Supplementary Information

Unlocking the chemical environment of nitrogen in perovskite-type oxides

Shunsuke Shimizu,^a Takeharu Yoshii,^{*a} Ginga Nishikawa,^{a,b} Jingwen Wang,^{a,c} Shu Yin,^{a,b} Eiichi Kobayashi,^d and Hirotomo Nishihara^{*a,b}

^b Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.

^{c.} School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

^d Kyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga, 841-0005, Japan.

*Corresponding author

E-mail: takeharu.yoshii.b3@tohoku.ac.jp; hirotomo.nishihara.b1@tohoku.ac.jp

^{a.} Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.

Fig. S1 (a) Schematic illustration of the advanced TPD device. (b) Photograph of graphite and tungsten sample holders.

Fig. S2 TPD profiles of (a) LTO_TEA and (b) LTO_N for desorbed species: H_2 (m/z = 2), H_2O (m/z = 18), NO (m/z = 30), CO2 (m/z = 44) HCN (m/z = 27). Extraction of NH₃ component from TPD profile of (c) LTO_TEA and (d) LTO_N. Separation of TPD profile of (e) LTO_TEA and (f) LTO_N. Extraction of CO component from TPD profile of (g) LTO_TEA and (h) LTO_N.

Fig. S3 Changes in PXRD patterns and SEM images of (a) LTO_TEA and (b) LTO_N before and after heat treatment at 1100 °C and 1600 °C, and standard XRD pattern of $La_2Ti_2O_7$ (the standard card 1950-ICSD).

Fig. S4 Overlap of N 1s XPS spectra of LTO_TEA and LTO_N.

Fig. S5 TPD profiles of blank test with the tungsten holder.

Fig. S6 H_2 , CO, CO₂, and H_2O desorption pattern determined by TPD of (a) LTO_TEA and (b) LTO_N.

Fig. S7 N 1s XPS spectra of (a) LTO_TEA and (b) LTO_N after TPD measurements up to 1600 °C, before and after Ar⁺ sputtering for 150 s.

Fig. S8 MS spectra of LTO_TEA using the commercial TG-MS system under a He flow.

Fig. S9 C 1s XPS spectra of (a) LTO_TEA and (b) LTO_N before and after Ar⁺ sputtering for 150 s or 300 s.

Fig. S10 TPD profile of Titanium nitride.

Fig. S11 In situ DRIFTS spectra of LTO_TEA in 2100-1900 cm⁻¹ region.

The slope of calibration curves / μmol • s ⁻¹		
H ₂ 703300		
CO 844300		
CO ₂ 904500		
H ₂ O 803700		
N ₂ 824300		
HCN 521800		
NH ₃ 450700		
NO 2047800		

Table S1 The slope of calibration curves prepared by introducing each gas into the TPD chamber using a gas reservoir tank of known volume.

 Table S2 N content before and after TPD measurements determined from CHN elemental analysis.

	Before TPD measurement / wt%	After TPD measurement /wt%
LTO_TEA	1.13	0.14
LTO_N	0.72	0.06