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Synthesis

Synthetic Procedures
Chemicals were purchased from commercial sources and used without purification unless

otherwise stated. Anhydrous solvents were collected from an Inert Corp PureSolv MD7

solvent purification system.

NMR spectra were recorded on Bruker Avance NEO 300 or Bruker AVIII 400 NMR
spectrometers in the indicated solvent at 298 K. Chemical shifts are reported relative to the
deuterated solvent used. Spectra resolution was either 300 or 400 MHz for 'H NMR, 101
MHz for 13C NMR, and 86 MHz for 1°>Pt NMR.

Low-resolution mass spectrometry (LR-MS) was collected using positive and negative
electrospray ionisation on a Bruker amaZon SL mass spectrometer. High-resolution mass
spectrometry (HR-MS) was collected on a Bruker Solarix 2XR mass spectrometer by Sydney

Analytical. All mass spectrometry data are reported as m/z.

1-(isoquinolin-8-yl)-3-methylurea (L1)

O, CHj
M—NH
NH
-y
8-Aminoisoquinoline (1.0068 g, 6.983 mmol) was dissolved in dry THF (50 mL) with mild
heating at 40 °C before adding triphosgene (0.9483 g, 3.196 mmol). TEA (3.65 mL) was
immediately added afterwards before stirring at 70 °C for 3 h. The reaction was cooled to RT
before adding pentane (2 mL) and stirring for 10 min. The mixture was filtered, and the
pentane removed from the filtrate. A 2 M solution of methylamine in THF (4 mL, 8 mmol)
was added to the filtrate, and the solution was stirred at RT for 18 h. The mixture was
bubbled with N, for 10 min before it was filtered and concentrated to a brown oil,
redissolved in minimal THF, then precipitated out with hexane. The solid was filtered and
washed with excess water until the filtrate became colourless. The final product was

obtained via flash chromatography, eluting with ethyl acetate, as a pale-yellow powder.

Yield 0.3677 g (26 %). Melting point: 195.2 — 198.7 °C.
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1H NMR (400 MHz, DMSO-d;) 6: 9.49 (s, 1H), 8.93 (s, 1H), 8.48 (d, /= 5.6 Hz, 1H), 8.11 (d, J =
7.8 Hz, 1H), 7.76 (d, J = 5.7 Hz, 1H), 7.66 (t, /= 8.0 Hz, 1H), 7.54 (d, /= 8.1 Hz, 1H), 6.47 (q, J =
4.7 Hz, 1H), 2.72 (d, J = 4.6 Hz, 3H). 3C NMR (101 MHz, DMSO-d) 6: 155.89, 146.80, 142.63,
136.39, 135.95, 130.85, 120.50, 120.41, 120.03, 117.08, 26.26. LR-MS (ESI+) [M+H]*: 201.95
m/z. HR-MS (ESI+) calculated for C;1H11N30 [M+H]*: 202.09804 m/z, found [M+H]*:
202.09716 m/z.

1-ethyl-3-(isoquinolin-8-yl)urea (L2)

8-aminoisoquinoline (0.9834 g, 6.821 mmol) was suspended in dry toluene (150 mL) with
mild heating at 40 °C. Triphosgene (0.9604 g, 3.236 mmol) was added to the mixture,
followed immediately by TEA (3.8 mL). The mixture was stirred at 70 °C for 2 h then cooled
to RT. Pentane (2 mL) was added and the mixture was stirred for 10 min before filtering. The
pentane was removed from the filtrate, and the solution cooled to 0 °C before ethylamine (6
mL), chilled to —20 °C, was added. The temperature was maintained at 0 °C for 3 h before it
was slowly warmed to RT and stirred for 20 h. The mixture was filtered and the filtrate
concentrated to a brown oil, which was dissolved in minimal toluene. A crude product was
precipitated out with hexane (100 mL). The two precipitates were combined and purified via
flash chromatography, eluting with ethyl acetate. The fractions were concentrated and the
final product recrystallised from hot ethanol as a pale-yellow powder. Yield 0.4721 g (32 %).
Melting point: 190.8 — 195.3 °C.

1H NMR (400 MHz, DMSO-d;) &: 9.49 (s, 1H), 8.87 (s, 1H), 8.48 (d, J = 5.7 Hz, 1H), 8.13 (d, J =
7.7 Hz, 1H), 7.76 (d, J = 5.7 Hz, 1H), 7.66 (t, J = 7.9 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 6.58 (t, J =
5.6 Hz, 1H), 3.19 (p, J = 6.8 Hz, 2H), 1.11 (t, J = 7.2 Hz, 3H). 3C NMR (101 MHz, DMSO-dj) &:
155.15, 146.70, 142.63, 136.39, 135.96, 130.86, 120.43, 120.38, 119.93, 116.84, 34.09,
15.31. LR-MS (ESI+) [M+H]*: 216.17 m/z. HR-MS (ESI+) calculated for C;5,H14N30 [M+H]*:
216.11314 m/z, found [M+H]*: 216.11279 m/z.
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1-(isoquinolin-8-yl)-3-propylurea (L3)

8-aminoisoquinoline (1.0148 g, 7.038 mmol) was suspended in dry toluene (150 mL) with
mild heating at 40 °C. Triphosgene (0.9206 g, 3.102 mmol) was added to the mixture,
followed immediately by TEA (3.7 mL). The mixture was stirred at 70 °C for 2.5 h then cooled
to RT. Pentane (2 mL) was added and the mixture stirred for 10 min before it was filtered.
The pentane was removed from the filtrate and propylamine (0.7 mL) was added dropwise
to the solution and stirred at RT for 22 h. A precipitate formed, which was filtered and
washed with excess hexane. The final product was obtained via flash chromatography,
eluting with ethyl acetate, as a white powder. Yield 0.4420 g (27 %). Melting point: 165.0 —
165.9 °C.

1H NMR (400 MHz, DMSO-ds) &: 9.50 (s, 1H), 8.88 (s, 1H), 8.48 (d, J = 5.6 Hz, 1H), 8.15 (d, J =
7.7 Hz, 1H), 7.76 (d, J = 5.7 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 6.62 (t, J =
5.6 Hz, 1H), 3.13 (q, J = 6.6 Hz, 2H), 1.50 (h, J = 7.3 Hz, 2H), 0.92 (t, J = 7.4 Hz, 3H). 13C NMR
(101 MHz, DMSO-de) &: 155.24, 146.66, 142.64, 136.41, 135.96, 130.88, 120.45, 120.32,
119.89, 116.73, 40.99, 22.87, 11.33. LR-MS (ESI+) [M+Na]*: 252.17 m/z. HR-MS (ESI+)
calculated for C;3H1N30 [M+H]*: 230.12879 m/z, found [M+H]*: 230.18278 m/z.

1-butyl-3-(isoquinolin-8-yl)urea (L4)

0O /—/7

H—NH
NH
/

\ N
8-aminoisoquinoline (0.2498 g, 1.733 mmol) was dissolved in dry DCM (20 mL). The flask
was purged with N, for 10 min before adding butyl isocyanate (0.95 mL) and stirring at RT
for 5 days. Hexane (100 mL) was added to the solution and the resulting precipitate was

collected, washed with hexane (30 mL) and dried to give the product as a yellow powder.

Yield 0.3329 g (79 %).
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1H NMR (300 MHz, DMSO-dg) 8: 9.51 (s, 1H), 8.90 (s, 1H), 8.50 (s, 1H), 8.15 (d, J = 7.2 Hz, 1H),
7.80 (d, J = 5.7 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 6.62 (t, J = 5.6 Hz, 1H), 3.16 (g, J = 6.6 Hz, 2H),
1.55—1.27 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H). LR-MS (ESI+) [M+H]*: 244.02 m/z.

1-(isoquinolin-8-yl)-3-pentylurea (L5)

0o
M—NH
NH
/
\ N
8-aminoisoquinoline (0.2006 g, 1.391 mmol) was placed into a small flask and the
atmosphere evacuated before pentyl isocyanate (0.9 mL) was added. The solution was
stirred at 30 °C for 4 h before dry DCM (7 mL) was added and the solution stirred at RT for 6
d. Hexane (150 mL) was added and the resulting precipitate filtered and washed with excess
hexane. The product was purified via flash chromatography in pure EtOAc and dried to give

a white powder. Yield 0.2080 g (58 %). Melting point: 141.9 — 142.7 °C.

