Supporting Information

Crafting 1,4-Diaryl Spirobifluorene Hosts in OLEDs via Interannular C–H Arylation: Synergistic Effects of Molecular Linearity and Orthogonality

Qian Li, Zhiqian Yu, Qianhui Liu, Yusong Guo, Zhangyi Fu, Yudong Yang, Zhengyang Bin, Di Wu^{*} and Jingbo Lan^{*}

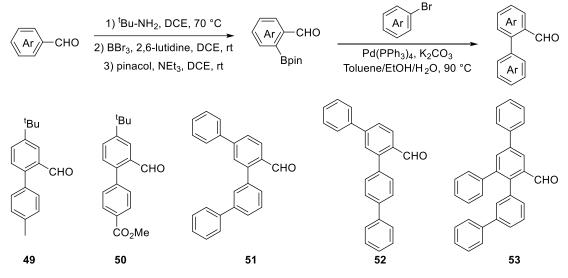
¹Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan Province.

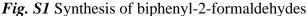
* E-mail: woody@scu.edu.cn; jingbolan@scu.edu.cn

Table of Contents

I. General remarks	S3
II. OLED fabrication and characterization	S3
III. Synthesis of biphenyl-2-formaldehydes	S4
IV. Palladium-catalyzed interannular selective C-H arylation	S8
V. Synthesis of multi-aryl fluorenones	S29
VI. Synthesis of 1,4-diaryl 9,9'-spirobifluorenes	S34
VII. Single crystal X-ray structures of 1-pbp-4-p-SBF, 1-mtp-4-p	-SBF, and 1,4-
d(mbp)-SBF	S38
VIII. Photophysical properties	S42
IX. Thermal properties	S42
X. Charge transport properties	S43
XI. Phosphorescent OLED characteristics	S44
XII. References	S47
XIII. Copies of ¹ H, ¹³ C NMR and ¹⁹ F NMR spectra	S48

I. General remarks

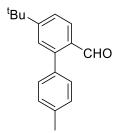

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Pd(OAc)₂ was purchased from J&K Chemicals. The amino acids, iodobenzene, biphenyl-2-formaldehyde, silver trifluoroacetate, zinc carbonate and 2,2,2-trifluoroethanol were purchased from Shanghai Energy Chemical Co., Ltd and used without further purification. NMR spectra were recorded on an Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: δ = 7.26 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard ($\delta = 77.16$ ppm). ¹⁹F NMR (376 MHz) was recorded on Bruker AV II-400 MHz. High resolution mass spectra (HRMS) were collected on Shimadzu LCMS-ITTOF (ESI). X-Ray singlecrystal diffraction data were collected on an Agilent Technologies Gemini single-crystal diffractometer. UV-visible absorption spectra experiments were conducted on a HITACHI U-2910 spectrometer. Fluorescence spectra were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system. Phosphorescence spectra were collected on a HITACHI F-7100 fluorescence spectrophotometer. Thermogravimetric analysis (TGA) curves were carried out using DTG-60(H) at a rate of 10 °C/min under nitrogen atmosphere. Differential scanning calorimetry (DSC) thermograms were recorded on DSC 200PC equipment under nitrogen atmosphere at a rate of 10 °C/min. Cyclic voltammograms performed on LK2005A with a solution of tetrabutylammonium were hexafluorophosphate (NBu₄PF₆, 0.1 M) in DMF and in DCM as electrolyte and ferrocene/ferrocenium (Fc/Fc⁺) as standard, the sweep rate is 100 mV⁻¹. Threeelectrode system (Ag/Ag⁺, platinum wire and glassy carbon electrode as reference, counter and work electrode respectively) was used in the CV measurement.


II. OLED fabrication and characterization

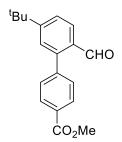
ITO (indium tin oxide) glass substrates with a sheet resistance of 15 Ω per square were cleaned with alkaline detergent, boiled deionized water, and deionized water thoroughly

in ultrasonic bath and then treated with O_2 plasma for 10 min. Organic layers, LiF and Al were deposited on ITO substrates by thermal evaporation in a high vacuum chamber below 6×10^{-6} mbar in an inert gas glovebox. The quartz crystal oscillators controlled the thicknesses of deposited films. The as-fabricated OLEDs were measured in the inert gas glovebox without any encapsulation. Current density of OLEDs was measured by Keithley B1500A. The luminance and EL spectra were collected with model DLM-100Z photometer and OPT2000 spectrophotometer, respectively.

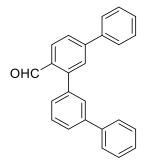
III. Synthesis of biphenyl-2-formaldehydes



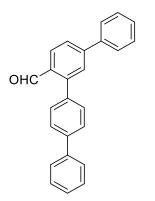
A Schlenk tube with a magnetic stir bar was charged with benzaldehyde derivative (2.0 mmol, 1 equiv), *tert*-butyl amine (8.0 mmol, 4 equiv), and DCE (1 mL) under a nitrogen atmosphere and the vial was placed in an oil bath at 70 °C for 4 h. The solvent and excess of *tert*-butyl amine were removed under vacuum and 2,6-lutidine (4.0 mmol, 2 equiv) and DCE (5 mL) were added. BBr₃ (4.0 mmol, 2 equiv; present as a 1 mol/L solution in CH₂Cl₂) was added dropwise to the reaction mixture while stirring and the reaction was continued for 4 h at room temperature. The reaction was quenched with pinacol (4.0 mmol, 2 equiv) and triethylamine (20.0 mmol, 10 equiv) and stirred for another 2 h at room temperature. After the reaction reached completion, the volatiles were removed under vacuum and the crude mixture was dissolved in ethyl acetate (20 mL) and H₂O (20 mL). The aqueous layer was washed with ethyl acetate (3 x 20 mL)


and the organic layers were collected and dried over MgSO₄ and filtered. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ $CH_2Cl_2 = 1/1$ to 100% CH_2Cl_2) to provide the desired product.¹

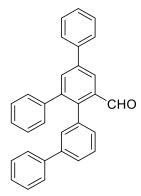
A Schlenk tube with a magnetic stir bar was charged with $Pd(PPh_3)_4$ (72.5 mg, 5mol%), K₂CO₃ (496.8 mg, 3.6 mmol, 2.0 equiv), pinacol phenylboronate (493.1 mg, 1.6 mmol, 1.1 equiv), bromobenzene (0.17 mL, 1.8 mmol, 1.1 equiv), toluene (3 mL), H₂O (1 mL) and EtOH (1 mL) under a nitrogen atmosphere. The resulting mixture was heated to 90 °C and stirred for 24 h. After cooling to room temperature, the organic layer was extracted with ethyl acetate and washed with brine. The combined organic extracts were dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ ethyl acetate = 30/1, v/v) to provide the desired product.²


5-(*tert*-Butyl)-4'-methyl-[1,1'-biphenyl]-2-carbaldehyde (49)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) afforded the desired product **49** as colorless oil (379.2 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.95 (s, 1H), 7.96 (d, *J* = 8.0, 1H), 7.51 (dd, *J*₁ = 8.4, *J*₂ = 1.2, 1H), 7.42 (d, *J* = 1.2, 1H), 7.29 (s, 4H), 2.44 (s, 3H), 1.37 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.50, 157.57, 146.06, 138.06, 135.58, 131.57, 130.22, 129.24, 127.88, 127.63, 125.02, 35.49, 31.23, 21.34 ppm. HRMS (ESI⁺): calcd for C₁₈H₂₀NaO [M+Na]⁺ 275.1406, found: 275.1404.


Methyl 5'-(*tert*-butyl)-2'-formyl-[1,1'-biphenyl]-4-carboxylate (50)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) afforded the desired product **50** as colorless oil (371.2 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.91 (s, 1H), 8.14 (d, *J* = 8.4, 2H), 7.99 (d, *J* = 8.0, 1H), 7.58 (dd, *J*₁ = 8.4, *J*₂ = 2.8, 1H), 7.47 (d, *J* = 8.4, 2H), 7.41 (d, *J* = 2.0, 1H), 3.97 (s, 3H), 1.38 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.68, 166.86, 157.84, 144.74, 143.21, 131.40, 130.28, 129.82, 129.72, 128.03, 127.65, 125.85, 52.47, 35.54, 31.19 ppm. HRMS (ESI⁺): calcd for C₁₉H₂₀NaO₃ [M+Na]⁺ 319.1305, found: 319.1303.

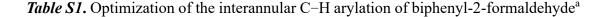

[1,1':3',1'':3'',1'''-Quaterphenyl]-4'-carbaldehyde (51)

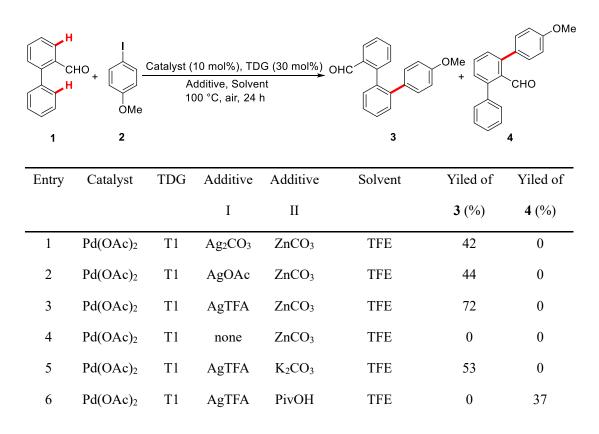
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) afforded the desired product **51** as a white solid (507.9 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.10$ (s, 1H), 8.15 (d, J = 8.4, 1H), 7.77-7.64 (m, 8H),7.58 (t, J = 7.6, 1H), 7.51-7.37 (m, 7H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.15, 146.56, 146.48, 141.75, 140.57, 139.74, 138.51, 132.70, 129.60, 129.17, 129.14, 129.06, 128.98, 128.67, 128.47, 127.86, 127.55, 127.40, 127.14, 126.72 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₈NaO [M+Na]⁺ 357.1250, found: 357.1246.$

[1,1':3',1'':4'',1'''-Quaterphenyl]-4'-carbaldehyde (52)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) afforded the desired product **52** as a white solid (491.9 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.10$ (s, 1H), 8.14 (d, J = 8.4, 1H), 7.76-7.67 (m, 8H), 7.54-7.48 (m, 6H), 7.43-7.38 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.20, 146.47, 146.24, 141.31, 140.44, 139.77, 136.88, 132.68, 130.71, 129.56, 129.17, 129.08, 128.66, 128.54, 127.84, 127.54, 127.34, 127.30, 126.66 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₈NaO [M+Na]⁺ 357.1250, found: 357.1248.$

5'-Phenyl-[1,1':2',1'':3'',1'''-quaterphenyl]-3'-carbaldehyde (53)


Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) afforded the desired product **53** as a white solid (610.8 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.98 (s, 1H), 8.32 (d, *J* = 1.6, 1H), 7.94 (d, *J* = 2.0, 1H), 7.74 (d, *J* = 7.6, 2H), 7.50 (t, *J* = 7.6, 3H), 7.44-7.32 (m, 8H), 7.25-7.23 (m, 3H), 7.19-7.15 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.92, 143.40, 142.96, 140.97, 140.92, 140.61, 140.34, 139.55, 136.21, 135.22, 134.09, 130.46, 130.39, 130.00, 129.16, 128.89, 128.45, 128.21, 128.12, 127.65,


127.30, 127.25, 127.15, 126.57, 124.92 ppm. HRMS (ESI⁺): calcd for $C_{31}H_{22}NaO$ [M+Na]⁺ 433.1563, found: 433.1558.

IV. Palladium-catalyzed interannular selective C-H arylation

i) Condition optimization

A Schlenk tube with a magnetic stir bar was charged with biphenyl-2-formaldehyde derivative (1, 0.2 mmol, 1.0 equiv), 4-iodoanisole (2, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (0.02 mmol, 10.0 mol%), L-*tert*-leucine (0.06 mmol, 30 mol%), AgTFA (0.3 mmol, 1.5 equiv), ZnCO₃ (0.2 mmol, 1.0 equiv) and TFE (1.0 mL) under an air atmosphere. The reaction mixture was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, diluted with 5 mL CH₂Cl₂, filtered through a celite pad, and washed with 20-30 mL CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate = 20/1, v/v) to provide the desired product.

7	$Pd(OAc)_2$	T1	AgTFA	none	TFE	25	0		
8	Pd(TFA) ₂	T1	AgTFA	ZnCO ₃	TFE	65	0		
9	Pd(dba) ₂	T1	AgTFA	ZnCO ₃	TFE	trace	0		
10	$Pd(acac)_2$	T1	AgTFA	ZnCO ₃	TFE	60	0		
11	nono	T1	AgTFA	ZnCO ₃	TFE	0	0		
12	$Pd(OAc)_2$	T2	AgTFA	ZnCO ₃	TFE	60	0		
13	Pd(OAc) ₂	Т3	AgTFA	ZnCO ₃	TFE	65	0		
14	$Pd(OAc)_2$	T4	AgTFA	ZnCO ₃	TFE	0	48		
15	Pd(OAc) ₂	T5	AgTFA	ZnCO ₃	TFE	0	trace		
16	$Pd(OAc)_2$	T6	AgTFA	ZnCO ₃	TFE	0	35		
17	Pd(OAc) ₂	none	AgTFA	ZnCO ₃	TFE	0	0		
18	Pd(OAc) ₂	T1	AgTFA	ZnCO ₃	HFIP/AcOH (9:1)	12	38		
19	$Pd(OAc)_2$	T1	AgTFA	ZnCO ₃	TFE/TFA (9:1)	trace	47		
20	Pd(OAc) ₂	T1	AgTFA	ZnCO ₃	TFE/AcOH (9:1)	0	35		
$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$									

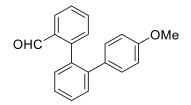
^aReaction conditions: biphenyl-2-formaldehyde 1 (0.20 mmol), 4-iodoanisole 2 (0.30 mmol), catalyst (10 mol %), TDG (30 mol %), additive I (0.30 mmol), additive II (0.20 mmol) and solvent (1mL) at 100 °C for 24 h under air. AcOH = glacial acetic acid.

Т4

Т5

Т6

тз

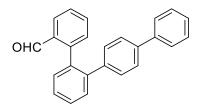

Т2

Τ1

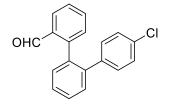
ii) General procedure for the interannular C-H arylation of bi(hetero)aryl aldehyde

A Schlenk tube with a magnetic stir bar was charged with bi(hetero)aryl aldehyde (0.2 mmol, 1.0 equiv), iodobenzene (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (0.02 mmol, 10 mol%), L-tert-leucine (0.06 mmol, 30 mol%), AgTFA (0.3 mmol, 1.5 equiv), ZnCO₃ (0.2 mmol, 1.0 equiv) and TFE (1.0 mL) under an air atmosphere. The reaction mixture was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, diluted with 5 mL CH₂Cl₂, filtered through a celite pad, and washed with 20-30 mL CH₂Cl₂.

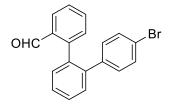
The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate = 20/1, v/v) to provide the desired product.


4"-Methoxy-[1,1':2',1"-terphenyl]-2-carbaldehyde (3)

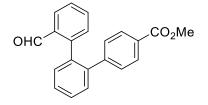
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **3** as light yellow oil (41.5 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.75 (s, 1H), 7.82 (d, *J* = 7.6, 1H), 7.55-7.36 (m, 6H), 7.30 (d, *J* = 7.6, 1H), 6.95 (d, *J* = 8.4, 2H), 6.69 (d, *J* = 8.8, 2H), 3.73 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.76, 158.66, 145.69, 141.70, 136.41, 133.63, 133.53, 132.71, 131.83, 131.44, 131.09, 130.21, 128.79, 127.68, 127.21, 127.17, 113.74, 55.25 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₆NaO₂ [M+Na]⁺ 311.1043, found: 311.1037.


4"-Methyl-[1,1':2',1"-terphenyl]-2-carbaldehyde (5)

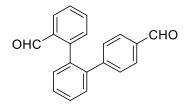
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **5** as colorless oil (29.9 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.76 (s, 1H), 7.81 (d, *J* = 8.0, 1H), 7.55-7.42 (m, 4H), 7.38 (t, *J* = 7.2, 2H), 7.30 (d, *J* = 7.6, 1H), 6.98-6.91 (m, 4H), 2.25 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.89, 145.69, 142.00, 137.37, 136.73, 136.36, 133.56, 133.52, 131.85, 131.46, 130.28, 129.82, 129.00, 128.78, 127.67, 127.30, 127.12, 21.22 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₆NaO [M+Na]⁺ 295.1093, found: 295.1088.


