Supporting Information

Helicity Control of a Polyaromatic Coordination Capsule through Stereoselective CH-π Interactions

Natsuki Kishida, Hayate Sasafuchi, Tomohisa Sawada, and Michito Yoshizawa*

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Contents

- Materials and methods, and references
- Synthesis of compound $\mathbf{3}_{CI}$ (¹H & ¹³C NMR and MS spectra)
- Synthesis of compound $\mathbf{3}_{\mathbf{I}}$ (¹H & ¹³C NMR and MS spectra)
- Synthesis of ligand 2 (¹H & ¹³C NMR, COSY, HSQC, and MS spectra)
- Formation of **1** (¹H & ¹³C NMR, HSQC, and MS spectra)
- Formation of 1•αGlc^{Me}, 1•βGlc^{Me}, 1•αGal^{Me}, 1•βGal^{Me}, 1•αMan^{Me}, and 1•Fru^{Me} (¹H NMR, HSQC, and/or NOESY spectra)
- Formation of **1"•αGlc^{Me}** (¹H NMR and MS spectra)
- Competitive binding experiments
- UV-visible and CD spectra of 1•αGal^{Me}, 1•βGal^{Me}, 1•αMan^{Me}, and 1•Fru^{Me}
- Theoretical studies of (P)/(M)-1 and (P)/(M)-1• α Glc^{Me}
- EXSY NMR spectra of **1**•βGal^{Me}

Materials and methods

NMR: Bruker AVANCE-HD500 (500 MHz), MALDI-TOF MS: Bruker ultrafleXtreme, ESI-TOF MS: Bruker micrOTOF II, UV-visible: JASCO V-670DS, FT-IR: SHIMADZU IRSpirit-T, CD: JASCO J-820.

Solvents and reagents: TCI Co., Ltd., FUJIFILM Wako Chemical Co., Kanto Chemical Co., Inc., Sigma-Aldrich Co., and Cambridge Isotope Laboratories, Inc. Compounds: Compound 3_{MOE} , capsule 1", pentamethylated α/β -D-glucose mixture (1:4) and fructose were synthesized according to ref. S1, S2, and S3, respectively.

Calculations

DFT calculation: Gaussian 16 program (Rev. C.01) package, Molecular mechanics calculation: Forcite module, BIOVIA Materials Studio 2020, version 20.1.0.5 (Dassault Systèmes Co.), NCI analysis: NCIPLOT 4.0, Calculations: DFT and TD-DFT calculations of capsule 1 (R = H) and its host-guest complexes were performed for the geometry optimizations (CAM-B3LYP/LanL2DZ (Pd), 6-31G(d,p) (others) level of theory).

References

- [S1] N. Kishida, K. Matsumoto, Y. Tanaka, M. Akita, H. Sakurai, M. Yoshizawa, J. Am. Chem. Soc. 2020, 142, 9599–9603.
- [S2] N. Kishida, Y. Tanaka, M. Yoshizawa, *Chem. Eur. J.* **2022**, *28*, e202202075.
- [S3] Z. R. Laughrey, S. E. Kiehna, A. J. Riemen, M. L. Waters, J. Am. Chem. Soc. 2008, 130, 14625–14633.
- [S4] C. L. D. Gibb, B. C. Gibb, J. Am. Chem. Soc. 2004, 126, 11408–11409.
- [S5] M. Yamashina, S. Matsuno, Y. Sei, M. Akita, M. Yoshizawa, *Chem. Eur. J.* 2016, 22, 14147–14150.

Compound $\mathbf{3}_{MOE}$ (0.113 g, 0.154 mmol) was added to a 100 mL glass flask filled with N₂. Dry CH₂Cl₂ (40 mL) was added to the flask. A 1 M CH₂Cl₂ solution of BBr₃ (2.1 mL, 2.1 mmol) was added to the flask at 0 °C, and then the mixture was stirred at r.t. for 3 h. After addition of H₂O (30 mL), the mixture was neutralized by adding 1N NaOH aq. The product was extracted with CH₂Cl₂, and then the obtained organic layer was dried over MgSO₄, filtrated, and concentrated under reduced pressure to afford crude **3**_{OH} (94.8 mg, 0.154 mmol, 100%) as a brown solid.

