Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Palladium-Catalyzed Asymmetric [4+3] Cycloaddition of Methylene-Trimethylenemethane: Access to Seven-Membered

Exocyclic Axially Chiral Allenes

Yafei Wu^a , Zhuo Wang^a , Yuqian Shan^a , Yukun Ma^a , Teng Li^a , Chunhao Yuan^{c*} , Hongchao Guo^{b*} and Biming Mao^{a*}

^a School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China. E-mail: <u>maobiming@sdfmu.edu.cn</u>

^b Department of Applied Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.

^c School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.

Table of Contents

General Information	S2
The stereochemistry analysis and the proposed transition state TS-1	S3
Further optimizations	S4
Synthesis of Substrates 1 and 2	S5
Characterization Data of the Allene Donors 1b, 1c, 1e, 1f, 1g, 1j	S6
General Procedure for Preparation of Racemic [4+3] Products	S8
General Procedure for Preparation of Chiral [4+3] Products	S8
Characterization Data of the Products 3	S9
Scaled-up Synthesis of the Product 3ba	S26
Transformations of the Product 3ia and 3ba	S26
References	S28
¹ H and ¹³ C NMR Spectra of All Products	S29
HPLC Chromatograms of All Products	S72
X-Ray Crystallographic Data of 3ba and 6	S109

General Information

All reactions were performed under Ar atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. Reactions were monitored through thin layer chromatography (TLC) on silica gel-precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200-300 mesh). NMR spectra were recorded on a Bruker spectrometer at 800 MHz (¹H NMR), 201 MHz (¹³C NMR). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), and integral.Data for ¹³C NMR spectra are reported in terms of chemical shift. Optical rotation was obtained on a Rudolph Autopol VI automatic polarimeter. Melting points were determined by an X-4 digital micro melting point apparatus. Accurate mass measurements were performed using a Bruker micrOTOF-QII instrument with the ESI-MS technique. HPLC analysis was performed on DIONEX UltiMate 3000, UV detection monitored at 210 nm or 254 nm, using a Chiralcel AD-H column, Chiralcel OX-H column, Chiralcel AS-H column, Chiralpak IA column, Chiralpak IB column and Chiralpak IC column with nhexane and *i*-PrOH as the eluent. X-ray crystallographic data were collected using a Bruker D8 Venture.

Starting materials and reagents were purchased directly from commercial suppliers and used without further purifications. All solvents used as reaction medium were distilled before the use. The allene TMM donors $1^{[1]}$ and benzofuran-derived azadienes $2^{[2]}$ were synthesized using known literature procedures.

The stereochemistry analysis and the proposed transition state TS-1

Figure A. The stereochemistry analysis.

We propose two possible configurations separately (Config. A and B) for key intermediate to explain the opposite diastereoselectivity when using chiral ligand L7. Due to steric hindrance, the bulky palladium complex and the R-substituent of the allene will be placed on opposing faces, resulting in the competition of two configurations, and the configuration A is favorable (Fig. A). The sterically crowded chiral ligand dominates so that the carbanion of the intermediate **A** attacks at the *Si* face of the olefinic bond in the benzofuranderived azadiene **2** in the transition state **TS-1** (Fig. B). It could be observed from bottom to top in **TS-1** in the Fischer projection.

Figure B. The proposed transition state **TS-1**.

Further optimizations

Figure C. Other azadiene, unsaturated ketone, diene and allenes tested in the reaction.

Synthesis of Substrates 1 and 2

A: The substrates 1 were synthesized according to previous reported protocols.^[1]

A solution of LDA (1.2 equiv, 2 M in THF) was dropwise to a solution of tert-butyl prop-2-yn-1-yl carbonate (1.0 equiv) in THF (0.2 M) at -78 °C under argon atmosphere and the reaction mixture was stirred for 1 h. The corresponding aldehyde (1.2 equiv) was then added and the solution was stirred at room temperature for 2 h. The reaction was quenched by addition of saturated aqueous NH₄Cl solution, the organic phase was separated, and the aqueous phase was extracted with ethyl acetate. The combined organic fractions were dried over MgSO₄, filtered, and concentrated in vacuo. The crude solid was purified by silica gelchromatography (10% EtOAc/PE) to yield a yellow oil.

To a solution of the corresponding alcohol (1.0 equiv), triethylamine (1.2 equiv), and DMAP (0.2 equiv) in CH₂Cl₂ (0.2 M) at 0 °C was added methanesulfonyl chloride (1.1 equiv). The solution was warmed to room temperature and stirred for 30 min while being monitored by TLC. The reaction mixture washed twice with water, dried over MgSO₄. and concentrated by rotary evaporation. The crude oil was used immediately in the next reaction without further purification or characterization. A solution of LiBr (1.0 equiv) and CuBr (1.0 equiv) in THF (0.4 M) was stirred for 15 min at room temperature. The reaction mixture was then cooled to -78 °C and a solution of ((trimethylsilyl)methyl) magnesium chloride (1.0 M in THF, 1.0 equiv) was added. The solution stirred at this temperature for 15 min, then the crude mesylate (1.0 equiv) in THF was added followed by dry HMPA. The reaction was warmed to room temperature, stirred 30 min, then quenched with saturated aqueous NH₄Cl. The organic phase was separated, and the aqueous phase was extracted three times with petroleum ether. The combined organic extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporation. The crude oil was purified by column chromatography on silica gel (1-5%Et₂O/PE) to give a yellow oil.

B: The substrates **2** (benzofuran-derived azadiene) : All benzofuran-derived azadienes (**2**) were prepared by the reported procedure.^[2]

Characterization Data of the Allene Donors 1b, 1c, 1e, 1f, 1g, 1j *tert*-butyl (2-((trimethylsilyl)methyl)hexa-2,3-dien-1-yl) carbonate (1b)

1b was prepared according to the general procedure as described above and purified by column chromatography on silica gel (0-5% Et₂O/PE) to give a yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 5.17 (ddd, J = 6.4, 3.9, 2.3 Hz, 1H), 4.43 – 4.36 (m, 3H), 1.95 (ddd, J = 7.9, 6.4, 2.0 Hz, 2H), 1.43 (s, 11H), 0.95 (t, J = 7.5 Hz, 3H), 0.00 (s, 9H). ¹³C NMR (201 MHz, CDCl₃) δ 202.9, 154.8, 99.0, 95.9, 95.9, 83.1, 70.3, 29.1, 23.8, 19.6, 14.8, 0.0. HRMS (ESI) calcd for C₁₅H₂₉O₃Si⁺ [M+H]⁺ 285.1880, found 285.1890.

tert-butyl (2-((trimethylsilyl)methyl)hepta-2,3-dien-1-yl) carbonate (1c)

1c was prepared according to the general procedure as described above and purified by column chromatography on silica gel (0-5% Et₂O/PE) to give a yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 5.12 (tt, *J* = 4.4, 2.3 Hz, 1H), 4.42 – 4.33 (m, 2H), 1.92 (q, *J* = 7.2 Hz, 2H), 1.53 – 1.27 (m, 13H), 0.87 (t, *J* = 7.4 Hz, 3H), 0.00 (s, 9H). ¹³C NMR (201 MHz, CDCl₃)

 δ 203.5, 154.8, 98.3, 93.9, 83.1, 70.4, 32.7, 32.7, 29.1, 23.7, 19.6, 14.9, 0.0. HRMS (ESI) calcd for C₁₆H₃₁O₃Si⁺ [M+H]⁺ 299.2037, found 299.2037.

tert-butyl (2-((trimethylsilyl)methyl)trideca-2,3-dien-1-yl) carbonate (1e)

1e was prepared according to the general procedure as described above and purified by column chromatography on silica gel (0-5% Et₂O/PE) to give a yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 5.19 – 5.07 (m, 1H), 4.39 (dd, J = 4.3, 2.4 Hz, 2H), 1.97 – 1.86 (m, 2H), 1.44 (s, 9H), 1.37 – 1.14 (m, 16H), 0.83 (t, J = 7.1 Hz, 3H), 0.00 (s, 9H). ¹³C NMR (201 MHz, CDCl₃) δ 203.5, 154.8, 98.3, 94.1, 83.1, 70.4, 33.2, 30.9, 30.8, 30.6, 30.5, 30.4, 29.1, 23.9, 19.5, 15.4, 0.0. HRMS (ESI) calcd for C₂₂H₄₃O₃Si⁺

[M+H]⁺ 383.2976, found 383.2968.

tert-butyl (6,6-dimethyl-2-((trimethylsilyl)methyl)hepta-2,3-dien-1-yl) carbonate (1f)

If was prepared according to the general procedure as described above and purified by column chromatography on silica gel (0-5% Et₂O/PE) to give a yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 5.10 (ddt, *J* = 10.3, 4.8, 2.3 Hz, 1H), 4.48 – 4.32 (m, 2H), 1.87 – 1.78 (m, 2H), 1.51 – 1.22 (m, 11H), 0.86 (s, 9H), 0.00 (s, 9H). ¹³C NMR (201

 $\label{eq:MHz, CDCl_3} \begin{array}{l} \delta \ 204.8, 154.8, 97.1, 90.7, 83.1, 70.4, 45.3, 32.3, 30.3, 29.1, 19.5, 0.0. \ HRMS \\ (ESI) \ calcd \ for \ C_{18}H_{34}O_3Si^+ \ [M+H]^+ \ 327.2350, \ found \ 327.2357. \end{array}$

tert-butyl (4-cyclobutyl-2-((trimethylsilyl)methyl)buta-2,3-dien-1-yl) carbonate (1g)

1g was prepared according to the general procedure as described above and purified by column chromatography on silica gel (0-5% Et₂O/PE) to give a yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 5.25 (dt, *J* = 6.7, 2.4 Hz, 1H), 4.41 (d, *J* = 2.5 Hz, 2H), 2.86 – 2.76 (m, 1H), 2.14 – 1.98 (m, 2H), 1.89 – 1.68 (m, 4H), 1.44 (s, 9H), 1.31 (dd, *J* = 5.7, 2.5 Hz, 2H),

0.00 (s, 9H). ¹³C NMR (201 MHz, CDCl₃) δ 202.2, 154.7, 99.5, 99.4, 83.1, 70.3, 36.3, 30.3, 29.8, 29.1, 19.7, 19.6, 0.0. HRMS (ESI) calcd for $C_{17}H_{31}O_3Si^+$ [M+H]⁺ 311.2037, found 311.2028.

tert-butyl (5-phenyl-2-((trimethylsilyl)methyl)penta-2,3-dien-1-yl) carbonate (1j)

Ph **1j** was prepared according to the general procedure as described above and purified by column chromatography on silica gel (0-5% Et₂O/PE) to give a yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 7.28 – BocO **1j** 7.06 (m, 5H), 5.29 (ddd, J = 7.3, 4.9, 2.4 Hz, 1H), 4.41 (t, J = 2.5 Hz, 2H), 3.30 (dd, J = 7.3, 2.1 Hz, 2H), 1.43 (s, 9H), 1.32 (dd, J = 6.0, 2.4 Hz, 2H), 0.00 (s, 9H). ¹³C NMR (201 MHz, CDCl₃) δ 203.7, 154.7, 141.6, 129.8, 129.7, 129.6, 127.4, 99.2, 93.5, 83.2, 69.9, 37.4, 29.1, 19.5, 0.0. HRMS (ESI) calcd for C₂₀H₃₁O₃Si⁺ [M+H]⁺ 347.2037, found 347.2044.

General Procedure for Preparation of Racemic [4+3] Products

Under argon atmosphere, to a mixture of TMM donor 1 (0.20 mmol), benzofuranderived azadiene 2 (0.10 mmol) and catalyst $Pd_2(dba)_3 \cdot CHCl_3$ (2.5 mol%, 0.0025mmol) / *rac-L5* (7.5 mol%, 0.0075 mmol) in a Schlenk tube, 1 mL of 1, 4-dioxane were added at room temperature. The resulting mixture was stirred until the starting material were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc/PE= 1:25) to afford the corresponding racemic cycloaddition product *rac-3*.