[1,1':2',1'':4'',1'''-Quaterphenyl]-2-aldehyde (6)

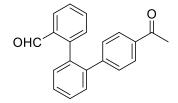
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **6** as a colorless solid (40.1 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.82 (s, 1H), 7.84 (dd, J_I = 7.6, J_2 = 1.2, 1H), 7.55-7.51 (m, 5H), 7.49-7.45 (m, 1H), 7.42-7.38 (m, 6H), 7.33-7.30 (m, 2H), 7.12 (d, J = 8.4, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.84, 145.50, 141.57, 140.47, 139.62, 139.36, 136.44, 133.66, 133.57, 131.90, 131.60, 130.34, 130.29, 128.86, 127.79, 127.56, 127.48, 127.35, 127.10, 126.88 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₈NaO [M+Na]⁺ 357.1250, found: 357.1245.


4''-Chloro-[1,1':2',1''-terphenyl]-2-carbaldehyde (7)

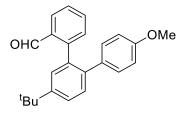
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product 7 as colorless oil (29.2 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.76 (s, 1H), 7.83 (d, *J* = 9.2, 1H), 7.56-7.47 (m, 3H), 7.45-7.38 (m, 3H), 7.27 (d, *J* = 7.6, 1H), 7.13 (d, *J* = 8.4, 2H), 6.96 (d, *J* = 8.4, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.57, 144.98, 140.76, 139.45, 136.45, 133.73, 133.59, 131.82, 131.57, 131.47, 131.42, 130.11, 128.91, 127.97, 127.87, 127.63, 121.46 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃ClNaO [M+Na]⁺ 315.0547, 317.0518, found: 315.0542, 317.0520.


4''-Bromo-[1,1':2',1''-terphenyl]-2-carbaldehyde (8)

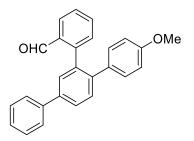
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **8** as colorless oil (35.6 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.76 (s, 1H), 7.84 (d, *J* = 8.0, 1H), 7.55-7.47 (m, 3H), 7.45-7.37 (m, 3H), 7.30-7.25 (m, 3H), 6.91 (d, *J* = 8.4, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.57, 144.98, 140.76, 139.45, 136.45, 133.73, 133.59, 131.82, 131.57, 131.47, 131.42, 130.11, 128.91, 127.97, 127.87, 127.63, 121.46 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃BrNaO [M+Na]⁺ 359.0042, 361.0022, found: 359.0042, 361.0020.


Methyl 2"-formyl-[1,1':2',1"-terphenyl]-4-carboxylate (9)

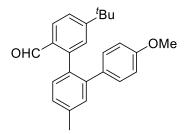
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **9** as a colorless solid (37.9 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.79 (s, 1H), 7.83 (t, *J* = 8.4, 3H), 7.57-7.49 (m, 4H), 7.42-7.38 (m, 2H), 7.27 (d, *J* = 2.8, 1H), 7.12 (d, *J* = 8.0, 2H), 3.88 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.51, 166.91, 145.25, 144.85, 140.99, 136.58, 133.77, 133.56, 131.84, 131.59, 130.15, 129.91, 129.51, 128.89, 128.70, 128.15, 128.01, 127.63, 52.20 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆NaO₃ [M+Na]⁺ 339.0992, found: 339.0992.


[1,1':2',1''-Terphenyl]-2,4''-dicarbaldehyde (10)

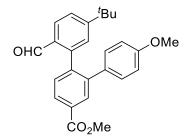
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **10** as colorless oil (31.5 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.92 (s, 1H), 9.78 (s, 1H), 7.81 (dd, J_1 = 7.6, J_2 = 1.2, 1H), 7.68 (d, J = 8.0, 2H), 7.58-7.48 (m, 4H), 7.4-7.38 (m, 2H), 7.28 (d, J = 7.6, 1H), 7.21 (d, J = 8.4, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.02, 191.50, 146.85, 144.65, 140.70, 136.58, 134.77, 133.70, 133.68, 131.83, 131.64, 130.56, 130.11, 129.63, 128.98, 128.43, 128.13, 127.73 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₄NaO₂ [M+Na]⁺ 309.0886, found: 309.0885.


4"-Acetyl-[1,1':2',1"-terphenyl]-2-carbaldehyde (11)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **11** as a colorless solid (34.8 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.77 (s, 1H), 7.81 (dd, J_I = 7.6, J_2 = 1.2, 1H), 7.75 (d, J = 8.4, 2H), 7.57-7.47 (m, 4H), 7.42-7.38 (m, 2H), 7.28 (d, J = 7.6, 1H), 7.14 (d, J = 8.4, 2H), 2.54 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 197.85, 191.57, 145.40, 144.83, 140.85, 136.51, 135.45, 133.66, 131.82, 131.61, 130.13, 130.10, 128.93, 128.29, 128.23, 128.05, 127.61, 26.74 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆NaO₂ [M+Na]⁺ 323.1043, found: 323.1042.

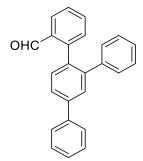

5'-(*tert*-Butyl)-4''-methoxy-[1,1':2',1''-terphenyl]-2-carbaldehyde (12)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **12** as a colorless oil (48.2 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.76 (s, 1H), 7.84 (dd, J_1 = 7.6, J_2 = 1.2, 1H), 7.56-7.51 (m, 2H), 7.40-7.36 (m, 3H), 7.32 (d, J = 8.4, 1H), 6.94 (d, J = 8.8, 2H), 6.69 (d, J = 8.8, 2H), 3.73 (s, 3H), 1.39 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.02, 158.45, 150.19, 146.32, 138.78, 135.78, 133.64, 133.53, 132.60, 131.91, 131.07, 129.88, 128.59, 127.56, 127.04, 125.82, 113.67, 55.23, 34.73, 31.50 ppm. HRMS (ESI⁺): calcd for C₂₄H₂₄NaO₂ [M+Na]⁺ 367.1669, found: 367.1667.

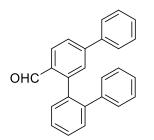

4''-Methoxy-5'-phenyl-[1,1':2',1''-terphenyl]-2-carbaldehyde (13)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **13** as light yellow oil (47.3 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.82 (s, 1H), 7.84 (d, *J* = 8.0, 1H), 7.74 (dd, *J*₁ = 8.0, *J*₂ = 2.0, 1H), 7.67 (d, *J* = 7.2, 2H), 7.62 (d, *J* = 2.0, 1H), 7.59-7.53 (m, 2H), 7.47 (t, *J* = 7.2, 2H), 7.43-7.36 (m, 3H), 6.99 (d, *J* = 8.8, 2H), 6.72 (d, *J* = 8.8, 2H), 3.75 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.75, 158.68, 145.61, 140.62, 140.19, 140.06, 136.76, 133.68, 133.59, 132.23, 131.84, 131.09, 130.68, 130.13, 129.05, 127.82, 127.78, 127.39, 127.25, 127.23, 113.78, 55.26 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₀NaO₂ [M+Na]⁺ 387.1356, found: 387.1351.

5-(*tert*-Butyl)-4''-methoxy-4'-methyl-[1,1':2',1''-terphenyl]-2-carbaldehyde (14)

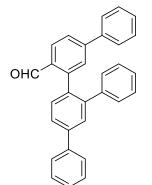

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **14** as light yellow oil (47.3 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.81 (s, 1H), 7.78 (d, J = 8.4, 1H), 7.37 (dd, J = 8.4, J_2 = 1.2, 1H), 7.28-7.23 (m, 3H), 7.16 (d, J = 1.6, 1H), 6.93 (d, J = 8.8, 2H), 6.69 (d, J = 8.8, 2H), 3.73 (s, 3H), 2.47 (s, 3H), 1.21 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.95, 158.53, 157.04, 145.34, 141.56, 138.47, 133.93, 133.13, 131.69, 131.50, 131.03, 130.97, 129.68, 127.75, 127.16, 124.42, 113.60, 55.33, 35.21, 31.02, 21.37 ppm. HRMS (ESI⁺): calcd for C₂₅H₂₆NaO₂ [M+Na]⁺ 381.1825, found: 381.1820.

Methy 5-(*tert*-butyl)-2-formyl-4''-methoxy-[1,1':2',1''-terphenyl]-4'-carboxylate (15)


Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **15** as a light yellow solid (33.0 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.75 (s, 1H), 8.15 (d, *J* = 1.6, 1H), 8.01 (dd, *J*₁ = 8.0, *J*₂ = 2.0, 1H), 7.79 (d, *J* = 8.4, 1H), 7.46 (d, *J* = 8.0, 1H), 7.42-7.40 (m, 1H), 7.17 (d, *J* = 1.6, 1H), 6.94 (d, *J* = 8.8, 2H), 6.70 (d, *J* = 8.8, 2H), 3.97 (s, 3H), 3.73 (s, 3H), 1.23 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =

191.12, 166.89, 158.87, 157.37, 144.10, 141.97, 141.66, 132.03, 131.72, 131.35, 131.25, 130.97, 130.33, 129.15, 127.96, 127.75, 125.12, 113.76, 55.35, 52.45, 35.29, 31.01 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₆NaO₄ [M+Na]⁺ 425.1723, found: 415.1718.

4'-Phenyl-[1,1':2',1''-terphenyl]-2-carbaldehyde (16)

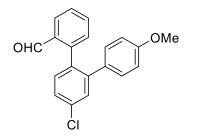

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **16** as light yellow oil (37.4 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.85 (s, 1H), 7.84 (dd, *J* = 7.6, 1H), 7.73-7.69 (m, 4H), 7.56-7.47 (m, 4H), 7.42-7.38 (m, 2H), 7.34 (d, *J* = 8.4, 1H), 7.20-7.19 (m, 3H), 7.12-7.09 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.73, 145.13, 142.49, 141.69, 140.33, 135.40, 133.72, 133.53, 132.02, 131.92, 130.00, 129.06, 128.30, 127.88, 127.80, 127.32, 127.28, 127.18, 126.14 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₉O [M+H]⁺ 335.1430, found: 335.1428.

[1,1':2',1'':3'',1'''-Quaterphenyl]-6''-carbaldehyde (17)

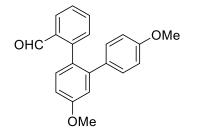
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **17** as a light yellow solid (36.8 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.81 (s, 1H), 7.89 (d, *J* = 8.0, 1H), 7.61 (dd, *J*₁ = 8.0, *J*₂ = 1.2, 1H), 7.54-7.39 (m, 10H), 7.21-7.17 (m,

3H), 7.11-7.09 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.42, 145.93, 145.87, 142.10, 140.41, 139.64, 136.43, 132.45, 131.51, 130.60, 130.33, 130.01, 129.06, 128.89, 128.54, 128.30, 127.85, 127.57, 127.40, 127.11, 126.36 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₉O [M+H]⁺ 335.1430, found: 335.1431.

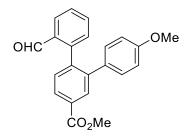
5'-Phenyl-[1,1':2',1'':3'',1'''-quaterphenyl]-6''-carbaldehyde (18)


Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **18** as a light yellow solid (45.1 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.90 (s, 1H), 7.92 (d, *J* = 8.0, 1H), 7.76-7.71 (m, 4H), 7.62 (d, *J* = 8.0, 1H), 7.55-7.39 (m, 10H), 7.23-7.16 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.31, 145.99, 145.56, 142.61, 141.81, 140.50, 140.38, 139.71, 135.48, 132.67, 132.08, 130.68, 130.06, 129.13, 129.08, 128.55, 128.38, 128.01, 127.91, 127.42, 127.35, 127.26, 126.42, 126.17 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₂NaO [M+Na]⁺ 433.1563, found: 433.1559.

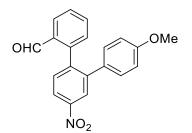
4'-Fluoro-4''-methoxy-[1,1':2',1''-terphenyl]-2-carbaldehyde (19)


Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **19** as light yellow oil (37.3 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.72 (s, 1H), 7.81

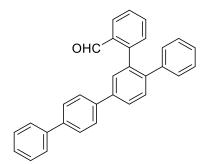
(dd, $J_1 = 8.0$, $J_2 = 1.6$, 1H), 7.56-7.52 (m, 1H), 7.39 (t, J = 8.0, 1H), 7.36-7.32 (m, 1H), 7.28 (d, J = 8.4, 1H), 7.18-7.10 (m, 2H), 6.93 (d, J = 8.4, 2H), 6.79 (d, J = 8.4, 2H), 3.73 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.38$, 162.72 (d, J = 247.0 Hz), 158.80, 144.44, 143.60 (d, J = 8.0 Hz), 133.56, 133.50, 132.81 (d, J = 8.0 Hz), 132.20 (d, J = 3.0 Hz), 131.80, 131.45 (d, J = 2.0 Hz), 130.83, 127.75, 127.33, 116.73 (d, J =21.0 Hz), 113.96 (d, J = 21.0 Hz), 113.69, 55.14 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅FNaO₂ [M+Na]⁺ 329.0948, found: 329.0943.


4'-Chloro-4''-methoxy-[1,1':2',1''-terphenyl]-2-carbaldehyde (20)

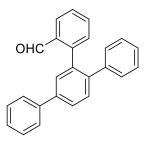
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **20** as light yellow oil (43.8 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.72 (s, 1H), 7.81 (d, J = 8.4, 1H), 7.54 (t, J = 8.4, 1H), 7.45 (d, J = 2.0, 1H), 7.40 (t, J = 8.0, 2H), 7.31-7.26 (m, 2H), 6.92 (d, J = 8.4, 2H), 6.69 (d, J = 8.8, 2H), 3.73 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.30, 159.00, 144.31, 143.28, 134.92, 134.63, 133.69, 133.56, 132.55, 131.75, 131.38, 130.97, 130.07, 128.02, 127.60, 127.22, 113.86, 55.28 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅ClNaO₂ [M+Na]⁺ 345.0653, 347.0623, found: 345.0650, 347.0620.


4',4''-Dimethoxy-[1,1':2',1''-terphenyl]-2-carbaldehyde (21)

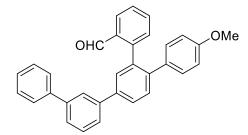
Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) afforded the desired product **21** as light yellow oil (42.6 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.75 (s, 1H), 7.79 (dd, J_1 = 8.0, J_2 = 2.0, 1H), 7.53-7.49 (m, 1H), 7.35 (t, J = 7.6,1H), 7.30-7.26 (m, 2H), 6.98-6.94 (m, 4H), 6.69 (d, J = 8.8, 2H), 3.90 (s, 3H), 3.74 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.00, 159.86, 158.71, 145.49, 142.99, 133.81, 133.52, 132.66, 132.10, 131.04, 128.76, 127.40, 127.16, 115.51, 113.72, 112.73, 55.58, 55.26 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₈NaO₃ [M+Na]⁺ 341.1148, found: 341.1146.


Methyl 2-formyl-4"-methoxy-[1,1':2',1"-terphenyl]-4'-carboxylate (22)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) afforded the desired product **22** as light yellow oil (31.2 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.70 (s, 1H), 8.13 (s, 1H), 8.08 (dd, J_1 = 8.0, J_2 = 8.0, 1H), 7.82 (d, J = 7.6, 1H), 7.59-7.55 (m, 1H), 7.47-7.40 (m, 2H), 7.30 (d, J = 6.8, 1H), 6.96 (d, J = 8.8, 2H), 6.70 (d, J = 8.8, 2H), 3.97 (s, 3H), 3.74 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.15, 166.87, 158.90, 144.46, 141.94, 141.13, 133.74, 133.34, 131.65, 131.54, 131.50, 131.29, 131.09, 130.53, 128.23, 128.14, 127.68, 113.84, 55.29, 52.49 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₈NaO₄ [M+Na]⁺ 369.1097, found: 369.1095.