Compound $\mathbf{3}_{OH}$ (94.8 mg, 0.154 mmol) and K₂CO₃ (0.503 g, 3.64 mmol) were added to a 100 mL glass flask filled with N₂. Dry acetone (20 mL) was added to the flask, and then the mixture was stirred at 70 °C for 30 min. After an acetone solution (15 mL) of 1-bromo-4-chlorobutane (0.252 g, 1.47 mmol) was added to the flask, the mixture was stirred at 70 °C overnight. The mixture was concentrated under reduced pressure. The product was extracted with CH₂Cl₂ and the obtained organic layer was dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The obtained crude product was purified by GPC (CHCl₃) to afford ligand $\mathbf{3}_{Cl}$ (73.4 mg, 92.0 µmol, 60%) as a yellow solid. $\mathbf{3}_{OH}$: ¹H NMR (400 MHz, CD₃OD, after the addition of conc. HCl aq. (one drop), r.t.): δ 8.94-8.89 (m, 2H), 8.75 (s, 1H), 8.33-8.30 (m, 2H), 8.15-8.07 (m, 7H), 7.24-7.12 (m, 14H).

3_{Cl}: ¹H NMR (400 MHz, CDCl₃, r.t.): δ 8.68 (m, 2H), 8.49-8.48 (m, 1H), 8.04 (br, 1H), 7.99-7.89 (m, 4H), 7.58 (dd, *J* = 7.9 Hz, 1H), 7.44-7.39 (m, 4H), 7.21-7.14 (m, 5H), 7.06-7.02 (m, 4H), 6.99-6.92 (m, 4H), 4.24 (br, 4H), 3.76 (br, 4H), 2.13 (br, 4H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 151.4 (CH), 148.6 (CH), 148.2 (*C*_q), 138.6 (CH), 136.4 (*C*_q), 134.8 (*C*_q), 132.5 (*C*_q), 131.7 (*C*_q), 129.6 (*C*_q), 129.4 (*C*_q), 127.8-127.6 (CH), 125.5 (CH), 124.9 (CH), 124.0 (CH), 123.1 (CH), 118.0 (CH), 68.6 (CH₂), 44.9 (CH₂), 29.7 (CH₂), 26.8 (CH₂). FT-IR (ATR, cm⁻¹): 2961, 1487, 1440, 1393, 1262, 1240, 1225, 1157, 1091, 1053, 1027, 911, 807, 767, 717, 687, 613, 419. HR MS (ESI, CH₃OH): *m/z* Calcd. for C₅₂H₄₃Cl₂N₂O₂ 797.2696 [M + H]⁺, Found 797.2695.

Figure S1. ¹H NMR spectrum (500 MHz, CD₃OD, r.t., after the addition of conc. HCl aq. (one drop)) of **3**_{OH}.

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, r.t.) of 3_{Cl}.

Figure S3. ¹³C NMR spectrum (100 MHz, CDCl₃, r.t.) of 3_{Cl}.

Figure S4. HR MS spectrum (ESI, CH₃OH) of 3_{Cl}.

Compound $\mathbf{3}_{Cl}$ (163 mg, 0.205 mmol), sodium iodide (1.23 g, 8.20 mmol), and dry methyl ethyl ketone (MEK; 40 mL) were added to a 200 mL glass flask filled with N₂, and then the mixture was stirred at 85 °C overnight. The reaction mixture was

concentrated under reduced pressure. After addition of water, the crude product was extracted with CH_2Cl_2 . The obtained organic layer was dried over Na_2SO_4 , filtrated, and concentrated under reduced pressure. The crude product was purified by GPC (CHCl₃) to afford **3**_I (99.9 mg, 0.102 mmol, 50%) as a yellow solid.