1H NMR (400 MHz, DMSO-ds) 6: 9.50 (s, 1H), 8.87 (s, 1H), 8.48 (d, J = 5.7 Hz, 1H), 8.14 (d, J =
7.4 Hz, 1H), 7.76 (d, J = 5.7 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 6.60 (t, J =
5.6 Hz, 1H), 3.15 (q, J = 6.7 Hz, 2H), 1.49 (p, J = 6.9 Hz, 2H), 1.38 — 1.27 (m, 4H), 0.90 (t, J =
6.8 Hz, 3H). 13C NMR (101 MHz, DMSO-dg) 6: 155.71, 147.15, 143.14, 136.91, 136.46, 131.38,
120.95, 120.81, 120.38, 117.20, 29.79, 29.10, 22.35, 14.41. LR-MS (ESI+) [M+H]*: 258.12 m/z.
HR-MS (ESI+) calculated for Ci5sH19N3O [M+H]*: 258.16009 m/z, found [M+H]*: 258.16017

m/z.

1-hexyl-3-(isoquinolin-8-yl)urea (L6)

8-aminoisoquinoline (0.2005 g, 1.391 mmol) was placed into a small flask and the

atmosphere evacuated before hexyl isocyanate (1 mL) was added. The solution was stirred
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at 40 °C for 3 h before another aliquot of isocyanate (0.5 mL) was added and the solution
stirred at 50 °C for 1 h. Dry DCM (7 mL) was added and the solution stirred at RT for 2.5 days.
Hexane (100 mL) was added to the solution and the precipitate filtered, washed with

hexane (30 mL) and dried to give the product as a light brown powder. Yield 0.2854 g (76 %).
Melting point: 123.0 — 126.1 °C.

1H NMR (400 MHz, DMSO-dj) 8: 9.51 (s, 1H), 8.89 (s, 1H), 8.48 (d, J = 5.7 Hz, 1H), 8.15 (d, J =
7.7 Hz, 1H), 7.76 (d, J = 5.7 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 6.63 (t, J =
5.5 Hz, 1H), 3.15 (q, J = 6.5 Hz, 2H), 1.53 — 1.42 (m, 2H), 1.37 — 1.25 (m, 6H), 0.88 (t, 3H). 13C
NMR (101 MHz, DMSO-ds) 6: 155.72, 147.16, 143.08, 136.95, 136.47, 131.40, 120.96,
120.80, 120.35, 117.18, 39.67, 31.50, 30.08, 26.57, 22.56, 14.39. LR-MS (ESI+) [M+H]*:
272.23 m/z. HR-MS (ESI+) calculated for CiH,1N30 [M+H]*: 272.17574 m/z, found [M+H]*:
272.17572 m/z.

1-(isoquinolin-8-yl)-3-octylurea (L7)

0]
M—NH

NH
L
8-aminoisoquinoline (0.5066 g, 3.514 mmol) was suspended in dry toluene (60 mL) before
triphosgene (0.5455 g, 1.838 mmol) was added, followed immediately by TEA (1.8 mL). The
solution was stirred at 70 °C for 2 h before pentane (1 mL) was added. The mixture was
cooled for 10 min before the precipitate filtered, and the pentane removed from the filtrate.
Octylamine (0.7 mL) was added and the solution refluxed at 125 °C for 24 h. The solution
was cooled to RT then concentrated to a dark oil, which solidified into a dark solid over 48 h.
The solid was collected, washed with hexane (3 x 30 mL), then purified via flash

chromatography, eluting with 4 % MeOH in DCM. The final product was obtained as a pale
powder. Yield (0.4352 g, 41 %). Melting point: 128.6 — 132.0 °C.

1H NMR (400 MHz, DMSO-dj) 6: 9.50 (s, 1H), 8.86 (s, 1H), 8.48 (d, J = 5.6 Hz, 1H), 8.15 (d, J =
7.7 Hz, 1H), 7.76 (d, J = 5.6 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 6.60 (t, J =
5.6 Hz, 1H), 3.15 (q, J = 6.9 Hz, 2H), 1.48 (p, J = 6.8 Hz, 2H), 1.35 — 1.21 (m, 10H), 0.89 — 0.82
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(m, 3H). 3C NMR (101 MHz, DMSO-dg) 6: 155.70, 147.14, 143.12, 136.92, 136.46, 131.38,
120.95, 120.79, 120.36, 117.17, 39.66, 31.72, 30.11, 29.22, 29.17, 26.90, 22.55, 14.40. LR-
MS (ESI+) [M+H]*: 300.29 m/z. HR-MS (ESI+) calculated for C1gH,5NsO [M+H]*: 300.20704
m/z, found [M+H]*: 300.20700 m/z.

1-decyl-3-(isoquinolin-8-yl)urea (L8)

8-aminoisoquinoline (0.5729 g, 3.974 mmol) was suspended in dry toluene (100 mL) before
triphosgene (0.6475 g, 2.182 mmol) was added, followed immediately by TEA (2.1 mL). The
mixture was stirred at 70 °C for 2 h before pentane (1 mL) was added. The mixture was
cooled for 10 min before the precipitate filtered and the pentane removed from the filtrate.
Decylamine (0.88 mL) was added and the solution refluxed at 130 °C for 21 h. The solution
was cooled to RT then concentrated to a dark oil, which was purified via flash
chromatography, eluting with 4 % MeOH in DCM. The final product was obtained as light-
orange flakes. Yield (0.2338 g, 18 %). Melting point: 122.7 - 126.2 °C.

1H NMR (400 MHz, DMSO-d;) &: 9.50 (s, 1H), 8.87 (s, 1H), 8.48 (d, J = 5.6 Hz, 1H), 8.14 (d, J =
7.7 Hz, 1H), 7.76 (d, J = 5.7 Hz, 1H), 7.65 (t, J = 7.9 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 6.60 (t, J =
5.6 Hz, 1H), 3.15 (g, J = 6.5 Hz, 2H), 1.54 — 1.43 (m, 2H), 1.38 — 1.17 (m, 14H), 0.84 (t, J = 6.4
Hz, 3H). 3C NMR (101 MHz, DMSO-d;) 6: 155.70, 147.15, 143.13, 136.91, 136.46, 131.37,
120.95, 120.79, 120.36, 117.17, 31.76, 30.10, 29.51, 29.44, 29.24, 29.16, 26.88, 22.55, 14.40.
LR-MS (ESI+) [M+H]*: 328.29 m/z. HR-MS (ESI+) calculated for CygH,9NsO [M+H]*: 326.22269
m/z, found [M+H]*: 326.22400 m/z.
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Dichlorobis(propanenitrile)platinum(ll) ([PtCl,(EtCN),])

Potassium tetrachloroplatinate(ll) (0.5147 g, 1.240 mmol) was dissolved in water (4 mL).
Propanenitrile (0.5 mL) was added to the solution, before covering the vessel with foil and
standing for 6 days. The yellow crystals were filtered, washed with water (2 x 60 mL) and

dried under high vacuum. Yield 0.3096 g (66 %).

1H NMR (300 MHz, CD,Cl,) 6: 2.83 (dg, J = 12.0, 7.5 Hz, 2H), 1.38 (t, J = 7.5 Hz, 3H). LR-MS
(ESI+) [M+Na]*: 398.88 m/z.

[Pt(8-methylureaisoquinoline),][BF,4], (1)

B ] (BFa)
H3Q
OQ/\NH
NH
\N\
=~/ [Pt

— —4

[PtCl,(EtCN),] (0.0694 g, 0.1845 mmol) was mixed with L1 (0.1485 g, 0.7380 mmol) and
silver tetrafluoroborate (0.1043 g, 0.5356 mmol). Dry MeCN (15 mL) was degassed with N,
for 20 min, then added to the mixture and refluxed at 95 °C for 23 h. The mixture was
cooled to RT and filtered. The yellow residue was washed with hot MeCN (200 mL) into a
separate flask until the filtrate turned colourless. The filtrate was concentrated to give a
yellow powder, which was suspended in EtOAc (60 mL) and stirred overnight at 70 °C. The
mixture was filtered, and the product obtained as a yellow powder. Yield 0.1332 g (62 %).
Melting point: 283.4 — 292.6 °C (decomposed).