General Procedure for Preparation of Chiral [4+3] Products

Under argon atmosphere, to a mixture of TMM donor 1 (0.20 mmol), benzofuranderived azadiene 2a (0.10 mmol) and catalyst Pd(dmdba)₂ (2.5 mol%, 0.0025mmol) / L7 (5.5 mol%, 0.0055 mmol) in a Schlenk tube, 1 mL of mesitylene were added at room temperature. The resulting mixture was stirred until the starting material were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc/PE= 1:25) to afford the corresponding chiral cycloaddition product 3.

Under argon atmosphere, to a mixture of TMM donor **1b** (0.20 mmol), benzofuranderived azadiene **2** (0.10 mmol) and catalyst $Pd(dmdba)_2$ (5 mol%, 0.005mmol) / **L7** (11 mol%, 0.011 mmol) in a Schlenk tube, 1 mL of mesitylene were added at room temperature. The resulting mixture was stirred until the starting material were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc/PE= 1:25) to afford the corresponding chiral cycloaddition product 3.

Characterization Data of the Products 3

(*R*)-3-((*S*)-3-methylbut-1-en-1-ylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3aa)

Prepared according to the general procedure as described above in 92% yield (37.4 mg), 6:1 dr and 98% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp =48 – 50°C; $[\alpha]^{25}_{D}$ = -53.1 (*c* 1.33, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.70 (d, *J* = 7.1 Hz, 1H), 7.47

-7.09 (m, 8H), 5.26 -5.12 (m, 1H), 4.66 (d, J = 15.4 Hz, 1H), 4.52 -4.40 (m, 1H), 4.28 -4.05 (m, 1H), 3.07 -2.72 (m, 5H), 2.36 -2.16 (m, 1H), 0.97 (dd, J = 10.6, 6.8 Hz, 6H). ¹³C NMR (201 MHz, CDCl₃) δ 201.7, 153.3, 140.7, 128.7, 128.6, 127.8, 127.7, 127.3, 127.2, 126.6, 124.6, 123.2, 120.4, 111.41, 111.39, 100.2, 98.5, 54.2, 45.3, 40.5, 34.5, 28.1, 22.5, 22.4. HRMS (ESI) calcd for C₂₄H₂₆NO₃S⁺ [M+H]⁺ 408.1628, found 408.1628. HPLC analysis: **3aa**, 98% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 210 nm), t_R= 12.363 min (minor), 19.780 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3ba)

Prepared according to the general procedure as described above in 95% yield (37.3 mg), 19:1 dr and 96% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp =140 - 142°C; $[\alpha]^{25}_{D}$ = -74.3 (*c* 1.60, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.76 - 7.58 (m, 1H), 7.39 - 7.04 (m, 8H),

5.16 (ddq, J = 6.2, 4.1, 2.2 Hz, 1H), 4.57 (d, J = 14.5 Hz, 1H), 4.39 (dd, J = 8.6, 5.1 Hz, 1H), 4.18 – 3.93 (m, 1H), 2.95 (dd, J = 14.1, 8.6 Hz, 1H), 2.72 (d, J = 11.7 Hz, 4H), 2.00 – 1.84 (m, 2H), 0.88 (td, J = 7.4, 1.3 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.9, 154.4, 153.2, 140.6, 128.7, 128.6, 127.8, 127.2, 126.7, 124.6, 123.2, 120.5, 119.5, 111.4, 97.9, 94.4, 54.1, 45.2, 40.5, 34.5, 21.8, 13.3. HRMS (ESI) calcd for C₂₃H₂₄NO₃S⁺ [M+H]⁺

394.1471, found 394.1465. HPLC analysis: **3ba**, 96% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), $t_R = 12.143$ min (minor), 23.803 min (major).

(*R*)-1-(methylsulfonyl)-3-((*S*)-pent-1-en-1-ylidene)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3ca)

Prepared according to the general procedure as described above in 50% yield (20.4 mg), 19:1 dr and 98% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -52.4 (*c* 0.94, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 – 7.58 (m, 1H), 7.41 – 7.02 (m, 8H),

5.08 (tt, J = 6.8, 2.1 Hz, 1H), 4.64 – 4.50 (m, 1H), 4.39 (dd, J = 8.4, 5.0 Hz, 1H), 4.06 (d, J = 14.3 Hz, 1H), 3.02 – 2.65 (m, 5H), 1.91 (hept, J = 7.7 Hz, 2H), 1.31 (dtt, J = 28.3, 14.1, 7.1 Hz, 2H), 0.82 (t, J = 7.3 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 203.4, 154.4, 153.2, 140.6, 128.7, 128.6, 127.8, 127.7, 127.2, 127.1, 126.7, 124.6, 123.2, 120.5, 119.5, 111.4, 97.1, 92.4, 54.1, 45.2, 40.5, 34.6, 30.7, 22.1, 13.6. HRMS (ESI) calcd for C₂₄H₂₆NO₃S⁺ [M+H]⁺ 408.1628, found 408.1625. HPLC analysis: **3ca**, 98% ee (IC, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 27.453 min (major), 32.047 min (minor).

(*R*)-3-((*S*)-hept-1-en-1-ylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3da)

Prepared according to the general procedure as described above in 80% yield (34.8 mg), >20:1 dr and 96% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -40.8 (*c* 0.80, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.75 – 7.64 (m, 1H), 7.43 – 7.15 (m,

8H), 5.17 (tt, J = 6.7, 2.2 Hz, 1H), 4.65 (d, J = 15.8 Hz, 1H), 4.46 (dd, J = 8.6, 5.1 Hz, 1H), 4.23 – 4.01 (m, 1H), 3.08 – 2.67 (m, 5H), 2.12 – 1.94 (m, 2H), 1.41 – 1.15 (m, 6H), 0.83 (t, J = 7.1 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 203.2, 154.4, 153.3, 140.6, 128.69, 128.67, 127.8, 127.2, 126.7, 124.6, 123.2, 120.4, 119.4, 111.4, 97.2, 92.7, 54.1, 45.3, 40.5, 34.5, 31.2, 28.6, 28.5, 22.4, 14.0. HRMS (ESI) calcd for C₂₆H₃₀NO₃S⁺ [M+H]⁺ 436.1941, found 436.1943. HPLC analysis: **3da**, 96% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 11.44 min (minor), 20.557 min (major).

(*R*)-1-(methylsulfonyl)-5-phenyl-3-((*S*)-undec-1-en-1-ylidene)-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3ea)

Prepared according to the general procedure as described above in 89% yield (43.8 mg), >20:1 dr and 96% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -59.4 (*c* 2.20, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.70 (ddt, *J* = 7.7, 5.2, 3.0

Hz, 1H), 7.47 – 7.17 (m, 8H), 5.17 (td, J = 6.9, 6.4, 3.4 Hz, 1H), 4.71 – 4.59 (m, 1H), 4.45 (dd, J = 8.6, 5.1 Hz, 1H), 4.20 – 4.07 (m, 1H), 3.06 – 2.74 (m, 5H), 1.47 – 1.18 (m, 14), 0.88 (t, J = 7.3 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 203.2, 154.4, 153.3, 140.7, 128.7, 128.6, 127.8, 127.2, 126.7, 124.6, 123.2, 120.4, 119.4, 111.4, 97.3, 92.7, 54.1, 45.4, 40.5, 34.5, 31.9, 29.6, 29.4, 29.3, 29.11, 28.9, 28.6, 22.7, 14.2. HRMS (ESI) calcd for C₃₀H₃₈NO₃S⁺ [M+H]⁺ 492.2567, found 492.2554. HPLC analysis: **3ea**, 96% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 10.123 min (minor), 18.617 min (major).

(*R*)-3-((*S*)-4,4-dimethylpent-1-en-1-ylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3fa)

Prepared according to the general procedure as described above in 70% yield (30.4 mg), 9:1 dr and 97% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp =52 – 54°C; $[\alpha]^{25}_{D}$ = -47.7 (*c* 1.00, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 – 7.60 (m,

1H), 7.37 – 7.12 (m, 8H), 5.04 (tt, J = 8.3, 2.1 Hz, 1H), 4.56 (s, 1H), 4.40 (dd, J = 8.3, 4.8 Hz, 1H), 4.07 (s, 1H), 2.98 (dd, J = 14.2, 8.3 Hz, 1H), 2.69 (d, J = 17.5 Hz, 4H), 1.82 (d, J = 8.2 Hz, 2H), 0.83 (d, J = 18.3 Hz, 9H). ¹³C NMR (201 MHz, CDCl₃) δ 204.4, 153.2, 140.6, 128.7, 128.6, 127.8, 127.7, 127.2, 126.7, 124.6, 123.2, 120.5, 119.6, 111.4, 95.7, 89.2, 53.9, 45.1, 43.6, 40.5, 34.7, 31.1, 29.1, 29.0. HRMS (ESI) calcd for C₂₆H₃₀NO₃S⁺ [M+H]⁺ 436.1941, found 436.1933. HPLC analysis: **3fa**, 97% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 9.67 min (minor), 16.79 min (major).

(*R*)-3-((*S*)-2-cyclobutylvinylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3ga)

Prepared according to the general procedure as described above in 96% yield (40.2 mg), 9:1 dr and 85% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = $62 - 64^{\circ}$ C; [α]²⁵_D= -51.8 (*c* 1.95, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.69 – 7.55 (m, 1H), 7.38 –

7.06 (m, 8H), 5.27 - 5.18 (m, 1H), 4.58 (d, J = 15.3 Hz, 1H), 4.38 (dd, J = 8.6, 5.1 Hz, 1H), 4.07 (d, J = 15.3 Hz, 1H), 3.04 - 2.62 (m, 6H), 2.03 (p, J = 8.0 Hz, 2H), 1.88 - 1.60 (m, 4H). ¹³C NMR (201 MHz, CDCl₃) δ 202.1, 154.4, 153.3, 140.6, 128.7, 128.6, 127.82, 127.80, 127.2, 126.7, 124.6, 123.2, 120.4, 119.5, 111.4, 98.4, 97.8, 54.1, 45.4, 40.5, 34.6, 34.3, 28.9, 28.8, 18.5. HRMS (ESI) calcd for C₂₅H₂₆NO₃S⁺ [M+H]⁺ 420.1628, found 420.1626. HPLC analysis: **3ga**, 85% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 16.073 min (minor), 28.217 min (major).

(*R*)-3-((*S*)-2-cyclohexylvinylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3ha)

Prepared according to the general procedure as described above in 89% yield (39.8 mg), 5.7:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = $61 - 64^{\circ}$ C; $[\alpha]^{25}_{D}$ = -67.2 (*c* 1.79, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 – 7.58 (m, 1H), 7.40 – 7.10

(m, 8), 5.08 (dt, J = 5.7, 2.5 Hz, 1H), 4.58 (d, J = 15.1 Hz, 1H), 4.38 (dd, J = 8.6, 5.3 Hz, 1H), 4.12 – 3.98 (m, 1H), 3.02 – 2.65 (m, 5H), 1.91 (ddd, J = 10.9, 7.7, 4.1 Hz, 1H), 1.70 – 1.45 (m, 5H), 1.26 – 0.87 (m, 5H). ¹³C NMR (201 MHz, CDCl₃) δ 202.2, 154.4, 153.3, 140.7, 128.7, 128.6, 127.9, 127.8, 127.2, 127.1, 126.7, 124.6, 123.23, 123.21, 120.4, 119.5, 111.4, 111.3, 98.7, 98.1, 54.3, 45.2, 40.5, 37.1, 34.5, 33.0, 32.9, 26.1, 25.93, 25.90. HRMS (ESI) calcd for C₂₇H₃₀NO₃S⁺ [M+H]⁺ 448.1941, found 448.1949. HPLC analysis: **3ha**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R= 19.553 min (minor), 21.077 min (major).

