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Fig. S1. TEM images of (a) PANI2/CP, (b) PANI3/CP, (c) PANI4/CP, (d) PANI5/CP and (e) PANI6/CP catalysts. 



Fig. S2. SEM images of (a) PANI
2
/CP, (b) PANI

3
/CP, (c) PANI

4
/CP, (d) PANI

5
/CP and (e) PANI

6
/CP catalysts.



 Fig. S3. TGA profiles of all PANI/CP catalysts in air.
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Fig. S4. Deconvoluted C 1s XPS spectra of a) PANI2/CP, b) PANI3/CP, c) PANI4/CP, d) PANI5/CP and e) PANI6/CP catalysts.



Fig. S5. Deconvoluted N1s XPS spectra of a) PANI2/CP, b) PANI3/CP, c) PANI4/CP, d) PANI5/CP and e) PANI6/CP catalysts.



Fig. S6. Chemical structure diagram of polyaniline.



Fig. S7. Linear sweep voltammetry curves of a) PANI1/CP, b) PANI2/CP, c) PANI3/CP, d) PANI4/CP, e) PANI5/CP and f) 

PANI6/CP samples with 10 mM HMF or without HMF in 0.1 M KOH solution (pH 13) at the scan rate of 10 mV s-1.



Fig. S8. CV curves of a) PANI1/CP, b) PANI2/CP, c) PANI3/CP, d) PANI4/CP, e) PANI5/CP and f) PANI6/CP 
samples at different scan rate from 100 mV s-1 to 600 mV s-1 in 0.1 M KOH solution with 10 mM HMF.



Fig. S9. Conversion of HMF and selectivity of its oxidation products with PANI4/CP electrode catalyst as function of 
charge at potential of 1.96 VRHE. 
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Fig. S10. H2 Faradaic efficiency on Pt cathode for all PANI/CP catalysts.
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Fig. S11. Conversion rates of DFF or FFCA for all PANI/CP samples when DFF or FFCA as the reactant until transferred 

28.8 C electrons at potential of 1.96 VRHE.



Fig. S12. Conversion of HMF, selectivity of FFCA of PANI4/CP sample at potential of 1.96 VRHE after 6 cycles.
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Fig. S13. Conversion rates of HMF or DFF for PANI4/CP sample when HMF or DFF as the reactant, respectively at potential 

of 1.96 VRHE.
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Fig. S14. Deconvoluted N1s XPS spectra of a) PANI1/CP, b) PANI2/CP, c) PANI3/CP, d) PANI4/CP, d) PANI5/CP and e) 

PANI6/CP samples after HMFOR reaction.



Fig. S15. Contribution of N4 and N3 to HMFOR after considering the number of active sites in catalysts, where r*HMF is the 

theoretical conversion rate of HMF.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

r*
H

M
F (
m

ol
s

-1
)

 kN3nN3

 kN4nN4

PANI1/C
P

PANI2/C
P

PANI3/C
P

PANI4/C
P

PANI5/C
P

PANI6/C
P



Fig. S16. High performance liquid chromatography analysis results for all reactants and products during the HMF 

electrooxidation reaction for PANI4/CP catalyst.
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Fig. S17. Mass spectrometry spectra of the electrolyte after the reaction with PANI4/CP catalyst. 



Fig. S18. Contribution of all active sites (oxidation capacity) of PANI catalysts as a function of yield of FFCA.
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Table S1. Assignments of FT-IR peak of all PANI/CP catalysts.

Peak position (cm
-1

) Assignments Structure

1154 N=Q=N absorption peaks (Q represents the quinoid ring)

1307 C–N stretching mode

1495 C=C stretching vibration of the benzenoid rings

1585 C=C stretching vibration of the quinoid rings



Table S2. Assignments of Raman bands of all PANI/CP catalysts at an excitation of 532 nm.

peak position 
(cm

-1
)

Assignments Structure

412 Out of plane C-H wag in polaronic structures

606 Benzenoid ring in plane deformation

1255 C-N stretching in polaronic units

1376 C-N
+
 stretching of radical cations

1560 C-C stretching of quinoid rings



Table S3. HMFOR performance of PANI/CP and catalysts.

Entry Catalyst Electrolyte/HMF 
concentration pH

Catalyst 
loading

 (mg cm-2)

Potential 
(VRHE)

HMF 
Conv. Product/Sele.

1 PANI/CP 0.1 M KOH/10 mM 13 1 1.96 43% FFCA/76%

2 NiO/CP 0.1 M KOH/10 mM 13 1 1.36 98% FDCA/100%

3 CuO/CP 0.1 M KOH/10 mM 13 1 1.46 96% FDCA/100%

4 Polypyrrole/CP 0.1 M KOH/10 mM 13 1 1.96 18% DFF/60%

5 Polythiophene/CP 0.1 M KOH/10 mM 13 1 1.96 12% DFF/54%



Table S4. HMFOR performance of PANI/CP and other reported catalysts.