1H NMR (400 MHz, DMSO-dj) 6: 9.66 (s, 1H), 8.93 (s, 1H), 8.76 (d, J = 6.6 Hz, 1H), 8.00 (d, J =
6.6 Hz, 1H), 7.87 (t,J = 7.9 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 6.33 (s,
1H). 3C NMR (101 MHz, DMSO-dj) &: 156.54, 154.12, 142.53, 138.09, 136.94, 135.00,
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124.99, 124.05, 122.45, 26.74. 1%5Pt NMR (86 MHz, DMSO-dg) 6: -2328. LR-MS (ESI+)
[M_(BF4)2]2+: 499.65 m/Z. HR-MS (ESH‘) calculated for Cu4H44N1,0,4Pt [M_(BF4)2]2+:
499.66248 m/z, found [M—(BF,),]*: 499.66187 m/z.

[Pt(8-ethylureaisoquinoline),][BF,), (2)

(BF4)2

~/" Pt

— —4

[PtCI,(EtCN),] (0.0700 g, 0.1861 mmol) was mixed with L2 (0.1687 g, 0.7837 mmol) and
silver tetrafluoroborate (0.1161 g, 0.5964 mmol). Dry MeCN (15 mL) was degassed with N,
for 20 min, then added to the mixture and refluxed at 95 °C for 22 h. The mixture was
cooled to RT and filtered. The residue was washed with hot MeCN (200 mL) into a separate
flask until the filtrate turned colourless. The filtrate was concentrated to give a powder,
which was suspended in EtOAc (60 mL) and stirred overnight at 70 °C. The mixture was
filtered, and the product obtained as a pale powder. Yield 0.1224 g (53 %). Melting point:
282.2 —294.5 °C (decomposed).

1H NMR (400 MHz, DMSO-d;) 6: 9.59 (s, 1H), 8.82 (s, 1H), 8.68 (d, J = 6.6 Hz, 1H), 7.97 (d, J =
6.6 Hz, 1H), 7.87 (t, J = 7.9 Hz, 1H), 7.73 (t, J = 8.1 Hz, 2H), 6.38 (t, J = 5.7 Hz, 1H), 2.87 (p, J =
6.9 Hz, 2H), 0.97 (t, /= 7.2 Hz, 3H). 13C NMR (101 MHz, DMSO-dj) 6: 155.69, 154.18, 142.49,
138.14, 136.97, 135.00, 125.01, 123.81, 122.23, 122.01, 34.59, 15.74. 1%5Pt NMR (86 MHz,
DMSO-dg) 6: -2315. LR-MS (ESI+) [M—(BF,),]2*: 528.16. HR-MS (ESI+) calculated for
CagHsoN1,04Pt [M—(BF,4),]%*: 527.69379 m/z, found [M—(BF,),]?*: 527.69324 m/z.
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[Pt(8-propylureaisoquinoline),][BF], (3)

Pt

4

[PtCl,(EtCN),] (0.0701 g, 0.1864 mmol) was mixed with L3 (0.1707 g, 0.7444 mmol) and

silver tetrafluoroborate (0.1087 g, 0.5583 mmol). Dry MeCN (15 mL) was degassed with N,

for 20 min, then added to the mixture and refluxed at 95 °C for 23 h. The mixture was

cooled to RT and filtered. The residue was washed with hot MeCN (200 mL) into a separate

flask until the filtrate turned colourless. The filtrate was concentrated to give the product as

a pale-yellow powder, which turned yellow-green after drying. Yield 0.1333 g (56 %).

Melting point: 251.5 — 263.6 °C (decomposed).

1H NMR (400 MHz, DMSO-dg) 6: 9.54 (s, 1H), 8.80 (s, 1H), 8.62 (d, J = 6.6 Hz, 1H), 7.97 (d, J =

6.6 Hz, 1H), 7.87 (t, J = 7.9 Hz, 1H), 7.80 — 7.67 (m, 2H), 6.38 (t, J = 5.8 Hz, 1H), 2.75 (q, J = 6.7

Hz, 2H), 1.33 (h, J = 7.3 Hz, 2H), 0.81 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, DMSO-d,) §:

155.78, 154.23, 142.49, 138.16, 137.00, 135.04, 125.04, 123.80, 122.25, 121.94, 41.39,

23.29, 11.77. 195Pt NMR (86 MHz, DMSO-dg) : -2307. LR-MS (ESI+) [M—(BF,),]2*: 555.70

m/z. HR-MS (ESI+) calculated for Cs;HggN1,04Pt [M—(BF,);]%*: 555.72503 m/z, found

[M—(BF,),]*: 555.72485 m/z.

[Pt(8-butylureaisoquinoline),][BF,], (4)
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[PtCl,(EtCN),] (0.0655 g, 0.1741 mmol) was mixed with L4 (0.1694 g, 0.6962 mmol) and
silver tetrafluoroborate (0.0748 g, 0.3842 mmol). Dry MeCN (15 mL) was degassed with N,
for 20 min, then added to the mixture and refluxed at 95 °C for 24 h. The mixture was
transferred to a centrifuge tube and centrifuged at 1700 RCF for 5 min. The supernatant was
transferred to a flask and a yellow solid precipitated overnight. The solid was filtered and

dried to give the product. Yield 0.0542 g (23 %).

1H NMR (300 MHz, DMSO-d;) 8: 9.54 (s, 1H), 8.80 (s, 1H), 8.62 (d, J = 6.6 Hz, 1H), 7.97 (d, J =
6.6 Hz, 1H), 7.92 — 7.82 (m, 1H), 7.78 — 7.68 (m, 2H), 6.35 (s, 1H), 2.79 (g, J = 6.3 Hz, 2H),
1.37 — 1.14 (m, 4H), 0.86 (t, J = 7.0 Hz, 3H). LR-MS (ESI+) [M—(BF,)]*: 1254.67 m/z.

[Pt(8-pentylureaisoquinoline),][BF,], (5)

= Pt

— —4

[PtCI,(EtCN),] (0.0700 g, 0.1861 mmol) was mixed with L5 (0.1916 g, 0.7444 mmol) and
silver tetrafluoroborate (0.1068 g, 0.5486 mmol). Dry MeCN (15 mL) was degassed with N,
for 20 min, then added to the mixture and refluxed at 95 °C for 25 h. The mixture was
cooled to RT and filtered. The residue was washed with hot MeCN (200 mL) into a separate
flask until the filtrate turned colourless. The filtrate was concentrated to give the product as
a yellow powder, which turned yellow-green after drying. Yield 0.1784 g (69 %). Melting
point: 247.8 — 256.5 °C (decomposed).

1H NMR (400 MHz, DMSO-ds) &: 9.56 (s, 1H), 8.80 (s, 1H), 8.64 (d, J = 6.6 Hz, 1H), 7.97 (d, J =
6.6 Hz, 1H), 7.87 (t,J = 7.9 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H), 6.36 (s, 1H), 2.79 (q, J = 6.6 Hz,
2H), 1.39 - 1.13 (m, 6H), 0.88 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO-dg) 6: 155.75,
154.19, 142.48, 138.18, 136.98, 135.05, 125.02, 123.74, 122.18, 121.84, 29.73, 28.99, 22.31,
14.39. 195Pt NMR (86 MHz, DMSO-dg) 6: ~2313. LR-MS (ESI+) [M—(BF4),]?*: 612.29 m/z. HR-
MS (ESI+) calculated for CeoH76N1,04Pt [M—(BF4),]2*: 612.28841 m/z, found [M—(BF,),]%*:
611.78752 m/z.
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[Pt(8-hexylureaisoquinoline),][BF,], (6)

=~/ TPt

— —4

[PtCI,(EtCN),] (0.0700 g, 0.1861 mmol) was mixed with L6 (0.2019 g, 0.7444 mmol) and
silver tetrafluoroborate (0.0878 g, 0.451 mmol). Dry MeCN (15 mL) was degassed with N, for
20 min, then added to the mixture and refluxed at 95 °C for 22 h. The mixture was cooled to
RT and filtered. The residue was washed with hot MeCN (200 mL) into a separate flask until
the filtrate turned colourless. The filtrate was concentrated to give the product as a yellow

powder. Yield 0.1120 g (44 %). Melting point: 250.3 — 258.7 °C (decomposed).

1H NMR (400 MHz, DMSO-d,) 6: 9.58 (s, 1H), 8.81 (s, 1H), 8.65 (d, J = 6.6 Hz, 1H), 7.96 (d, J =
6.7 Hz, 1H), 7.87 (t,J = 7.9 Hz, 1H), 7.73 (t, J = 7.8 Hz, 2H), 6.38 (s, 1H), 2.80 (q, J = 6.6 Hz, 2H),
1.38 - 1.16 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO-d,) &: 155.73, 154.11,
142.47, 138.17, 136.95, 135.05, 125.01, 123.68, 122.11, 121.76, 31.48, 30.04, 26.50, 22.55,
14.39. 195pt NMR (86 MHz, DMSO-d;) 6: -2311. LR-MS (ESI+) [M—(BF,),]?*: 640.36 m/z. HR-
MS (ESI+) calculated for CgqHgsN1,04Pt [M—(BF,),]%*: 639.81897 m/z, found [M—(BF,),]?*:
639.81878 m/z.