(*R*)-3-((*S*)-3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-ylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3ia)

Prepared according to the general procedure as described above in 73% yield (37.2 mg), >20:1 dr and 99% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -58.5 (*c* 1.50, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 – 7.58 (m, 1H), 7.37

- 7.18 (m, 8), 5.27 - 5.18 (m, 1H), 4.69 - 4.55 (m, 1), 4.41 (dd, J = 8.6, 4.9 Hz, 1H), 4.12 (d, J = 5.9 Hz, 3H), 3.04 - 2.99 (m, 1H), 2.75 (s, 4), 0.81 (s, 9), -0.01 (d, J = 14.1 Hz, 6). ¹³C NMR (201 MHz, CDCl₃) δ 202.2, 154.3, 153.3, 140.5, 128.7, 127.8, 127.3, 126.6, 124.7, 123.3, 120.3, 119.5, 111.4, 99.1, 93.5, 61.1, 53.5, 45.2, 40.6, 34.3, 25.9, 25.8, 18.3, -5.09, -5.12. HRMS (ESI) calcd for C₂₈H₃₆NO₄SSi⁺ [M+H]⁺ 510.2129, found 510.2132. HPLC analysis: **3ia**, 99% ee (IA, 2% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 15.677 min (minor), 28.797 min (major).

(*R*)-1-(methylsulfonyl)-5-phenyl-3-((*S*)-3-phenylprop-1-en-1-ylidene)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3ja)

Prepared according to the general procedure as described above in 77% yield (35.0 mg), 9:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp =68 - 70°C; $[\alpha]^{25}_{D}$ = -80.3 (*c* 1.08, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.69 - 7.62 (m, 1H),

7.40 – 7.04 (m, 13H), 5.42 (tdd, J = 6.5, 4.6, 2.9 Hz, 1H), 4.63 (s, 1H), 4.17 – 3.98 (m, 2H), 3.36 – 3.23 (m, 2H), 2.96 – 2.88 (m, 1H), 2.82 (s, 3H), 2.68 (dd, J = 13.9, 5.0 Hz, 1H). ¹³C NMR (201 MHz, CDCl₃) δ 203.5, 154.3, 153.3, 140.7, 139.4, 128.8, 128.7, 128.6, 128.4, 128.3, 127.8, 127.7, 127.3, 127.2, 126.6, 126.5, 124.6, 123.3, 123.2, 120.1, 111.5, 111.4, 98.8, 93.1, 53.4, 45.7, 40.6, 35.1, 34.7. HRMS (ESI) calcd for C₂₈H₂₆NO₃S⁺ [M+H]⁺ 456.1628,found 456.1620. HPLC analysis: **3ja**, 95% ee (OX-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 29.707 min (minor), 55.623 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(2-fluorophenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bb)

Prepared according to the general procedure as described above in 76% yield (31.2 mg), >20:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -69.3 (*c* 1.23, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.68 (dd, *J* = 7.4, 1.6 Hz, 1H), 7.36 – 7.03 (m, 7H), 5.29 – 5.19 (m, 1H), 4.68 (dd, *J* = 10.1, 5.5 Hz, 1H), 4.46 (d, *J*

= 113.6 Hz, 2H), 3.16 (s, 3H), 2.98 – 2.81 (m, 2H), 2.09 – 1.91 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.9, 160.5 (d, J = 246.2 Hz), 153.4, 152.9, 129.6 (d, J = 4.1 Hz), 128.9 (d, J = 8.2 Hz), 127.6 (d, J = 13.8 Hz), 126.4, 124.7, 124.5 (d, J = 3.4 Hz), 123.2, 120.0, 119.9, 115.6= (d, J = 22.1 Hz), 111.5, 98.2, 95.0, 54.0, 40.8, 40.1, 34.2, 21.9, 13.3. HRMS (ESI) calcd for C₂₃H₂₃FNO₃S⁺ [M+H]⁺ 412.1377, found 412.1385. HPLC analysis: **3bb**, 95% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 9.917 min (minor), 14.07 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(3-fluorophenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bc)

Prepared according to the general procedure as described above in 70% yield (28.8 mg), 15.5:1 dr and 96% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -51.0 (*c* 0.98, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.61 (dd, *J* = 6.0, 3.1 Hz, 1H), 7.34 – 7.15 (m, 4H), 7.02 – 6.84 (m, 3H), 5.18 (tt, *J* = 6.5, 2.2 Hz, 1H), 4.58 (d, *J* =

15.5 Hz, 1H), 4.37 (dd, J = 8.6, 5.1 Hz, 1H), 4.08 (d, J = 15.2 Hz, 1H), 3.00 – 2.69 (m, 5H), 2.03 – 1.84 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.8, 162.9 (d, J = 246.6 Hz), 153.66, 153.3, 143.1 (d, J = 6.9 Hz), 130.2 (d, J = 8.2 Hz), 126.5, 124.8, 123.6 (d, J = 2.9 Hz), 123.3, 120.4, 119.6, 114.9 (d, J = 22.1 Hz), 114.1 (d, J = 20.8 Hz), 111.5, 97.8, 94.7, 54.0, 45.1, 40.7, 34.5, 21.9, 21.8, 13.2. HRMS (ESI) calcd for C₂₃H₂₃FNO₃S⁺ [M+H]⁺ 412.1377, found 412.1368. HPLC analysis: **3bc**, 96% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 12.157 min (minor), 20.637 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(4-fluorophenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bd)

Prepared according to the general procedure as described above in 88% yield (36.1 mg), 11.5:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -53.8 (*c* 1.90, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.71 – 7.60 (m, 1H), 7.40 – 7.21 (m, 5H), 7.11 – 6.92 (m, 2H), 5.34 – 5.18 (m, 1H), 4.75 – 4.51 (m, 1H), 4.41 (dd, *J*

= 8.9, 5.2 Hz, 1H), 4.25 – 4.10 (m, 1H), 3.02 - 2.72 (m, 5H), 2.01 (qd, J = 7.4, 6.0 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.7, 161.9 (d, J = 245.9 Hz), 154.2, 153.3, 136.4 (d, J = 3.1 Hz), 129.5, 129.4 (d, J = 7.7 Hz), 126.5, 124.7, 123.3, 120.2, 119.4, 115.5 (d, J = 21.4 Hz), 111.5, 97.9, 94.7, 54.0, 53.9, 44.9, 40.8, 34.8, 21.9, 21.8, 13.5, 13.2. HRMS (ESI) calcd for C₂₃H₂₃FNO₃S⁺ [M+H]⁺ 412.1377, found 412.1372. HPLC analysis: **3bd**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 16.15 min (minor), 31.17 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(2-chlorophenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3be)

Prepared according to the general procedure as described above in 91% yield (38.8 mg), >20:1 dr and 98% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = $62 - 64^{\circ}$ C; $[\alpha]^{25}_{D}$ = -81.0 (*c* 1.44, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.65 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.49 - 7.37 (m, 1H), 7.35 - 7.11 (m, 6H), 5.26 (s, 1H), 4.85 (dd, *J* = 11.0, 5.0

Hz, 1H), 4.49 (d, J = 122.0 Hz, 2H), 3.21 (s, 3H), 3.00 – 2.66 (m, 2H), 2.04 – 1.87 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.7, 153.6, 153.5, 138.2, 133.3, 129.8, 129.7, 129.5, 128.6, 128.5, 127.4, 126.3, 124.7, 123.3, 120.0, 119.7, 111.6, 111.5, 98.3, 95.3, 53.8, 43.7, 41.1, 33.7, 21.9, 13.3. HRMS (ESI) calcd for C₂₃H₂₃ClNO₃S⁺ [M+H]+ 428.1082, found 428.1081. HPLC analysis: **3be**, 98% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 10.177 min (minor), 12.233 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(3-chlorophenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bf)

Prepared according to the general procedure as described above in 76% yield (32.5 mg), 11:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp =118 - 120°C; $[\alpha]^{25}_{D}$ = -67.2 (*c* 1.25, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 - 7.52 (m, 1H), 7.38 - 7.04 (m, 7H), 5.19 (qd, *J* = 6.1, 5.0, 2.1 Hz, 1H), 4.67 - 4.45 (m, 1H), 4.34

(dd, J = 8.7, 5.1 Hz, 1H), 4.16 - 3.97 (m, 1H), 2.99 - 2.65 (m, 5H), 2.00 - 1.84 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.8, 153.6, 153.3, 142.6, 134.5, 130.0, 129.9, 128.0, 127.9, 127.4, 127.3, 126.48, 126.47, 126.2, 124.8, 123.3, 120.3, 119.6, 111.5, 97.7, 94.8, 54.0, 45.2, 40.74, 40.72, 34.5, 21.8, 13.3. HRMS (ESI) calcd for C₂₃H₂₃ClNO₃S⁺[M+H]⁺ 428.1082, found 428.1084. HPLC analysis: **3bf**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 13.467 min (minor), 22.813 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(4-chlorophenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bg)

Prepared according to the general procedure as described above in 76% yield (32.5 mg), 11.5:1 dr and 95% ee.. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 59 – 62°C; $[\alpha]^{25}_{D}$ = -78.5 (*c* 1.34, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 (dd, *J* = 6.3, 2.9 Hz, 1H), 7.46 – 7.14 (m, 8H), 5.25 (tt, *J* = 6.1, 2.6 Hz, 1H), 4.64 (d, *J* = 14.5 Hz, 1H), 4.40 (dd, *J* = 9.0, 5.1 Hz, 1H), 4.17 (d, *J* = 14.3 Hz, 1H), 3.07

-2.67 (m, 5H), 2.05 -1.91 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.6, 153.9, 153.3, 139.2, 133.0, 130.9, 129.3, 129.2, 128.9, 128.8, 126.5, 124.8, 123.3, 120.2, 119.5, 111.5, 97.9, 94.8, 94.7, 53.9, 45.1, 40.8, 34.7, 21.8, 13.2. HRMS (ESI) calcd for C₂₃H₂₃ClNO₃S⁺[M+H]⁺ 428.1082, found 428.1073. HPLC analysis: **3bg**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 19.493 min (minor), 33.68 min (major).

(*R*)-5-(2-bromophenyl)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bh)

Prepared according to the general procedure as described above in 90% yield (42.3 mg), >20:1 dr and 98% ee.. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 66 – 68°C; $[\alpha]^{25}_{D}$ = -71.6 (*c* 1.76, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.73 – 7.55 (m, 2H), 7.40 – 7.10 (m, 6H), 5.27 (s, 1H), 4.83 (dd, *J* = 11.1, 5.0 Hz, 1H), 4.49 (d, *J* = 126.1 Hz,

2H), 3.22 (s, 3H), 2.93 (ddd, J = 13.7, 5.0, 1.1 Hz, 1H), 2.74 (ddd, J = 13.5, 11.0, 2.2 Hz, 1H), 1.98 (qd, J = 7.4, 6.1 Hz, 2H), 1.02 – 0.87 (m, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.3, 153.3, 153.1, 139.5, 132.7, 132.6, 129.2, 128.5, 127.7, 125.9, 124.4, 123.6, 122.9, 119.6, 119.2, 111.3, 97.9, 94.9, 53.4, 46.0, 40.8, 33.6, 21.5, 12.9. HRMS (ESI) calcd for C₂₃H₂₃BrNO₃S⁺[M+H]⁺ 472.0577, found 472.0565. HPLC analysis: **3bh**, 98% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 12.39 min (major), 13.243 min (minor).

(*R*)-5-(3-bromophenyl)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bi)

Prepared according to the general procedure as described above in 78% yield (36.7 mg), 9:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 107 – 110°C; $[\alpha]^{25}_{D}$ = -57.5 (*c* 1.06, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.74 – 7.63 (m, 1H), 7.55 – 7.02 (m, 7H), 5.28 (ddq, *J* = 6.5, 4.4, 2.1 Hz, 1H), 4.66 (d, *J* = 14.7 Hz, 1H),

4.49 – 4.36 (m, 1H), 4.15 (d, J = 14.9 Hz, 1H), 3.11 – 2.73 (m, 5H), 2.09 – 1.91 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.8, 153.6, 153.3, 142.9, 130.9, 130.4, 130.33, 130.31, 130.3, 126.7, 126.6, 126.5, 124.8, 123.3, 122.7, 120.3, 119.6, 111.5, 97.7, 94.8, 54.0, 45.2, 40.7, 34.5, 21.8, 13.3. HRMS (ESI) calcd for C₂₃H₂₃BrNO₃S⁺ [M+H]⁺ 472.0577, found 472.0577. HPLC analysis: **3bi**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 13.92 min (minor), 21.70 min (major).