¹H NMR (100 MHz, CDCl₃, r.t.): δ 8.68 (br, 2H), 8.50-8.48 (m, 1H), 8.04 (br, 1H), 7.98-7.89 (m, 4H), 7.58 (m, 1H), 7.44-7.37 (m, 4H), 7.18-7.13 (m, 5H), 7.07-7.01 (m, 4H), 6.99-6.92 (m, 4H), 4.24 (t, J = 5.0 Hz, 4H), 3.42 (t, J = 6.8 Hz, 4H), 2.22-2.09 (m, 8H). ¹³C NMR (125 MHz, CDCl₃, r.t.): δ 151.6-151.5 (CH), 148.7-148.6 (CH), 148.2-148.1 (C_q), 138.6-138.4 (CH), 136.4-136.2 (C_q), 134.8-134.7 (C_q), 132.6-132.3 (C_q), 131.9-131.7 (C_q), 129.7-129.6 (C_q), 129.4 (C_q), 127.8-127.6 (CH), 125.6-125.4 (CH),125.0 (CH), 124.1 (CH), 123.3-123.0 (CH), 118.0 (CH), 68.3 (CH₂), 30.7 (CH₂), 30.3 (CH₂), 6.7 (CH₂). FT-IR (ATR, cm⁻¹): 2924, 1514, 1440, 1386, 1243, 1198, 1156, 1091, 1027, 928, 809, 769, 718, 687, 614, 419. HR MS (ESI, CH₃OH): m/z Calcd. for C₅₂H₄₃I₂N₂O₂ 981.1409 [M + H]⁺, Found 981.1413.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃, r.t.) of 3₁.

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃, r.t.) of **3**_I.

Figure S7. HR MS spectrum (ESI, CH₃OH) of 3₁.

Synthesis of ligand 2

NKS1149, 1150

Compound 3_I (33.3 mg, 34.0 µmol) and an CH₃CN solution (2 M) of trimethylamine (10 mL, 20 mmol) were added to a sealed 50 mL flask. The mixture was

stirred at 40 °C overnight. The resultant mixture was concentrated under reduced pressure to afford crude **4** as a yellow solid. The crude **4** (ca. 37 mg, 34 μ mol), AgNO₃ (1.73 mg, 102 μ mol), and H₂O (5 mL) were added to a test tube, and then the mixture was stirred at 80 °C overnight. The resultant mixture was concentrated under reduced pressure. After addition of CH₃OH, the resultant solution was filtered through a membrane filter and then concentrated under reduced pressure. The crude product was washed with hexane to afford ligand **2** (30.1 mg, 31.1 μ mol; 91% in 2 steps) as a yellowish-orange solid.

Compound **4**: ¹H NMR (500 MHz, CD₃OD, r.t.): δ 8.67 (m, 2H), 8.32-8.31 (m, 1H), 7.98 (d, *J* = 8.8 Hz, 1H), 7.94-7.84 (m, 4H), 7.73-7.70 (m, 1H), 7.63-7.51 (m, 4H), 7.40-7.30 (m, 1H), 7.13-6.95 (m, 12H), 4.39-4.33 (m, 4H), 3.63-3.51 (m, 4H), 3.19 (s, 18H), 2.10-2.06 (m, 8H). ESI-TOF MS (CH₃OH): *m/z* 422.32 [M – 2•I⁻]²⁺, 971.58 [M – I⁻]⁺.

Ligand **2**: ¹H NMR (400 MHz, CD₃OD, r.t.): δ 8.64 (br, 2H), 8.35 (br, 1H), 7.99-7.89 (m, 5H), 7.72 (d, J = 7.6 Hz, 1H), 7.61 (m, 1H), 7.53-7.47 (m, 3H), 7.30-7.24 (m, 1H), 7.10-6.93 (m, 12H), 4.33 (t, J = 6.0 Hz, 4H), 3.55 (m, 4H), 3.21 (s, 18H), 2.12 (m, 4H), 2.05 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 151.7 (CH), 149.8 (C_q), 149.2 (CH), 140.7 (CH), 137.8 (C_q) , 136.7 (C_q), 134.1 (C_q), 132.5 (C_q), 131.0 (C_q), 130.7 (C_q), 129.0-128.8 (CH), 126.3(C H), 126.2 (CH), 125.3 (CH), 125.3 (CH), 119.8 (CH), 70.0 (CH₂), 67.6 (CH₂), 53.6 (CH₃), 27.4 (CH₂), 21.1 (CH₂). FT-IR (ATR, cm⁻¹): 3034, 2926, 1483, 1440, 1319, 1242, 1201, 1157, 1088, 1028, 913, 830, 770, 720, 688, 649, 614. ESI-TOF MS (CH₃OH): m/z 422.26 [M – 2•NO₃⁻]²⁺, 906.49 [M – NO₃⁻]⁺.

Figure S8. ¹H NMR spectrum (500 MHz, CD₃OD, r.t.) of 4.

