectra of complex 2c in 1,2-dichloroethane.
Calcd. for $\mathrm{C}_{138} \mathrm{H}_{108} \mathrm{Au}_{14} \mathrm{P}_{4} 2323.1360\left(\left[\mathrm{Au}_{14}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{~L}^{\mathrm{Me}}\right)_{6}\right]^{2+}\right)$, found 2323.6321;
Calcd. for $\mathrm{C}_{156} \mathrm{H}_{123} \mathrm{Au}_{14} \mathrm{P}_{5} 2454.1815\left(\left[\mathrm{Au}_{14}\left(\mathrm{PPh}_{3}\right)_{5}\left(\mathrm{~L}^{\mathrm{Me}}\right)_{6}\right]^{2+}\right)$, found 2454.6816.

Fig. S17 UV-vis (a) and emission (b) spectra of complex 2c in 1,2-dichloroethane.

Fig. $\mathbf{S 1 8}$ (a) Crystal structure of complex 2d. Hydrogen atoms, peripheral $\mathrm{NTf}_{2}{ }^{-}$counterions are omitted for clarity. Color coding: Au, orange; C, gray; P, green. Selected bond lengths (\AA): Au1-Au2 2.6129(9); Au1-Au3 2.8055(11); Au1-Au4 2.9070(11); Au2-Au3 3.0413(3); Au2-Au4 2.7033(3); Au2-Au5 2.7141(3); Au2-Au10 2.7385(3); Au3-Au4 3.4271(9); Au3-Au8 2.5956(17); Au3-Au9 2.7469(7); Au4-Au6 2.7397(9); Au4-Au7 2.7234(8); Au5-Au10 2.8255(8); Au5-Au6 3.1463(9); Au5Au11 2.8424(8); Au6-Au7 2.9653(10); Au6-Au12 2.7019(9); Au7-Au8 3.245(2); Au7-Au12 2.7832(8); Au8-Au9 2.867(5); Au8-Au13 2.696(3); Au9-Au10 3.2172(10); Au9-Au13 2.8777(8); Au10-Au11 2.6538(8); Au11-Au12 3.2067(8); Au11-Au13 3.1859(9); Au11-Au14 2.8636(9); Au12Au13 3.4410(8); Au12-Au14 2.8529(9); Au13-Au14 2.6412(8). (b) Space-filling model of 2d.

Fig. S19 ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of complex 2d in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. For low symmetry $\mathbf{2 d}$ cluster, we have trouble assigning its NMR signals, but the broad range of peaks in ${ }^{1} \mathrm{H}$ NMR and low chemical shifts in ${ }^{31} \mathrm{P}$ NMR prove the integrity of 2 d assembly.

Fig. S20 UV-vis (a) and emission (b) spectra of complex 2d in 1,2-dichloroethane. 2d exhibits a unique near-infrared luminescence.

Fig. $\mathbf{S 2 1}{ }^{1} \mathrm{H}$ NMR spectrum of the reaction process monitoring for $\mathbf{2 b}$ to $\mathbf{2 d}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S22 The assembly pattern of cluster 2d.

Fig. S23 High resolution ESI-MS spectra of complex 2d in 1,2-dichloroethane.
Calcd. for $\mathrm{C}_{186} \mathrm{H}_{135} \mathrm{Au}_{14} \mathrm{P}_{5} 2640.2279\left(\left[\mathrm{Au}_{14}\left(\mathrm{PPh}_{3}\right)_{5}\left(\mathrm{~L}^{\mathrm{Ph}}\right)_{6}\right]^{2+}\right)$, found 2640.2103.

Fig. S24 The stability test of catalyst 2a with 1,3,5-trimethoxybenzene as internal standard in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S25 (top) ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction process monitoring of 2a catalyzed cyclization of $\mathbf{3}$. NMR data of 4 and 5 were consistent with that reported in literature. ${ }^{13}$ (down) ${ }^{1} \mathrm{H}$ NMR expanded spectrum of the characteristic signals of $\mathbf{2 a}$.

Fig. S26 ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction process monitoring for the entire catalytic procedure of catalyst 2b.