(*R*)-5-(4-bromophenyl)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bj)

Prepared according to the general procedure as described above in 78% yield (36.7 mg), 11.5:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -74.4 (*c* 1.41, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.72 – 7.63 (m, 1H), 7.49 – 7.11 (m, 8H), 5.25 (dt, *J* = 6.7, 4.0 Hz, 1H), 4.63 (d, *J* = 15.4 Hz, 1H), 4.38 (dd, *J* = 9.0, 5.2 Hz, 1H), 4.17 (d, *J* = 12.3 Hz, 1H), 3.03 – 2.71 (m, 6H),

2.08 – 1.90 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.6, 153.3, 139.7, 131.8, 131.7, 129.63, 129.60, 126.5, 124.8, 123.3, 121.1, 120.2, 119.6, 111.5, 97.9, 94.8, 53.9, 45.2, 40.9, 34.6, 21.8, 13.2. HRMS (ESI) calcd for C₂₃H₂₃BrNO₃S⁺ [M+H]⁺ 472.0577, found 472.0567. HPLC analysis: **3bj**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 21.52 min (minor), 35.09 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-5-(o-tolyl)-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bk)

Prepared according to the general procedure as described above in 93% yield (37.9 mg), >20:1 dr and 98% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 66 – 70°C; $[\alpha]^{25}_{D}$ = -74.9 (*c* 1.50, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.65 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.38 – 7.03 (m, 7H), 5.39 – 5.19 (m, 1H), 4.66 – 4.30 (m, 3H), 3.20 (s, 3H),

2.87 – 2.75 (m, 2H), 2.44 (s, 3H), 2.05 – 1.92 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.5, 154.6, 153.4, 139.0, 135.3, 130.7, 127.8, 127.2, 126.6, 126.4, 124.5, 123.2, 119.7, 119.6, 111.6, 98.9, 95.2, 53.8, 43.6, 40.9, 34.5, 21.9, 19.4, 13.4. HRMS (ESI) calcd for C₂₄H₂₆NO₃S⁺ [M+H]⁺ 408.1628, found 408.1634. HPLC analysis: **3bk**, 98% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 9.607 min (minor), 15.77 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-5-(m-tolyl)-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bl)

Prepared according to the general procedure as described above in 88% yield (35.8 mg), 12:1 dr and 93% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 56 – 58°C; $[\alpha]^{25}_{D}$ = -67.5 (*c* 1.22, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 – 7.57 (m, 1H), 7.37 – 6.93 (m, 7H), 5.16 (tt, *J* = 6.4, 2.1 Hz, 1H), 4.57 (d, *J* = 14.1 Hz, 1H), 4.34 (dd, *J*

= 8.7, 5.1 Hz, 1H), 4.14 – 3.98 (m, 1H), 3.01 – 2.64 (m, 5H), 2.24 (s, 3H), 2.05 – 1.85 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.8, 154.5, 153.3, 140.5, 138.3, 128.6, 128.5, 127.9, 126.7, 124.8, 124.6, 123.2, 120.4, 119.4, 111.4, 98.1, 94.4, 54.1, 45.3, 40.4, 34.6, 21.8, 21.6, 13.3. HRMS (ESI) calcd for C₂₄H₂₆NO₃S⁺ [M+H]⁺ 408.1628, found 408.1623. HPLC analysis: **3bl**, 93% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 11.117 min (minor), 17.733 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-5-(p-tolyl)-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bm)

Prepared according to the general procedure as described above in 73% yield (29.7 mg), 13:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -61.4 (*c* 0.70, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.77 – 7.64 (m, 1H), 7.48 – 7.03 (m, 7H), 5.24 (tt, *J* = 6.2, 2.1 Hz, 1H), 4.64 (d, *J* = 15.2 Hz, 1H), 4.42 (dd, *J* = 8.7, 5.0 Hz, 1H), 4.14 (d, *J* = 15.0 Hz, 1H), 3.12 – 2.70 (m, 5H), 2.32 (s,

3H), 2.02 (qd, J = 7.3, 5.8 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.1, 153.8, 152.4, 136.8, 136.0, 128.6, 128.5, 126.9, 126.8, 125.9, 123.8, 122.4, 119.6, 118.5, 110.6, 97.3, 93.5, 53.3, 44.2, 39.6, 33.9, 21.0, 20.3, 12.5. HRMS (ESI) calcd for $C_{24}H_{26}NO_3S^+$ [M+H]⁺ 408.1628, found 408.1616. HPLC analysis: **3bm**, 95% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 13.203 min (minor), 27.423 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(2-methoxyphenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bn)

Prepared according to the general procedure as described above in 60% yield (25.4 mg), >20:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = $60 - 62^{\circ}$ C; $[\alpha]^{25}_{D}$ = -74.9 (*c* 0.90, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.76 – 7.56 (m, 1H), 7.34 – 6.84 (m, 7H), 5.27 – 5.15 (m, 1H), 4.77 (dd, *J* = 10.5, 4.9 Hz, 1H), 4.46 (d, *J* =

56.0 Hz, 2H), 3.84 (s, 3H), 3.16 (s, 3H), 2.94 – 2.72 (m, 2H), 2.03 – 1.92 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.8, 156.8, 154.3, 153.3, 132.3, 130.9, 128.9, 128.7, 128.4, 128.4, 126.6, 124.4, 123.1, 120.8, 120.0, 119.7, 111.4, 110.8, 110.7, 98.7, 94.6, 65.6, 55.6, 54.1, 40.5, 33.9, 21.9, 19.2, 13.8, 13.4. HRMS (ESI) calcd for C₂₄H₂₆NO₄S⁺ [M+H]⁺ 424.1577, found 424.1575. HPLC analysis: **3bn**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 15.70 min (minor), 21.12 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(3-methoxyphenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bo)

Prepared according to the general procedure as described above in 99% yield (41.7 mg), 15.5:1 dr and 95% ee.. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 44 – 46°C; $[\alpha]^{25}_{D}$ = -67.4 (*c* 1.91, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 – 7.53 (m, 1H), 7.39 – 7.10 (m, 4H), 6.87 – 6.66 (m, 3H), 5.18 (tdt, *J* = 6.3, 4.7, 2.3 Hz, 1H), 4.68 – 4.49

(m, 1H), 4.32 (dd, J = 8.9, 5.2 Hz, 1H), 4.13 – 3.95 (m, 1H), 3.67 (s, 3H), 3.01 – 2.66 (m, 5H), 1.93 (qdd, J = 7.3, 6.0, 1.2 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.8, 159.9, 154.4, 153.3, 142.2, 129.7, 126.6, 124.6, 123.2, 120.2, 120.1, 119.3, 113.5, 112.7, 111.5, 98.1, 94.5, 55.3, 55.2, 54.1, 45.5, 40.7, 34.6, 21.8, 13.2. HRMS (ESI) calcd for C₂₄H₂₆NO₄S⁺ [M+H]⁺ 424.1577, found 424.1580. HPLC analysis: **3bo**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 18.717min (minor), 30.483min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(4-methoxyphenyl)-1-(methylsulfonyl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bp)

Prepared according to the general procedure as described above in 71% yield (30.0 mg), >20:1 dr and 98% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = $52 - 54^{\circ}$ C; [α]²⁵_D= -77.9 (*c* 1.18, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.75 – 7.64 (m, 1H), 7.41 – 7.13 (m, 5H), 6.92 – 6.76 (m, 2H), 5.24 (tt, *J* = 6.3, 2.0 Hz, 1H), 4.64 (d, *J* = 14.6 Hz, 1H), 4.41 (dd, *J* = 8.5, 5.0 Hz, 1H), 4.13 (d, *J* = 14.8 Hz,

1H), 3.78 (s, 3H), 3.04 - 2.71 (m, 5H), 2.02 (qd, J = 7.4, 6.0 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.8, 158.6, 154.8, 153.2, 132.7, 128.8, 126.7, 124.6, 123.2, 120.4, 119.2, 114.0, 113.9, 111.4, 98.0, 94.3, 55.3, 54.1, 44.5, 40.5, 34.7, 21.8, 13.3. HRMS (ESI) calcd for C₂₄H₂₆NO₄S⁺ [M+H]⁺ 424.1577, found 424.1589. HPLC analysis: **3bp**, 98% ee (AS-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 31.56 min (major), 69.513 min (minor).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-5-(naphthalen-1-yl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bq)

7.18 (m, 7H), 5.27 (s, 1H), 5.17 (dd, J = 11.0, 5.2 Hz, 1H), 4.73 – 4.36 (m, 2H), 3.23 (s, 3H), 3.11 – 2.87 (m, 2H), 2.09 – 1.93 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.6, 154.4, 153.5, 136.7, 134.1, 131.0, 129.2, 129.2, 127.9, 126.6, 126.5, 125.74, 125.72, 125.6, 125.6, 124.6, 123.2, 122.5, 120.1, 119.7, 111.6, 111.5, 98.8, 95.3, 53.9, 43.1, 41.0, 34.8, 21.9, 13.4. HRMS (ESI) calcd for C₂₇H₂₆NO₃S⁺ [M+H]⁺ 444.1628, found 444.1630. HPLC analysis: **3bq**, 97% ee (IC, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 24.153 min (major), 34.833 min (minor).

(*R*)-5-([1,1'-biphenyl]-4-yl)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3br)

Prepared according to the general procedure as described above in 97% yield (45.4 mg), 15.5:1 dr and 96% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = $80 - 82^{\circ}$ C; $[\alpha]^{25}_{D}$ = -112.8 (*c* 1.30, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.76 – 7.68 (m, 1H), 7.59 – 7.17 (m, 11H), 5.25 (tt, *J* = 6.5, 2.1 Hz, 1H), 4.77 – 4.61 (m, 1H), 4.50 (dd, *J* = 8.7, 5.1 Hz, 1H), 4.29 – 4.06 (m, 1H), 3.13 – 2.75 (m, 5H), 2.13 –

1.90 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.5, 152.9, 151.9, 139.2, 138.7, 138.3, 127.5, 126.9, 126.1, 125.9, 125.7, 125.68, 125.66, 125.3, 123.3, 121.9, 119.1, 118.2, 110.1, 96.6, 93.2, 52.8, 43.8, 39.2, 33.3, 20.5, 11.9. HRMS (ESI) calcd for C₂₉H₂₈NO₃S⁺[M+H]⁺470.1784, found 470.1780. HPLC analysis: **3br**, 96% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 29.163 min (minor), 51.993 min (major).