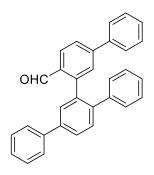

4"-Methoxy-4'-nitro-[1,1':2',1"-terphenyl]-2-carbaldehyde (23)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) afforded the desired product **23** as a yellow solid (26.6 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.69 (s, 1H), 8.32-8.25 (m, 2H), 7.83 (d, *J* = 7.6, 1H), 7.60 (t, *J* = 7.6, 1H), 7.54 (d, *J* = 8.4, 1H), 7.48 (t, *J* = 8.0, 1H), 7.29 (d, *J* = 7.6, 1H), 6.96 (d, *J* = 8.8, 2H), 6.72 (d, *J* = 7.6, 2H), 3.75 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 190.58, 159.35, 148.05, 143.50, 143.12, 142.76, 133.91, 133.30, 132.12, 131.37, 130.99, 130.42, 128.80, 128.74, 124.89, 121.86, 114.05, 55.32 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅NNaO₄ [M+Na]⁺ 356.0893, found: 356.0889.

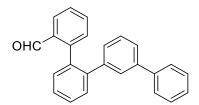

6'-Phenyl-[1,1':3',1'':4'',1'''-quaterphenyl]-2-carbaldehyde (24)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) afforded the desired product **24** as a light yellow solid (52.5 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.85 (s, 1H), 7.85-7.80 (m, 2H), 7.77-7.65 (m, 7H), 7.60-7.55 (m, 2H), 7.48 (t, *J* = 7.2, 2H), 7.43-7.38 (m, 3H), 7.20-7.18 (m, 3H), 7.10-7.08 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.72, 145.35, 141.03, 140.69, 140.63, 139.93, 139.89, 138.96, 136.95, 133.66, 133.63, 131.90, 130.84, 130.00, 129.95, 128.99, 128.31, 127.91, 127.78, 127.61, 127.27, 127.19, 127.14 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₂NaO [M+Na]⁺ 433.1563, found: 433.1563.

5'-Phenyl-[1,1':2',1''-terphenyl]-2-carbaldehyde (25)

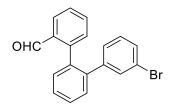

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **25** as light yellow oil (41.4 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.84 (s, 1H), 7.83 (d, *J* = 8.0, 1H), 7.76 (dd, *J*₁ = 8.4, *J*₂ = 2.0, 1H), 7.67 (d, *J* = 7.2, 2H), 7.63 (s, 1H), 7.58-7.53 (m, 2H), 7.47 (t, *J* = 7.6, 2H), 7.42-7.36 (m, 3H), 7.19-7.17 (m, 3H), 7.09-7.07 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.70, 145.39, 140.99, 140.45, 140.15, 140.00, 136.93, 133.74, 133.57, 131.92, 130.79, 130.16, 129.96, 129.07, 128.30, 127.88, 127.86, 127.41, 127.28, 127.12 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₈NaO [M+Na]⁺ 357.1250, found: 357.1249.

6'-(4-Methoxyphenyl)-[1,1':3',1'':3'',1'''-quaterphenyl]-2-carbaldehyde (26)

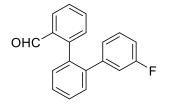

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product **26** as a light yellow solid (59.9 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.82 (s, 1H), 7.87-7.83 (m, 2H), 7.79 (dd, J_1 = 8.0, J_2 = 2.0, 1H), 7.67-7.64 (m, 4H), 7.62-7.52 (m, 4H), 7.49-7.36 (m, 5H), 7.00 (d, J = 8.4, 2H), 6.72 (d, J = 8.4, 2H), 3.75 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.70, 158.74, 145.56, 142.16, 141.19, 140.81, 140.77, 140.03, 136.88, 133.70, 133.61, 132.22, 131.85, 131.11, 130.71, 130.17, 129.49,

128.97, 127.87, 127.63, 127.50, 127.42, 127.30, 126.66, 126.19, 113.81, 55.28 ppm. HRMS (ESI⁺): calcd for C₃₂H₂₄NaO₂ [M+Na]⁺ 463.1669, found: 463.1669.

4'-Phenyl-[1,1':2',1'':3'',1'''-quaterphenyl]-6''-carbaldehyde (27)

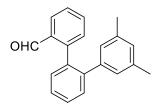

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **27** as a light yellow solid (45.9 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.89 (s, 1H), 7.78 (dd, J_1 = 2.0, J_2 = 2.0, 1H), 7.70-7.68 (m, 3H), 7.64 (d, J = 9.2, 1H), 7.61-7.59 (m, 2H), 7.56-7.54 (m, 2H), 7.50-7.37 (m, 6H), 7.22-7.19 (m, 3H), 7.16-7.13 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.27, 146.08, 145.82, 141.08, 140.55, 140.17, 140.11, 139.68, 136.99, 132.62, 130.84, 130.63, 130.19, 130.01, 129.09, 128.58, 128.37, 127.98, 127.89, 127.48, 127.44, 127.30, 127.20, 126.49 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₂NaO [M+Na]⁺ 433.1563, found: 433.1566.

[1,1':2',1'':3'',1'''-Quaterphenyl]-2-carbaldehyde (28)

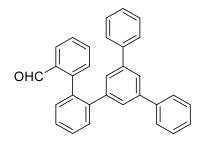

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **28** as light yellow oil (37.4 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.81 (s, 1H), 7.85 (d, *J* = 7.2, 1H), 7.59-7.52 (m, 3H), 7.50-7.46 (m, 1H), 7.42 (d, *J* = 8.8, 2H), 7.38-7.34 (m, 4H), 7.31-7.26 (m, 4H), 7.24-7.22 (m, 1H), 7.08 (d, *J* = 7.6, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.66, 145.54, 141.92, 141.13, 140.96, 140.74, 136.61, 133.81,

133.52, 131.99, 131.47, 130.22, 129.12, 128.88, 128.77, 128.75, 127.82, 127.67, 127.41, 127.40, 127.22, 125.91 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₈NaO [M+Na]⁺ 357.1250, found: 357.1245.

3''-Bromo-[1,1':2',1''-terphenyl]-2-carbaldehyde (29)

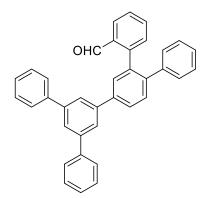

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **29** as light yellow oil (30.9 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.77 (s, 1H), 7.84 (d, *J* = 7.6, 1H), 7.56-7.45 (m, 4H), 7.43-7.38 (m, 2H), 7.29-7.26 (m, 2H), 7.22 (s, 1H), 7.01 (t, *J* = 8.0, 1H), 6.93 (d, *J* = 6.4, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.55, 144.82, 142.55, 140.44, 136.59, 133.78, 133.56, 132.84, 131.87, 131.53, 130.15, 130.12, 129.67, 128.91, 128.54, 128.04, 128.02, 127.61, 122.26 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃BrNaO [M+Na]⁺ 359.0042, 361.0022, found: 359.0042, 361.0017.

3''-Fluoro-[1,1':2',1''-terphenyl]-2-carbaldehyde (30)

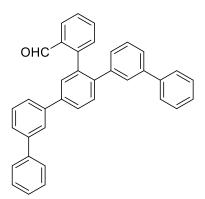

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **30** as light yellow oil (28.7 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.77 (s, 1H), 7.83 (d, *J* = 8.0, 1H), 7.55-7.46 (m, 4H), 7.40 (t, *J* = 7.6, 2H), 7.28 (d, *J* = 7.6, 1H), 7.15-7.10 (m, 1H), 6.88-6.81 (m, 2H), 6.74 (d, *J* = 10.0, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.45, 144.79, 140.59, 139.33, 134.96 (d, *J* = 279.0 Hz), 133.45, 131.65, 131.39, 130.00, 129.58 (d, *J* = 8.0 Hz), 128.73, 127.83, 127.35, 125.54 (d, *J* = 3.0 Hz),

116.77, 116.55, 113.98, 113.77 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃FNaO [M+Na]⁺ 299.0843, found: 299.0843.

3",5"-Dimethyl-[1,1':2',1"-terphenyl]-2-carbaldehyde (31)

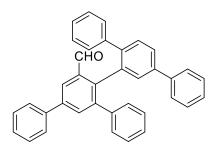

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) afforded the desired product **31** as colorless oil (33.2 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.75 (s, 1H), 7.82 (dd, J_I = 7.6, J_2 = 1.2, 1H), 7.54-7.46 (m, 3H), 7.46-7.41 (m, 1H), 7.39-7.35 (m, 2H), 7.30 (d, J = 7.2, 1H), 2.13 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.83, 145.76, 142.27, 140.20, 137.59, 136.48, 133.71, 133.32, 131.87, 131.31, 130.15, 128.68, 128.63, 127.88, 127.59, 127.29, 127.02, 21.27 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₈NaO [M+Na]⁺ 309.1250, found: 309.1250.

5"-Phenyl-[1,1':2',1":3",1"'-quaterphenyl]-2-carbaldehyde (32)

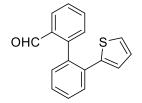

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) afforded the desired product **32** as light yellow oil (50.0 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.85 (s, 1H), 7.89 (d, *J* = 8.0, 1H), 7.64-7.60 (m, 2H), 7.58-7.49 (m, 3H), 7.47-7.30 (m, 14H), 7.26 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.69, 145.58, 141.74, 141.72, 141.07, 140.90, 136.62, 133.76, 133.63, 132.04, 131.47, 130.16, 128.96, 128.83, 127.91, 127.87, 127.80, 127.56, 127.50, 127.32, 124.95 ppm. HRMS (ESI⁺): calcd for

 $C_{31}H_{22}NaO [M+Na]^+ 433.1563$, found: 433.1561.

5'',6'-Diphenyl-[1,1':3',1'':3'',1'''-quaterphenyl]-2-carbaldehyde (33)


Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) afforded the desired product **33** as a light yellow solid (58.3 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.86 (s, 1H), 7.89-7.83 (m, 5H), 7.76-7.72 (m, 5H), 7.62 (d, *J* = 8.0, 1H), 7.57 (dd, *J*₁ = 7.6, *J*₂ = 1.2, 1H), 7.50 (t, *J* = 7.2, 4H), 7.44-7.39 (m, 4H), 7.21-7.19 (m, 3H), 7.12-7.10 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.53, 145.15, 142.60, 141.17, 141.15, 140.98, 140.24, 139.79, 136.95, 133.56, 133.52, 131.79, 130.73, 130.11, 129.86, 128.91, 128.22, 127.85, 127.68, 127.50, 127.40, 127.19, 127.07, 125.66, 125.11 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₆NaO [M+Na]⁺ 509.1876, found: 509.1874.

2-[2,5-Bis(3-phenylphenyl]benzene-1-carbaldehyde (34)

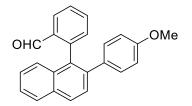

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) afforded the desired product **34** as a light yellow solid (59.3 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.90 (s, 1H), 7.90-

7.83 (m, 3H), 7.73 (s, 1H), 7.69-7.54 (m, 7H), 7.50-7.44 (m, 4H), 7.41-7.28 (m, 9H), 7.14 (d, J = 7.6, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.45$, 145.26, 142.04, 141.03, 141.00, 140.82, 140.75, 140.54, 140.39, 140.14, 136.95, 133.61, 133.55, 131.86, 130.60, 130.04, 129.39, 128.95, 128.84, 128.72, 128.65, 128.59, 127.84, 127.52, 127.44, 127.33, 127.30, 127.28, 127.07, 126.62, 126.09, 125.88 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₇O [M+H]⁺ 487.2056, found: 487.2051.

5',5''-Diphenyl-[1,1':2',1'':2'',1'''-quaterphenyl]-3'-carbaldehyde (35)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 40/1, v/v) afforded the desired product **35** as a colorless solid (52.5 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): δ = 10.10 (s, 1H), 8.26 (d, *J* = 2.0, 1H), 7.74 (d, *J* = 2.0, 1H), 7.71 (d, *J* = 7.2, 2H), 7.67 (dd, *J*₁ = 8.0, *J*₂ = 2.0, 1H), 7.59-7.55 (m, 3H), 7.49-7.43 (m, 4H), 7.41-7.35 (m, 3H), 7.20-7.06 (m, 6H), 6.79-6.74 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =192.69, 143.25, 142.35, 141.17, 140.81, 140.07, 139.98, 139.86, 139.66, 139.42, 135.57, 134.48, 134.19, 131.97, 130.91, 129.67, 129.39, 129.11, 129.03, 128.17, 128.01, 127.84, 127.81, 127.38, 127.19, 127.17, 126.89, 126.85, 124.81 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₆NaO [M+Na]⁺ 509.1876, found: 509.1872.

2'-(Thiophen-2-yl)-[1,1'-biphenyl]-2-carbaldehyde (36)


Following the general procedure, purification via silica gel column chromatography

(petroleum ether/ethyl acetate = 30/1, v/v) afforded the desired product **36** as colorless oil (19.5 mg, 37% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.77 (s, 1H), 7.91 (d, *J* = 7.6, 1H), 7.64-7.58 (m, 2H), 7.47 (t, *J* = 7.2, 2H), 7.42 (t, *J* = 7.6, 1H), 7.35 (d, *J* = 7.6, 2H), 7.16 (d, *J* = 4.8, 1H), 6.83 (t, *J* = 3.6, 1H), 6.63 (d, *J* = 3.6, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.68, 133.78, 131.71, 131.52, 130.07, 128.86, 128.27, 127.75, 127.35, 127.25, 126.58 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₂NaOS [M+Na]⁺ 287.0501, found: 287.0500.

2-(3-(4-Methoxyphenyl)thiophen-2-yl)benzaldehyde (37)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) afforded the desired product **37** as colorless oil (25.3mg, 43% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.82$ (s, 1H), 7.88 (d, J = 7.6, 1H), 7.63-7.59 (m, 1H), 7.52-7.45 (m, 3H), 7.23 (d, J = 5.2, 1H), 7.04 (d, J = 8.4, 2H), 6.74 (d, J = 8.8, 2H), 3.75 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.41$, 158.83, 141.42, 138.08, 134.15, 133.88, 132.46, 132.25, 130.19, 129.45, 128.68, 127.74, 127.53, 126.09, 114.22, 55.29 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₄NaO₂S [M+Na]⁺ 317.0607, found: 317.0605.

2-(2-(4-Methoxyphenyl)naphthalen-1-yl)benzaldehyde (38)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) afforded the desired product **38** as colorless oil (52.7 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.57 (s, 1H), 7.99 (d, *J* = 8.8, 1H), 7.93 (t, *J* = 7.6, 2H), 7.61-7.57 (m, 2H), 7.52-7.40 (m, 4H), 7.35 (d, *J* = 7.6, 2H)

1H), 7.00 (d, J = 8.8, 2H), 6.70 (d, J = 8.8, 2H), 3.74 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.91, 158.47, 143.36, 139.51, 134.96, 133.54, 133.51, 133.30, 133.13, 132.81, 132.63, 131.06, 128.79, 128.25, 128.06, 127.31, 127.01, 126.49, 126.05, 113.62, 55.27 ppm. HRMS (ESI⁺): calcd for C₂₄H₁₈NaO₂ [M+Na]⁺ 361.1199, found: 361.1195.$

iii) Scale-up synthesis

A 120 mL Schlenk tube with a magnetic stir bar was charged with bi(hetero)aryl aldehyde (4.0 mmol, 1.0 equiv), iodobenzene (6.0 mmol, 1.5 equiv), Pd(OAc)₂ (90.6 mg, 10 mol%), L-*tert*-leucine (135.8 mg, 30 mol%), AgTFA (1.3 g, 1.5 equiv), ZnCO₃ 501.6 mg, 1.0 equiv) and TFE (10 mL) under an air atmosphere. The reaction mixture was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, diluted with 20 mL CH₂Cl₂, filtered through a celite pad, and washed with 40-50 mL CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to provide the desired product.