Figure S11. ¹³C NMR spectrum (100 MHz, CD₃OD, r.t.) of **2**.

Figure S12. ¹H-¹H COSY NMR spectrum (400 MHz, CD₃OD, r.t.) of 2.

Figure S13a. HSQC NMR spectrum (400 MHz, CD₃OD, r.t.) of 2.

Figure S13b. HSQC NMR spectrum (400 MHz, CD₃OD, r.t.) of 2.

Figure S14. ESI-TOF MS spectrum (CH₃OH) of 2.

Ligand 2 (30.1 mg, 31.1 μ mol), PdCl₂(DMSO)₂ (5.45 mg, 16.3 μ mol), AgNO₃ (5.55 mg, 32.7 μ mol), and CH₃OH (2.0 mL) were added to a glass test tube and then the mixture was stirred at 60 °C for 3 h. After filtration, the crude product was concentrated under reduced pressure. The product was reprecipitated with CH₃OH/acetone and CH₃OH/Et₂O to the resultant solution, capsule **1** was obtained as a yellow solid (25.5 mg, 5.87 μ mol, 75%).

¹H NMR (500 MHz, CD₃OD, r.t.): δ 8.84 (d, *J* = 5.0 Hz, 8H), 8.76 (br, 8H), 8.32 (d, *J* = 8.8 Hz, 8H), 8.19 (d, *J* = 8.8 Hz, 8H), 8.03-7.97 (m, 16H), 7.51 (dd, *J* = 7.7, 7.7 Hz, 16H), 7.13 (s, 8H), 7.08 (dd, *J* = 8.2, 7.7 Hz, 8H), 6.76 (dd, *J* = 8.2, 7.7 Hz, 8H), 6.67 (d, *J* = 8.2 Hz, 8H), 6.53 (d, *J* = 8.2 Hz, 8H), 4.20 (t, *J* = 4.8 Hz, 16H), 3.52-3.49 (m, 16H), 3.17 (s, 72H), 2.09-2.03 (m, 16H). ¹³C NMR (125 MHz, CDCl₃, r.t.): δ 156.2 (CH), 152.1 (CH), 149.8 (*C*_q), 146.7 (CH), 139.5 (*C*_q), 139.2 (*C*_q), 133.9 (*C*_q), 131.4 (*C*_q), 131.3 (*C*_q), 131 (*C*_q), 130.5 (*C*_q), 130.4 (CH), 129.6 (CH), 128.2 (CH), 127.6 (CH), 126.9 (CH), 126.4 (CH), 126 (CH), 125.5 (CH), 125 (CH), 119.3 (CH), 69.7 (CH₂), 67.5 (CH₂), 53.6 (CH₃), 27.3 (CH₂), 21 (CH₂). FT-IR (ATR, cm⁻¹): 2927, 1512, 1480, 1440, 1338, 1242, 1195, 1161, 1088, 1031, 973, 829, 772, 708, 691, 675, 615. ESI-TOF MS (CH₃OH): *m/z* 557.53 [M - 7•NO₃-]⁷⁺, 660.95 [M - 6•NO₃-]⁶⁺, 805.34 [M - 5•NO₃-]⁵⁺, 1022.47 [M - 4•NO₃-]⁴⁺.

NKS1161,1164,1171-

Formation of 1:1 host-guest complexes 1173

Capsule 1 (0.43 mg, 0.10 µmol), pentamethylated α -D-glucose (α Glc^{Me}; 0.050 mg, 0.20 µmol (via a stock solution)), and D₂O (0.5 mL) were added to a glass test tube (7 mL). The mixture was stirred at 80 °C for 1 h. The quantitative formation of 1:1 host-guest complex 1• α Glc^{Me} was confirmed by ¹H NMR analysis. In the similar way, the quantitative formation of 1• α Gal^{Me}, 1• β Gal^{Me}, and 1• α Man^{Me} from 1 and the corresponding monosaccharides in D₂O was confirmed by ¹H NMR analysis, respectively. Capsule 1 (0.43 mg, 0.10 µmol), a 1:4 mixture of pentamethylated α/β -D-glucose (α/β Glc^{Me}; 0.10 mg, 0.41 µmol based on β Glc^{Me}), and D₂O (0.5 mL) were added to a glass test tube. The mixture was stirred at 80 °C for 1 h. The formation of 1:1 host-guest complex 1• β Glc^{Me} in 95% yield was confirmed by NMR analysis.

