Supporting Information

Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2formic acid on non-metallic polyaniline catalysts: Structure-function relationships

Xingyu Lu^{a,b}, Ke Qi^{a,b}, Xueya Dai^{a,b}, Yunlong Li^{a,b}, Di Wang^c, Jing Dou^{a,b}, Wei Qi^{a,b*}

^a Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences Shenyang, Liaoning, China

^b School of Materials Science and Engineering University of Science and Technology of China Shenyang, Liaoning, China

^c School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning Province, China.

*Email: wqi@imr.ac.cn

Fig. S1. TEM images of (a) PANI₂/CP, (b) PANI₃/CP, (c) PANI₄/CP, (d) PANI₅/CP and (e) PANI₆/CP catalysts.

Fig. S2. SEM images of (a) $PANI_2/CP$, (b) $PANI_3/CP$, (c) $PANI_4/CP$, (d) $PANI_5/CP$ and (e) $PANI_6/CP$ catalysts.

Fig. S3. TGA profiles of all PANI/CP catalysts in air.

Fig. S4. Deconvoluted C 1s XPS spectra of a) PANI₂/CP, b) PANI₃/CP, c) PANI₄/CP, d) PANI₅/CP and e) PANI₆/CP catalysts.

Fig. S5. Deconvoluted N1s XPS spectra of a) PANI₂/CP, b) PANI₃/CP, c) PANI₄/CP, d) PANI₅/CP and e) PANI₆/CP catalysts.

Fig. S6. Chemical structure diagram of polyaniline.

Fig. S7. Linear sweep voltammetry curves of a) PANI₁/CP, b) PANI₂/CP, c) PANI₃/CP, d) PANI₄/CP, e) PANI₅/CP and f) PANI₆/CP samples with 10 mM HMF or without HMF in 0.1 M KOH solution (pH 13) at the scan rate of 10 mV s⁻¹.

Fig. S8. CV curves of a) $PANI_1/CP$, b) $PANI_2/CP$, c) $PANI_3/CP$, d) $PANI_4/CP$, e) $PANI_5/CP$ and f) $PANI_6/CP$ samples at different scan rate from 100 mV s⁻¹ to 600 mV s⁻¹ in 0.1 M KOH solution with 10 mM HMF.

Fig. S9. Conversion of HMF and selectivity of its oxidation products with $PANI_4/CP$ electrode catalyst as function of charge at potential of 1.96 V_{RHE} .

Fig. S10. H_2 Faradaic efficiency on Pt cathode for all PANI/CP catalysts.

Fig. S11. Conversion rates of DFF or FFCA for all PANI/CP samples when DFF or FFCA as the reactant until transferred 28.8 C electrons at potential of 1.96 V_{RHE} .

Fig. S12. Conversion of HMF, selectivity of FFCA of PANI₄/CP sample at potential of 1.96 V_{RHE} after 6 cycles.

Fig. S13. Conversion rates of HMF or DFF for PANI₄/CP sample when HMF or DFF as the reactant, respectively at potential of 1.96 V_{RHE} .

Fig. S14. Deconvoluted N1s XPS spectra of a) PANI₁/CP, b) PANI₂/CP, c) PANI₃/CP, d) PANI₄/CP, d) PANI₅/CP and e) PANI₆/CP samples after HMFOR reaction.

Fig. S15. Contribution of N4 and N3 to HMFOR after considering the number of active sites in catalysts, where r^*_{HMF} is the theoretical conversion rate of HMF.

Fig. S16. High performance liquid chromatography analysis results for all reactants and products during the HMF electrooxidation reaction for PANI₄/CP catalyst.

Fig. S18. Contribution of all active sites (oxidation capacity) of PANI catalysts as a function of yield of FFCA.

Table S1. Assignments of FT-IR peak of all PANI/CP catalysts.