Fig. S27 The stability test of catalyst 2b with 1,3,5-trimethoxybenzene as internal standard in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S28 (top) Partial enlarged ${ }^{1} \mathrm{H}$ NMR spectrum of characteristic peaks of complex 2b during the catalytic reaction in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. (down) ${ }^{31} \mathrm{P}$ NMR spectrum of catalyst $\mathbf{2 b}$. The characteristic peak of $\mathbf{2 b}$ had no obvious change, but a new peak of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$with low concentration appeared at 45.5 ppm . It was indicated that $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$was involved in the reaction process and a small portion decomposed into $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$.

Fig. S29 The TON of the reaction with clusters 2b. In a 5 mL glass bottle, enyne substrate $\mathbf{3}$ (18.5 mg , $0.09 \mathrm{mmol}), \mathbf{2 b}\left(1.0 \mathrm{mg}, 1.8^{*} 10^{-4} \mathrm{mmol}\right)$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at 293 K . After the reactions were completed, we added 1,3,5-trimethoxybenzene ($0.015 \mathrm{mmol}, 2.5 \mathrm{mg}$) as internal standard and analyze the reaction systems by ${ }^{1} \mathrm{H}$ NMR spectra. The TON of $\mathbf{2 b}$ is 403 .

Fig. S30 ESI-MS spectrum of catalyst 2b during the overcross catalytic reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Due to the inherent nature of $\mathbf{2 b}$, it was difficult to detect the completed molecular ion peak, and only some fragment peaks could be observed. Specially, we found symbolic gem-diaurated species (m / z values of 1135.2021) for $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$catalytic system (calcd. for $\mathrm{C}_{53} \mathrm{H}_{43} \mathrm{Au}_{2} \mathrm{P}_{2} 1135.2166\left(\left[\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~L}^{\mathrm{MePh}}\right)\right]^{+}\right)$.

According to the well-established mechanism, a rate law of the form: rate $=-\boldsymbol{k}(\boldsymbol{k} 1, \boldsymbol{k} 2, \boldsymbol{k} 3)\left[A u_{11}\right][3]=-K_{\text {obs }}[3]$ can be derived .

Fig. S31 Proposed mechanism for the cyclization reaction catalyzed by $\mathbf{2 b}$ and the kinetic analyses of the reaction.

Fig. S32 (top) ${ }^{1} \mathrm{H}$ NMR monitoring of the catalytic procedure of catalyst 2c. Red lines represent the cluster structure peak, and blue lines represent the decline of the alkyne peak. (down) ${ }^{1} \mathrm{H}$ NMR spectrum of the entire catalytic procedure.

Fig. S33 The TON of the reaction with clusters 2c. In a 5 mL glass bottle, enyne substrate $\mathbf{3}$ (10.3 mg , $0.05 \mathrm{mmol})$, $\mathbf{2 c}\left(1.0 \mathrm{mg}, 1^{*} 10^{-4} \mathrm{mmol}\right)$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ at 293 K . After the reactions were completed, we added $1,3,5$-trimethoxybenzene ($0.015 \mathrm{mmol}, 2.5 \mathrm{mg}$) as internal standard and analyze the reaction systems by ${ }^{1} \mathrm{H}$ NMR spectra. The TON of 2c is 341 .

Fig. $\mathbf{S 3 4}$ (a) Pseudo-first-order kinetic curves of 2c catalyzed reactions. (b) Kinetic curves of 2c depended on the catalyst concentration.

Fig. S35 ESI-MS spectrum of catalyst 2c during the overcross catalytic reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The characteristic peak of $\mathbf{2 c}$ had no obvious change and gem-diaurated species for $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$catalytic system were not found.