[Pt(8-octylureaisoquinoline),][BF,4]; (7)

(BF4)2

= Pt

— —4

[PtCl,(EtCN),] (0.0699 g, 0.1858 mmol) was mixed with L7 (0.2225 g, 0.7431 mmol) and
silver tetrafluoroborate (0.1302 g, 0.6688 mmol). Dry MeCN (15 mL) was degassed with N,
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for 20 min, then added to the mixture and refluxed at 95 °C for 24 h. The mixture was
cooled to RT and filtered. The residue was washed with hot MeCN (200 mL) into a separate
flask until the filtrate turned colourless. The filtrate was concentrated to give the product as

a pale-yellow powder. Yield 0.1400 g (48 %). Melting point: 210.5 — 233.4 °C (decomposed).

1H NMR (400 MHz, DMSO-dg) 8: 9.58 (s, 1H), 8.81 (s, 1H), 8.66 (d, J = 6.6 Hz, 1H), 7.97 (d, J =
6.6 Hz, 1H), 7.87 (t, J = 7.9 Hz, 1H), 7.74 (d, J = 5.1 Hz, 2H), 6.36 (s, 1H), 2.81 (q, / = 6.7 Hz,
2H), 1.39 — 1.15 (m, 12H), 0.86 (t, J = 6.6 Hz, 3H). 13C NMR (101 MHz, DMSO-d,) &: 155.75,
154.13, 142.49, 138.17, 136.97, 135.04, 125.02, 123.73, 122.16, 121.83, 31.75, 30.10, 29.24,
29.19, 26.85, 22.58, 14.41. 195Pt NMR (86 MHz, DMSO-d¢) 6: —2315. LR-MS (ESI+)
[M~=(BF,),]2*: 695.93 m/z. HR-MS (ESI+) calculated for C;,H10oN1,04Pt [M—(BF,),]%":
696.38242 m/z, found [M—(BF,),]?*: 695.88170 m/z.

[Pt(8-decylureaisoquinoline),][BF,], (8)

(BF4)2

== Pt

— —4

[PtCl,(EtCN),] (0.0703 g, 0.1869 mmol) was mixed with L8 (0.2637 g, 0.8053 mmol) and
silver tetrafluoroborate (0.2901 g, 1.490 mmol). Dry MeCN (15 mL) was degassed with N, for
20 min, then added to the mixture and refluxed at 85 °C for 24 h. The mixture was cooled to
RT, transferred, then centrifuged at 1700 RCF for 5 min. The supernatant was decanted and
the pellet resuspended in acetonitrile (5 mL) and filtered. The solid was washed with cold
diethyl ether (30 mL) followed by hot MeCN (200 mL) until the filtrate turned colourless. The
filtrate was concentrated to give the product as yellow-brown needles. Yield 0.1187 g (38 %).
Melting point: 206.5 — 214.2 °C (decomposed). *H NMR (400 MHz, DMSO-dg) &: 9.59 (s, 1H),
8.81 (s, 1H), 8.67 (d, J = 6.6 Hz, 1H), 7.97 (d, J = 6.6 Hz, 1H), 7.86 (t, J = 7.9 Hz, 1H), 7.73 (t, J =
9.0 Hz, 2H), 6.37 (s, 1H), 2.82 (q, J = 6.6 Hz, 2H), 1.38 - 1.16 (m, 16H), 0.85 (t, / = 6.6 Hz, 3H).
13C NMR (101 MHz, DMSO-dg) 6: 155.25, 153.54, 141.98, 137.65, 136.44, 134.54, 124.51,
123.16, 121.60, 121.26, 31.29, 29.59, 29.05, 29.00, 28.79, 28.71, 26.35, 22.07, 13.89. 195pt
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NMR (86 MHz, DMSO-dg) 6: —2318. LR-MS (ESI+) [M—(BF4),]%*: 752.02 m/z. HR-MS (ESI+)
calculated for CgoH116N1,04Pt [M—(BF),]2*: 752.44509 m/z, found [M—(BF,),]2*: 751.94413

m/z.

Characterisation spectra

(3] OO~ OMMNOOOOTWM OO OO oMo
< e OO ONHNG Y TTY o]
\ NN e CHs

Y—NH

NH

—

I |/ B

Zs

D) F)
8.11||7.66
9.49 8.93 ||8.48 7.76 6.47 2.72

G (d)
7.54

A § | LJ
oI L W, T T
g 8 88388 8 8
- — OO0~ - )
95 90 85 80 75 7.0 65 60 55 50 45 40 35 30 25 20 15 10 05 0.0

3 (ppm)

Figure S1. 'H NMR (400 MHz, DMSO-dg) spectrum of ligand L1.
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Figure S2. 13C NMR (101 MHz, DMSO-dg) spectrum of ligand L1.
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Figure S3. HR-MS (ESI+) of ligand L1.
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Figure $22. 13C NMR (101 MHz, DMSO-d;) spectrum of ligand L8.
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Figure $27. 13C NMR (101 MHz, DMSO-dg) spectrum of complex 1.
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Figure S28. 1°>Pt NMR (86 MHz, DMSO-dg) spectrum of complex 1.
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Figure $30. 'H NMR (400 MHz, DMSO-dg) spectrum of complex 2.
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Figure $31. 13C NMR (101 MHz, DMSO-dg) spectrum of complex 2.
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Figure $32. %Pt NMR (86 MHz, DMSO-dg) spectrum of complex 2.
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Figure $36. 1>>Pt NMR (86 MHz, DMSO-d;) spectrum of complex 3.
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Figure S42. 1Pt NMR (86 MHz, DMSO-d;) spectrum of complex 5.
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Figure $45. 13C NMR (101 MHz, DMSO-dg) spectrum of complex 6.
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Figure $46. 1>>Pt NMR (86 MHz, DMSO-d;) spectrum of complex 6.
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Figure S47. HR-MS (ESI+) of complex 6.
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Figure $49. 13C NMR (101 MHz, DMSO-dg) spectrum of complex 7.
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Figure S50. 1Pt NMR (86 MHz, DMSO-dg) spectrum of complex 7.
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Figure S51. HR-MS (ESI+) of complex 7.
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Figure S$53. 13C NMR (101 MHz, DMSO-dg) spectrum of complex 8.
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Figure S54. 1Pt NMR (86 MHz, DMSO-dg) spectrum of complex 8.
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Figure S55. HR-MS (ESI+) of complex 8.

Experimental procedures

Binding studies
TH NMR Titrations
A 0.2 mM stock solution of the complex (‘host’) was prepared in DMSO-ds/0.5 % H,0, which

was used to prepare the salt solutions. Tetrabutylammonium chloride (TBACI) was
purchased commercially from Sigma Aldrich and dried for a minimum of 48 h in a desiccator

under high vacuum before use.
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A 0.03 M stock solution of TBACI was made in the host solution. The host solution (600 pL)
was added into an NMR tube before adding 2 ulL aliquots of the TBACI solution and

collecting a spectrum for each titre. Titres were added from 0 — 13 equivalents of chloride.

The peak shifts of both urea N—H protons and the aromatic C—H proton in the 1 position
were plotted against the chloride concentration and fit using BindFit v0.5to a 1:2 binding

model.1

Preferred binding models were calculated by performing a covariance of fit on the output
data from Bindfit. The 1:2 binding was determined as the preferred binding for complexes 3,
5, and 7 based on the covariance of fit being at least 5 times smaller than the covariance for
1:1 binding. The covariance of fit ratio was ambiguous for complexes 1, 2, 4, 6, and 10 as
they were less than 5. However, there is literature precedence for 1:2 binding in complex 4

and in similar Pt(ll) complexes.?