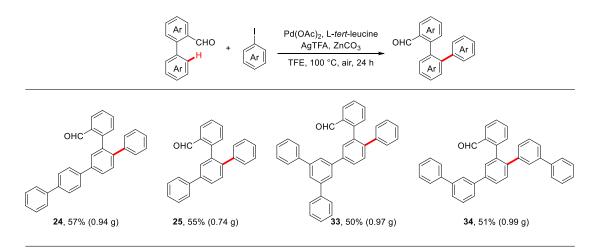
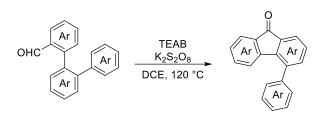
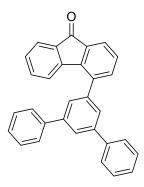
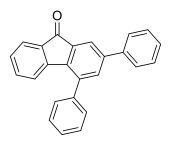
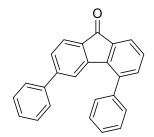




Fig. S2 Scale-up synthesis

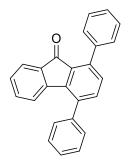
V. Synthesis of multi-aryl fluorenones



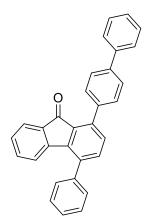
To a 100 mL Schlenk tube was added TEAB (42 mg, 10 mol %), $K_2S_2O_8$ (1.08 g, 2.0 equiv) and the tube was purged with Ar for three times, followed by addition of biphenyl-2-formaldehyde (364 mg, 2.0 mmol) and DCE (10 mL). The formed mixture was stirred at 120 °C under N₂ for 36 h. The solution was then cooled to rt, and DCE was removed under vaccum directly. The crude product was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 3/1, v/v) to provide the desired product.³


4-(3,5-Diphenyl)phenyl-9*H*-fluoren-9-one (39)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **39** as a yellow solid (538.8 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (s, 1H), 7.74-7.66 (m, 8H), 7.50-7.45 (m, 5H), 7.42-7.35 (m, 3H), 7.23-7.19 (m, 2H), 7.00-6.97 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.97$, 144.67, 142.33, 141.27, 140.62, 140.55, 138.10, 136.87, 134.91, 134.71, 134.59, 129.09, 128.98, 128.95, 127.93, 127.36, 126.60, 125.87, 124.43, 123.62, 123.27 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₁O, [M+H]⁺ 409.1587, found: 409.1582.

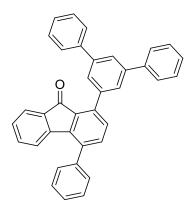

2,4-Diphenyl-9*H*-fluoren-9-one (40)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **40** as a yellow solid (431.8 g, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 7.6, 1H), 7.69-7.65 (m, 3H), 7.59 (d, *J* = 1.6, 1H), 7.52 (s, 5H), 7.46 (t, *J* = 8.0, 2H), 7.39 (d, *J* = 7.6, 1H), 7.22-7.19 (m, 2H), 6.80-6.78 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.96, 144.53, 141.93, 139.99, 139.57, 139.55, 138.67, 135.66, 135.25, 134.88, 134.67, 129.09, 128.97, 128.93, 128.77, 128.39, 128.18, 126.95, 124.39, 123.21, 121.96 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₇O, [M+H]⁺ 333.1274, found: 333.1275.

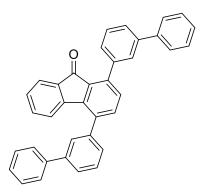

3,5-Diphenyl-9*H*-fluoren-9-one (41)

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **41** as a yellow solid (395.6 g, 60% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72-7.70$ (m, 2H), 7.55-7.49 (m, 5H), 7.45 (dd, $J_1 = 7.6$, $J_2 = 1.2$, 1H), 7.38-7.32 (m, 7H), 6.98 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.62$, 147.10, 145.41, 140.95, 140.02, 139.58, 138.39, 136.58, 135.36, 133.39, 129.01, 128.98, 128.87, 128.39, 127.38, 126.98, 124.72, 123.37, 122.15 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₇O, [M+H]⁺ 333.1274, found: 333.1273.

1,4-Diphenyl-9*H*-fluoren-9-one (42)

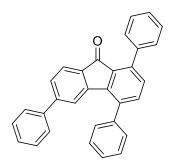

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **42** as a yellow solid (411.8 g, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.59-7.44 (m, 11H), 7.35 (d, *J* = 8.0, 1H), 7.24-7.14 (m, 3H), 6.71-6.69 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.09, 143.69, 142.14, 141.35, 139.67, 137.66, 137.34, 136.30, 134.68, 134.24, 131.42, 131.40, 130.23, 129.29, 129.01, 128.94, 128.88, 128.30, 128.01, 124.05, 123.20 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₇O, [M+H]⁺ 333.1274, found: 333.1273.

1-([1,1'-Biphenyl]-4-yl)-4-phenyl-9*H*-fluoren-9-one (43)

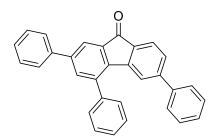

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **43** as a yellow solid (522.4 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (t, *J* = 8.0, 4H), 7.56 (d, *J* = 8.4, 2H), 7.60 (d, *J* = 8.0, 1H), 7.53-7.46 (m, 7H), 7.40-7.36 (m, 2H), 7.28 (d, *J* = 8.0, 1H), 7.22-7.16 (m, 2H), 6.71 (d, *J* = 6.4, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.20, 143.69, 142.26, 141.12, 141.01, 140.96, 139.64, 137.40, 136.59, 136.40, 134.68, 134.30, 131.41, 130.23, 129.81, 129.01, 128.96, 128.91, 128.33 ppm. HRMS

 (ESI^{+}) : calcd for C₃₁H₂₁NaO, $[M+Na]^{+}$ 431.1406, found: 431.1404.

1-(3,5-Diphenyl)phenyl-4-phenyl-9H-fluoren-9-one (44)

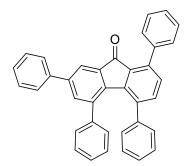

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **44** as a yellow solid (581.0 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.89-7.88 (m, 1H), 7.80-7.74 (m, 6H), 7.63 (d, *J* = 6.0, 1H), 7.53-7.47 (m, 9H), 7.40-7.35 (m, 4H), 7.23-7.16 (m, 2H), 6.71 (d, *J* = 7.6, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.08, 143.67, 142.33, 141.50, 141.33, 141.07, 139.66, 138.39, 137.57, 136.41, 134.72, 134.28, 131.50, 130.36, 129.02, 128.97, 128.92, 128.36, 127.60, 127.53, 127.39, 126.14, 124.17, 123.25 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₅O, [M+H]⁺ 485.1900, found: 485.1901.

1,4-Di([1,1'-biphenyl]-3-yl)-9*H*-fluoren-9-one (45)


Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 2/1, v/v) afforded the desired product **45** as a yellow solid (590.7 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.82 (s, 1H), 7.77-7.75 (m, 2H), 7.71-7.67 (m, 5H), 7.64-7.60 (m, 2H), 7.57-7.56 (m, 2H), 7.50-7.42 (m, 6H), 7.41-

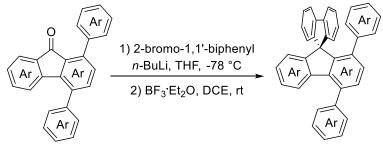
7.35 (m, 2H), 7.32 (d, J = 7.6, 1H), 7.23-7.17 (m, 2H), 6.84-6.82 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.05$, 143.68, 142.29, 141.77, 141.32, 141.30, 140.99, 140.62, 140.13, 137.99, 137.31, 136.37, 134.71, 134.36, 131.52, 130.33, 129.46, 129.05, 128.97, 128.88, 128.42, 128.34, 128.28, 127.85, 127.79, 127.77, 127.49, 127.40, 127.27, 127.15, 127.02, 124.17, 123.22 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₅O, [M+H]⁺ 485.1900, found: 485.1900.

1,4,7-Triphenyl-9*H*-fluoren-9-one (46)

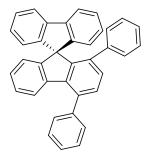

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **46** as a yellow solid (489.8 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.64 (d, *J* = 7.6, 1H), 7.59-7.53 (m, 7H), 7.51-7.31 (m, 11H), 7.27-7.25 (m, 1H), 6.93 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.66, 146.79, 144.45, 141.98, 141.37, 140.13, 139.74, 137.71, 137.40, 136.00, 133.60, 131.56, 130.82, 129.35, 129.12, 128.96, 128.40, 128.31, 128.03, 127.44, 126.99, 124.47, 122.13 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₀NaO, [M+Na]⁺ 431.1406, found: 431.1404.

2,4,7-Triphenyl-9*H*-fluoren-9-one (47)

Following the general procedure, purification via silica gel column chromatography

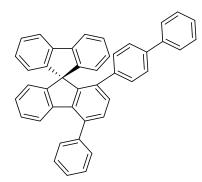

(petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **47** as a yellow solid (514.3 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (s, 1H), 7.74-7.76 (m, 5H), 7.56-7.36 (m, 13H), 7.03 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =193.45, 147.26, 145.30, 142.13, 140.07, 139.79, 139.64, 139.62, 138.72, 136.26, 134.96, 133.77, 129.11, 129.07, 129.00, 128.92, 128.50, 128.42, 128.20, 127.33, 127.01, 124.79, 122.07, 121.92 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₁O, [M+H]⁺ 409.1587, found: 409.1585

2,4,7-Tetraphenyl-9H-fluoren-9-one (48)

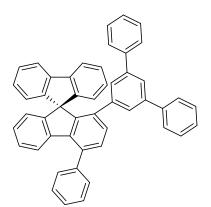

Following the general procedure, purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/1, v/v) afforded the desired product **48** as a yellow solid (590.7 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 1.6, 1H), 7.64-7.60 (m, 4H), 7.53-7.42 (m, 6H), 7.38-7.34 (m, 1H), 7.25-7.20 (m, 2H), 7.07-6.90 (m, 10H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.07, 143.88, 141.87, 141.08, 141.03, 140.88, 140.79, 139.60, 139.42, 138.29, 138.18, 137.75, 137.52, 136.12, 133.18, 131.11, 129.48, 129.05, 128.58, 128.53, 128.40, 128.36, 128.32, 128.10, 127.01, 126.93, 121.17 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₅O, [M+H]⁺ 485.1900, found: 485.1900.

VI. Synthesis of 1,4-diaryl 9,9'-spirobifluorenes

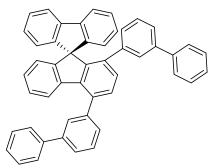
S34


2-Bromobiphenyl (1.1 equiv) was dissolved in dry THF (40 mL) and cooled down to -78 °C. A 2.5 M pentane solution of *n*-BuLi (1.0 equiv) was then added dropwise to the solution at -78 °C. The resulting mixture was stirred at the same temperature for one hour and the fluorenone (1.0 equiv) dissolved in dry THF (20 mL) was added dropwise. The reaction mixture was allowed to warm up to 75 °C and stirred for 24 h. After cooling to room temperature, a saturated solution of ammonium chloride was added. The organic layer was extracted with ethyl acetate. The combined organic extracts were dried over sodium sulfate, and concentrated under reduced pressure. The residue was dissolved in DCE (50-100 mL) before trifluoroboron etherate (5.0 equiv) was added slowly and the solution was stirred for 3 h at room temperature. The residue was purified by column chromatography (petroleum ether/CH₂Cl₂ = 6/1, v/v) to give the desired product.

1,4-Diphenyl-9,9'-spirobifluorene (1,4-dp-SBF)


Prepared according to general procedure from 1,4-diphenyl-9*H*-fluoren-9-one (**42**, 996.4 mg, 3 mmol), purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 6/1, v/v) afforded the desired product 1,4-dp-SBF as a white solid (1.12 g, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (d, *J* = 7.6, 2H), 7.62-7.52 (m, 3H), 7.38 (d, *J* = 7.6, 2H), 7.29 (d, *J* = 7.6, 1H), 7.22 (t, *J* = 7.2, 2H), 7.08 (t, *J* = 7.6, 2H), 7.00-6.96 (m, 4H), 6.90 (t, *J* = 7.2, 1H), 6.84 (d, *J* = 7.6, 2H), 6.68 (t, *J* = 7.6, 2H), 6.56 (d, *J* = 7.2, 1H), 6.17 (d, *J* = 8.0, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.63, 148.51, 145.83, 142.10, 141.03, 139.68, 139.24, 138.60, 136.84, 129.73, 129.37, 128.84, 128.63, 128.44, 127.69, 127.52, 127.25, 127.21, 126.94, 126.42,

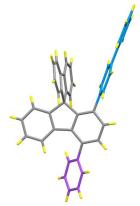
125.61, 123.80, 123.61, 123.00, 119.85, 65.49 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₅ [M+H]⁺ 469.1951, found: 469.1953.


1-([1,1'-Biphenyl]-4-yl)-4-phenyl-9,9'-spirobifluorene (1-pbp-4-p-SBF)

Prepared according to general procedure from 1-([1,1'-biphenyl]-4-yl)-4-phenyl-9*H*-fluoren-9-one (**43**, 1.22 g, 3 mmol), purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 6/1, v/v) afforded the desired product 1-pbp-4-p-SBF as a white solid (1.32 g, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.70-7.68 (m, 2H), 7.62-7.54 (m, 3H), 7.64 (d, *J* = 4.4, 4H), 7.39-7.29 (m, 4H), 7.22 (t, *J* = 7.6, 2H), 7.10 (t, *J* = 7.2, 2H), 7.05-6.95 (m, 4H), 6.86 (t, *J* = 8.4, 4H), 6.56 (d, *J* = 7.2, 1H), 6.21 (d, *J* = 8.0, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.64, 148.61, 146.43, 142.31, 141.67, 141.20, 141.12, 139.40, 139.35, 138.54, 137.78, 137.06, 129.89, 129.48, 128.93, 128.80, 128.76, 128.71, 127.82, 127.67, 127.41, 127.37, 127.16, 127.10, 125.32, 123.97, 123.77, 123.14, 119.93, 65.62 ppm. HRMS (ESI⁺): calcd for C₄₃H₂₈Na, [M+Na]⁺ 567.2083, found: 567.2080.

1-(3,5-Diphenyl) phenyl-4-phenyl-9,9'-spirobifluorene (1-mtp-4-p-SBF)

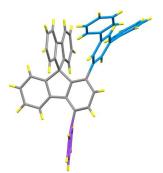
Prepared according to general procedure from 1-(3,5-diphenyl) phenyl-4-phenyl-9*H*-fluoren-9-one (**44**, 1.45 g, 3 mmol), purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 5/1, v/v) afforded the desired product 1-mtp-4-p-SBF as a white solid (1.45 g, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (d, *J* = 6.8, 2H), 7.61-7.55 (m, 3H), 7.42-7.28 (m, 12H), 7.22-7.20 (m, 2H), 7.09 (d, *J* = 7.6, 1H), 7.04-7.00 (m, 4H), 6.97-6.93 (m, 1H), 6.91-6.87 (m, 4H), 6.52 (d, *J* = 7.2, 1H), 6.44 (d, *J* = 2.0, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.77, 148.23, 145.92, 141.95, 140.98, 140.96, 140.06, 139.49, 139.35, 139.32, 137.07, 129.85, 129.36, 128.76, 128.66, 128.38, 127.74, 127.57, 127.45, 127.26, 127.16, 127.01, 126.97, 126.81, 123.70, 123.58, 123.57, 123.04, 119.71, 65.60 ppm. HRMS (ESI⁺): calcd for C₄₉H₃₃, [M+H]⁺ 621.2577, found: 621.2579.



1,4-Di([1,1'-biphenyl]-3-yl)-9,9'-spirobifluorene (1,4-d(mbp)-SBF)

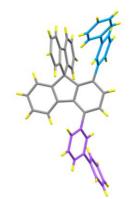
Prepared according to general procedure from 1,4-di([1,1'-biphenyl]-3-yl)-9*H*-fluoren-9-one (**45**, 1.45 g, 3 mmol), purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 5/1, v/v) afforded the desired product 1,4-d(mbp)-SBF as a white solid (1.43 g, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (s, 1H), 7.79-7.74 (m, 3H), 7.67 (d, *J* = 4.8, 2H), 7.50 (t, *J* = 7.6, 2H), 7.42-7.29 (m, 7H), 7.23-7.12 (m, 4H), 7.07-7.01 (m, 6H), 6.96 (t, *J* = 7.6, 1H), 6.89 (s, 2H), 6.76 (t, *J* = 7.6, 1H), 6.54 (d, *J* = 8.4, 1H), 6.47 (s, 1H), 6.16 (d, *J* = 7.6, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.75, 148.37, 145.96, 142.05, 141.47, 141.03, 140.99, 140.97, 139.64, 139.51, 139.34, 139.03, 136.82, 129.81, 129.10, 128.86, 128.29, 128.24, 128.18, 127.59, 127.57, 127.49, 127.34, 127.27, 127.21, 127.17, 127.03, 126.87, 126.82, 126.44, 124.51, 123.76, 123.63, 123.02, 119.79, 65.59 ppm. HRMS (ESI⁺): calcd for C₄₉H₃₂Na, [M+Na]⁺ 643.2396, found: 643.2397.