Peak position (cm ⁻¹)	Assignments	Structure		
1154	N=Q=N absorption peaks (Q represents the quinoid ring)	N		
1307	C-N stretching mode			
1495	C=C stretching vibration of the benzenoid rings	$\langle \rangle$		
1585	C=C stretching vibration of the quinoid rings	=		

Table S2. Assignments of Raman bands of all PANI/CP catalysts at an excitation of 532 nm.

peak position (cm ⁻¹)	Assignments	Structure
412	Out of plane C-H wag in polaronic structures	$-\overset{*}{_{N}=}\overset{*}{\overset{*}_{N}=}\overset{*}{\overset{*}_{N}}\overset{*}{\overset{*}_{N}}\overset{*}{\overset{*}_{N}}\overset{*}{\overset{*}_{N}$
606	Benzenoid ring in plane deformation	
1255	C-N stretching in polaronic units	
1376	C-N^{\dagger} stretching of radical cations	N ⁺⁻
1560	C-C stretching of quinoid rings	=

Table S3. HMFOR performance of PANI/CP and catalysts.

Entry	Catalyst	Electrolyte/HMF concentration	pН	Catalyst loading (mg cm ⁻²)	Potential (V _{RHE})	HMF Conv.	Product/Sele.
1	PANI/CP	0.1 M KOH/10 mM	13	1	1.96	43%	FFCA/76%
2	NiO/CP	0.1 M KOH/10 mM	13	1	1.36	98%	FDCA/100%
3	CuO/CP	0.1 M KOH/10 mM	13	1	1.46	96%	FDCA/100%
4	Polypyrrole/CP	0.1 M KOH/10 mM	13	1	1.96	18%	DFF/60%
5	Polythiophene/CP	0.1 M KOH/10 mM	13	1	1.96	12%	DFF/54%

Table S4. HMFOR performance of PANI/CP and other reported catalysts.

Entry	Catalyst	Electrolyte/HMF concentration	pН	Catalyst loading (mg cm ⁻²)	Potential (V _{RHE})	HMF Conv.	Product/Sele.	Ref.
1	PANI/CP	0.1 M KOH/10 mM	13	1	1.96	43%	FFCA/76%	This work
2	NC	0.1 M NaOH/5 mM	13	0.3	1.90	15%	FDCA/26% ^a	1
2	BNC					71%	FDCA/80% ^a	I
3	Ru-NiO	1.0 M PBS/50 mM	6.9	NA	1.50	55%	DFF/61% ^a	2
4	Ni(NS)	0.1 M KOH/5 mM	13	NA	1.36	99.7%	FDCA/99.7%	3
5	CoO-CoSe ₂	1.0 M KOH/10 mM	14	5	1.43	100%	FDCA/96%	4
6	CuCo ₂ O ₄	1.0 M KOH/50 mM	14	0.2	1.45	98%	FDCA/95.6% ^a	5
7	Ir-Co ₃ O ₄	1.0 M KOH/50 mM	12	NA	1.42	≥99%ª	FDCA/98% ^a	6
8	Ni ₃ S ₂	1.0 M KOH/10 mM	14	NA	1.423	≥99%ª	FDCA/97% ^a	7
9	MoO ₂ -FeP@C	1.0 M KOH/10 mM	14	1.9	1.424	99.4%	FDCA/98%	8
10	(FeCrCoNiCu) ₃ O ₄	1.0 M KOH/50 mM	14	0.8	1.50	≥99%ª	FDCA/97% ^a	9
11	N-Co ₃ O ₄	1.0 M KOH/50 mM	14	NA	1.423	99.5%	FDCA/97.8%	10
12	PdAu/C	0.1 M KOH/50 mM	13	NA	0.90	≥99%ª	FDCA/83%ª	11
13	Pt/Ni(OH) ₂	1.0 M KOH/50 mM	14	0.2	NA	≥99%ª	FDCA96% ^a	12

^a Data that is not listed explicitly in the literature. NA: not available.

Table S5. Contents of N1, N2, N3 and N4 groups on the PANI/CP catalysts after HMFOR reaction from N1s.

