Supporting Information For

Unusual Quadruple Bonds Featuring Collective Interaction-Type σ Bonds Between First Octal-Row Atoms in the Alkaline-Earth Compounds Ae**≢**OLi₂ (Ae = Be – Ba)

Li-juan Cui,^{a#} Yu-qian Liu,^{a#} Sudip Pan,*a Zhong-hua Cui*a,^b and Gernot Frenking*c,^d

^aInstitute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China

E-mail: zcui@jlu.edu.cn (ZC); sudip@jlu.edu.cn (SP)

^bKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130023, China

^cPhilipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany

^dInstitute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. E-mail: frenking@chemie.uni-marburg.de

[#]These authors contributed equally to this work.

Figures S1 – S5

Tables S1 – S8

M. I.	BeOLi ₂	MgOLi ₂	CaOLi ₂	SrOLi ₂	BaOLi ₂		
Niode	BP86-D3(BJ)						
Li-O-Li out-							
of-plane	75.1 (5)	110.6 (26)	98.8 (1)	102.9 (1)	96.1 (2)		
bending							
Li-O-Li in-							
plane	193.3 (37)	168.2 (38)	172.5 (6)	165.7 (5)	160.6 (2)		
bending							
Li-O-Be	242 0 (326)	120 7 (153)	159.6 (106)	148 2 (89)	156 7 (58)		
bending	242.0 (320)	120.7 (155)	137.0 (100)	140.2 (07)	150.7 (58)		
Li-O-Li							
symmetric	606.9 (3)	685.0 (4)	665.4 (3)	668.2 (2)	650.1 (9)		
stretching							
Li-O-Li							
asymmetric	749.9 (1)	840.2 (1)	784.3 (34)	790.4 (40)	755.2 (68)		
stretching							
Be-O	1102 8 (4)	518.2 (0)	506.0 (19)	421.0 (17)	405 6 (32)		
stretching	1102.0 (4)	510.2 (0)	500.0 (17)	421.0 (17)	405.0 (52)		
	CCSD(T)						
Li-O-Li out-							
of-plane	84.9	124.8	116.8	115.4	102.3		
bending							
Li-O-Li in-							
plane	204.6	186.7	185.2	174.8	174.3		
bending							
Li-O-Be	241.0	106.4	131.8	135.8	156.5		
bending	2	10011	10110	10010	10000		
Li-O-Li							
symmetric	630.0	705.9	697.1	690.2	670.5		
stretching							
Li-O-Li							
asymmetric	787.0	868.5	836.0	832.6	791.2		
stretching							
Be-O	1114.8	557.3	487.7	413.0	404.0		
stretching				110.0			

Table S1. Calculated vibrational frequencies v (cm⁻¹) of AeOLi₂ (Ae = Be, Mg, Ca, Sr, Ba) at CCSD(T) and BP86-D3(BJ) using the def2-QZVPP basis set. Vibrational intensities (km/mol) are given in parentheses.^a

^a IR intensities at CCSD(T) are not available in the Gaussian program.

Table S2. The EDA results of the singlet state of $BeOLi_2$ cluster considering Be and OLi_2 in different charge and electronic states as interacting fragments at the BP86-D3(BJ)/TZ2P-ZORA level.

Enorm	Be $(2s^2, S) +$	Be $(2s^{1}2p_{x}^{1}, T) +$	$Be^{+}(2s^{1}, D) +$	$Be^{2+}(2s^0, S) +$
Energy	$OLi_{2}(S)$	$OLi_{2}(T)$	$OLi_2^{-}(D)$	$OLi_{2^{2-}}(S)$
$\Delta E_{\rm int}$	-81.0	-189.0	-287.5	-778.5
$\Delta E_{\mathrm{Pauli}}$	253.1	148.0	173.2	80.6
$\Delta E_{\rm disp}$	-1.7	-1.7	-1.7	-1.7
$\Delta E_{\rm elstat}$	-189.0	-119.5	-266.8	-511.7
$\Delta E_{\rm orb}$	-143.4	-215.8	-192.2	-345.7

Table S3. The EDA results of the singlet state of $MgOLi_2$ cluster considering Mg and OLi_2 in different charge and electronic states as interacting fragments at the BP86-D3(BJ)/TZ2P-ZORA level.

Enorm	Mg $(3s^2, S) +$	Mg $(3s^{1}3p_{x}^{1}, T) +$	$Mg^{+}(3s^{1}, D) +$	$Mg^{2+}(3s^0, S) +$
Energy	$OLi_{2}(S)$	$OLi_{2}(T)$	$OLi_2^-(D)$	$OLi_{2^{2-}}(S)$
$\Delta E_{ m int}$	-40.2	-169.6	-214.5	-634.0
$\Delta E_{\mathrm{Pauli}}$	130.8	81.0	93.6	57.8
$\Delta E_{\rm disp}$	-2.4	-2.4	-2.4	-2.4
$\Delta E_{\rm elstat}$	-114.2	-76.3	-207.8	-463.2
$\Delta E_{\rm orb}$	-54.4	-171.8	-97.9	-226.2

Table S4. The EDA results of the singlet state of $CaOLi_2$ cluster considering Ca and OLi_2 in different charge and electronic states as interacting fragments at the BP86-D3(BJ)/TZ2P-ZORA level.