VII. Crystallographic data


Table S2 Crystal data and structure refinement for 1-pbp-4-p-SBF

Identification code	1-pbp-4-p-SBF
Empirical formula	$C_{43}H_{28}$
Formula weight	544.65
Temperature/K	150.0
Crystal system	triclinic
Space group	P-1
a/Å	10.0916(4)
b/Å	10.7661(4)
c/Å	13.9350(5)
α/°	74.8680(10)
β/°	84.9120(10)
$\gamma/^{\circ}$	78.065(2)
Volume/Å ³	1428.94(9)
Z	2
$\rho_{calc}g/cm^3$	1.266
μ/mm^{-1}	0.072
F(000)	572.0
Crystal size/mm ³	0.4 imes 0.2 imes 0.1
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	3.992 to 55.034
Index ranges	$-13 \le h \le 13, -13 \le k \le 13, -18 \le l \le 16$

Reflections collected	22766
Independent reflections	6535 [$R_{int} = 0.0449$, $R_{sigma} = 0.0422$]
Data/restraints/parameters	6535/0/388
Goodness-of-fit on F2	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0453, wR_2 = 0.1029$
Final R indexes [all data]	$R_1 = 0.0632, wR_2 = 0.1174$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.24


Table S3 Crystal data and structure refinement for 1-mtp-4-p-SBF

.	
Identification code	1-mtp-4-p-SBF
Empirical formula	$C_{49}H_{32}$
Formula weight	620.74
Temperature/K	302.0
Crystal system	triclinic
Space group	P-1
a/Å	10.5749(4)
b/Å	12.4865(5)
c/Å	12.8313(5)
$\alpha/^{\circ}$	90.4010(10)
β/°	90.1470(10)
$\gamma/^{\circ}$	99.5750(10)
Volume/Å ³	1670.63(11)
Z	2
$\rho_{calc}g/cm^3$	1.234
μ/mm^{-1}	0.070
c	20

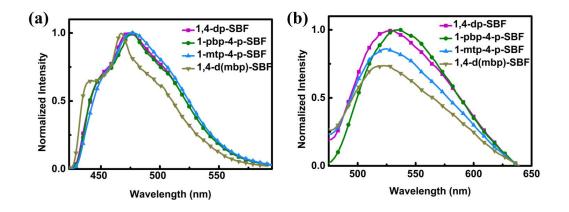
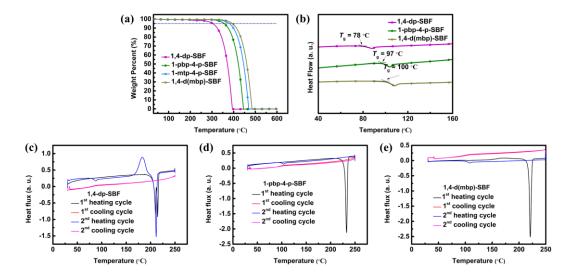

F(000)	652.0	
Crystal size/mm ³	$0.42 \times 0.3 \times 0.13$	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/°	3.906 to 55.032	
Index ranges	$-11 \le h \le 13, -16 \le k \le 16, -16 \le l \le 16$	
Reflections collected	28738	
Independent reflections	7628 [$R_{int} = 0.0912$, $R_{sigma} = 0.0818$]	
Data/restraints/parameters	7628/0/442	
Goodness-of-fit on F2	1.023	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0582, wR_2 = 0.1395$	
Final R indexes [all data]	$R_1 = 0.1014, wR_2 = 0.1653$	
Largest diff. peak/hole / e Å ⁻³	0.19/-0.21	

Table S4 Crystal data and structure refinement for 1,4-d(mbp)-SBF


Identification code	1,4-d(mbp)-SBF
Empirical formula	C49H32
Formula weight	620.74
Temperature/K	280.0
Crystal system	triclinic
Space group	P-1
a/Å	9.9178(5)
b/Å	13.3016(8)
c/Å	14.7232(9)
α/°	68.269(2)
	S40

β/°	83.486(2)	
γ/°	69.787(2)	
Volume/Å ³	1692.94(17)	
Z	2	
$\rho_{calc}g/cm^3$	1.218	
μ/mm^{-1}	0.069	
F(000)	652.0	
Crystal size/mm ³	$0.4 \times 0.34 \times 0.18$	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/°	4.614 to 55.052	
Index ranges	$-12 \le h \le 12, -17 \le k \le 17, -19 \le l \le 19$	
Reflections collected	40814	
Independent reflections	7781 [$R_{int} = 0.0995$, $R_{sigma} = 0.0732$]	
Data/restraints/parameters	7781/0/442	
Goodness-of-fit on F2	1.036	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0603, wR_2 = 0.1433$	
Final R indexes [all data]	$R_1 = 0.1127, wR_2 = 0.1720$	
Largest diff. peak/hole / e Å ⁻³	0.31/-0.28	

Fig. S3 (a) Phosphorescence spectra at 77 K in toluene, and (b) in thin film of **1,4-dp-SBF**, **1-pbp-4-p-SBF**, **1-mtp-4-p-SBF**, and **1,4-d(mbp)-SBF**

IX. Thermal properties

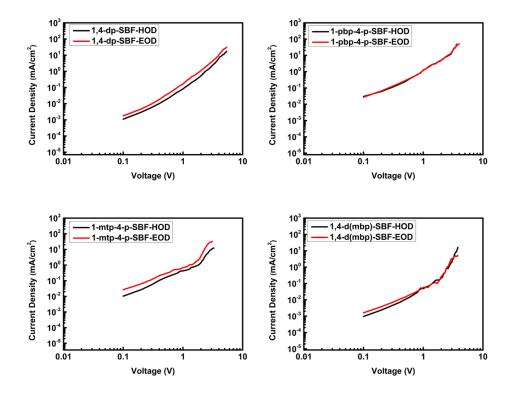


Fig. S4 TGA curves and DSC curves. (a) TGA curves of **1,4-dp-SBF**, **1-pbp-4-p-SBF**, **1-mtp-4-p-SBF** and **1,4-d(mbp)-SBF**. (b) DSC curves of **1,4-dp-SBF**, **1-pbp-4-p-SBF** and **1,4-d(mbp)-SBF**. (c) DSC curves with two heating cycles and two cooling cycles of **1,4-dp-SBF** (d) DSC curves with two heating cycles and two cooling cycles of **1-pbp-4-p-SBF**, (e) DSC curves with two heating cycles and two cooling cycles of **1,4-dp-SBF**, (e) DSC curves with two heating cycles and two cooling cycles of **1,4-dp-SBF**, (e) DSC curves with two heating cycles and two cooling cycles of **1,4-dp-SBF**, (e) DSC curves with two heating cycles and two cooling cycles of **1,4-dp-SBF**.

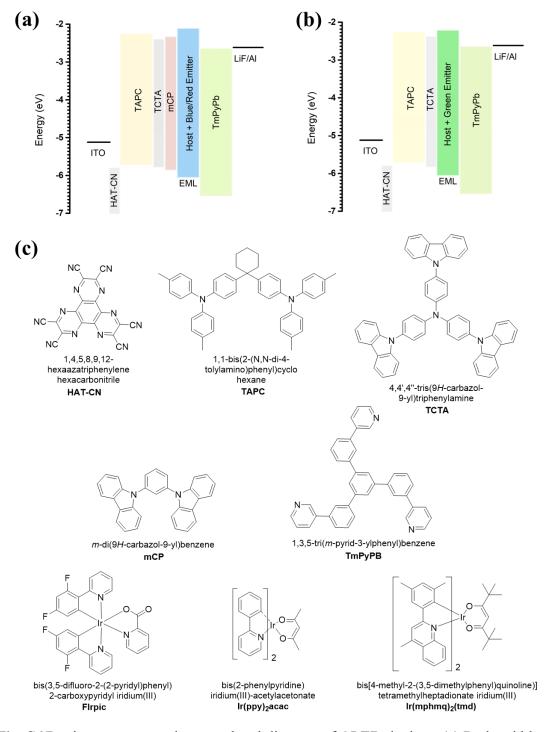
X. Charge transport properties

Space-charged limited current (SCLC) diodes

The hole-only device (HOD) has a configuration of ITO/HAT-CN (10 nm)/host (60 nm)/HAT-CN (10 nm)/ Al (100 nm), and the electron-only device (EOD) is ITO/LiF (0.8 nm)/host (60 nm)/LiF (0.8 nm)/Al (100 nm).

Fig. S5 The *J-V* curves of hole-only (HOD) and electron-only (EOD) devices using **1,4-dp-SBF**, **1-pbp-4-p-SBF**, **1-mtp-4-p-SBF**, and **1,4-d(mbp)-SBF**

The J-V curves of charge-only devices show the charge transport ability of the compounds. Based on the Schottky thermionic region and space-charge-limited current (SCLC) model, the curves can be divided into two parts under low bias. We assign the second region of the J-V curve as assigned as the SCLC region, which then can be described by an equation:


$$J = \frac{9}{8} \varepsilon \varepsilon_0 \mu_0 exp^{[m]} (\beta \sqrt{\frac{V}{L}}) \frac{V^2}{L^3}$$

in which V is the driving voltage, L is the thickness of the thin layer, ε_0 the permittivity of the free space, ε is the relative dielectric constant (estimated to be 3.0 here), μ_0 is the zero-field mobility and β is Poole-Frenkel factor. The thickness L equals to 60 nm, and the zero-field mobility of the compounds was calculated and summarized in Table 2.

XI. Phosphorescent OLED characteristics

The device configuration of blue PhOLEDs is ITO/HAT-CN (10 nm)/TAPC (30 nm for 1,4-dp-SBF, 1-pbp-4-p-SBF, 1-mtp-4-p-SBF and 35 nm for 1,4-d(mbp)-SBF) /TCTA (8 nm)/mCP (10 nm)/host: 15 wt% Flrpic (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm). In the PhOLED devices, LiF and 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile (HAT-CN) act as the electron- and hole-injecting materials, respectively. 1,3,5-Tri(*m*-pyrid-3-ylphenyl)benzene (TmPyPB) and 1,1-bis(2-(*N*,*N*-di-4-tolylamino)phenyl)cyclohexane (TAPC) serve as the electron- and hole-transporting materials, respectively. 4,4',4"-Tris(9H-carbazol-9-yl)triphenylamine (TCTA) and mdi(9H-carbazol-9-yl)benzene (mCP) constitute exciton-blocking layers together. The device configuration of green PhOLEDs is ITO/ HAT-CN (10 nm)/TAPC (45 nm for 1,4-dp-SBF, 35 nm for 1-pbp-4-p-SBF and 40 nm for 1-mtp-4-p-SBF, 1,4-d(mbp)-SBF)/TCTA (10 nm)/host: 14 wt% Ir(ppy)2acac (20 nm)/TmPyPB (45 nm for 1,4dp-SBF, 40 nm for 1-pbp-4-p-SBF, 1-mtp-4-p-SBF, 1,4-d(mbp)-SBF)/LiF (0.8 nm)/A1 (100 nm). The device configuration of red PhOLEDs is ITO/HAT-CN (10 nm)/TAPC (40 nm for 1,4-dp-SBF, 1-mtp-4-p-SBF, 1,4-d(mbp)-SBF, 30 nm for 1pbp-4-p-SBF)/TCTA (10 nm)/mCP (10 nm)/host: 3 wt% Ir(mphmq)2tmd (20 nm)/TmPyPB (50 nm for 1,4-dp-SBF, 1-pbp-4-p-SBF, 1,4-d(mbp)-SBF, 40 nm for 1-mtp-4-p-SBF)/LiF (0.8 nm)/Al (100 nm).

i) Device structure and energy-level diagram of OLED devices

Fig. S6 Device structure and energy-level diagram of OLED devices. (a) Red and blue OLED devices structure with corresponding energy levels. (b) green OLED devices structure with corresponding energy levels. (c) Molecular structures of the materials used in OLEDs

ii) Optimized device structures

Red:

ITO/HAT-CN (10 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/ 1,4-dp-SBF: 3 wt% Ir(mphmq)2tmd (20 nm)/TmPyPB (50 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (30 nm)/TCTA (10 nm)/mCP (10 nm)/1-pbp-4-p-SBF: 3 wt% Ir(mphmq)2tmd (20 nm)/TmPyPB (50 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/1-mtp-4-p-SBF: 3 wt% Ir(mphmq)₂tmd (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/1,4-d(mbp)-SBF: 3 wt% Ir(mphmq)2tmd (20 nm)/TmPyPB (50 nm)/LiF (0.8 nm)/Al (100 nm).

Green:

ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (10 nm)/ 1,4-dp-SBF: 14 wt% Ir(ppy)₂acac (20 nm)/TmPyPB (45 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (35 nm)/TCTA (10 nm)/1-pbp-4-p-SBF: 14 wt% Ir(ppy)2acac (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (40 nm)/TCTA (10 nm)/1-mtp-4-p-SBF: 14 wt% Ir(ppy)2acac (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (40 nm)/TCTA (10 nm)/1,4-d(mbp)-SBF: 14 wt% Ir(ppy)₂acac (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

Blue:

ITO/HAT-CN (10 nm)/TAPC (30 nm)/TCTA (8 nm)/mCP (10 nm)/1,4-dp-SBF: 15 wt% Flrpic (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (30 nm)/TCTA (8 nm)/mCP (10 nm)/1-pbp-4-p-SBF: 15 wt% Flrpic (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

ITO/HAT-CN (10 nm)/TAPC (30 nm)/TCTA (8 nm)/mCP (10 nm)/1-mtp-4-p-SBF: 15 wt% Flrpic (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

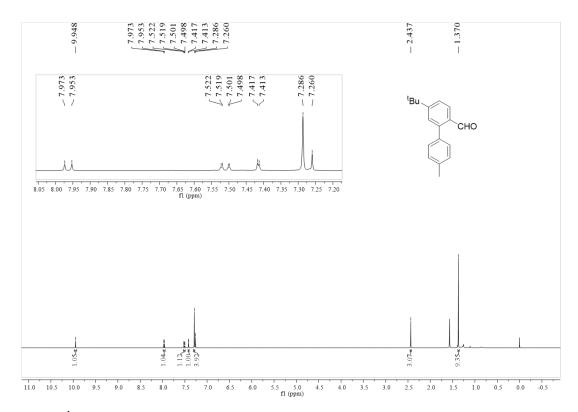

ITO/HAT-CN (10 nm)/TAPC (35 nm)/TCTA (8 nm)/mCP (10 nm)/1,4-d(mbp)-SBF: 15 wt% Flrpic (20 nm)/TmPyPB (40 nm)/LiF (0.8 nm)/Al (100 nm).

Table S5 EQE and power efficiency for green PhOLED devices at the luminance of 5000 cd m^{-2}

Emitter	Host	EQE [%]	PE [lm W ⁻¹]
Ir(ppy)2acac	1,4-dp-SBF	17.9	41.5
	1-pbp-4-p-SBF	23.0	56.8
	1-mtp-4-p-SBF	20.4	52.2
	1,4-d(mbp)-SBF	17.0	34.1

XII. References

- 1. S. Rej and N. Chatani, J. Am. Chem. Soc. 2021, 143, 2920-2929.
- 2. J. Zhao, D. Yue, M. A. Campo and R. C. Larock, J. Am. Chem. Soc. 2007, 129, 5288-5295.
- 3. Z. Shi and F. Glorius, Chem. Sci. 2013, 4, 829-833.

XIII. Copies of ¹H, ¹³C NMR and ¹⁹F NMR spectra

Fig. S7¹H NMR spectrum of 49 in CDCl₃.

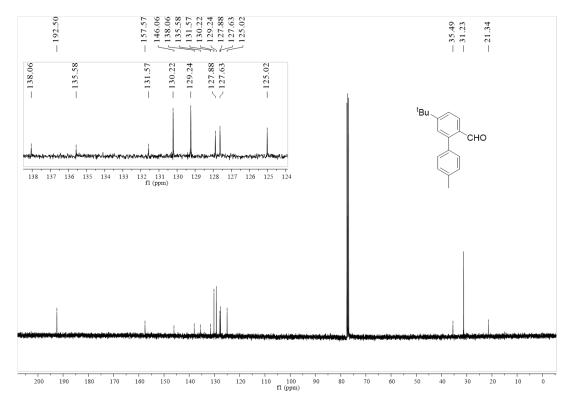


Fig. S8¹³C NMR spectrum of 49 in CDCl₃.