According to the well-established mechanism, a rate law of the form: rate $=\boldsymbol{- k}(\boldsymbol{k} 1, \boldsymbol{k} 2)\left[{ }^{\mathrm{Me}} \mathrm{Au}_{14}\right][3]=-\boldsymbol{K}_{\text {obs }}[3]$ can be derived.

$$
\begin{gathered}
{\left[\mathrm{Au}_{28}\right] \rightleftharpoons 2\left[{ }^{\mathrm{Me}} \mathrm{Au} \mathrm{u}_{14}\right], K_{\mathrm{eq}}=\frac{\left[\mathrm{Me}^{\mathrm{A}} \mathrm{u}_{14}\right]^{2}}{\left[\mathrm{Au}_{28}\right]},\left[\mathrm{Me}^{\mathrm{Au}} \mathrm{u}_{14}\right]=\left[K_{\mathrm{eq}}\left[\mathrm{Au}_{28}\right]\right]^{1 / 2}} \\
\text { Thus, rate }=-k\left(k 1, k 2, K_{\mathrm{eq}}\right)\left[\mathrm{Au}_{28}\right]^{1 / 2}[3]
\end{gathered}
$$

Fig. S36 Proposed mechanism for the cyclization reaction catalyzed by 2 c and the kinetic analyses of the reaction.

Fig. $\mathbf{S 3 7}{ }^{1} \mathrm{H}$ NMR spectrum of the reaction process monitoring of 2d catalyzed cyclization of 3.

2a-IV-L

2a-IV-R

2a-V-L

2a-V-R

2b-IV-L

2b-IV-M

2b-V-L

2b-V-M

2c-IV-T

2c-IV-M

$2 \mathrm{c}-\mathrm{V}$-T

2c-V-M

2c-VI

Fig. S38 DFT results for energies ($\mathrm{kcal} \mathrm{mol}^{-1}$) of the cluster stability. (top) Comparison of the energetics (ΔE) of different dissociation types of metal clusters 2a-2c. (down) The structures of dissociation products, IV represents that clusters undergo the removal of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$ fragment, \mathbf{V} represents that clusters undergo synergistic coordination of the alkyne and dissociation of the PPh_{3}, and VI depicts the pathway for the dissociation of $\mathbf{2 c}$ into two ${ }^{M e} \mathbf{A u}_{14}$ units. There are two chemical non-equivalent Au sites in each structure: L, left; R, right; M , middle; T , top.

2a-I -L : $\mathrm{Au}_{3}+$ [alkyne-Au($\left.\left.\mathrm{PPh}_{3}\right)\right]^{+}$

2b- I -M : Au $\mathbf{1 0}^{+}$+ alkyne-Au($\left.\left.\mathrm{PPh}_{3}\right)\right]^{+}$

2a-II-L: Au_{4} + alkyne

2b-II-M : Au Al_{11} + alkyne

2c-III: ${ }^{M e} \mathrm{Au}_{14}+$ alkyne

Fig. S39 Complementary structures of intermediates of clusters 2a-2c in Figure 5 (L, left; R, right; M, middle).

atomic charge	C 1 (5-exo-dig)	C 2 (6-endo-dig)
Hirshfeld	0.0152	-0.0609
Mulliken	0.177	-0.205
ADCH	-0.150	-0.409

Fig. S40 Atomic charge calculation for $\left[\text { alkyne- } \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$. The Hirshfeld, Mulliken and ADCH actomic charge are more positive for C 1 than C 2 , which indicated C 1 is more electrophilic than C 2 and easily attacked by alkenyl group to give five-membered ring product.