DMSO Stability Studies
Solutions of complexes 1-8 were prepared in DMSO-d; at approx. 1 mM concentration before

collecting *H NMR spectra of the samples at 0-, 1-, 2-, 3-, 7-, and 14-day timepoints.
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Figure S56. Stability of complex 1 in DMSO-dg over 14 days at room temperature.
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Figure S57. Stability of complex 2 in DMSO-dg over 14 days at room temperature.
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Figure S58. Stability of complex 4 in DMSO-dg over 14 days at room temperature.
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Figure S59. Stability of complex 5 in DMSO-dg over 14 days at room temperature.
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Figure S60. Stability of complex 6 in DMSO-dg over 14 days at room temperature.
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Figure S62. Stability of complex 8 in DMSO-dg over 14 days at room temperature.
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Transport studies
Transport studies were performed using an Orion Chloride Selective electrode from

ThermoFisher Scientific, which was calibrated using five NaCl stock solutions ranging from

1x107 M to 1x1072 M.

General Vesicle Preparation
Vesicles were prepared according to the method outlined in ‘Supramolecular methods: the

chloride/nitrate transmembrane exchange assay’. 3 POPC lipids from Corden Pharma were
dissolved in chloroform to make a 1 g in 35 mL solution. In a pre-weighed round bottom
flask, 4 mL of the POPC solution was added and gently removed under reduced pressure,
ensuring a smooth lipid cake. The lipids were dried in a desiccator under vacuum overnight
before rehydration with 4 mL of internal solution. The lipid suspension was frozen in dry
ice/acetone and thawed in water, repeating nine times. The suspension of lipids was
extruded by passing through a 200 nm polycarbonate membrane 25 times. The external
solution of the extruded vesicles was exchanged with the final external solution to be used
for transport studies, either through dialysis or size-exclusion chromatography. The vesicles
were then diluted to either a known concentration or to a known volume and the correct

volume to add for each experiment was calculated.

ISE CI"/NO3~ Exchange Assay
Vesicles were prepared with an internal solution of sodium chloride (487 mM) in a sodium

phosphate buffer (5 mM) at pH 7.20. An external solution of sodium nitrate (487 mM) was
made in the same phosphate salt buffer solution. Vesicles were dialysed in sodium nitrate

solution overnight, before diluting to 10 mL with fresh sodium nitrate external solution.

For each run, vesicles were diluted to a final concentration of 1 mM in 5 mL external solution.
The receptor was added at t =0 s and data was collected for 300 s. At t =300 s, 50 pL of Triton
X-100 (10 % v/v in H,0) detergent was added to lyse the vesicles and release any remaining
internal chloride. At t =420 s, data collection was stopped, and the final reading taken as 100

% efflux. Reported concentrations and error for each complex were repeated in duplicates.
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Hill plot analysis was conducted on the results by plotting the percentage chloride efflux at t
= 270 s against the receptor concentration in mol %. A derived equation (Equation S1) from
the ‘Hill 1’ function in OriginPro 8.6 was used to calculate the ECs.

1
50 );
END - START - 50

ECgy=kx(

Equation S1: Derived Hill function used to calculate ECsq values when chloride efflux did not

reach 100 % over the duration of the ISE assay.

ISE ClI-/SO4%~ Exchange Assay
Vesicles were prepared using the same method as for the ISE CI-/NO5~ exchange assay,

except sodium sulfate was used for the external solution instead of sodium nitrate.

Cationophore Coupled Transport
Vesicles were prepared with an internal solution of potassium chloride (300 mM) in a buffer

solution of potassium phosphate salts (5 mM), adjusted to pH 7.20. Two external solutions
were made in the potassium phosphate buffer; potassium nitrate (333 mM) and potassium
gluconate (300 mM), both adjusted to pH 7.20. After extrusion, vesicles were filtered through
a column containing Sephadex G-25 Coarse, eluting with the potassium gluconate solution.
The vesicles were collected and diluted to 10 mM with the same potassium gluconate
solution. Cationophore-coupled transport for the complexes was tested at the calculated ECsg

concentrations from the ClI-/NO;~ exchange assay.

For each experiment, 0.5 mL of vesicles were added to 4.5 mL of either potassium nitrate or
potassium gluconate external solution. 10 pL of a cationophore (valinomycin or monensin)
in DMSO was added to a final concentration of 0.1 mol % at t = =30 s. 100 uL of the receptor
in DMSO was added at t = 0 s, before collecting data for 300 s. At t =300 s, 50 pL of Triton X-
100 (10 % v/v in H,0) detergent was added to lyse the vesicles and release any remaining
internal chloride. At t = 420 s, data collection was stopped, and the final reading taken as

100 % efflux. Experiments were performed in duplicate.

HPTS Assay
An external solution of potassium chloride (100 mM) and HEPES (5 mM) was made, adjusted

to pH 7.00. Vesicles were prepared with an internal solution containing 1 mM HPTS dissolved
in the external solution. After extrusion, vesicles were filtered through a column containing

Sephadex G-25, eluting with the potassium chloride external solution. The vesicles were
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collected and diluted to 10 mL with fresh external solution. For each experiment, HPTS
vesicles were diluted to 0.1 mM in a final volume of 2.5 mL external solution in a cuvette.

Experiments were performed in triplicates simultaneously.

Every addition of solution into the lipids were staggered by 10 s between each cuvette. At the
start of each run, a pH gradient was induced in each cuvette by adding 25 uL of 0.5 M sodium
hydroxide. After 30 s, the transporter was added as a 5 uL DMSO solution before collecting
data for 200 s. At t =200 s, 25 plL Triton X-100 (10 % v/v in H,0) was added before stopping

at t = 240 s, with the final reading taken as 100 % proton efflux.

lonophore-coupled studies required the further addition of either valinomycin or carbonyl
cyanide m-chlorophenyl hydrazone (CCCP) to a final concentration of 0.1 or 1 mol %
respectively. The cationophores were added prior to the base pulse and allowed to evenly
distribute throughout the lipids first. For fatty acid-free conditions, 1 mol % bovine serum
albumin (BSA) was incorporated into the HPTS vesicles prior to dilution in cuvettes.
Transporters were added to the lipids at a concentration corresponding to approximately 50 %
efflux.

Proton efflux was studied by using an HPTS ratiometric fluorescent probe, detecting the
emission of HPTS at 510 nm. As HPTS is fluorescent in its acidic and basic form, a ratio (R) can
be interpreted by exciting the vesicles at 403 nm and 460 nm respectively. Fractional

fluorescence intensity (/¢) can then be calculated using the following equation:
Rt_RO
- Rd - RO

Ig

Equation S2: HPTS fractional fluorescence intensity (/r) based on fluorescence ratios at the

start (Rg), end (Ry), and any chosen time point (R;).

Data analysis was conducted via Hill analysis on OriginPro 8.6, plotting /- against the receptor

concentration in mol %. A modified Hill equation was used for this analysis:

n

y=yo+(;vmax—yo)*kn+xn

Equation S3: Modified Hill equation used to analyse the data from the HPTS assay.
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Where Ymax is the maximum value of Ig, Y0 is the value at t = 200 s for a DMSO blank

experiment, kis the ECso concentration, and M is the Hill coefficient.

HPTS Oleic Acid Assay
This assay was set up identically to the regular HPTS assay, with a key difference of using

POPC lipids purchased from Avanti Polar Lipids instead of Corden Pharma. Oleic acid was
added to the lipids to a final concentration of either 2 mol% or 4 mol% prior to the start of
each run. Following a base pulse, transporters were then added as a DMSO solution at a

concentration corresponding to approximately 50 % efflux.

Anion Selectivity Assay
Vesicles were prepared with an internal solution of NaCl (300 mM) and HPTS (1 mM) in a

buffer solution of HEPES (10 mM), adjusted to pH 7.00. Five external solutions were made in
an isotonic buffer, containing NaCl, NaBr, NaNOs, Nal, or NaClO,. After extrusion, vesicles
were filtered through a Sephadex G-25 Coarse column, eluting with NaCl. Anion exchange was
induced by adding 5 pL of the transporter in DMSO to the solution. Anion exchange was
continued for as long as required for all anions to reach a plateau in activity. Note that Nal
contains iodine impurities which may act as transporter for I~. Conversion of /- values were
done according to the published method.*

Cell Studies

Cell Culture
The MCF-7 breast adenocarcinoma cell line was purchased from Sigma Aldrich (86012803-

1VL; Passage number 13; NSW, Australia), while the MDAMB231 triple-negative breast
adenocarcinoma and AGS gastric adenocarcinoma cell lines were obtained from American
Type Culture Collection (In vitro Technologies, NSW, Australia). The MCF7 and MDAMB231
cells were grown in high-glucose Dulbecco's modified Eagle's medium (DMEM with 4.5 g/L
glucose; Lonza, NSW, Australia) with 10% fetal bovine serum (FBS; Bio-Strategy PTY,
Campbellfield, VIC, Australia), and supplemented with 1% penicillin and streptomycin
(Sigma-Aldrich, NSW, Australia). The MCF-7 and MDA-MB-231 cells were maintained at