(*S*)-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-5-(thiophen-2-yl)-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bs)

Prepared according to the general procedure as described above in 92% yield (36.7 mg), 13:1 dr and 94% ee.. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 70 – 72°C; $[\alpha]^{25}_{D}$ = -38.7 (*c* 1.48, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.75 – 7.58 (m, 1H), 7.38 – 7.31 (m, 1H), 7.28 – 7.07 (m, 3H), 6.92 – 6.68 (m, 2H), 5.27 – 5.15 (m, 1H), 4.74

- 4.53 (m, 2H), 3.91 (d, J = 15.2 Hz, 1H), 3.08 – 2.72 (m, 2H), 2.55 (s, 3H), 1.98 (qd, J = 7.4, 6.0 Hz, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 204.1, 153.2, 152.9, 143.9, 126.8, 126.7, 125.5, 124.9, 124.6, 123.3, 121.3, 119.4, 111.3, 111.2, 97.2, 93.9, 54.5, 40.2, 39.8, 34.9, 21.7, 13.3. HRMS (ESI) calcd for C₂₁H₂₂NO₃S₂⁺ [M+H]⁺ 400.1036, found 400.1031. HPLC analysis: **3bs**, 94% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 18.653 min (minor), 33.143 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-9-chloro-1-(methylsulfonyl)-5-phenyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bt)

Prepared according to the general procedure as described above in 62% yield (26.5 mg), 19:1 dr and 92% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -84.1 (*c* 0.70, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.67 (d, *J* = 2.2 Hz, 1H), 7.44 – 7.15

(m, 7H), 5.25 (ddq, J = 6.5, 4.4, 2.1 Hz, 1H), 4.62 (d, J = 15.4 Hz, 1H), 4.45 (dd, J = 8.5, 5.1 Hz, 1H), 4.24 – 4.05 (m, 1H), 3.01 (dd, J = 14.2, 8.5 Hz, 1H), 2.78 (s, 4H), 2.02 (p, J = 7.1 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 203.0, 155.9, 151.6, 140.2, 129.1, 128.8, 128.7, 128.1, 127.7, 127.3, 124.9, 120.2, 119.1, 112.4, 97.7, 94.5, 54.1, 45.2, 40.5, 34.4, 21.8, 13.2. HRMS (ESI) calcd for **C**₂₃**H**₂₃**CINO**₃**S**⁺ [M+H]⁺ 428.1082, found 428.1081. HPLC analysis: **3bt**, 92% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 13.183 min (minor), 24.98 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-8-chloro-1-(methylsulfonyl)-5-phenyl-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bu)

Prepared according to the general procedure as described above in 77% yield (32.9 mg), 13:1 dr and 93% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp = 48 - 50°C; $[\alpha]^{25}_{D}$ = -16.7 (*c* 0.70, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.63 (d, *J* = 8.5

Hz, 1H), 7.43 – 7.11 (m, 7H), 5.24 (tt, J = 6.2, 2.0 Hz, 1H), 4.62 (d, J = 15.4 Hz, 1H), 4.46 (dd, J = 8.2, 5.0 Hz, 1H), 4.23 – 4.05 (m, 1H), 3.01 (dd, J = 14.2, 8.3 Hz, 1H), 2.86 – 2.69 (m, 4H), 2.11 – 1.92 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 203.1, 154.2, 153.2, 140.2, 130.5, 128.74, 128.71, 127.7, 127.6, 127.3, 125.4, 124.0, 121.4, 119.6, 111.8, 97.6, 94.4, 54.2, 54.1, 44.9, 40.3, 34.4, 21.8, 13.2. HRMS (ESI) calcd for C₂₃H₂₃ClNO₃S⁺[M+H]⁺ 428.1082, found 428.1096. HPLC analysis: **3bu**, 93% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 13.073 min (minor), 34.76 min (major).

(*R*)-8-bromo-3-((*S*)-but-1-en-1-ylidene)-1-(methylsulfonyl)-5-phenyl-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bv)

Prepared according to the general procedure as described above in 66% yield (31.1 mg), 13:1 dr and 92% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -19.7 (*c* 1.18, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.60 – 7.38 (m, 2H), 7.35 – 7.08 (m,

6H), 5.17 (tt, J = 6.2, 2.1 Hz, 1H), 4.59 – 4.48 (m, 1H), 4.38 (dd, J = 8.2, 5.0 Hz, 1H), 4.13 – 3.96 (m, 1H), 3.03 – 2.56 (m, 5H), 1.95 (qdd, J = 7.3, 6.1, 0.9 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 203.1, 154.8, 153.4, 140.2, 128.74, 128.71, 127.7, 127.6, 127.3, 126.7, 125.9, 121.8, 119.6, 117.9, 114.7, 97.6, 94.4, 54.2, 44.9, 40.3, 34.4, 21.8, 13.2. HRMS (ESI) calcd for C₂₃H₂₃BrNO₃S⁺ [M+H]⁺ 472.0577, found 472.0570. HPLC analysis: **3bv**, 92% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 14.937 min (minor), 63.11 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-9-methyl-1-(methylsulfonyl)-5-phenyl-2,3,4,5tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bw)

Prepared according to the general procedure as described above in 95% yield (38.6 mg), >20:1 dr and 96% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid; $[\alpha]^{25}_{D}$ = -73.8 (*c* 1.19, CH₂Cl₂); ¹H NMR

(800 MHz, CDCl₃) δ 7.48 (d, J = 1.8 Hz, 1H), 7.36 – 7.18 (m, 6H), 7.08 (dd, J = 8.5, 1.8 Hz, 1H), 5.23 (ddq, J = 6.3, 4.2, 2.0 Hz, 1H), 4.63 (s, 1H), 4.45 (dd, J = 8.4, 5.1 Hz, 1H), 4.11 (d, J = 14.7 Hz, 1H), 3.02 (dd, J = 14.2, 8.4 Hz, 1H), 2.77 (d, J = 16.4 Hz, 4H), 2.45 (s, 3H), 2.12 – 1.92 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 202.9, 154.5, 151.7, 140.7, 132.8, 128.7, 128.6, 127.8, 127.1, 126.7, 125.9, 120.1, 119.2, 110.9, 97.9, 94.3, 54.1, 45.2, 40.4, 34.5, 21.8, 21.5, 13.3. HRMS (ESI) calcd for C₂₄H₂₆NO₃S⁺ [M+H]⁺ 408.1628, found 408.1619. HPLC analysis: **3bw**, 96% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 11.41 min (minor), 23.727 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-phenyl-1-(phenylsulfonyl)-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3bx)

Prepared according to the general procedure as described above in 99% yield (45.1 mg), 9:1 dr and 95% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a white solid. mp =50 – 52°C; $[\alpha]^{25}_{D}$ = -346.8 (*c* 0.95, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.76 (d, *J* = 7.9 Hz, 2H), 7.59 – 7.31 (m, 4H),

7.27 – 7.10 (m, 6H), 6.91 (d, J = 7.7 Hz, 2H), 5.21 – 4.97 (m, 1H), 4.69 (s, 1H), 4.41 – 4.16 (m, 1H), 4.05 – 3.87 (m, 1H), 2.41 – 2.18 (m, 1H), 2.04 (t, J = 12.6 Hz, 1H), 1.93 – 1.59 (m, 2H), 0.93 – 0.66 (m, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.3, 167.8, 153.9, 153.7, 153.6, 141.1, 139.4, 133.1, 133.0, 132.4, 130.9, 129.3, 129.1, 129.0, 128.9, 128.6, 128.0, 127.9, 127.8, 127.7, 127.13, 127.10, 126.7, 126.6, 124.54, 124.51, 123.1, 123.0, 121.0, 119.5, 111.3, 98.4, 95.0, 65.6, 54.5, 54.4, 46.6, 34.8, 30.6, 21.8, 19.2, 13.8, 13.3. HRMS (ESI) calcd for C₂₈H₂₆NO₃S⁺ [M+H]⁺ 456.1628, found 456.1637. HPLC analysis: **3bx**, 95% ee (AD-H, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 10.57 min (minor), 33.583 min (major).

(*R*)-3-((*S*)-but-1-en-1-ylidene)-5-(tert-butyl)-1-(methylsulfonyl)-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine (3by)

Prepared according to the general procedure as described above in 86% yield (32.1 mg), 6:1 dr and 92% ee. It was purified by flash chromatography 4% EtOAc/PE) to afford a viscous liquid. $[\alpha]^{25}_{D}= 36.5$ (*c* 1.54, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 7.61 – 7.52 (m, 1H), 7.43 – 7.36 (m, 1H), 7.25 (m, 2H), 5.32 –

5.14 (m, 1H), 4.51 (s, 1H), 4.01 (s, 1H), 3.19 (s, 3H), 2.85 (dd, J = 11.3, 6.9 Hz, 1H), 2.63 (dt, J = 9.4, 4.8 Hz, 1H), 2.46 (t, J = 12.2 Hz, 1H), 1.84 (dq, J = 14.5, 7.7 Hz, 2H), 1.11 (s, 9H), 0.63 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 201.9, 155.9, 153.3, 126.4, 124.1, 124.0, 122.9, 122.9, 119.1, 118.2, 111.3, 111.2, 99.0, 95.1, 53.8, 53.5, 51.4, 41.0, 35.3, 28.5, 28.4, 21.9, 21.4, 13.3, 12.4. HRMS (ESI) calcd for C₂₁H₂₈NO₃S⁺ [M+H]⁺ 374.1790, found 374.1786. HPLC analysis: **3by**, 95% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), t_R = 10.273 min (major), 11.033 min (minor).

Scaled-up Synthesis of the Product 3ba

Under argon atmosphere, to a mixture of TMM donor **1b** (2.0 mmol), benzofuranderived azadiene **2a** (1.0 mmol) and catalyst $Pd(dmdba)_2$ (5 mol%, 0.5mmol) / **L7** (11 mol%, 0.11 mmol) in a Schlenk tube, 10 mL of mesitylene were added at room temperature. The resulting mixture was stirred until the starting material were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc/PE= 1:25) to afford the corresponding chiral cycloaddition product **3ba** with 90% yield (354 mg) and 96% ee, 19:1 dr.

Transformations of the Product 3ia and 3ba

To a solution of **3ia** (50 mg, 0.10 mmol, 1.0 equiv) in THF (1M, 3.5 mL) at room temperature was added 1M TBAF solution in THF (0.15 mL), stirred for 30 min while being monitored by TLC. The solution was diluted with H₂O and extracted with diethyl ether. The extracts were washed with brine and dried over MgSO₄ and the solvent was removed in vacuo. The product was purified by column chromatography on silica gel (25% EtOAc/PE) to give a viscous liquid **4** (38.4 mg, 97% yield with 98% ee, >20:1 dr). **4: (S)-3-((R)-1-(methylsulfonyl)-5-phenyl-1,2,4,5-tetrahydro-3***H***-benzofuro[3,2-b]azepin-3-ylidene)prop-2-en-1-ol [\alpha]²⁵_D= -56.1 (***c* **1.10, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) \delta 7.75 – 7.61 (m, 1H), 7.43 – 7.14 (m, 9H), 5.38 (tt,** *J* **= 5.4, 2.3 Hz, 1H), 4.60 – 4.25 (m, 2H), 4.19 – 4.09 (m, 2H), 3.12 – 2.73 (m, 5H), 1.84 (s, 1H). ¹³C NMR (201 MHz, CDCl₃) \delta**

202.2, 154.4, 153.2, 140.1, 128.8, 128.7, 127.9, 127.8, 127.3, 126.4, 124.7, 123.4, 120.2, 119.6, 111.5, 100.5, 93.3, 60.1, 53.9, 45.11, 40.5, 34.9. HRMS (ESI) calcd for $C_{22}H_{22}NO_4S^+[M+H]^+$ 396.1264, found 396.1266. HPLC analysis: **4**, 98% ee (IA, 15% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), $t_R = 13.197$ min (minor), 27.903 min (major).

A solution of **4** (79.0 mg, 0.20 mmol, 1.0 equiv) and AuCl₃ (0.6 mg, 1.0 mol %) in THF (0.20 mL) was stirred at room temperature for 5 h. The reaction mixture was concentrated to a crude oil and purified by column chromatography on silica gel (10% EtOAc/PE) to give a viscous liquid **5** (55.3 mg, 70% yield with 98% (99%) ee, 2.5:1 dr). **5: 1-(methylsulfonyl)-5-phenyl-1,2,4,5-tetrahydro-5'H-spiro[benzofuro[3,2-b]azepine-3,2'-furan]** [α]²⁵_D= 4.3 (*c* 2.00, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 8.06 – 7.05 (m, 9H), 6.12 – 5.48 (m, 2H), 4.91 – 4.57 (m, 2H), 4.35 – 4.14 (m, 1H), 4.03 – 3.89 (m, 1H), 3.29 (d, *J* = 9.0 Hz, 3H), 2.38 – 1.71 (m, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 154.7, 153.4, 152.9, 141.8, 131.7, 129.8, 129.4, 128.8, 128.7, 128.68, 128.66, 127.9, 127.6, 127.4, 127.2, 126.2, 125.8, 124.7, 124.2, 123.2, 123.1, 121.8, 120.9, 111.4, 111.2, 107.7, 106.4, 92.6, 91.2, 74.6, 74.4, 67.7, 67.5, 60.4, 56.5, 43.1, 41.9, 41.7, 40.2, 39.9, 29.6, 29.5, 23.9, 23.8. HRMS (ESI) calcd for C₂₂H₂₂NO4S⁺ [M+H]⁺ 396.1264, found 396.1274. HPLC analysis: **5**, 98% (99%) ee (IB, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), the major diastereomer t_R= 12.113 min (minor), 12.74 min (major), the minor diastereomer t_R= 13.913 min (trans-major).