Entry Catalyst Electrolyte/HMF 
concentration pH

Catalyst 
loading

 (mg cm-2)

Potential 
(VRHE) HMF Conv. Product/Sele. Ref.

1 PANI/CP 0.1 M KOH/10 mM 13 1 1.96 43% FFCA/76% This work
NC 0.1 M NaOH/5 mM 13 0.3 1.90 15% FDCA/26%a

2 BNC 71% FDCA/80%a 1

3 Ru-NiO 1.0 M PBS/50 mM 6.9 NA 1.50 55% DFF/61%a 2
4 Ni(NS) 0.1 M KOH/5 mM 13 NA 1.36 99.7% FDCA/99.7% 3
5 CoO-CoSe2 1.0 M KOH/10 mM 14 5 1.43 100% FDCA/96% 4
6 CuCo2O4 1.0 M KOH/50 mM 14 0.2 1.45 98% FDCA/95.6%a 5
7 Ir-Co3O4 1.0 M KOH/50 mM 12 NA 1.42 ≥99%a FDCA/98%a 6
8 Ni3S2 1.0 M KOH/10 mM 14 NA 1.423 ≥99%a FDCA/97%a 7
9 MoO2-FeP@C 1.0 M KOH/10 mM 14 1.9 1.424 99.4% FDCA/98% 8

10 (FeCrCoNiCu)3O4 1.0 M KOH/50 mM 14 0.8 1.50 ≥99%a FDCA/97%a 9
11 N-Co3O4 1.0 M KOH/50 mM 14 NA 1.423 99.5% FDCA/97.8% 10
12 PdAu/C 0.1 M KOH/50 mM 13 NA 0.90 ≥99%a FDCA/83%a 11
13 Pt/Ni(OH)2 1.0 M KOH/50 mM 14 0.2 NA ≥99%a FDCA96%a 12

a Data that is not listed explicitly in the literature. NA: not available.



Table S5. Contents of N1, N2, N3 and N4 groups on the PANI/CP catalysts after HMFOR reaction from N1s.

Material N1 % N2 % N3 % N4 % N1 µmol N2 µmol N3 µmol N4 µmol rHMF µmol·s-1

PANI
1
/CP 12.89 77.16 6.95 3.01 5.18 27.84 2.80 1.21 0.08

PANI
2
/CP 26.09 59.95 9.90 4.06 9.97 21.46 3.89 1.59 0.15

PANI
3
/CP 18.30 57.70 17.39 6.61 7.27 22.91 6.90 2.62 0.28

PANI
4
/CP 29.77 44.83 18.17 7.24 13.23 19.92 8.08 3.22 0.30

PANI
5
/CP 20.26 49.98 20.37 9.39 8.29 20.44 8.33 3.84 0.38

PANI
6
/CP 17.92 46.46 25.00 10.62 7.89 20.45 11.01 4.68 0.46



Note S1. The contents of N1, N2, N3 and N4 groups on the PANI/CP catalysts are calculated from XPS results. The 

Equation (1), (2), (3) and (4) are as following:

𝑁1 (𝑚𝑚𝑜𝑙) =
𝑁% × 𝑁1% × 6 𝑚𝑔

12 × 𝐶% + 16 × 𝑂% + 14 × 𝑁%

(1)

𝑁2 (𝑚𝑚𝑜𝑙) =
𝑁% × 𝑁2% × 6 𝑚𝑔

12 × 𝐶% + 16 × 𝑂% + 14 × 𝑁%

(2)

𝑁3 (𝑚𝑚𝑜𝑙) =
𝑁% × 𝑁3% × 6 𝑚𝑔

12 × 𝐶% + 16 × 𝑂% + 14 × 𝑁%

(3)

𝑁4 (𝑚𝑚𝑜𝑙) =
𝑁% × 𝑁4% × 6 𝑚𝑔

12 × 𝐶% + 16 × 𝑂% + 14 × 𝑁%

(4)

Note S2. Identification and quantification of active sites for HMFOR via the conversion rate of HMF transformation (the fitting 

process).

The experimental observed the conversion rate of HMF transformation (rHMF) as dependent variables are linearly fitted with 

concentration of N3 and N4 functional groups as independent variables using k as fitting parameters. k represents the 

number of HMF reactant converted per mole of active site per second. The derived Equation (5) is as following:

 (5)𝑟𝐻𝑀𝐹 = 𝑘𝑁3 ∙ 𝑛𝑁3 + 𝑘𝑁4 ∙ 𝑛𝑁4

Where rHMF, 𝑛N3 and 𝑛N4 represent the conversion rate of HMF transformation and concentration of N3 and N4 on 

catalysts, respectively. 
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