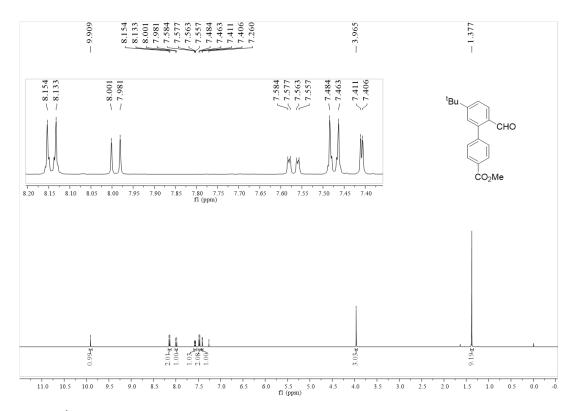


Fig. S9 ¹H NMR spectrum of 50 in CDCl₃

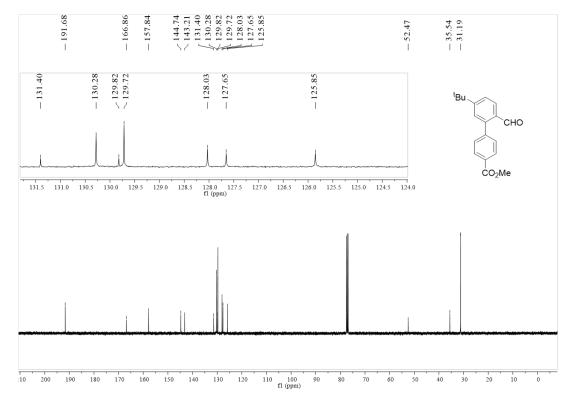


Fig. S10¹³C NMR spectrum of 50 in CDCl₃

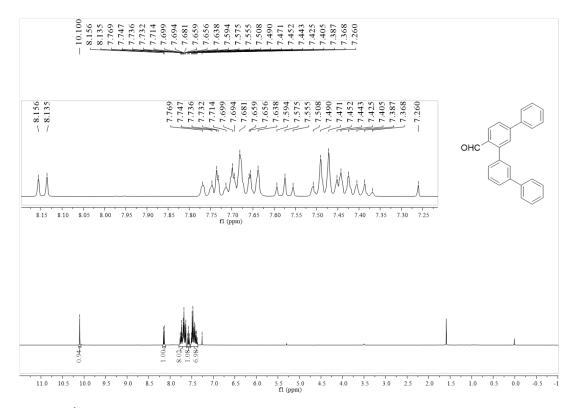


Fig. S11 ¹H NMR spectrum of 51 in CDCl₃

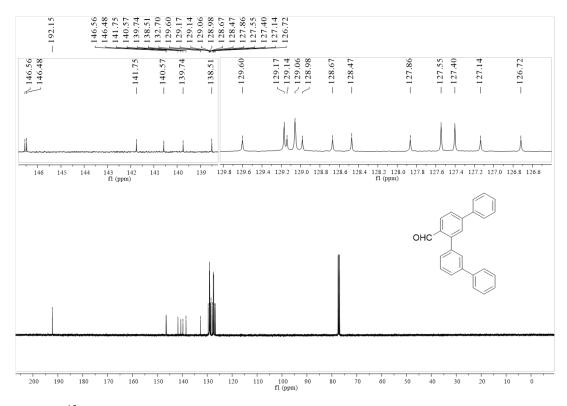


Fig. S12¹³C NMR spectrum of 51 in CDCl₃

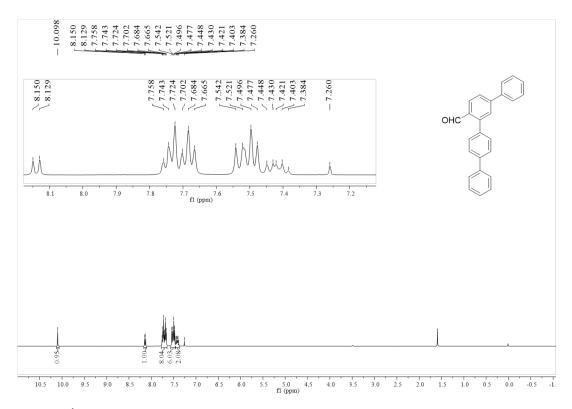


Fig. S13 ¹H NMR spectrum of 52 in CDCl₃

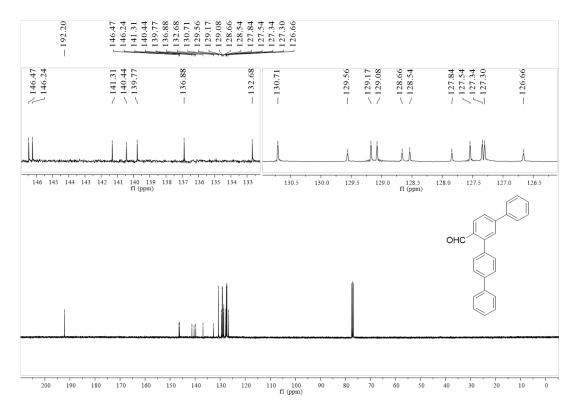


Fig. S14¹³C NMR spectrum of 52 in CDCl₃

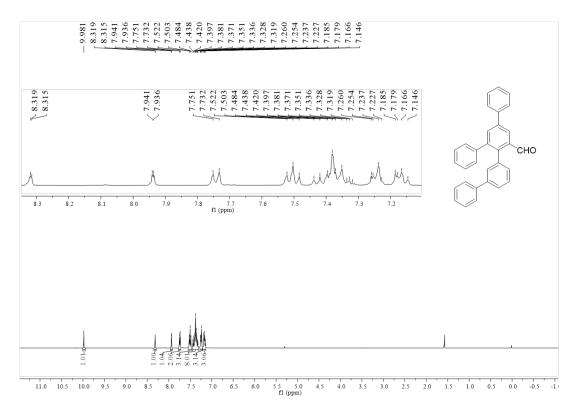


Fig. S15 ¹H NMR spectrum of 53 in CDCl₃

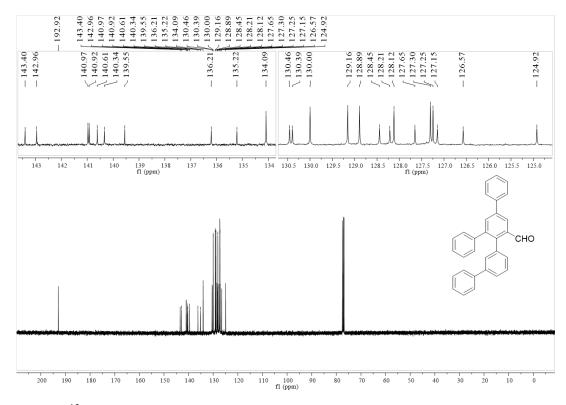


Fig. S16¹³C NMR spectrum of 53 in CDCl₃

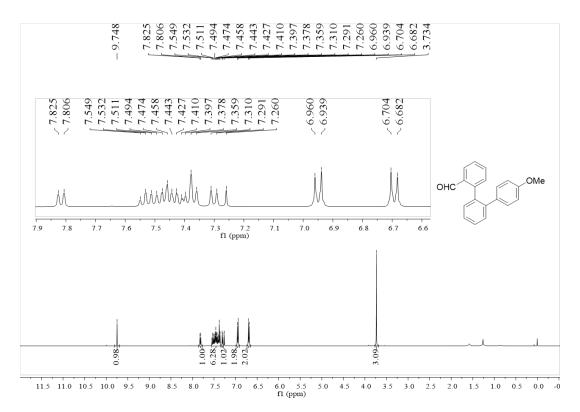


Fig. S17 ¹H NMR spectrum of 3 in CDCl₃

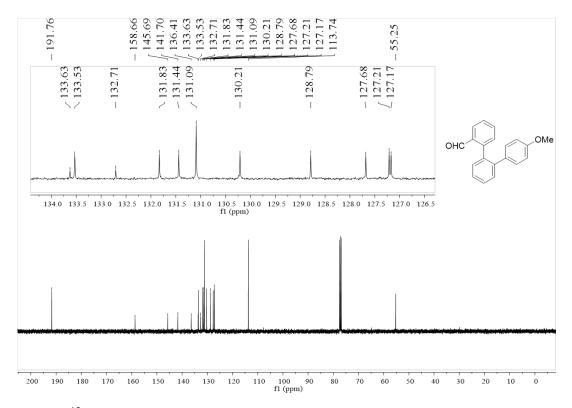


Fig. S18¹³C NMR spectrum of 3 in CDCl₃

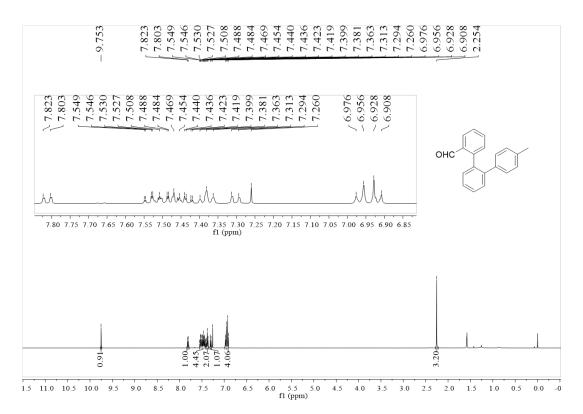


Fig. S19¹H NMR spectrum of 5 in CDCl₃

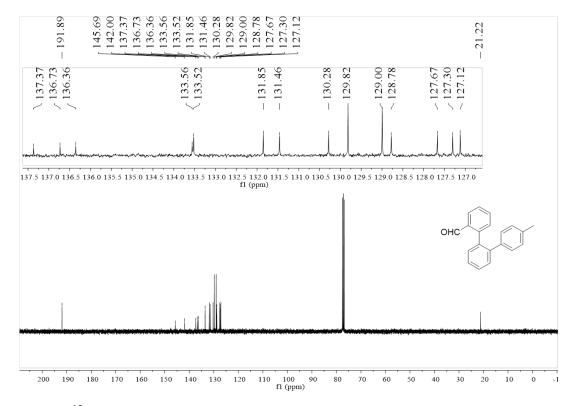


Fig. S20¹³C NMR spectrum of 5 in CDCl₃

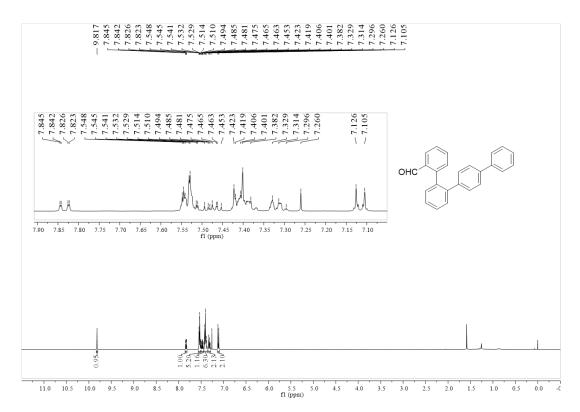


Fig. S21 ¹H NMR spectrum of 6 in CDCl₃

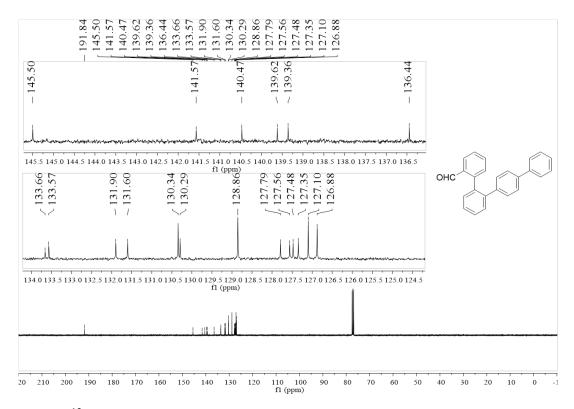


Fig. S22 ¹³C NMR spectrum of 6 in CDCl₃

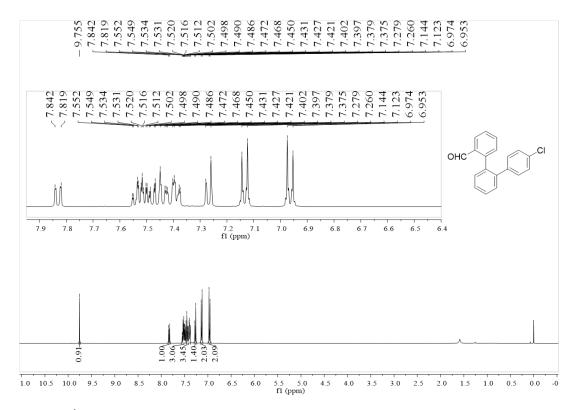


Fig. S23 ¹H NMR spectrum of 7 in CDCl₃

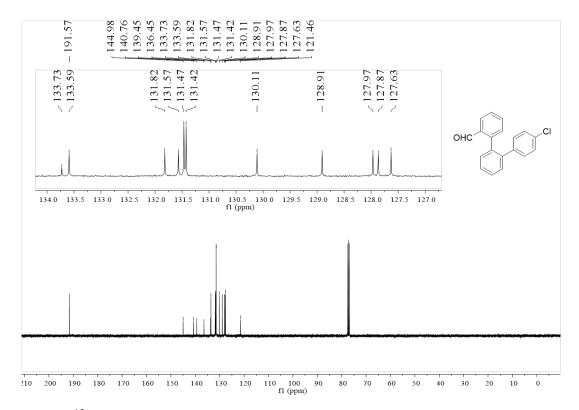
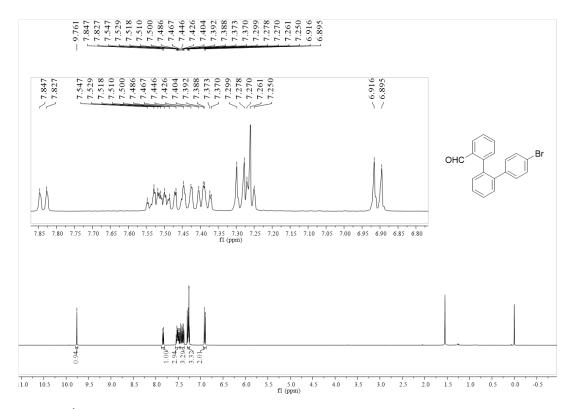



Fig. S24¹³C NMR spectrum of 7 in CDCl₃

Fig. S25 ¹H NMR spectrum of **8** in CDCl₃

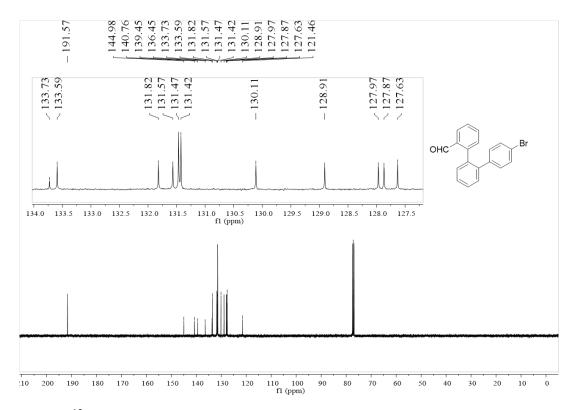


Fig. S26¹³C NMR spectrum of 8 in CDCl₃

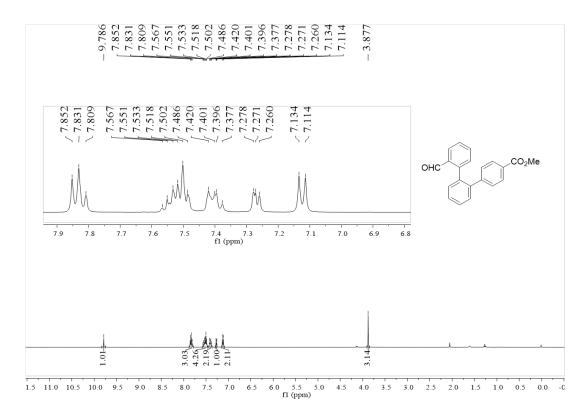


Fig. S27¹H NMR spectrum of 9 in CDCl₃

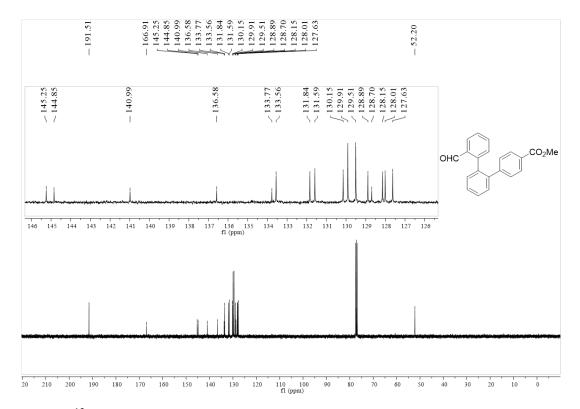
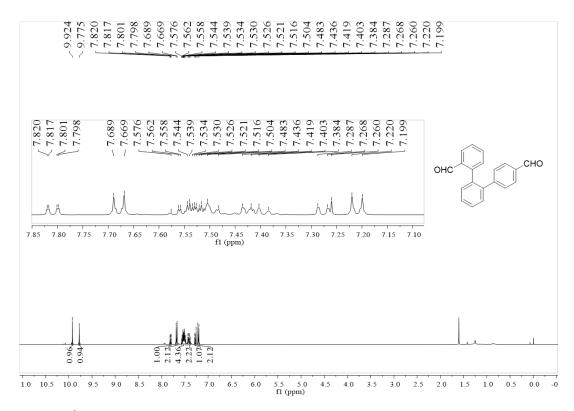



Fig. S28¹³C NMR spectrum of 9 in CDCl₃

Fig. S29 ¹H NMR spectrum of **10** in CDCl₃.