37 °Cin a 5% controlled CO, atmosphere and were sub-cultured every 4872 h until they
formed a confluent monolayer. The AGS cells were grown in ATCC-formulated F-12K
medium with 10% fetal bovine serum (Bio-Strategy PTY, Campbellfield, VIC, Australia), and

supplemented with 1% penicillin and streptomycin (Sigma-Aldrich, NSW, Australia) under
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the same growth conditions as the MCF-7 and MDA-MB-231 cells. Cell maintenance was

performed every 48—72 h, the time necessary for cells to achieve confluent monolayers.>

Alamar Blue Assay
The cells (100 pL) were cultured in 96 well-plates at a seeding density of 1 x 10° cells/mL. After

24 h, the cells were treated with the samples (dissolved in DMSO) and incubated for 72 h. The
standard chemotherapeutic drug doxorubicin (1 uM) was used as the positive control, while
a negative control with 0.1% DMSO was added to each plate. At the end of the incubation
period, the culture media were aspirated followed by the addition of 100 pL of 0.1 mg/mL
Alamar blue solution (stock solution of 1 mg/mL freshly prepared in PBS followed by 1:10
dilution with FBS-free media) to each well. After 4 h of incubation, the fluorescence intensity
was measured with excitation wavelength at 555 nm and emission wavelength at 595 nm
using a BMG LABTech FLUOstar OPTIMA plate reader (BMG Labtech, VIC, Australia). The drugs
were tested in triplicate, with the negative control taken as 100% cell viability. Non-linear
regression and ICsy calculations were performed using GraphPad Prism 9.0 (GraphPad Inc.,
San Diego, CA).®

Flow cytometric analysis of apoptosis in the AGS gastric cancer cells using the most active

complexes 2—4.
Flow cytometry was used to evaluate the apoptosis in the AGS cells after treatment with the

most active complexes 2, 3, and 4 as previously reported using an annexin V and 7-AAD-based
kit (#ab214663, Abcam, Melbourne, VIC, Australia). AGS cells were grown in T75 cell culture
flasks, starting with an initial density of 1 x 108 cells in 10 mL of culture medium. The cells
were maintained at 37 °C in an environment with 5% CO, for 24 h. On the subsequent day,
the culture medium was aspirated from each flask, and the cells were exposed to 10 pg/mL
of complexes 2, 3, and 4, while a serum-containing medium was used as the untreated
control. The flasks were then returned to the incubator at 37 °C with 5% CO, for an additional
24 h. Following a 24 h incubation, the cell culture media were harvested from each flask.
Subsequently, trypsin (0.25% w/v) was added to the flasks for a 3 min incubation at 37 °C. The
trypsin reaction was then neutralized with an equal volume of 10% FBS-containing medium,
and the cells were combined with the previously collected media. The cells were pelleted by
centrifugation at 500xg for 5 min at room temperature. This process was repeated twice, with

the cell pellets being resuspended in 1 mL of PBS on both occasions. The resulting cell pellets
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from each treatment were suspended in 500 pL of 1X binding buffer and gently mixed by

pipetting.

Exactly 5 pL of Annexin V-CF blue and 7-aminoactinomycin D (7-AAD) staining solutions were
added to 100 pL of cell suspension. The stained cells were incubated in the dark at room
temperature for 15 min, then 400 pL of a 1X assay buffer was introduced to each cell
suspension. Subsequently, the cells were analysed using a flow cytometer (Novocyte 3000,
ACEA Biosciences Inc, CA, USA), and data were analyzed and processed using NovoExpress
software (version 1.5.0, ACEA Biosciences Inc, CA, USA). Initially, the cells were gated on
forward and side scatter modes to remove cell aggregates and debris located close to the
origin. The cells were analyzed using dot plots, where Annexin V-CF in Pacific Blue was plotted
against 7-AAD fluorescence in PerCP. Quadrants were established in relation to the untreated
control, with live cells (+Annexin V and -7-AAD) found in the lower-left quadrant, early
apoptotic cells (+Annexin V and -7-AAD) in the lower-right quadrant, late apoptotic cells
(+Annexin V and +7-AAD) in the upper-right quadrant, and necrotic cells (-Annexin V and +7-
AAD) in the upper-left quadrant. For statistical analysis and visualization, the percentage of
cells in each quadrant after different treatments (n = 3) was exported to GraphPad Prism

software (version 9.0, CA, USA).

Reactive Oxygen Species (ROS) Assay
The effect of the most active complexes 2, 3, and 4 on the oxidative stress of the AGS cancer

cells was studied using the H2DCFDA (2',7'-dichlorofluorescein diacetate) cellular reactive
oxygen species (ROS) Detection Assay Kit (#ab113851; Abcam, VIC, Australia) 7. H2DCFDA is a
fluorescent dye employed for the evaluation of cellular concentrations of hydroxyl, peroxyl,

and diverse other reactive oxygen species (ROS) activity.”

The AGS cells were plated at a density of 2.5 x 10° cells per mL in a 96-well plate and allowed
to adhere overnight at 37 °C with 5% CO,. The cell culture medium was aspirated the following
day, and each well was gently agitated while adding 100 uL of 1x buffer. Afterwards, the buffer
was removed, and 100 uL of a 20 uM H2DCFDA solution was added to each well, followed by
a 45 minincubation at 37 °Cin the absence of light. The H2DCFDA solution was then removed,
and the cells were washed once more with 100 pL of 1x buffer, with gentle manual agitation
of the plate. Subsequently, the cells were exposed to 1 uM of doxorubicin and 250 uM of tert-

butyl hydroperoxide (TBHP) then incubated at 37 °C for 4 h. Finally, the plate was read at
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Ex/Em =485/535 nm using a microplate spectrophotometer (BMG CLARIOstar, VIC, Australia).
The fold increase in ROS production was calculated relative to the untreated control (cells

treated with the supplement buffer following the specified procedure).

Chloride Depletion Studies
HEPES-buffered solutions were prepared with the following compositions: 120 mM NaCl, 5

mM KCI, 1 mM MgCl,, 1 mM CaCl,, 10 mM D-glucose, 10 mM HEPES (pH 7.4), and 25 mM
NaHCOs. To prepare Cl- free HEPES-buffered solutions, ClI~ ions in buffer solutions were
replaced with equimolar concentrations of gluconate salts. AGS cells were incubated for 18
hours with different concentrations of 2, 3, 4, or cisplatin in HEPES-buffered solutions or CI-
free HEPES-buffered solutions at 37 °C under a humidified atmosphere of 5% CO,. Alamar
Blue assay was conducted using standard procedures. The fluorescence levels were measured
(excitation wavelength of 555nm and emission at 595nm) with a microplate

spectrophotometer (BMG CLARIOstar, Mornington, VIC, Australia).

B HEPES-buffered solution
M CI free HEPES-buffered solution

120 120+
=2 100 3 1001
c [
o ]
= 80 £ 804
2 a
£ 601 £ 60
£ £
g 40 % 401
= 2
© 20 O 20
0- 0-
10 5 25 125 0625 0.313 10 5 25 1.25 0.625 0.313
Compound 2 (ug/mL) Compound 3 (ug/mL)

B HEPES-buffered solution

B CI free HEPES-buffered solution
120+

1204
3 1001 e
- g
£ 80 £ "
£ o] € 60
£ H
404 40+
5 :
20 o 20
0- 0-
10 5 25 1.25 0.625 0.313 300 150 75 375 1875 9.38
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Figure S63. AGS gastric cancer cells were separately incubated with various concentrations of
compounds 2, 3, 4 and cisplatin in HEPES-buffered solution and CI~ free HEPES-buffered
solution for 18 h. Cell death was measured by using an Alamar Blue assay (mean, n = 3).

**indicates P £0.01 and **** indicates P < 0.0001).
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Crystallography

Single crystals of complexes 2, 3, and 5 were obtained by slow diffusion of diethyl ether into
a solution of the complex in DMF. Single crystals of 6 and 7 were obtained from initial hot
filtrations with MeCN during the synthesis. A suitable crystal was selected and in Paratone
on a micromount on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal
was kept at 100 K during data collection. Using Olex2,8 the structure was solved with the
ShelXS? structure solution program using Direct Methods and refined with the ShelXL®

refinement package using Least Squares minimization.