Material	N1 %	N2 %	N3 %	N4 %	N1 µmol	N2 µmol	N3 µmol	N4 µmol	r _{HMF} µmol∙s⁻¹
PANI ₁ /CP	12.89	77.16	6.95	3.01	5.18	27.84	2.80	1.21	0.08
PANI ₂ /CP	26.09	59.95	9.90	4.06	9.97	21.46	3.89	1.59	0.15
PANI ₃ /CP	18.30	57.70	17.39	6.61	7.27	22.91	6.90	2.62	0.28
PANI ₄ /CP	29.77	44.83	18.17	7.24	13.23	19.92	8.08	3.22	0.30
PANI ₅ /CP	20.26	49.98	20.37	9.39	8.29	20.44	8.33	3.84	0.38
PANI ₆ /CP	17.92	46.46	25.00	10.62	7.89	20.45	11.01	4.68	0.46

Note S1. The contents of N1, N2, N3 and N4 groups on the PANI/CP catalysts are calculated from XPS results. The Equation (1), (2), (3) and (4) are as following:

$$N1 \ (mmol) = \frac{N\% \times N1\% \times 6 \ mg}{12 \times C\% + 16 \times 0\% + 14 \times N\%}$$
(1)
$$N2 \ (mmol) = \frac{N\% \times N2\% \times 6 \ mg}{12 \times C\% + 16 \times 0\% + 14 \times N\%}$$
(2)
$$N3 \ (mmol) = \frac{N\% \times N3\% \times 6 \ mg}{12 \times C\% + 16 \times 0\% + 14 \times N\%}$$
(3)
$$N4 \ (mmol) = \frac{N\% \times N4\% \times 6 \ mg}{12 \times C\% + 16 \times 0\% + 14 \times N\%}$$
(4)

Note S2. Identification and quantification of active sites for HMFOR via the conversion rate of HMF transformation (the fitting process).

The experimental observed the conversion rate of HMF transformation (r_{HMF}) as dependent variables are linearly fitted with concentration of N3 and N4 functional groups as independent variables using k as fitting parameters. *k* represents the number of HMF reactant converted per mole of active site per second. The derived Equation (5) is as following:

$$r_{HMF} = k_{N3} \cdot n_{N3} + k_{N4} \cdot n_{N4} \tag{5}$$

Where r_{HMF} , n_{N3} and n_{N4} represent the conversion rate of HMF transformation and concentration of N3 and N4 on catalysts, respectively.

Reference¹⁻¹⁵

- 1. Qin, Q. et al. Electrochemical fixation of nitrogen and its coupling with biomass valorization with a strongly adsorbing and defect optimized boron–carbon–nitrogen catalyst. *ACS Appl. Energy Mater.*, **2**, 8359-8365, (2019).
- Ge, R. et al. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. *Angew. Chem. Int. Ed.*, 61, e202200211, (2022).
- 3. Lu, X. et al. Highly efficient electro-reforming of 5-hydroxymethylfurfural on vertically oriented nickel nanosheet/carbon hybrid catalysts: Structure-function relationships. *Angew. Chem. Int. Ed.*, **60**, 14528-14535, (2021).
- 4. Huang, X. et al. Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. *Green Chem.*, **22**, 843-849, (2020).
- 5. Lu, Y. et al. Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5-Hydroxymethylfurfural. *Angew. Chem. Int. Ed.*, 59, 19215-19221, (2020).
- Lu, Y. X. et al. Tuning the Selective Adsorption Site of Biomass on Co₃O₄ by Ir Single Atoms for Electrosynthesis. *Adv. Mater.*, **33**, 6, (2021).
- You, B. Liu, X. Jiang, N. & Sun, Y. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. J. Am. Chem. Soc., 138, 13639-13646, (2016).
- Yang, G. et al. Interfacial Engineering of MoO₂-FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation. *Adv. Mater.*, **32**, e2000455, (2020).
- 9. Gu, K. et al. Defect-Rich High-Entropy Oxide Nanosheets for Efficient 5-Hydroxymethylfurfural Electrooxidation. *Angew. Chem. Int. Ed.*, **60**, 20253-20258, (2021).
- 10. Sun, M. et al. Nitrogen-doped Co₃O₄ nanowires enable high-efficiency electrochemical oxidation of 5hydroxymethylfurfural. *Chinese Chemical Letters*, **33**, 385-389, (2022).
- 11. Chadderdon, D. J. et al. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. *Green Chem.*, **16**, 3778-3786, (2014).
- Zhou, B. et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)₂ for biomass upgrading. *Angew. Chem. Int. Ed.*, **60**, 22908-22914, (2021).