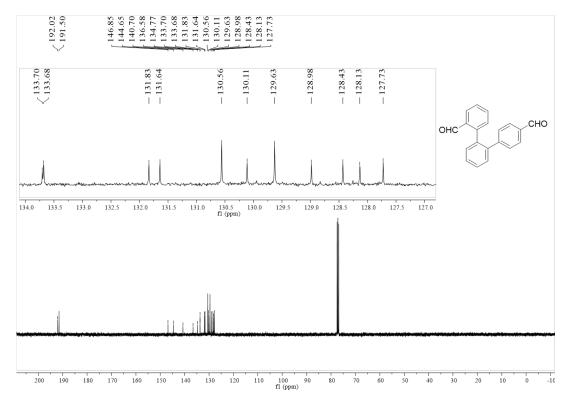


Fig. S30¹³C NMR spectrum of 10 in CDCl₃

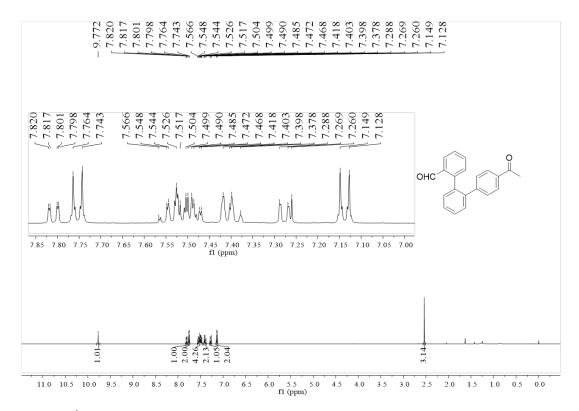


Fig. S31 ¹H NMR spectrum of 11 in CDCl₃

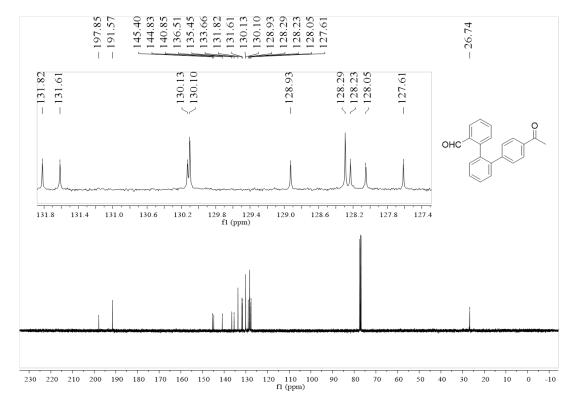


Fig. S32 ¹³C NMR spectrum of 11 in CDCl₃

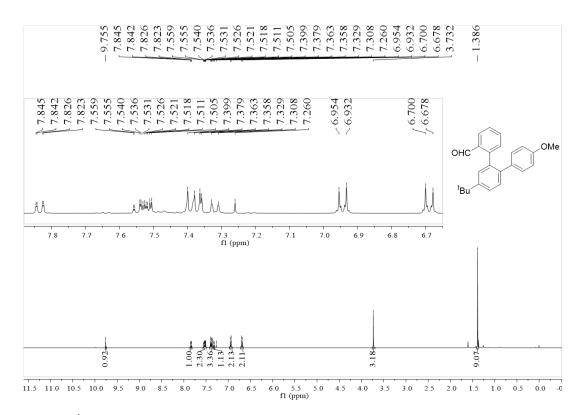


Fig. S33 ¹H NMR spectrum of 12 in CDCl₃

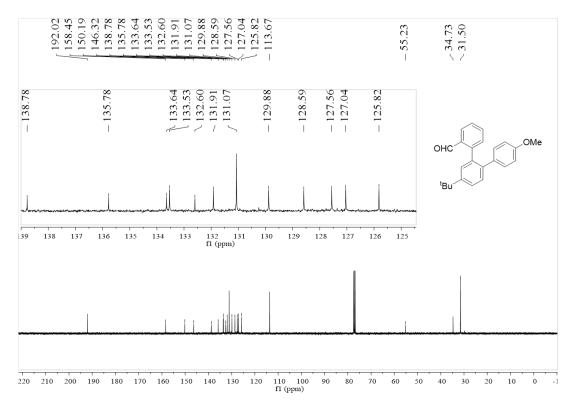


Fig. S34¹³C NMR spectrum of **12** in CDCl₃

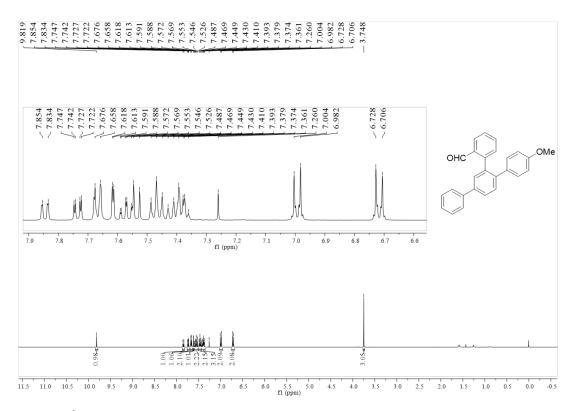


Fig. S35 ¹H NMR spectrum of 13 in CDCl₃

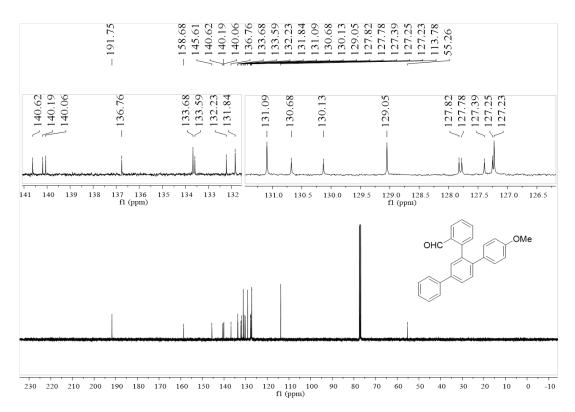


Fig. S36¹³C NMR spectrum of 13 in CDCl₃

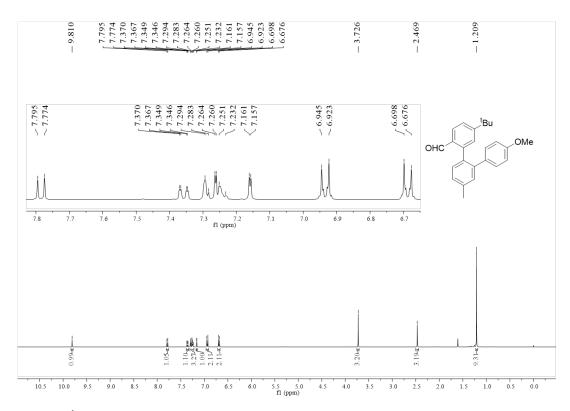


Fig. S37¹H NMR spectrum of 14 in CDCl₃

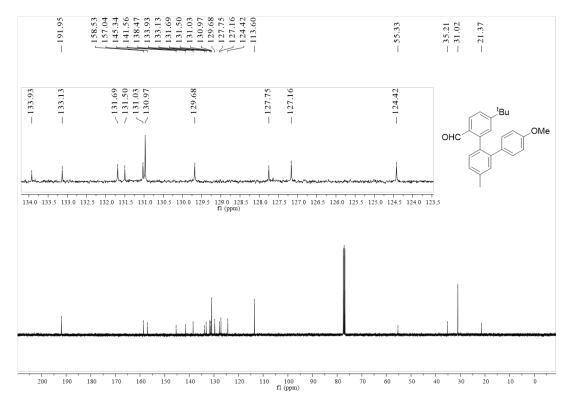
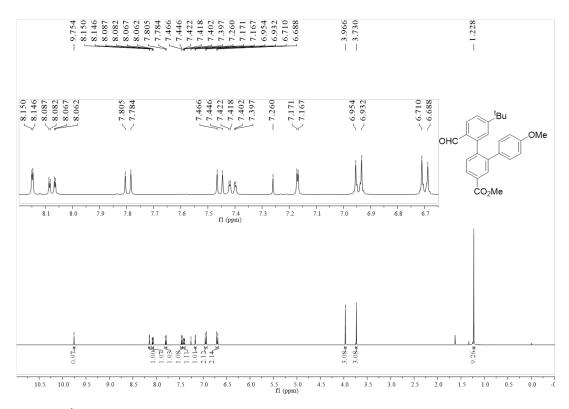