For complex 7, X-ray diffraction data were collected at 100 K on the MX2 Macromolecular
Crystallography beamline at the Australian Synchrotron.!! The data collection and
integration were performed within the Blu-lce!! and XDS*? software programs. Structure
solutions were obtained by intrinsic phasing methods from SHELXT!? and were refined by a
full-matrix least-squares on all unique F? values using SHELXL'* as implemented within
OLEX2-1.5.° All non-hydrogen atoms were refined with anisotropic thermal parameters,
with hydrogen atoms being added geometrically and refined using riding thermal

parameters.

Figure S64. Olex2 depiction of complex 5 with thermal ellipsoids shown at the 50% level.
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Figure S66. Olex2 depiction of complex 7 with thermal ellipsoids shown at the 50% level.
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Table S1. Crystal and data refinement parameters for the X-ray crystallography studies.

Crystallographic Complex 2 Complex 3 Complex 5 Complex 6 Complex 7

details

Empirical fOrmUIa C48HSZBZF8N1204 CSZHGOBZF8N1204 C60H7632F8N1204 C64H84BZF8N1204P C72HIOOBZFSN1204
Pt Pt Pt t Pt

Formula weight 1229.72 1285.83 1398.03 1454.14 1566.34

Temperature/K 100(2) 100(2) 100(2) 100.00 100(2)

Crystal system monoclinic monoclinic monoclinic monoclinic triclinic

Space group P2,/c P2,/c P2,/c P2,/c P-1

a/A 11.4301(13) 12.1096(12) 13.3731(8) 13.203(3) 11.013(2)

b/A 19.8030(14) 19.8229(13) 14.0167(7) 14.387(3) 13.708(3)

c/A 11.2570(9) 11.4298(12) 17.0490(7) 17.238(4) 14.075(3)

a/° 90 90 90 90 114.46(3)

B/ 103.529(10) 106.062(11) 103.604(5) 93.431(6) 99.20(3)

v/° 90 90 90 90 104.70(3)

Volume/A3 2477.3(4) 2636.6(4) 3106.1(3) 3268.6(13) 1784.1(8)

VA 2 2 2 2 1

Peacg/cm3 1.649 1.620 1.495 1.477 1.458

p/mm-t 2.920 2.748 2.339 2.226 2.045

F(000) 1232.0 1296.0 1424.0 1488.0 808.0

Erveel e 0.05 x 0.03 x 0.121 x0.072 x |0.16 x 0.07 x 0.9x0.27 x 0.05 x 0.01 x
0.01 0.031 0.05 0.195 0.01

Radiation Mo Ka (A = Mo Ka (A = Mo Ka (A = Mo Ka (A = synchrotron (A =
0.71073) 0.71073) 0.71073) 0.71073) 0.71073)

20 rangefordata |3 (o) 50048 [4.058t050.05 [3.806t052.74 [3.69t054.97  [3.334to57.396

collection/°
Index ranges

Reflections collected

Independent
reflections

Data/restraints/para
meters
Goodness-of-fit on F2
Final R indexes [I>=20
(]

Final R indexes [all
data]

Largest diff.
peak/hole / e A3

-13<h<13,-23
<k<23,-13<1<
13

37769

4374 [Ripe =
0.2077, Raigma =
0.1094]

4374/144/354

1.003

R1 =0.0540,
wR, =0.1139
R, =0.0970,
WR, = 0.1342

1.66/-2.61

-14<h<14,-23
<k<23,-13<I<
13

39122

4655 [Rin; =
0.2593, Ryigma =
0.1535]

4655/6/372

0.989

R, = 0.0660,
WR, = 0.1315
R, = 0.1254,
WR, = 0.1601

1.42/-1.94

-16 <h <16, -17
<k<17,-21<1<
21

36390

6356 [Rin; =
0.0758, Ryigma =
0.0591]

6356/0/396

1.004
R1=0.0292,
wR, = 0.0504
R;=0.0558,
wR;, = 0.0567

0.76/-0.60

-17<h<17,-18
<k<18,-22<I<
22

71595

7499 [Rin; =
0.0584, Ryigrma =
0.0315]

7499/0/426

1.074
R1=0.0242,
wR;, = 0.0560
R;=0.0318,
wR, = 0.0594

1.04/-0.65

14<h<14,-16
<k<16,-19<1<
19

29373

8368 [Rint =
0.0279, Ryigms =
0.0253]

8368/0/450

1.100

R, =0.0283,
wR, = 0.0727
R, =0.0283,
wR, = 0.0728

0.70/-1.67
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Binding Data and Fittings
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Figure S67. Stack plot of *H NMR titration of complex 1 with TBA-Cl from 0 — 13 equiv. in DMSO-

de/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S68. Proton shifts and residuals of complex 1 fitted to a 1:2 model using BindFit. Available at

http://app.supramolecular.org/bindfit/view/c00453d6-80ce-4834-81bf-5f716df175a9
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Figure S69. Stack plot of *H NMR titration of complex 2 with TBA-Cl from 0 — 13 equiv. in DMSO-

de/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S70. Proton shifts and residuals of complex 2 fitted to a 1:2 model using BindFit. Available at

http://app.supramolecular.org/bindfit/view/92e0a806-d414-4223-bd3b-cbe771f16d48
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Figure S71. Stack plot of *H NMR titration of complex 3 with TBA-Cl from 0 — 13 equiv. in DMSO-
de/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S72. Proton shifts and residuals of complex 3 fitted to a 1:2 model using BindFit. Available at

http://app.supramolecular.org/bindfit/view/68984d7c-7e8a-4cc4-9079-0b8939ac6422
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Figure $73. Stack plot of *H NMR titration of complex 4 with TBA-Cl from 0 — 13 equiv. in DMSO-

de/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S74. Proton shifts and residuals of complex 4 fitted to a 1:2 model using BindFit. Available at

http://app.supramolecular.org/bindfit/view/db390323-a27d-4fcb-980c-5fac0c1f3348
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Figure S75. Stack plot of *H NMR titration of complex 5 with TBA-Cl from 0 — 13 equiv. in DMSO-

de/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S76. Proton shifts and residuals of complex 5 fitted to a 1:2 model using BindFit. Available at

http://app.supramolecular.org/bindfit/view/70753745-ee5c-469e-8961-ec074bcO6fec
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Figure S77. Stack plot of *H NMR titration of complex 6 with TBA-Cl from 0 — 13 equiv. in DMSO-

de/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S78. Proton shifts and residuals of complex 6 fitted to a 1:2 model using BindFit. Available at

http://app.supramolecular.org/bindfit/view/2100297b-569b-4de9-alcd-07c69acae043
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Figure $79. Stack plot of *H NMR titration of complex 7 with TBA-Cl from 0 — 13 equiv. in DMSO-

de/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S80. Proton shifts and residuals of complex 7 fitted to a 1:2 model using BindFit. Available at
http://app.supramolecular.org/bindfit/view/0b265e9b-61fb-44b8-9443-44d316789f2c
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Figure S81. Stack plot of *H NMR titration of complex 8 with TBA-Cl from 0 — 13 equiv. in DMSO-

des/0.5 % H,0 at 298 K. Concentrations are normalised against dilution factors.
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Figure S82. Proton shifts and residuals of complex 8 fitted to a 1:2 model using BindFit. Available at

http://app.supramolecular.org/bindfit/view/e703faf6-4498-4128-988f-d26c45e07723
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Covariance of Fit Calculations

Table S2: Binding constants (K,) for complexes 1-8 titrated with chloride, added as TBA-Cl,
at 298 K in DMSO-dg/0.5 % H,0, calculated using 1:1 and 1:2 binding models.
Errors are <8 %.