1•αGlc^{Me}: ¹H NMR (500 MHz, D₂O, r.t.): δ 8.92 (d, *J* = 5.3 Hz, 4H), 8.88 (d, *J* = 5.3 Hz, 4H), 8.43 (m, 8H), 8.34 (m, 8H), 8.25-8.17 (m, 16H), 8.05 (s, 4H), 8.03 (s, 4H), 7.65 (m, 16H), 7.22 (s, 4H), 7.22 (dd, *J* = 7.5, 7.5 Hz, 8H), 7.18 (s, 4H), 6.98 (dd, *J* = 7.7, 7.7 Hz, 4H), 6.69 (d, *J* = 9.2 Hz, 4H), 6.66 (dd, *J* = 7.2, 7.2 Hz, 4H), 6.61 (d, *J* = 8.6 Hz, 4H), 6.54 (d, *J* = 8.5 Hz, 4H), 6.53 (d, *J* = 8.5 Hz, 4H), 4.26 (m, 16H), 3.42 (m, 16H), 3.12 (s, 32H), 3.12 (s, 32H), 2.81 (m, 1H), 2.55 (d, *J* = 3.2 Hz, 1H), 2.38-2.34 (m, 2H), 2.01-1.95 (m, 32H), 1.86 (m, 1H), 1.31 (dd, *J* = 9.0, 9.0 Hz, 1H), 0.68 (d, *J* = 10.5 Hz, 1H), 0.00 (s, 3H), -0.31 (s, 3H), -0.55 (s, 3H), -0.83 (s, 3H), -0.87 (s, 3H).

1•β**Glc**^{Me}: ¹H NMR (500 MHz, D₂O, r.t.): *δ* 8.91 (m, 4H), 8.87 (d, J = 5.7 Hz, 4H), 8.84 (d, J = 5.8 Hz, 4H), 8.42 (m, 8H), 8.34-8.26 (m, 16H), 8.19 (m, 8H), 8.10 (s, 2H), 8.07 (s, 4H), 7.92 (s, 2H), 7.64 (m, 16H), 7.23-7.20 (m, 16H), 6.98 (dd, J = 8.2, 8.2 Hz, 1.8H), 6.94 (dd, J = 7.2, 9.0 Hz, 2.2H), 6.82 (dd, J = 7.5, 7.5 Hz, 1.8H), 6.77 (dd, J = 7.6, 7.6 Hz, 2.2H), 6.71 (d, J = 8.8 Hz, 1.8H), 6.66 (d, J = 8.9 Hz, 2.2H), 6.61-6.54 (m, 8H), 4.26 (m, 16H), 3.41 (m, 16H), 3.12 (s, 72H), 2.75 (m, 1H), 2.55 (d, J = 4.1 Hz, 1H), 2.37 (m, 1H), 2.00–1.96 (m, 32H), 1.68 (m, 0.5H), 1.44 (m, 0.5H), 1.34 (m, 0.5H), 1.15 (m, 0.5H), 1.06 (m, 0.5H), 0.76 (m, 0.5H), 0.50 (m, 0.5H), 0.45 (m, 0.5H), -0.11 (s, 1.6H), -0.14 (s, 1.4H), -0.29 (s, 1.4H), -0.44 (s, 1.6H), -0.46 (s, 1.6H), -0.67 (s, 3H), -0.70 (s, 1.4H), -0.83 (s, 1.6H), -0.86 (s, 1.4H).