To a solution of **3ba** (40 mg, 0.10 mmol) in dichloromethane (1 mL), TfOH (18 µL, 0.2 mmol) was added. The reaction mixture was stirred at room temperature for 12 hours under argon atmosphere. Then, saturated aqueous NaHCO₃ solution was added and the mixture was extracted with dichloromethane three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The product was purified by column chromatography on silica gel (5% EtOAc/PE) to give a white solid 6 (19.6 mg, 50% yield with 87% ee, 11.5:1 dr). 6: N-((2S,5'R,E)-3'-methyl-5'-phenyl-2'-((E)-prop-1-en-1-yl)-3H-spiro[benzofuran-2,1'-cyclopentan]-2'-en-3-ylidene)methanesulfonamide mp =70 -73° C; $[\alpha]^{25}_{D}=210.8$ (*c* 0.60, CH₂Cl₂); ¹H NMR (800 MHz, CDCl₃) δ 8.32 (d, *J* = 8.1 Hz, 1H), 7.36 (ddd, J = 8.5, 7.1, 1.4 Hz, 1H), 7.18 – 6.97 (m, 5H), 6.95 – 6.85 (m, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.13 - 5.99 (m, 1H), 5.07 (dq, J = 16.0, 6.6 Hz, 1H), 3.86 (t, J = 8.5 Hz, 1H)Hz, 1H), 3.28 (s, 3H), 3.13 (dd, J = 17.3, 8.8 Hz, 1H), 2.83 (dd, J = 17.2, 7.9 Hz, 1H), 2.02 (s, 3H), 1.72 – 1.59 (m, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 183.7, 169.0, 145.5, 138.7, 135.3, 131.7, 130.2, 129.0, 127.7, 127.2, 126.7, 121.7, 121.5, 118.9, 112.3, 103.7, 57.6, 43.0, 42.4, 19.1, 15.2. HRMS (ESI) calcd for C₂₃H₂₄NO₃S⁺ [M+H]⁺ 394,1471, found 394.1473. HPLC analysis: 6, 87% ee (IA, 5% isopropanol/hexane, 1.0 mL/min, UV: 254 nm), $t_R = 9.443 \text{ min (major)}$, 9.927 min (minor).

References

[1] B. M. Trost, Z. Daniel, M. Guillaume, H. Christoph, Autumn, M. Enantio- and Diastereoselective Synthesis of Chiral Allenes by Palladium-Catalyzed Asymmetric [3+2] Cycloaddition Reactions. *Angew. Chem. Int. Ed.* **2018**, *57*, 12916–12920.

[2] H. Xie, L. Sun, B. Wu, Y. Zhou, Copper-Catalyzed Alkynylation/ Cyclization/ Isomerization Cascade for Synthesis of 1,2-Dihydrobenzofuro[3,2-*b*]pyridines andBenzofuro[3,2-*b*]pyridines. *J. Org. Chem.* **2019**, *84*, 15498–15507.

0.95 0.95 0.94 -0.0 TMS BocO 1b $\frac{1}{9.0 + 8.5 + 8.0 + 7.5 + 7.0 + 6.5 + 6.0 + 5.5 + 5.0 + 4.5 + 4.0 + 3.5 + 3.0 + 2.5 + 2.0 + 1.5 + 1.0 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 + 0.5 + 0.4 +$ 0.5 0.0 -0.5 -1.0 - 70, 34, 02 - 56, 87 - 56, 86 - 56, 86 - 56, 86 - 70, 34 - 70, 34 -202.99 ----0.00 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm) 0 -10

¹H and ¹³C NMR Spectra of All Products

Figure S30. ¹³C NMR spectrum of compound **3ia** in CDCl₃ at 201 MHz.

are 550. C runk spectrum of compound **55m** in CDC13 at 201 M

S70

HPLC Chromatograms of All Products

20.58

23.207

Total:

3

4

77.221

282.383

734.317

10.52

38.46

100


```
S76
```

HPLC chromatogram of racemic 3fa 1,800 圖MBM (手动积分) 1,750 圖^{mau} WYF-IA-36-D3-Q19-RAC UV_VIS_2 WVL:254 nm 1,625 1,500 1,375 1,250 1,125 1 - 9.680 1,000 875 750 625 3 - 16.917 500 375 250 2 - 10.117 125 4 - 21.957 -50 4.0 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 26.1 Retention Time Relative Area No. Area min mAU*min % 1 9.68 221.348 43.65 2 10.117 33.168 6.54 3 16.917 220.385 43.46 4 21.957 32.242 6.36 Total: 507.142 100 HPLC chromatogram of chiral 3fa WYF-IA-36-D3-Q19-SX UV_VIS_2 WVL:254 nm 3 MBM [手动积分] 1,500 1,375 1,250 1,125 1,000 875 750 2 - 16.790 625 500 375 250 125 1 9.670 0 5.0 10.0 12.5 15.0 17.5 22.5 20.0 24.8 75 Retention Time Relative Area No. Area mAU*min min % 1 9.67 5.55 1.98 2 16.79 275.159 98.02 280.709 Total: 100

HPLC chromatogram of racemic 3bc 170.0 置 [手动积分] WYF-IA-36-D5-Q17-RAC UV_VIS_2 WVL:254 nm 162.5 150.0 137.5 125.0 112.5 100.0 1 - 12.313 87.5 75.0 62.5 3 - 21.033 50.0 37.5 25.0 2 - 12.853 4 - 22.403 12.5 0.0 min -10.0[]] 9.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.6 Retention Time No. Area Relative Area mAU*min % min

1	12.313	25.278	41.17
2	12.853	5.935	9.67
3	21.033	24.486	39.88
4	22.403	5.699	9.28
Total:		61.398	100

HPLC chromatogram of racemic 3bm 150.0 遺 [手动积分] WYF-IA-36-D7-Q17-RAC UV_VIS_2 WVL:254 nm 137.5 125.0 112.5 100.0 1 - 12.770 87.5 75.0 62.5 50.0 3 - 27.310 37.5 25.0 2 - 13.850 12.5 4 - 30.013 0.0 M mir -10.0 10.0 15.0 20.0 25.0 30.0 35.0 38.8 4.0 **Retention Time** Relative Area No. Area mAU*min % min

	111111	IIIAO IIIII	/0
1	12.77	28.535	39.33
2	13.85	7.736	10.66
3	27.31	28.439	39.19
4	30.013	7.848	10.82
Total:		72.557	100


```
S103
```

HPLC chromatogram of racemic 3bx

HPLC chromatogram of racemic 3by 300 I MBM [手动积分]

No.	Retention Time	Area	Relative Area
	min	mAU*min	%
1	6.587	4.454	4.32
2	8.357	4.281	4.15
3	10.527	46.11	44.72
4	11.01	48.274	46.81
Total:		103.119	100

Total:


```
S108
```
X-Ray Crystallographic Data of 3ba and 6

Crystallographic data for **3ba** have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number CCDC 2335107. These data can be obtained free of charge via www.ccdc.cam. ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table 1 Crystal data and structure refinement for 3ba.

Identification code	3ba
Empirical formula	C ₂₃ H ₂₃ NO ₃ S
Formula weight	393.48
Temperature/K	150.00
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.9922(2)
b/Å	11.1557(2)
c/Å	16.1415(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1979.36(6)
Z	4
$\rho_{calc}g/cm^3$	1.320
µ/mm ⁻¹	1.645
F(000)	832.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/ ^c	9.638 to 149.2
Index ranges	-13 \leq h \leq 13, -13 \leq k \leq 13, -17 \leq l \leq 20
Reflections collected	16934
Independent reflections	$3987 [R_{int} = 0.0278, R_{sigma} = 0.0303]$
Data/restraints/parameters	3987/0/255
Goodness-of-fit on F ²	1.133

Final R indexes [I>= 2σ (I)] $R_1 = 0.0588$, $wR_2 = 0.1291$ Final R indexes [all data] $R_1 = 0.0589$, $wR_2 = 0.1293$ Largest diff. peak/hole / e Å⁻³ 0.63/-0.26Flack parameter0.030(4)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic
Displacement Parameters ($Å^2 \times 10^3$) for 3ba. U _{eq} is defined as 1/3 of the trace of the
orthogonalised U _{1J} tensor.

Atom	x	У	z	U(eq)
S001	751.5(5)	2875.2(5)	7699.0(4)	45.1(2)
O002	3468.8(16)	3478.9(16)	5484.6(12)	46.5(4)
O003	1286(2)	4035(2)	7808.2(12)	56.8(5)
O004	1171(2)	1910(2)	8210.7(13)	59.1(5)
C005	4542(2)	1723(2)	6873.3(16)	44.8(5)
C006	1608(2)	4272(2)	5791.1(16)	44.5(5)
N007	882(2)	2547.4(19)	6710.7(13)	45.2(5)
C008	1774(2)	3157(2)	6226.1(15)	44.0(5)
C009	2883(2)	2728(2)	6027.2(15)	44.6(5)
C00A	3532(2)	1585(2)	6232.8(16)	45.4(5)
C00B	6385(3)	947(3)	7494(2)	55.9(6)
C00C	5528(2)	933(2)	6859.8(18)	50.7(6)
C00D	2627(2)	611(2)	6538.2(16)	46.9(5)
C00E	1145(3)	-418(3)	4623.3(18)	54.6(6)
C00F	1449(2)	621(2)	6050.3(17)	46.0(5)
C00G	695(2)	5133(2)	5733.8(16)	48.9(5)
C00H	1297(3)	66(2)	5344.6(16)	48.9(5)
C00I	425(2)	1380(2)	6407.1(17)	47.7(5)
C00J	1968(3)	6225(2)	4759.7(17)	51.7(6)
C00K	2887(3)	5381(2)	4811.7(16)	48.1(5)
C00L	889(3)	6109(2)	5217.6(17)	51.4(6)
C00M	4452(2)	2543(3)	7521.1(16)	48.6(5)
C00N	2683(2)	4417(2)	5340.5(15)	45.3(5)
C00O	1453(3)	208(3)	3818.9(19)	64.9(8)
C00P	1998(3)	1431(4)	3936(2)	66.9(8)
C00Q	5325(3)	2560(3)	8146.7(18)	52.4(6)
COOR	6282(3)	1751(3)	8137.7(19)	54.8(6)
C00S	-836(2)	2987(3)	7834.3(19)	55.3(6)