Complex Complex Binding Constants (M)
1:1(K,) COoVj;i? 1:2 CoVgi? F covg®

1 4990 | 8.47 x 105 | Kui17,900 2.21 X 10° 397

K12: 1440
_ Ki1: 16,500 -

5 5670 | 8.56 X 105 | Ku 2.82 X 10°S 358
KlZ: 1480

3 6390 | 7.65 x 105 | Kui24300 | 408 x 1076 118
KlZ: 2280

- Ki1: 24,100 _

4 6270 | 1.01 X 10+ | Ku 2.28 X 10 356
KlZ: 2070

5 6210 | 1.03 x 10 | Ku:83,900 |4 03 x 905 18.0
KlZ: 3750

6 7610 | 1.69 x 10~ | Ku:30,500 461 X 10 292
KlZ: 2230

7 5710 | 1.34 x 10 | Kui25100 1 976 x 1076 15.4
KlZ: 2760

8 8310 | 2.36% 10¢ | Kui42100 | 543 % 90 3.81
KlZ: 2030

2 The covariance of fit (covg) for 1:1 and 1:2 binding models, derived by dividing the calculated

covariance (covg,c) by the covariance of the residual (experimental — calculated). b Factor of covariance

of fit (F covyy), calculated by dividing the 1:1 covy; by 1:2 covg.. 1:2 binding is the preferred model if F

covge > 5.1°

Page | 74



Transport data
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Figure S83. CI-/NO;™ exchange mediated by complex 1 over 300 s at varying concentrations in POPC

vesicles loaded with 487 mM NacCl, suspended in 487 mM NaNO; at pH 7.2.
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Figure S84. Hill plot obtained for complex 1 in the ISE CI-/NO;™ assay, including calculated ECs, value

and fitted curve. Cl~ efflux at 270 s was taken from each experiment; each point represents the

average of 3 repeats.
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Figure S85. CI-/NO;~ exchange mediated by complex 2 over 300 s at varying concentrations in POPC
vesicles loaded with 487 mM NacCl, suspended in 487 mM NaNO; at pH 7.2.
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Figure S86. Hill plot obtained for complex 2 in the ISE CI-/NO;™ assay, including calculated ECs, value

and fitted curve. ClI- efflux at 270 s was taken from each experiment; each point represents the

average of 3 repeats.
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Figure S87. CI-/NO;~ exchange mediated by complex 3 over 300 s at varying concentrations in POPC

vesicles loaded with 487 mM NacCl, suspended in 487 mM NaNO; at pH 7.2.
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Figure S88. Hill plot obtained for complex 3 in the ISE CI-/NO;™ assay, including calculated ECs, value

and fitted curve. ClI- efflux at 270 s was taken from each experiment; each point represents the

average of 3 repeats.
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Figure S89. Cl-/SO,* exchange mediated by complexes 3—6 over 300 s at 1 and 0.5 mol%

concentrations in POPC vesicles loaded with 487 mM NaCl, suspended in 487 mM Na,SO, at pH 7.2.
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Figure S90. Cl~ efflux mediated by complex 1 over 300 s at 2 mol% in POPC vesicles loaded with 300

mM NacCl. Vesicles are suspended in either KNO; or KGlc in the presence of cationophores.
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Figure S91. CI- efflux mediated by complex 2 over 300 s at 0.2 mol% in POPC vesicles loaded with

300 mM NaCl. Vesicles are suspended in either KNO; or KGlc in the presence of cationophores.
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Figure S92. Cl- efflux mediated by complex 3 over 300 s at 0.05 mol% in POPC vesicles loaded with

300 mM NaCl. Vesicles are suspended in either KNO; or KGlc in the presence of cationophores.
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Figure S93. HPTS fluorescence for complex 1 at varying concentrations in POPC vesicles loaded with

HPTS in the presence of fatty acid impurities (left) and at the ECsq concentration with BSA,

valinomycin or CCCP (right). Each point represents the average of 3 repeats.
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Figure S94. Hill plot obtained for complex 1 in the HPTS assay in the presence of fatty acid impurities,

including calculated ECsy value and fitted curve. Fractional intensity at 200 s was taken from each

experiment; each point represents the average of 3 repeats.
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Figure S95. HPTS fluorescence for complex 2 at varying concentrations in POPC vesicles loaded with

HPTS in the presence of fatty acid impurities (left) and at the ECsy concentration with BSA,

valinomycin or CCCP (right). Each point represents the average of 3 repeats.
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Figure S96. Hill plot obtained for complex 2 in the HPTS assay in the presence of fatty acid impurities,

including calculated ECsy value and fitted curve. Fractional intensity at 200 s was taken from each

experiment; each point represents the average of 3 repeats.
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Figure S97. HPTS fluorescence for complex 3 at varying concentrations in POPC vesicles loaded with

HPTS in the presence of fatty acid impurities (left) and at the ECsy concentration with BSA,

valinomycin or CCCP (right). Each point represents the average of 3 repeats.
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Figure S98. Hill plot obtained for complex 3 in the HPTS assay in the presence of fatty acid impurities,

including calculated ECsq value and fitted curve. Fractional intensity at 200 s was taken from each

experiment; each point represents the average of 3 repeats.
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Figure $99. HPTS fluorescence for complex 4 at varying concentrations in POPC vesicles loaded with

HPTS in the presence of fatty acid impurities (left) and at the ECsy concentration with BSA,

valinomycin or CCCP (right). Each point represents the average of 3 repeats.
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Figure S100. Hill plot obtained for complex 4 in the HPTS assay in the presence of fatty acid

impurities, including calculated ECsy value and fitted curve. Fractional intensity at 200 s was taken

from each experiment; each point represents the average of 3 repeats.
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Figure S101. HPTS fluorescence for complex 5 at varying concentrations in POPC vesicles loaded with

HPTS in the presence of fatty acid impurities (left) and at the ECsy concentration with BSA,

valinomycin or CCCP (right). Each point represents the average of 3 repeats.
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Figure S102. Hill plot obtained for complex 5 in the HPTS assay in the presence of fatty acid

impurities, including calculated ECsy value and fitted curve. Fractional intensity at 200 s was taken

from each experiment; each point represents the average of 3 repeats.
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Figure S103. HPTS fluorescence for complex 1 at the EC5, concentration in Avanti Polar Lipids. Oleic

acid was added to mimic the function of fatty acids. Each point represents the average of 3 repeats.
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Figure $104. HPTS fluorescence for complex 2 at the ECs5, concentration in Avanti Polar Lipids. Oleic

acid was added to mimic the function of fatty acids. Each point represents the average of 3 repeats.
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Figure $105. HPTS fluorescence for complex 3 at the ECs, concentration in Avanti Polar Lipids. Oleic

acid was added to mimic the function of fatty acids. Each point represents the average of 3 repeats.
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Figure S106. HPTS fluorescence for complex 4 at the ECs, concentration in Avanti Polar Lipids. Oleic

acid was added to mimic the function of fatty acids. Each point represents the average of 3 repeats.
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Figure S107. HPTS fluorescence for complex 5 at the ECs5, concentration in Avanti Polar Lipids. Oleic

acid was added to mimic the function of fatty acids. Each point represents the average of 3 repeats.

Anion Selectivity Assay
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Figure S108. Anion selectivity for complex 1 in the HPTS assay. POPC vesicles were loaded with HPTS
in 100 mM NaCl and suspended in an isotonic external solution with Br-, NO;~, I, or CIO,™ anions.
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Figure $109. Anion selectivity for complex 2 in the HPTS assay. POPC vesicles were loaded with HPTS
in 100 mM NaCl and suspended in an isotonic external solution with Br-, NO5~, I, or CIO, anions.
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Figure $110. Anion selectivity for complex 3 in the HPTS assay. POPC vesicles were loaded with HPTS
in 100 mM NaCl and suspended in an isotonic external solution with Br-, NO;~, I, or CIO,~ anions.
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Figure S111. Anion selectivity for complex 4 in the HPTS assay. POPC vesicles were loaded with HPTS
in 100 mM NaCl and suspended in an isotonic external solution with Br-, NO;~, I, or CIO,~ anions.
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Figure S112. Anion selectivity for complex 5 in the HPTS assay. POPC vesicles were loaded with HPTS
in 100 mM NaCl and suspended in an isotonic external solution with Br-, NO5~, I, or CIO, anions.
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Figure S113. Stack plot of 'H NMR spectra for complex 1 in DMSO-d collected at various timepoints

over 14 days.
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Figure S114. Stack plot of 'H NMR spectra for complex 2 in DMSO-d; collected at various timepoints

over 14 days.
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Figure S115. Stack plot of 'H NMR spectra for complex 3 in DMSO-d; collected at various timepoints

over 14 days.
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Figure S116. Stack plot of 'H NMR spectra for complex 4 in DMSO-d; collected at various timepoints

over 14 days.
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Figure S117. Stack plot of 'H NMR spectra for complex 5 in DMSO-d; collected at various timepoints

over 14 days.
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Figure S118. Stack plot of 'H NMR spectra for complex 6 in DMSO-d; collected at various timepoints

over 14 days.
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Figure S119. Stack plot of 'H NMR spectra for complex 7 in DMSO-d; collected at various timepoints

over 14 days.
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Figure S120. Stack plot of 'H NMR spectra for complex 8 in DMSO-d; collected at various timepoints

over 14 days.
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