1•α**Gal**^{Me}: ¹H NMR (500 MHz, D₂O, r.t.): *δ*8.97-8.94 (m, 4H), 8.91 (d, J = 5.5 Hz, 3.1H), 8.87 (d, J = 5.8 Hz, 0.9H), 8.48-8.41 (m, 8H), 8.33-8.67 (m, 27.1H), 8.06 (s, 3.1H), 8.03 (s, 0.9H), 7.97 (s, 0.9H), 7.72–7.63 (m, 12.9), 7.59 (dd, J = 7.7, 7.7 Hz, 3.1H), 7.25 (m, 8H), 7.21 (s, 0.9H), 7.20 (s, 3.1H), 7.18 (s, 0.9H), 7.15 (s, 3.1H), 6.99 (dd, J = 6.8, 8.0Hz, 0.9H), 6.89 (dd, J = 7.1, 8.3 Hz, 3.1H), 6.75-6.70 (m, 1.8H), 6.65-6.52 (m, 15.1H), 6.49 (d, J = 9.0 Hz, 31.H), 4.24 (m, 16H), 3.41 (m, 16H), 3.11 (s, 32H), 3.11 (s, 32H), 2.82 (d, J = 9.3 Hz, 1H), 2.66 (d, J = 3.5 Hz, 1H), 2.00-1.94 (m, 32H), 1.34 (dd, J = 4.1, 10.1 Hz, 1H), 1.22 (d, J = 3.4 Hz, 1H), 0.12 (s, 2.3H), 0.09 (s, 0.7H), -0.26 (s, 0.7H), -0.29 (d, J = 12.0 Hz, 1H), -0.38 (s, 0.7H), -0.48 (s, 0.7H), -0.82 (s, 2.3H), -0.87 (s, 2.3H), -0.99 (s, 2.3H), -1.08 (s, 2.3H), -1.19 (s, 0.7H).

1•βGal^{Me}: ¹H NMR (500 MHz, D₂O, r.t.): *δ*8.91-8.88 (m, 8H), 8.46-8.40 (m, 8H), 8.35-8.27 (m, 16H), 8.19 (m, 8H), 8.09 (s, 2.5H), 8.03 (s, 1.5H), 7.99 (s, 1.5H), 7.96 (s, 2.5H), 7.66 (m, 16H), 7.26-7.19 (m, 16H), 6.91 (dd, J = 6.9, 8.3 Hz, 3H), 6.86-6.81 (m, 5H), 6.65-6.55 (m, 16H), 4.25 (m, 16H), 3.43 (m, 16H), 3.12 (s, 72H), 2.16-2.13 (m, 3H), 2.01-1.96 (m, 32H), 1.72 (m, 1H), 1.28 (dd, J = 4.7, 7.0 Hz, 1H), 1.20 (m, 0.3H), 1.16 (m, 0.7H), 0.31 (d, J = 7.7 Hz, 1.1H), -0.02 (s, 1.9H), -0.12 (s, 1.1H), -0.17 (s, 1.9H), -0.28 (s, 1.9H), -0.35 (s, 1.1H), -0.49 (s, 1.1H), -0.55 (s, 1.9H), -0.80 (s, 1.1H), -0.92 (s, 1.1H), -1.06 (s, 1.9H).

1•αMan^{Me}: ¹H NMR (500 MHz, D₂O, r.t.): δ 8.90 (m, 8H), 8.45 (d, J = 8.7 Hz, 4H), 8.41 (d, J = 8.9 Hz, 4H), 8.35-8.27 (m, 16H), 8.20 (m, 8H), 8.06 (s, 0.5H), 8.03 (s, 3.5H), 7.99 (s, 4H), 7.64-7.58 (m, 16H), 7.23-7.18 (m, 16H), 6.93 (dd, J = 7.1, 9.0 Hz, 0.5H), 6.84 (dd, J = 7.3, 7.9 Hz, 3.5H), 6.72 (dd, J = 6.7, 8.5 Hz, 3.5H), 6.69-6.50 (m, 16.5H), 4.25 (t, J = 6.0 Hz, 16H), 3.42 (m, 16H), 3.11 (s, 72H), 2.38 (m, 1H), 2.01-1.94 (m, 32H), 1.86 (m, 1H), 1.81 (m, 1H), 1.63-1.17 (m, 2H), 0.70 (d, J = 10.8 Hz, 1H), 0.62 (d, J = 3.5 Hz, 1H), 0.19 (s, 2.6H), -0.14 (s, 0.4H), -0.29 (s, 2.6H), -0.35 (s, 0.4H), -0.40 (s, 2.6H), -0.46 (s, 2.6H), -0.50 (s, 2.6H), -0.62 (s, 0.4H), -0.73 (s, 0.4H), -0.84 (s, 0.4H).

Figure S19c. 1D-NOESY spectra (500 MHz, D₂O, r.t.) of $1 \cdot \alpha Glc^{Me}$ a) without irradiation, and with irradiation at b) 8.04, c) -0.88, d) -0.84, e) -0.55, f) -0.33, and g) -0.01 ppm.

Figure S22. ¹H NMR spectrum (500 MHz, D₂O, r.t.) of 1•βGal^{Me}.