5-TS1

5-In1

5-TS2

5-In2

5-TS3

4-TS1

4-In1

4-TS2

4-In2

4-TS3

Fig. S41 Potential energy profile of single-point energies (for $\mathbf{2 b}$ and $\mathbf{A u _ { 1 0 }}$) combined with Gibbs free energy (for mononuclear species). Gibbs free energies and single point energies are in kcal mol ${ }^{-1}$. Relative energies ($\mathrm{kcal} \mathrm{mol}^{-1}$): $\mathbf{P P h}_{\mathbf{3}} \mathbf{A u N T f}_{\mathbf{2}}+\mathbf{A u}_{\mathbf{1 0}}+\mathbf{a l k y n e}=0, \mathbf{2 b}+$ alkyne $=19.8,\left[\mathbf{a l k y n e}-\mathbf{A u}\left(\mathbf{P P h}_{3}\right)\right]^{+}+\mathbf{N T f}_{\mathbf{2}}{ }^{-}+\mathbf{A u}_{\mathbf{1 0}}=4.4, \mathbf{4 - T S 1}+\mathbf{A u}_{\mathbf{1 0}}=19.1, \mathbf{4}-\mathbf{I n} \mathbf{1}+\mathbf{A u} \mathbf{1 0}_{\mathbf{1 0}}=-2.3$, $\mathbf{4 - T S} 2+\mathbf{A u}_{10}=5.2,4-\mathbf{I n} 2+\mathbf{A u}_{10}=-3.1, \mathbf{4 - T S} 3+\mathbf{A u}_{\mathbf{1 0}}=-2.3, \mathbf{4}+\mathbf{P P h}_{\mathbf{3}} \mathbf{A u N T f}_{\mathbf{2}}+\mathbf{A u}_{\mathbf{1 0}}=-$ $36.8 .5-\mathbf{T S} 1+\mathbf{A u}_{\mathbf{1 0}}=20.9,5-\mathbf{I n} 1+\mathbf{A u}_{\mathbf{1 0}}=-5.0,5-\mathbf{T S} 2+\mathbf{A u}_{\mathbf{1 0}}=-3.9, \mathbf{5 - I n 2}+\mathbf{A u}_{\mathbf{1 0}}=-23.3,5-$ $\mathbf{T S 3}+\mathbf{A u}_{\mathbf{1 0}}=-18.4, \mathbf{5}+\mathbf{P P h}_{\mathbf{3}} \mathbf{A u N T f}_{\mathbf{2}}+\mathbf{A u}_{\mathbf{1 0}}=-56.9$.

Supplementary Spectrum.

Fig. S42 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 a}$.

Fig. $\mathbf{S 4 3}{ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 a}$.

Fig. S44 ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 1a

Fig. $\mathbf{S 4 5}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 b}$.

Fig. $\mathbf{S 4 6}{ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 b}$.

Fig. S47 ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 b}$.

Fig. $\mathbf{S 4 8}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 c}$.

Fig. $\mathbf{S 4 9}{ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 c}$.

Fig. S50 ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 c}$.

Fig. $\mathbf{S 5 1}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 b}$ '.

Fig. S52 ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 b}$ '.

Fig. S53 ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 b}$ '.

Supplementary References.

1 Y. Suzuki, S. Naoe, S. Oishi, N. Fujii and H. Ohno, Org. Lett., 2012, 14, 326-329.
2 R. K. Mohamed, S. Mondal, J. V. Guerrera, T. M. Eaton, T. E. Albrecht-Schmitt, M. Shatruk and I. V. Alabugin, Angew. Chem. Int. Ed., 2016, 55, 12054-12058.

3 S. V. Gagnier and R. C. Larock, J. Am. Chem. Soc., 2003, 125, 4804-4807.
4 J. Aziz, G. Frison, P. Le Menez, J.-D. Brion, A. Hamze and M. Alami, Adv. Synth. Catal., 2013, 355, 3425-3436.

5 S. García-Rubín, C. González-Rodríguez, C. García-Yebra, J. A. Varela, M. A. Esteruelas and C. Saá, Angew. Chem. Int. Ed., 2014, 53, 1841-1844.

6 K. Shibasaki and H. Togo, Tetrahedron, 2021, 79, 131864.
7 B.-B. Zhu, W.-B. Ye, Z.-T. He, S.-S. Zhang, C.-G. Feng and G.-Q. Lin, ACS Catal., 2021, 11, 12123-12132.
8 T. Miura and N. Iwasawa, J. Am. Chem. Soc., 2002, 124, 518-519.
9 G. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.
10 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.

11 (a) P. van der Sluis and A. L. Spek, Acta Cryst. A, 1990, 46, 194-201; (b) A. Spek, J. Appl. Cryst., 2003, 36, 7-13.
12 M. E. Casida, J. Mol. Struct. THEOCHEM, 2009, 914, 3-18.
13 P.-F. Li, C.-B. Yi, S.-J. Ren and J. Qu, Adv. Synth. Catal., 2016, 358, 2088-2092.