Atom	U11	U22	U33	U23	U13	U12
S001	43.8(3)	50.7(3)	40.8(3)	-1.7(2)	2.60(19)	-4.5(2)
O002	46.1(9)	46.9(8)	46.4(9)	4.4(7)	2.8(7)	1.3(7)
O003	58.4(10)	62.8(11)	49.1(10)	-10.4(8)	5.2(8)	-12.2(9)
O004	60.3(11)	69.9(12)	47.1(10)	6.3(9)	1.5(8)	1.3(10)
C005	44.1(11)	43.6(10)	46.7(12)	4.0(9)	2.9(10)	-0.5(9)
C006	47.3(12)	46.2(11)	40.0(11)	-1.6(9)	-0.1(9)	-1.7(10)
N007	48.8(10)	45.3(10)	41.6(10)	-1.8(8)	3.7(8)	-5.3(8)
C008	46.7(11)	45.8(11)	39.5(11)	-0.7(9)	0.4(9)	-1.6(9)
C009	47.2(11)	45.2(11)	41.5(11)	0.7(9)	0.0(9)	-3.3(10)
C00A	48.0(12)	43.6(11)	44.6(12)	0.6(9)	1.5(9)	0.8(10)
C00B	44.4(12)	51.4(13)	71.9(18)	5.9(12)	-2.4(11)	4.1(10)
C00C	46.3(12)	45.7(11)	60.2(14)	-0.6(10)	1.1(11)	1.1(10)
C00D	50.1(12)	43.6(10)	46.9(11)	1.6(9)	-2.1(10)	-1.3(9)
C00E	60.7(15)	49.7(12)	53.3(14)	-6.8(10)	-4.2(11)	3.8(11)
C00F	49.9(12)	42.8(11)	45.2(11)	1.3(9)	0.1(10)	-4.3(10)
C00G	49.3(13)	49.5(12)	47.9(12)	-1.4(10)	2.5(10)	3.5(10)
C00H	50.4(12)	43.8(11)	52.4(13)	2.1(10)	-1.7(10)	-1.6(10)
C00I	48.1(12)	46.7(12)	48.1(12)	-3.0(10)	0.4(10)	-4.4(10)
C00J	62.1(15)	46.0(12)	47.1(12)	3.2(10)	0.9(11)	0.9(11)
C00K	50.9(13)	49.2(12)	44.1(12)	3.0(10)	2.0(10)	-1.9(10)
C00L	56.8(14)	47.9(12)	49.5(12)	-0.1(10)	-0.7(11)	8.4(11)
C00M	46.9(11)	47.1(12)	51.7(13)	1.4(10)	0.7(10)	1.2(10)
C00N	46.6(11)	45.4(12)	43.9(11)	-0.8(9)	-1.3(9)	1.9(10)
C00O	71.4(18)	78.5(19)	44.8(13)	-6.1(14)	-1.3(12)	13.7(16)
C00P	66.6(18)	80(2)	54.3(15)	15.6(15)	6.6(14)	7.4(16)
C00Q	51.3(13)	57.0(13)	48.8(13)	1.8(11)	1.0(10)	-5.3(11)
COOR	47.7(12)	60.4(14)	56.3(15)	11.3(12)	-3.1(11)	-8.0(12)
C00S	42.6(12)	67.3(16)	56.0(14)	-9.5(12)	6.9(10)	-2.8(11)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3ba. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 3ba.

Atom Atom	Length/Å	Atom Atom	Length/Å
S001 O003	1.432(2)	C00A C00D	1.553(4)
S001 O004	1.433(2)	C00B C00C	1.391(4)
S001 N007	1.643(2)	C00B C00R	1.377(5)
S001 C00S	1.763(3)	C00D C00F	1.515(4)
O002 C009	1.373(3)	COOE COOH	1.294(4)
O002 C00N	1.377(3)	C00E C00O	1.513(4)

S111

Table 4 Bond Lengths for 3ba.

Atom Atom	Length/Å	Atom Atom	Length/Å
C005 C00A	1.525(3)	COOF COOH	1.307(4)
C005 C00C	1.397(4)	C00F C00I	1.522(4)
C005 C00M	1.393(4)	COOG COOL	1.387(4)
C006 C008	1.440(3)	C00J C00K	1.384(4)
C006 C00G	1.392(4)	COOJ COOL	1.404(4)
C006 C00N	1.397(3)	C00K C00N	1.391(4)
N007 C008	1.427(3)	C00M C00Q	1.393(4)
N007 C00I	1.479(3)	C000 C00P	1.502(6)
C008 C009	1.348(4)	C00Q C00R	1.386(5)
C009 C00A	1.498(3)		

Table 5 Bond Angles for 3ba.

Atom Atom	Atom	Angle/°	Atom Atom	Atom	Angle/°
O003 S001	O004	118.41(14)	C009 C00A	C005	114.3(2)
O003 S001	N007	106.55(11)	C009 C00A	C00D	111.2(2)
O003 S001	C00S	109.08(14)	$\rm C00RC00B$	C00C	120.4(3)
O004 S001	N007	111.35(12)	$\rm C00BC00C$	C005	120.5(3)
O004 S001	C00S	107.48(15)	C00F C00D	C00A	112.2(2)
N007 S001	C00S	102.86(13)	C00HC00E	C00O	123.4(3)
C009 O002	C00N	106.13(19)	C00DC00F	C00I	116.0(2)
C00C C005	C00A	119.4(2)	C00HC00F	C00D	123.9(2)
C00M C005	C00A	121.5(2)	C00HC00F	C00I	120.0(2)
C00M C005	C00C	118.8(2)	C00L C00G	C006	118.1(2)
C00G C006	C008	136.1(2)	$\rm C00E \ C00H$	C00F	176.3(3)
C00G C006	C00N	119.6(2)	N007 C00I	C00F	111.4(2)
C00N C006	C008	104.3(2)	C00KC00J	C00L	121.5(3)
C008 N007	S001	119.09(17)	C00J C00K	C00N	116.5(2)
C008 N007	COOI	118.1(2)	C00GC00L	C00J	121.2(2)
C00I N007	S001	119.21(18)	C00QC00M	C005	120.3(3)
N007 C008	C006	126.3(2)	O002 C00N	C006	110.8(2)
C009 C008	C006	107.8(2)	O002 C00N	C00K	126.2(2)
C009 C008	N007	125.6(2)	$\rm C00K C00N$	C006	123.1(2)
O002 C009	C00A	116.0(2)	C00P C00O	C00E	113.6(3)
C008 C009	O002	111.0(2)	$\rm C00R C00Q$	C00M	120.4(3)
C008 C009	C00A	132.8(2)	$\rm C00B\rm C00R$	C00Q	119.6(3)
C005 C00A	C00D	108.8(2)			

Table 6 Torsion Angles for 3ba.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
S001	N007	C008	C006	-88.6(3)	C00C	C005	C00A	C009	-151.9(2)
S001	N007	C008	C009	98.6(3)	C00C	C005	C00A	C00D	83.2(3)
S001	N007	C00I	C00F	-117.7(2)	C00C	C005	C00M	C00Q	-0.8(4)
O002	C009	C00A	C005	79.4(3)	C00C	C00B	C00R	C00Q	-0.8(4)
O002	C009	C00A	C00D	-157.0(2)	C00D	C00F	C00I	N007	42.6(3)
O003	S001	N007	C008	20.7(2)	C00G	C006	C008	N007	6.4(5)
O003	S001	N007	C00I	179.0(2)	C00G	C006	C008	C009	-179.7(3)
O004	S001	N007	C008	-109.8(2)	C00G	C006	C00N	O002	179.6(2)
O004	S001	N007	C00I	48.5(2)	C00G	C006	C00N	C00K	-1.5(4)
C005	C00A	C00D	C00F	166.4(2)	C00H	C00E	C00O	C00P	2.1(5)
C005	C00M	[C00Q	COOR	-0.9(4)	C00H	C00F	C00I	N007	-134.7(3)
C006	C008	C009	O002	-0.3(3)	C00I	N007	C008	C006	112.9(3)
C006	C008	C009	C00A	-175.3(3)	C00I	N007	C008	C009	-59.9(3)
C006	C00G	C00L	C00J	0.5(4)	C00J	C00K	C00N	O002	179.9(3)
N007	C008	C009	O002	173.7(2)	C00J	C00K	C00N	C006	1.2(4)
N007	C008	C009	C00A	-1.3(4)	C00K	C00J	C00L	C00G	-0.8(4)
C008	C006	C00G	C00L	-179.1(3)	C00L	C00J	C00K	C00N	-0.1(4)
C008	C006	C00N	O002	-0.5(3)	C00M	C005	C00A	C009	34.3(3)
C008	C006	C00N	C00K	178.3(2)	C00M	C005	C00A	C00D	-90.5(3)
C008	N007	C00I	C00F	40.8(3)	C00M	C005	C00C	C00B	1.7(4)
C008	C009	C00A	C005	-105.8(3)	C00M	C00Q	COOR	C00B	1.7(4)
C008	C009	C00A	C00D	17.8(4)	C00N	O002	C009	C008	-0.1(3)
C009	O002	C00N	C006	0.4(3)	C00N	O002	C009	C00A	175.8(2)
C009	O002	C00N	C00K	-178.4(2)	C00N	C006	C008	N007	-173.4(2)
C009	C00A	C00D	C00F	39.8(3)	C00N	C006	C008	C009	0.5(3)
C00A	C005	C00C	C00B	-172.2(2)	C00N	C006	C00G	C00L	0.6(4)
C00A	C005	C00M	C00Q	173.0(2)	C00R	C00B	C00C	C005	-0.9(4)
C00A	C00D	C00F	C00H	84.5(3)	C00S	S001	N007	C008	135.4(2)
C00A	C00D	C00F	C00I	-92.7(3)	C00S	S001	N007	C00I	-66.3(2)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3ba.

Atom	x	У	z	U(eq)
H00A	3912.94	1282.15	5710.61	54
H00B	7045.72	398.4	7482.8	67
H00C	5614.42	383.06	6414.44	61
H00D	3011.99	-187.69	6486.64	56
H00E	2444.13	748.09	7131.3	56

S113

Atom	x	y	z	U(eq)
H00F	822.21	-1206.78	4597.56	65
H00G	-38.98	5055.02	6039.46	59
H00H	-197.84	1518.48	5974.66	57
H00I	34.88	942.56	6869.71	57
H00J	2070.24	6898.51	4406.09	62
H00K	3618.9	5455.28	4502.68	58
H00L	280.01	6709.92	5173.19	62
H00M	3792.73	3093.12	7536.25	58
H00N	2033.27	-295.36	3504.2	78
H00O	703.36	284.17	3483.08	78
H00P	2074.38	1829.04	3397.35	100
H00Q	2804.3	1354.11	4189.9	100
H00R	1471.19	1909.07	4298	100
H00S	5263.43	3129.46	8582.25	63
H00T	6862.87	1750.32	8573.22	66
H00U	-1016.46	3166.8	8415.78	83
H00V	-1219.98	2226.32	7680.07	83
H00W	-1154.39	3630.54	7482.29	83

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3ba.

Crystallographic data for 6 have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number CCDC 2335108. These data can be obtained free of charge via www.ccdc.cam. ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

X-ray structure of 6

Table 1 Crystal data and structure refinement for 6.

Identification code	6
Empirical formula	$C_{23}H_{23}NO_3S$
Formula weight	393.48
Temperature/K	293(2)

Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	7.79420(10)
b/Å	10.27180(10)
c/Å	25.9536(4)
a/°	90
β/°	90
γ/°	90
Volume/Å ³	2077.86(5)
Z	4
$\rho_{calc}g/cm^3$	1.258
µ/mm ⁻¹	1.567
F(000)	832.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.1
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/ ^c	6.812 to 136.644
Index ranges	$-9 \le h \le 9, -10 \le k \le 12, -27 \le l \le 31$
Reflections collected	18670
Independent reflections	$3774 [R_{int} = 0.1448, R_{sigma} = 0.0799]$
Data/restraints/parameters	3774/0/257
Goodness-of-fit on F ²	1.152
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0729, wR_2 = 0.1902$
Final R indexes [all data]	$R_1 = 0.0770, wR_2 = 0.1940$
Largest diff. peak/hole / e Å ⁻³	0.45/-0.53
Flack parameter	-0.04(4)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic
Displacement Parameters ($Å^2 \times 10^3$) for 6. U _{eq} is defined as 1/3 of the trace of the
orthogonalised U _{IJ} tensor.