Energy	$\begin{array}{c} \text{Ca}(4\text{s}^2,\text{S})+\\ \text{OLi}_2(\text{S}) \end{array}$	$\operatorname{Ca}^+(4\mathrm{s}^1,\mathrm{D})+ \operatorname{OLi}_2^-(\mathrm{D})$	$\begin{array}{c} \begin{array}{c} & d_{z^{1}}, \\ \text{Ca} \left(4 s^{1} 3^{d_{z^{1}}}, T\right) \\ + \text{OLi}_{2} \left(T\right) \end{array}$	$\begin{array}{c} Ca(4s^{1}3d_{yz}{}^{1},T) \\ +OLi_{2}(T) \end{array}$
$\Delta E_{\rm int}$	-60.9	-199.8	-164.2	-157.2
ΔE_{Pauli}	137.8	116.4	101.7	86.4
$\Delta E_{\rm disp}$	-2.7	-2.7	-2.7	-2.7
$\Delta E_{\rm elstat}$	-126.9	-214.4	-71.0	-76.0
$\Delta E_{\rm orb}$	-69.2	-99.2	-192.2	-164.9
Energy	$Ca^{2+}(4s^0, D) +$			
Ellergy	$OLi_{2^{2-}}(D)$			
$\Delta E_{\rm int}$	-544.7			
ΔE_{Pauli}	98.7			
$\Delta E_{\rm disp}$	-2.7			
$\Delta E_{\rm elstat}$	-455.4			
$\Delta E_{\rm orb}$	-185.3			

Table S5. The EDA results of the singlet state of $SrOLi_2$ cluster considering Sr and OLi_2 in different charge and electronic states as interacting fragments at the BP86-D3(BJ)/TZ2P-ZORA level.

Energy	Sr (5s ² , S) + OLi ₂ (S)	$Sr^{+}(5s^{1}, D) + OLi_{2}^{-}(D)$	$\frac{\operatorname{Sr}(5\mathrm{s}^{1}4\mathrm{d}_{\mathrm{yz}}^{-1},\mathrm{T})}{+\operatorname{OLi}_{2}(\mathrm{T})}$	$\frac{d_{z^{2_1}}}{\operatorname{Sr}(5s^{14}z^{2_1},T)}$ + OLi ₂ (T)
$\Delta E_{\rm int}$	-55.2	-185.0	-181.1	-165.6
ΔE_{Pauli}	131.5	116.3	93.3	100.4
$\Delta E_{\rm disp}$	-2.7	-2.7	-2.7	-2.7
$\Delta E_{\rm elstat}$	-121.4	-208.9	-78.4	-71.2
$\Delta E_{\rm orb}$	-62.6	-89.7	-193.2	-192.0
Energy	$Sr^{2+}(5s^0, S) +$			
	OL_{12^2} (S)			
$\Delta E_{\rm int}$	-511.1			
ΔE_{Pauli}	106.9			
$\Delta E_{\rm disp}$	-2.7			
$\Delta E_{\rm elstat}$	-447.7			
$\Delta E_{\rm orb}$	-167.6			

Table S6. The EDA results of the singlet state of $BaOLi_2$ cluster considering Ba and OLi_2 in different charge and electronic states as interacting fragments at the BP86-D3(BJ)/TZ2P-ZORA level.

Energy	$\begin{array}{c} \text{Ba}(6\text{s}^2,\text{S})+\\ \text{OLi}_2(\text{S}) \end{array}$	$\begin{array}{c} \operatorname{Ba^{+}}(6\mathrm{s}^{1},\mathrm{D}) + \\ \operatorname{OLi}_{2^{-}}(\mathrm{D}) \end{array}$	$Ba (6s^{1}5d_{yz}^{-1}, T) + OLi_{2} (T)$	$\begin{array}{c} d \\ Ba (6s^{1}5^{d}z^{2}{}^{1}, T) \\ + OLi_{2} (T) \end{array}$
$\Delta E_{\rm int}$	-65.0	-183.0	-152.8	-137.6
ΔE_{Pauli}	155.9	147.4	126.1	133.2
$\Delta E_{\rm disp}$	-2.8	-2.8	-2.8	-2.8
$\Delta E_{\rm elstat}$	-138.7	-225.6	-102.6	-88.4
$\Delta E_{\rm orb}$	-79.4	-102.1	-173.4	-179.6
Energy	$Ba^{2+}(6s^0, S) + OLi2^{2-}(S)$			
$\Delta E_{\rm int}$	-485.3			
ΔE_{Pauli}	145.8			
$\Delta E_{\rm disp}$	-2.8			
$\Delta E_{\rm elstat}$	-460.2			
$\Delta E_{\rm orb}$	-168.1			

 $\label{eq:table_state} \textbf{Table S7.} Coordinates of singlet AeOLi_2 calculated at BP86-D3(BJ)/def2-QZVPP.$