Figure S24. ¹H NMR spectrum (500 MHz, D₂O, r.t.) of 1•Fru^{Me}.

For the MS analysis, capsule **1**" (0.43 mg, 0.10 μ mol), α Glc^{Me} (1.3 mg, 5.0 μ mol), and 3:1 D₂O/CD₃CN (0.5 mL) were added to a glass test tube. The mixture was stirred at 80 °C for 1 h. The formation of 1:1 host-guest complex **1"•** α Glc^{Me} in 65% yield was confirmed by NMR analysis. The product solution was concentrated under reduced pressure and washed with water to remove excess α Glc^{Me}. The structure of the 1:1 host-guest complex was confirmed by MS analysis in methanol.

ESI-TOF MS (CH₃OH): m/z 996.61 [**1**"• α Glc^{Me} - 4•NO₃⁻]⁴⁺, 1349.15 [**1**"• α Glc^{Me} - 3•NO₃⁻]³⁺, 2055.22 [**1**"• α Glc^{Me} - 2•NO₃⁻]²⁺.

Figure S26. ESI-TOF MS spectrum (CH₃OH) of 1"•αGlc^{Me}.

Binding constant of 1·βGlc^{Me} NKS1194

Capsule 1 (0.34 mg, 0.078 µmol), 1:4 $\alpha/\beta Glc^{Me}$ mixture (0.10 mg, 0.40 µmol based on βGlc^{Me}), and D₂O (0.5 mL) were added to a glass test tube. The mixture was stirred at 80 °C for 1 h. The product was concentrated under reduced pressure and reprecipitated with CH₃OH/Et₂O to afford 1• β Glc^{Me} as a yellow solid (0.29 mg, 0.064 µmol, 81%). The obtained host-guest complex was redissolved in D₂O. 1• β Glc^{Me} is stable enough even under high dilution conditions (~2.5 µM). The exact binding constant (K_a) could not be estimated by the NMR measurement because the proton signals derived from empty 1 and free β Glc^{Me} (less than 5%) were not observed under the conditions. Thus, the K_a value (= [1• β Glc^{Me}]/([1]•[β Glc^{Me}])) was roughly estimated to be >10⁸ M⁻¹.^[S4, S5]

Figure S27. a) ¹H NMR spectrum (500 MHz, D₂O, r.t.) of $1 \cdot \beta Glc^{Me}$ before isolation. Concentration-dependent ¹H NMR spectra (500 MHz, D₂O, r.t.) of isolated $1 \cdot \beta Glc^{Me}$ at b) 130 μ M, c) 13 μ M, and d) 2.5 μ M. e) ¹H NMR spectrum (500 MHz, D₂O, r.t.) of empty capsule 1 (red dash lines: bound βGlc^{Me} , blue dash lines: empty 1).

Capsule **1** (0.43 mg, 0.10 µmol), αGlc^{Me} (50 µg, 0.20 µmol (via a stock solution)), βGlc^{Me} (50 µg, 0.20 µmol (via a stock solution)), and D₂O (0.5 mL) were added to a glass test tube. The mixture was stirred at 80 °C for 10 min. The formation and product ratio of **1**• α Glc^{Me} and **1**• β Glc^{Me} (19:81) were confirmed by ¹H NMR analysis. Various binding experiments were examined in the same way. Similarly, capsule **1** (0.43 mg, 0.10 µmol), α Glc^{Me} (50 µg, 0.20 µmol), β Glc^{Me} (50 µg, 0.20 µmol), and D₂O (0.5 mL) were added to a glass test tube. The mixture was stirred at 40 °C for 2 h. The formation and product ratio of **1**• α Glc^{Me} and **1**• β Glc^{Me} (18:82) were confirmed by ¹H NMR analysis.

Figure S28. Competitive binding experiment of 1 with αGlc^{Me} and βGlc^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) 1• αGlc^{Me} , b) 1• βGlc^{Me} , and products after mixing αGlc^{Me} , βGlc^{Me} , and 1 at c) 80 °C and d) 40 °C.

Figure S29. Competitive binding experiment of 1 with αGal^{Me} and βGal^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) $1 \cdot \alpha Gal^{Me}$, b) $1 \cdot \beta Gal^{Me}$, and c) products after mixing αGal^{Me} , βGal^{Me} , and 1.