Atom	x	У	z	U(eq)
S25	231.3(15)	4184.8(10)	7301.3(5)	38.1(4)
09	3902(4)	3886(3)	5757.3(12)	40.9(8)
O27	1499(5)	4788(4)	7616.6(15)	55.3(10)
O26	-91(5)	2831(3)	7386.1(16)	56.4(10)
N24	615(5)	4455(4)	6687.0(15)	38.1(9)
C13	945(6)	4075(5)	5502.6(18)	39.9(11)
C1	2264(6)	4473(5)	5904.2(18)	35.7(10)
C8	4567(6)	3294(4)	6181.0(19)	37.0(10)
C4	4033(6)	2711(5)	7065(2)	42.7(11)
C3	3502(6)	3342(4)	6613.7(18)	34.2(10)
C14	3941(7)	6641(5)	6036.3(19)	43.6(12)
C2	2002(5)	4063(4)	6462.5(18)	34.5(10)

Atom	x	у	z	U(eq)
C12	674(6)	5071(5)	5172(2)	45.1(12)
C6	6624(7)	2056(6)	6633(2)	55.7(15)
C5	5577(7)	2075(5)	7069(2)	52.7(14)
C20	260(7)	2774(5)	5459(2)	46.8(12)
C11	1718(7)	6245(5)	5305(2)	48.1(13)
C10	2320(6)	5979(5)	5856.5(19)	39.9(11)
C15	3859(9)	7532(6)	6441(2)	57.7(15)
C19	5520(8)	6427(6)	5809(2)	56.0(14)
C21	559(7)	1760(5)	5759(2)	52.0(13)
C23	-460(9)	5072(7)	4709(2)	67.0(18)
C7	6142(6)	2663(6)	6182(2)	50.1(13)
C28	-1689(8)	5037(5)	7360(3)	55.5(15)
C18	6972(9)	7037(8)	5989(3)	75(2)
C16	5325(11)	8154(7)	6611(3)	76(2)
C22	-184(9)	437(6)	5686(3)	71.0(18)
C17	6863(11)	7917(8)	6386(3)	84(3)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 6. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 6. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
S25	40.2(6)	32.1(6)	41.8(7)	0.9(5)	4.7(5)	-0.3(4)
09	35.3(16)	46.4(19)	41.0(18)	-0.7(15)	3.5(14)	6.8(14)
O27	57(2)	59(2)	50(2)	-9.2(18)	-8.8(18)	-6.5(18)
O26	60(2)	32.1(17)	77(3)	10.8(17)	8(2)	-4.2(16)
N24	37.0(19)	38(2)	39(2)	4.3(17)	2.6(16)	1.9(18)
C13	37(2)	45(2)	38(2)	-1(2)	-1(2)	1(2)
C1	33(2)	35(2)	39(3)	1.5(19)	0.0(18)	4.2(19)
C8	32(2)	33(2)	46(3)	-3(2)	-2.0(19)	1(2)
C4	42(2)	40(3)	47(3)	4(2)	-2(2)	0(2)
C3	30.7(19)	31(2)	41(3)	-1.5(19)	-1.0(19)	1.7(18)
C14	54(3)	42(3)	35(3)	7(2)	-2(2)	-10(2)
C2	34(2)	30(2)	40(3)	-2.8(19)	-0.2(18)	-2(2)
C12	41(3)	52(3)	42(3)	1(2)	-5(2)	4(2)
C6	39(2)	53(3)	75(4)	-7(3)	-11(3)	14(3)
C5	49(3)	49(3)	60(3)	4(2)	-11(3)	13(3)
C20	42(2)	51(3)	47(3)	-8(2)	-1(2)	-8(2)

displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.									
Atom	U11	U22	U33	U23	U13	U12			
C11	53(3)	44(3)	47(3)	8(2)	-5(2)	4(2)			
C10	41(2)	38(2)	41(3)	1(2)	0(2)	1(2)			
C15	78(4)	51(3)	44(3)	0(3)	-2(3)	-13(3)			
C19	55(3)	60(3)	52(3)	3(3)	4(3)	-18(3)			
C21	51(3)	45(3)	60(3)	-8(3)	3(2)	-7(3)			
C23	68(4)	73(4)	60(4)	8(3)	-27(3)	-6(3)			
C7	36(2)	56(3)	59(3)	-8(3)	3(2)	8(2)			
C28	54(3)	47(3)	65(4)	-4(3)	17(3)	6(2)			
C18	63(4)	90(5)	71(4)	20(4)	-9(3)	-32(4)			
C16	112(6)	70(4)	44(3)	-1(3)	-15(4)	-31(5)			
C22	70(4)	50(3)	93(5)	-15(3)	15(4)	-18(3)			
C17	99(6)	92(5)	60(4)	22(4)	-29(4)	-56(5)			

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 6. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S25	O27	1.425(4)	C3	C2	1.439(6)
S25	O26	1.430(3)	C14	C10	1.509(7)
S25	N24	1.646(4)	C14	C15	1.394(8)
S25	C28	1.741(6)	C14	C19	1.382(8)
09	C1	1.463(5)	C12	C11	1.495(8)
09	C8	1.359(6)	C12	C23	1.493(8)
N24	C2	1.292(6)	C6	C5	1.395(8)
C13	C1	1.520(7)	C6	C7	1.378(8)
C13	C12	1.352(7)	C20	C21	1.321(7)
C13	C20	1.443(7)	C11	C10	1.531(7)
C1	C2	1.523(7)	C15	C16	1.381(9)
C1	C10	1.552(7)	C19	C18	1.376(9)
C8	C3	1.398(7)	C21	C22	1.489(8)
C8	C7	1.388(7)	C18	C17	1.374(12)
C4	C3	1.402(7)	C16	C17	1.355(12)
C4	C5	1.369(7)			

Table 5 Bond Angles for 6.							
Atom Atom	Atom	Angle/°	Atom	Atom	n Atom	Angle/°	
O27 S25	O26	117.2(2)	C15	C14	C10	119.3(5)	

Table 5 Bond Angles for 6.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O27	S25	N24	110.9(2)	C19	C14	C10	122.8(5)
O27	S25	C28	109.1(3)	C19	C14	C15	117.9(5)
O26	S25	N24	110.2(2)	N24	C2	C1	117.1(4)
O26	S25	C28	108.9(3)	N24	C2	C3	135.8(4)
N24	S25	C28	99.0(3)	C3	C2	C1	107.0(4)
C8	09	C1	107.8(3)	C13	C12	C11	112.3(4)
C2	N24	S25	122.4(3)	C13	C12	C23	127.2(5)
C12	C13	C1	109.7(4)	C23	C12	C11	120.5(5)
C12	C13	C20	126.4(5)	C7	C6	C5	121.5(5)
C20	C13	C1	123.6(4)	C4	C5	C6	121.0(5)
09	C1	C13	107.5(4)	C21	C20	C13	128.2(5)
09	C1	C2	104.5(3)	C12	C11	C10	103.8(4)
09	C1	C10	111.4(4)	C14	C10	C1	116.6(4)
C13	C1	C2	119.2(4)	C14	C10	C11	117.7(4)
C13	C1	C10	103.5(4)	C11	C10	C1	104.1(4)
C2	C1	C10	110.8(4)	C16	C15	C14	120.4(6)
09	C8	C3	114.0(4)	C18	C19	C14	121.0(6)
09	C8	C7	123.3(5)	C20	C21	C22	125.1(6)
C7	C8	C3	122.7(5)	C6	C7	C8	117.1(5)
C5	C4	C3	119.1(5)	C17	C18	C19	120.2(7)
C8	C3	C4	118.7(4)	C17	C16	C15	120.8(7)
C8	C3	C2	106.4(4)	C16	C17	C18	119.7(7)
C4	C3	C2	134.9(4)				

Table 6 Torsion Angles for 6.

A B C	D	Angle/°	Α	B	С	D	Angle/°
S25 N24 C2	C1	-175.1(3)	C2	C1	C10	C14	75.0(5)
S25 N24 C2	C3	1.4(8)	C2	C1	C10	C11	-153.5(4)
O9 C1 C2	N24	-179.5(4)	C12	C13	C1	O9	-101.7(4)
O9 C1 C2	C3	3.0(5)	C12	C13	C1	C2	139.8(5)
O9 C1 C10	C14	-41.0(6)	C12	C13	C1	C10	16.3(5)
O9 C1 C10	C11	90.5(4)	C12	C13	C20	C21	176.5(6)
O9 C8 C3	C4	177.2(4)	C12	C11	C10	C1	24.2(5)
O9 C8 C3	C2	-1.4(5)	C12	C11	C10	C14	155.1(5)
O9 C8 C7	C6	-177.3(5)	C5	C4	C3	C8	0.3(7)
O27 S25 N24	C2	61.4(4)	C5	C4	C3	C2	178.5(5)
O26 S25 N24	C2	-70.0(4)	C5	C6	C7	C8	0.0(8)
C13 C1 C2	N24	-59.5(6)	C20	C13	C1	09	72.0(6)

Table 6 Torsion Angles for 6.

Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
C13	C1	C2	C3	123.0(4)	C20	C13	C1	C2	-46.5(6)
C13	C1	C10	C14	-156.2(4)	C20	C13	C1	C10	-170.0(5)
C13	C1	C10	C11	-24.7(5)	C20	C13	C12	C11	-174.3(5)
C13	C12	C11	C10	-15.3(6)	C20	C13	C12	C23	3.7(9)
C13	C20	C21	C22	-179.3(6)	C10	C1	C2	N24	60.3(5)
C1	09	C8	C3	3.4(5)	C10	C1	C2	C3	-117.2(4)
C1	09	C8	C7	-178.4(4)	C10	C14	C15	C16	-179.7(6)
C1	C13	C12	C11	-0.8(6)	C10	C14	C19	C18	-179.1(5)
C1	C13	C12	C23	177.2(5)	C15	C14	C10	C1	-118.6(5)
C1	C13	C20	C21	3.9(8)	C15	C14	C10	C11	116.5(6)
C8	09	C1	C13	-131.4(4)	C15	C14	C19	C18	2.4(9)
C8	09	C1	C2	-3.8(4)	C15	C16	C17	C18	-0.7(11)
C8	09	C1	C10	115.9(4)	C19	C14	-C10	C1	62.9(7)
C8	C3	C2	N24	-177.9(5)	C19	C14	C10	C11	-61.9(7)
C8	C3	C2	C1	-1.1(5)	C19	C14	C15	C16	-1.2(9)
C4	C3	C2	N24	3.8(9)	C19	C18	C17	C16	1.9(11)
C4	C3	C2	C1	-179.4(5)	C23	C12	C11	C10	166.6(5)
C3	C8	C7	C6	0.8(8)	C7	C8	C3	C4	-1.0(7)
C3	C4	C5	C6	0.5(8)	C7	C8	C3	C2	-179.6(4)
C14	C15	C16	C17	0.4(10)	C7	C6	C5	C4	-0.7(9)
C14	C19	C18	C17	-2.8(10)	C28	S25	N24	-C2	175.9(4)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 6.

x	У	z	U(eq)
3345.57	2723.92	7358.21	51
7672.23	1624.58	6647.53	67
5932.19	1648.69	7366.93	63
-485.63	2631.85	5184.82	56
1026.75	7029.45	5289.16	58
2686.57	6336.51	5073.27	58
1404.99	6304.63	6081.08	48
2811.44	7708.37	6597.45	69
5600.84	5861.77	5529.75	67
1290.14	1881.86	6037.92	62
218.86	5219.27	4405.54	101
-1300.12	5750.32	4741.08	101
-1029.47	4245.67	4680.91	101
	x 3345.57 7672.23 5932.19 -485.63 1026.75 2686.57 1404.99 2811.44 5600.84 1290.14 218.86 -1300.12 -1029.47	x y 3345.57 2723.92 7672.23 1624.58 5932.19 1648.69 -485.63 2631.85 1026.75 7029.45 2686.57 6336.51 1404.99 6304.63 2811.44 7708.37 5600.84 5861.77 1290.14 1881.86 218.86 5219.27 -1300.12 5750.32 -1029.47 4245.67	x y z 3345.572723.927358.217672.231624.586647.535932.191648.697366.93-485.632631.855184.821026.757029.455289.162686.576336.515073.271404.996304.636081.082811.447708.376597.455600.845861.775529.751290.141881.866037.92218.865219.274405.54-1300.125750.324741.08-1029.474245.674680.91

Atom	x	у	Z.	U(eq)
H7	6839.9	2649.37	5891.9	60
H28A	-2103.39	4965.63	7707.44	83
H28B	-2522.42	4677.53	7127.77	83
H28C	-1501.49	5936.6	7277.9	83
H18	8031.77	6853.23	5840.83	89
H16	5255.6	8742.54	6881.99	91
H22A	-924.2	439.59	5390.08	107
H22B	-831.75	199.08	5985.91	107
H22C	724.88	-179.77	5634.01	107
H17	7841.02	8347.65	6500.71	100

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 6.