BeO	Li ₂		
Be	0.0000000000000	0.0000000000000	-1.212868000000
0	0.0000000000000	0.000000000000	0.226749000000
Li	0.000000000000	1.713602000000	0.506246000000
Li	0.000000000000	-1.713602000000	0.506246000000
MgC	DLi ₂		
Mg	0.000000000000	0.000000000000	1.14690000000
0	0.000000000000	0.000000000000	-0.758933000000
Li	0.000000000000	1.605234000000	-1.281891000000
Li	0.000000000000	-1.605234000000	-1.281891000000
CaO	Li ₂		
Ca	0.0000000000000	0.0000000000000	0.941164000000
0	0.000000000000	0.000000000000	-1.083554000000
Li	0.000000000000	1.594847000000	-1.692474000000
Li	0.000000000000	-1.594847000000	-1.692474000000
SrOI	-1_2		
Sr	0.000000000000	0.000000000000	0.660118000000
0	0.000000000000	0.000000000000	-1.514636000000
Li	0.000000000000	1.575581000000	-2.161235000000
Li	0.000000000000	-1.575581000000	-2.161235000000
BaO	Li ₂		
Ba	0.0000000000000	0.0000000000000	0.512031000000
0	0.000000000000	0.000000000000	-1.747656000000
Li	0.000000000000	1.566599000000	-2.448749000000
Li	0.000000000000	-1.566599000000	-2.448749000000

Table S8. Coordinates of singlet AeOLi₂ calculated at CCSD(T)/def2-QZVPP.

BeOLi₂

Be	0.0000000000000	0.0000000000000	-1.202750000000
0	0.00000000000000000000000000000000000	0.000000000000	0.236092000000
Li	0.000000000000	1.707308000000	0.487043000000
Li	0.000000000000	-1.707308000000	0.487043000000
MgC	DLi ₂		
Mg	0.0000000000000	0.00000000000000000000000000000000000	1.124803000000
0	0.000000000000	0.000000000000	-0.756369000000
Li	0.000000000000	1.611745000000	-1.241114000000
Li	0.000000000000	-1.611745000000	-1.241114000000
CaO	Li ₂		
Ca	0.0000000000000	0.0000000000000	0.953293000000
0	0.000000000000	0.000000000000	-1.114014000000
Li	0.000000000000	1.589134000000	-1.692292000000
Li	0.000000000000	-1.589134000000	-1.692292000000
SrOI			
Sr	0.000000000000	0.000000000000	0.663742000000
0	0.000000000000	0.000000000000	-1.537781000000
Li	0.000000000000	1.574796000000	-2.153324000000
Li	0.000000000000	-1.574796000000	-2.153324000000
BaO	Li ₂		
Ba	0.000000000000	0.0000000000000	0.509631000000
0	0.000000000000	0.000000000000	-1.756815000000
Li	0.000000000000	1.574432000000	-2.414132000000
Li	0.000000000000	-1.574432000000	-2.414132000000

Figure S1. Plot of the deformation densities, $\Delta \rho_{(1)-(4)}$ shown as the sum of α and β electronic charge corresponding to $\Delta E_{orb(1)-(4)}$ and the related interacting orbitals in the singlet states of MgOLi₂ at the BP86-D3(BJ)/TZ2P-ZORA level using Mg (3s², S) + OLi₂ (S) as interacting fragments. The eigenvalues v indicate the size of the charge flow, and the direction of charge flow is red \rightarrow blue. The isovalue for $\Delta \rho_{(1)-(4)}$ is 0.001 au.

Figure S2. Plot of the deformation densities, $\Delta \rho_{(1)-(4)}$ shown as the sum of α and β electronic charge corresponding to $\Delta E_{orb(1)-(4)}$ and the related interacting orbitals in the singlet states of SrOLi₂ at the BP86-D3(BJ)/TZ2P-ZORA level using Sr (5s², S) + OLi₂ (S) as interacting fragments. The eigenvalues v indicate the size of the charge flow, and the direction of charge flow is red \rightarrow blue. The isovalue for $\Delta \rho_{(1)-(4)}$ is 0.001 au.

Figure S3. Plot of the deformation densities, $\Delta \rho_{(1)-(4)}$ shown as the sum of α and β electronic charge corresponding to $\Delta E_{orb(1)-(4)}$ and the related interacting orbitals in the singlet states of BaOLi₂ at the BP86-D3(BJ)/TZ2P-ZORA level using Ba (6s², S) + OLi₂ (S) as interacting fragments. The eigenvalues v indicate the size of the charge flow, and the direction of charge flow is red—blue. The isovalue for $\Delta \rho_{(1)-(4)}$ is 0.001 au.

Figure S4. Shape of the AdNDP orbitals of MgOLi₂, CaOLi₂ and SrOLi₂.

Figure S5. ELF calculation showing the synaptic basins and the occupation numbers ON of AeOLi₂ (Ae = Be – Ba) at BP86-D3(BJ)/def2-QZVPP. The contour line diagrams have an isovalue of 0.56e/a.u.