Figure S30. Competitive binding experiment of 1 with βGlc^{Me} and βGal^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) $1 \cdot \beta Glc^{Me}$, b) $1 \cdot \beta Gal^{Me}$, and c) products after mixing βGlc^{Me} , βGal^{Me} , and 1.

Figure S31. Competitive binding experiment of 1 with αGlc^{Me} and αMan^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) $1 \cdot \alpha Glc^{Me}$, b) $1 \cdot \alpha Man^{Me}$, and c) products after mixing αGlc^{Me} , αMan^{Me} , and 1.

Figure S32. Competitive binding experiment of 1 with αGlc^{Me} and βGal^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) $1 \cdot \alpha Glc^{Me}$, b) $1 \cdot \beta Gal^{Me}$, and c) products after mixing αGlc^{Me} , βGal^{Me} , and 1.

Figure S33. Competitive binding experiment of 1 with βGal^{Me} and αMan^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) $1 \cdot \beta Gal^{Me}$, b) $1 \cdot \alpha Man^{Me}$, and c) products after mixing βGal^{Me} , αMan^{Me} , and 1.

Figure S34. Competitive binding experiment of 1 with αMan^{Me} and αGal^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) $1 \cdot \alpha Man^{Me}$, b) $1 \cdot \alpha Gal^{Me}$, and c) products after mixing αMan^{Me} , αGal^{Me} , and 1.

Figure S35. Competitive binding experiment of 1 with αGal^{Me} and Fru^{Me} in water. ¹H NMR spectra (500 MHz, D₂O, r.t.) of a) $1 \cdot \alpha Gal^{Me}$, b) $1 \cdot Fru^{Me}$, and c) products after mixing αGal^{Me} , Fru^{Me} , and 1.

Figure S36. UV-visible spectra (water, r.t., 0.2 mM based on 1) of a) $1 \cdot \alpha Gal^{M_e}$, $1 \cdot \beta Gal^{M_e}$, and 1. b) UV-visible and c) CD spectra (water, r.t., 0.2 mM based on 1) of $1 \cdot \alpha Man^{M_e}$ and 1. d) UV-visible and e) CD spectra (water, r.t., 0.2 mM based on 1) of $1 \cdot Fru^{M_e}$ and 1.

Figure S37. a) Optimized structure of (*P*)-**1**• α **Glc**^{Me} (side and top views; R = -H for clarity) and b) the highlighted host (anthracene panels)-guest (methyl groups) CH- π interactions in the cavity (dashed blue lines: \leq 3.6 Å).

Table S1. Energy changes $(\Delta E_{1 \cdot \alpha Glc^{Me}} = E_{1 \cdot \alpha Glc^{Me}} - (E_1 + E_{\alpha Glc^{Me}}) \text{ kJ/mol})$ of capsule **1** (R = H) before and after the encapsulation of αGlc^{Me} , calculated by the CAM-B3LYP+D3BJ/LanL2DZ, 3-21G, PCM (H₂O) method.

	E_1	$E_{lpha { m Glc}^{ m Me}}$	$E_{1 \cdot lpha { m Glc}^{ m Me}}$	$\Delta E_{1 \cdot lpha ext{Gle}^{ ext{Me}}}$
(<i>P</i>)- 1	-19486842.5	-2306454.0	-21793771.8	-475.2
(<i>M</i>)- 1			-21793736.8	-440.3

Figure S38. a) Theoretical CD spectra of a) capsules (P)/(M)-1 and b) host-guest complexes (P)/(M)-1• α Glc^{Me} calculated by TD-DFT methods (R = H; CAM-B3LYP+D3BJ/LanL2DZ (Pd), 6-31G(d,p) (others), PCM (water) level of theory).

Figure S39a. ¹H-¹H EXSY NMR spectrum (500 MHz, D₂O, r.t., mixing time = 1.0 s) of $1 \cdot \beta Gal^{Me}$.

Figure S39b. ¹H-¹H EXSY NMR spectrum (500 MHz, D₂O, r.t., mixing time = 0.1 s) of $1 \cdot \beta Gal^{Me}$.

Figure S39c. ¹H-¹H EXSY NMR spectrum (500 MHz, D_2O , r.t., mixing time = 0.01 s) of $1 \cdot \beta Gal^{Me}$.