Fig. S38¹³C NMR spectrum of 14 in CDCl₃

Fig. S39 ¹H NMR spectrum of **15** in CDCl₃

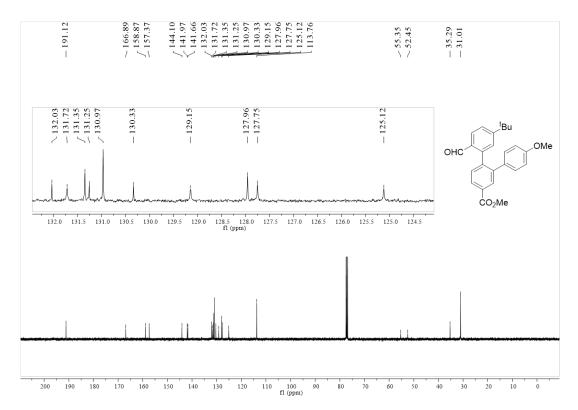


Fig. S40¹³C NMR spectrum of 15 in CDCl₃

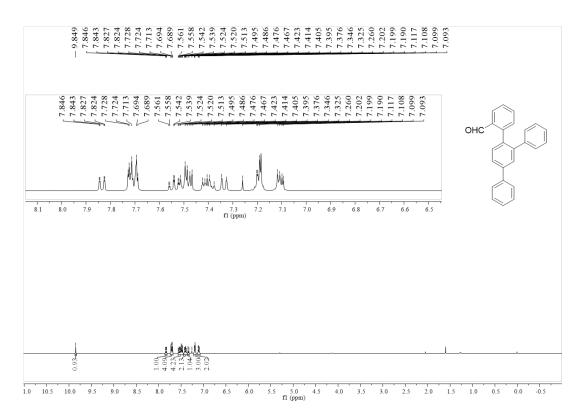


Fig. S41 ¹H NMR spectrum of 16 in CDCl₃

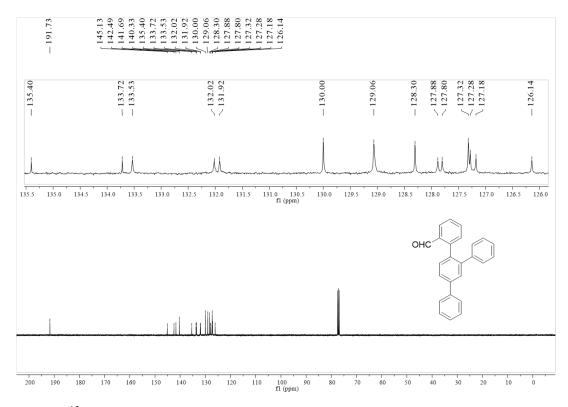


Fig. S42 ¹³C NMR spectrum of 16 in CDCl₃

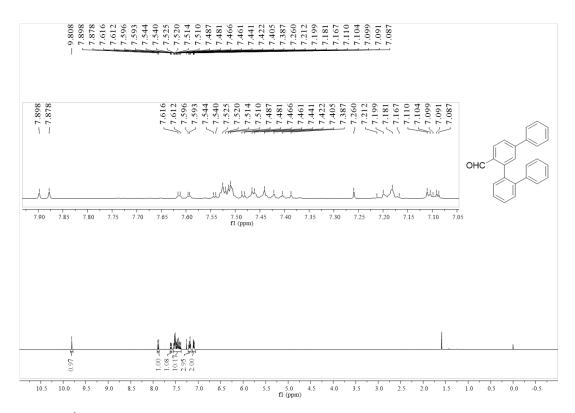


Fig. S43 ¹H NMR spectrum of 17 in CDCl₃

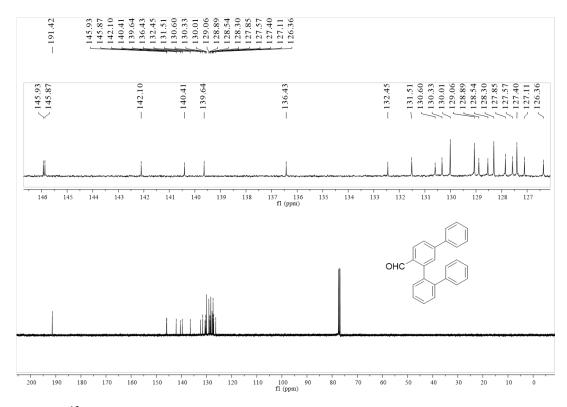


Fig. S44 ¹³C NMR spectrum of **17** in CDCl₃

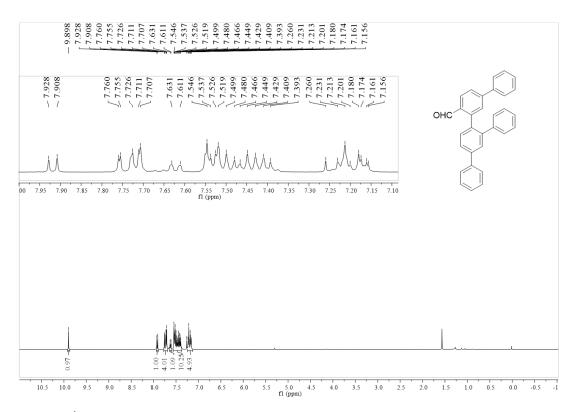


Fig. S45 ¹H NMR spectrum of 18 in CDCl₃

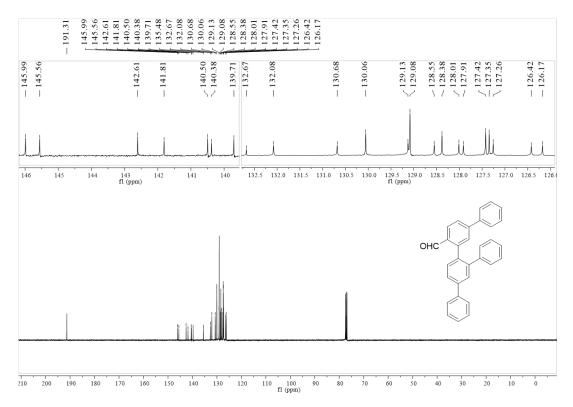


Fig. S46¹³C NMR spectrum of 18 in CDCl₃

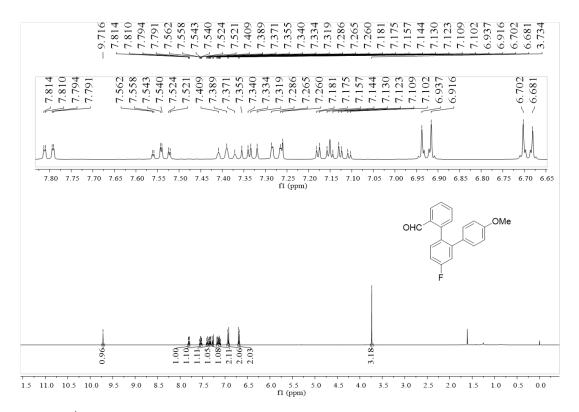


Fig. S47 ¹H NMR spectrum of 19 in CDCl₃

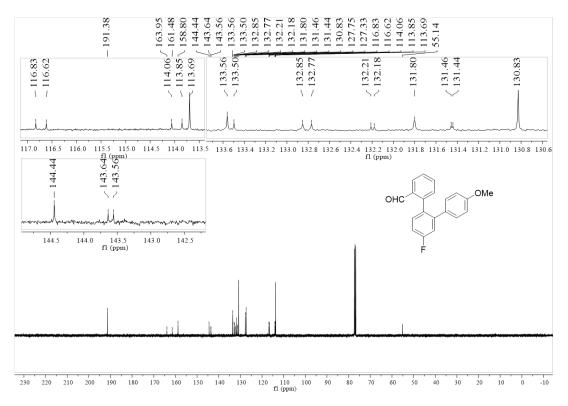


Fig. S48 ¹³C NMR spectrum of 19 in CDCl₃

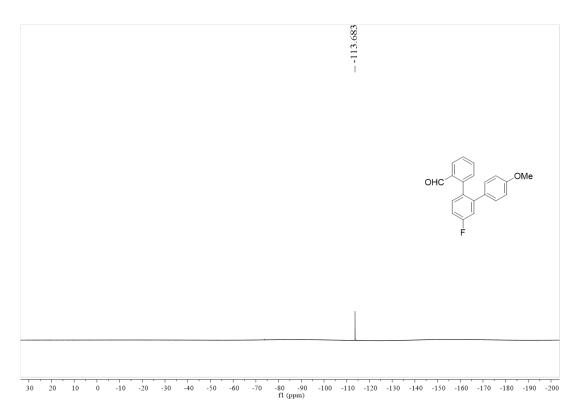


Fig. S49¹⁹F NMR spectrum of **19** in CDCl₃

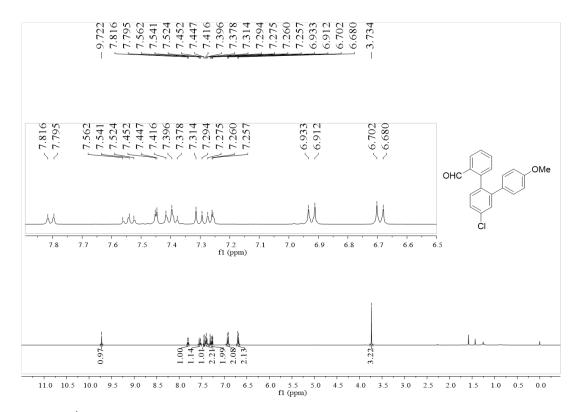


Fig. S50 ¹H NMR spectrum of 20 in CDCl₃

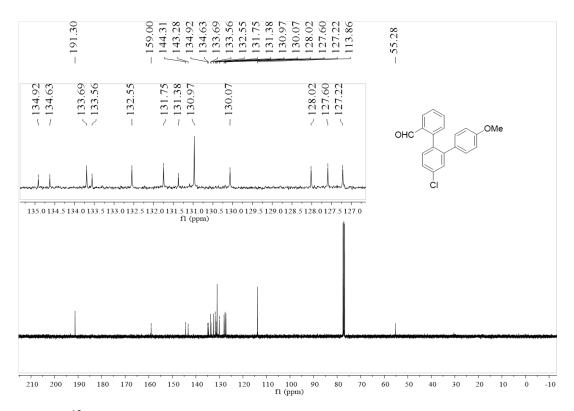


Fig. S51 ¹³C NMR spectrum of 20 in CDCl₃.

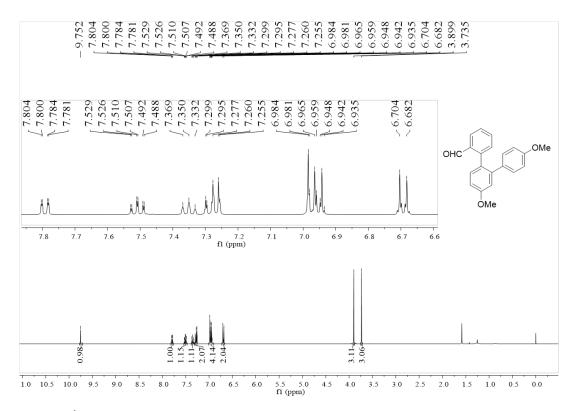


Fig. S52 ¹H NMR spectrum of 21 in CDCl₃

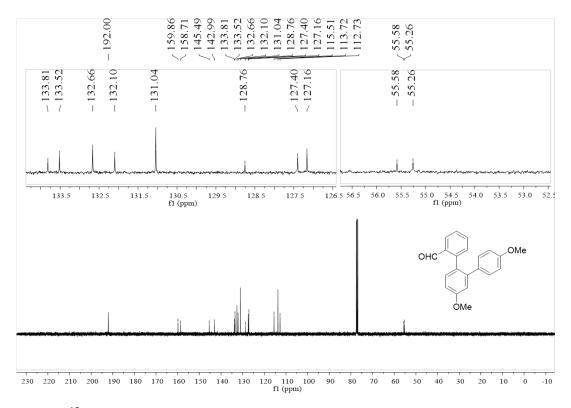


Fig. S53 ¹³C NMR spectrum of 21 in CDCl₃

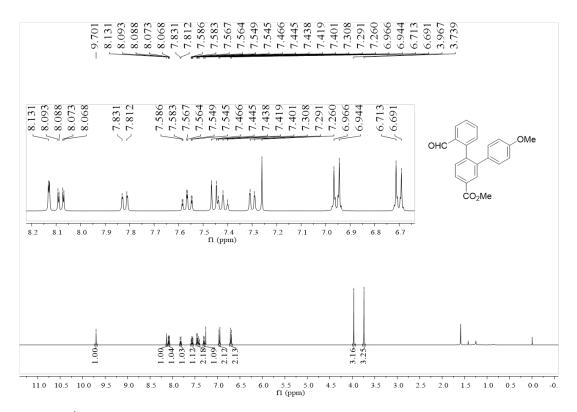


Fig. S54 ¹H NMR spectrum of 22 in CDCl₃

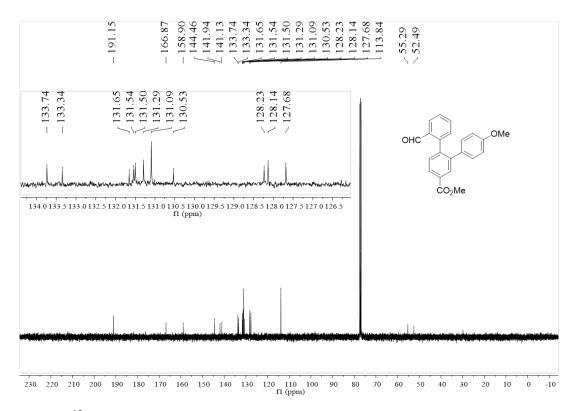


Fig. S55 ¹³C NMR spectrum of 22 in CDCl₃

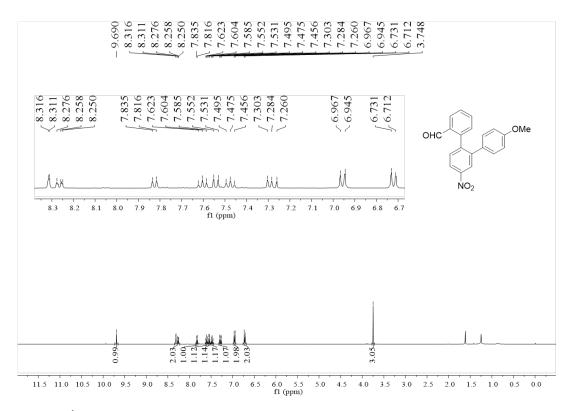


Fig. S56¹H NMR spectrum of 23 in CDCl₃

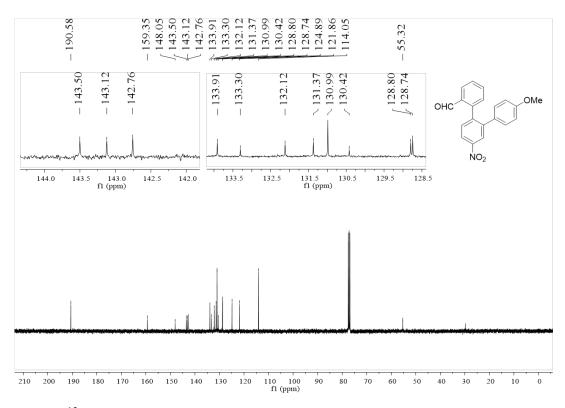


Fig. S57¹³C NMR spectrum of 23 in CDCl₃

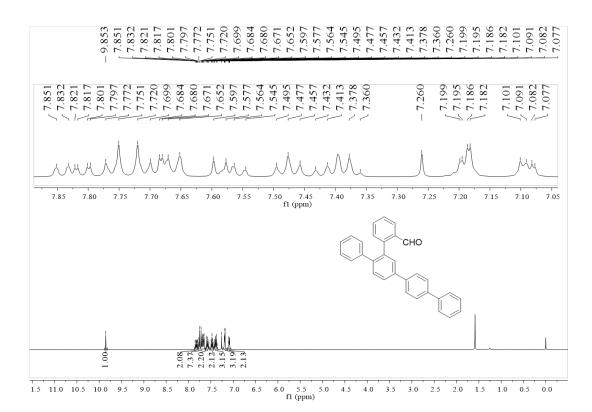
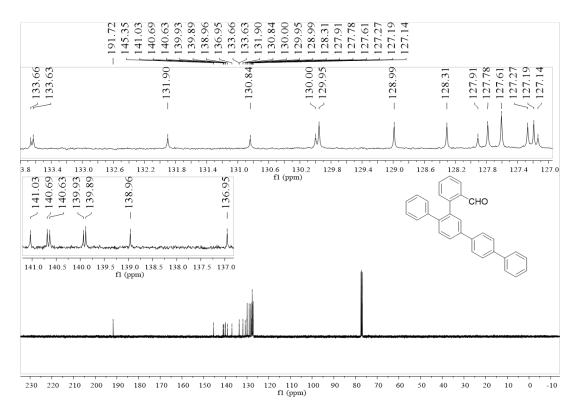



Fig. S58 ¹H NMR spectrum of 24 in CDCl₃

*Fig. S59*¹³C NMR spectrum of **24** in CDCl₃

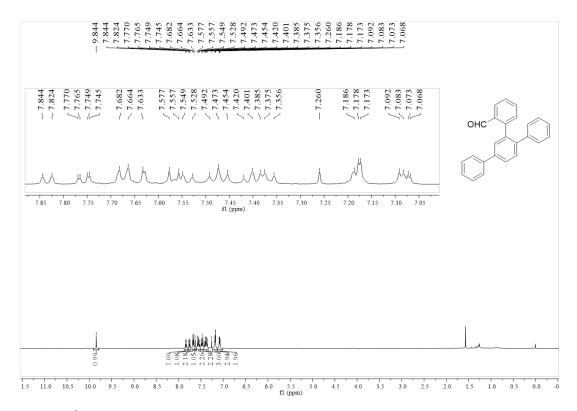


Fig. S60 ¹H NMR spectrum of 25 in CDCl₃

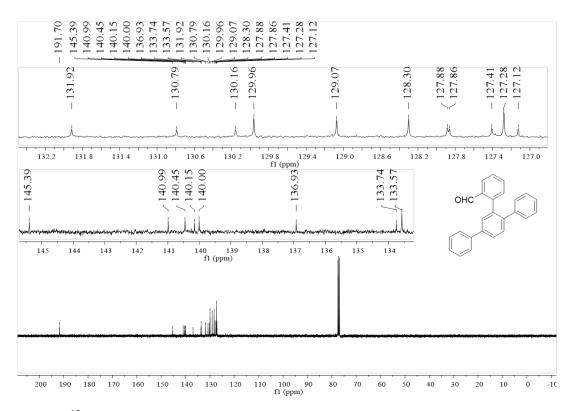


Fig. S61 ¹³C NMR spectrum of 25 in CDCl₃

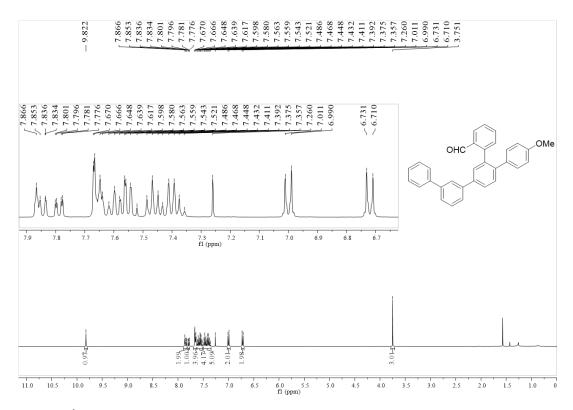
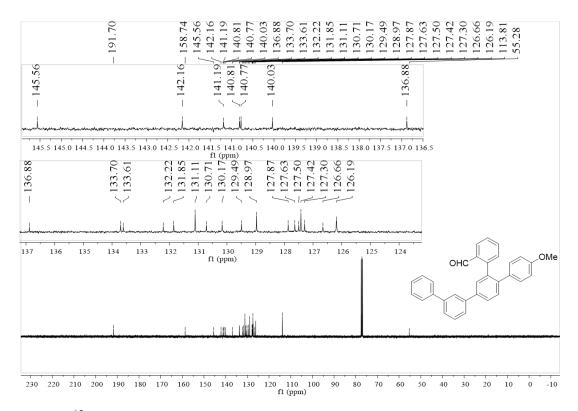



Fig. S62 ¹H NMR spectrum of 26 in CDCl₃

Fig. S63 ¹³C NMR spectrum of **26** in CDCl₃.

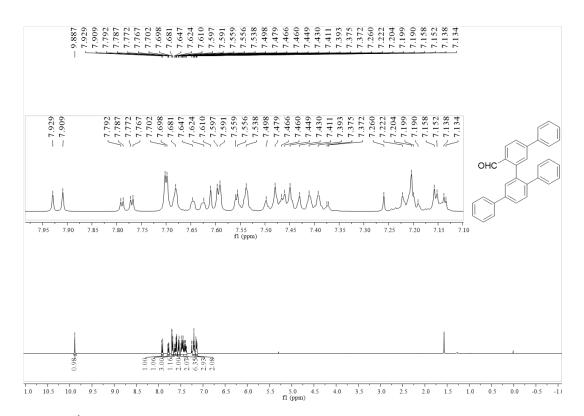


Fig. S64 ¹H NMR spectrum of 27 in CDCl₃

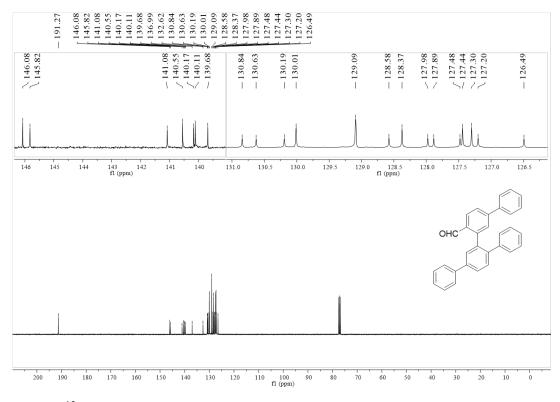


Fig. S65 ¹³C NMR spectrum of 27 in CDCl₃

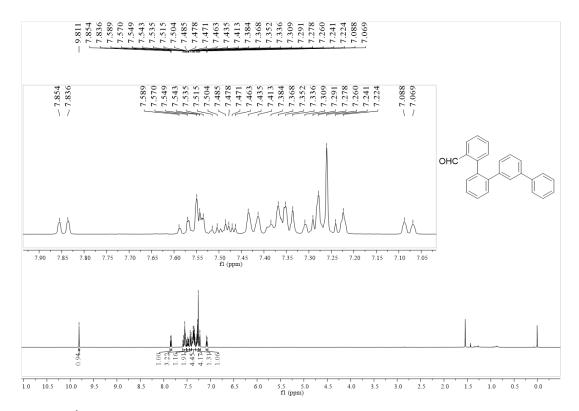


Fig. S66 ¹H NMR spectrum of 28 in CDCl₃

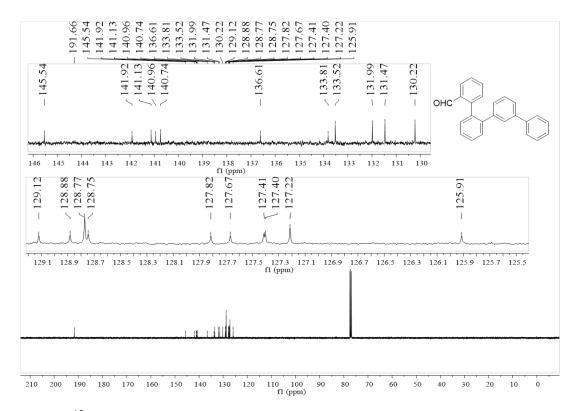


Fig. S67¹³C NMR spectrum of 28 in CDCl₃

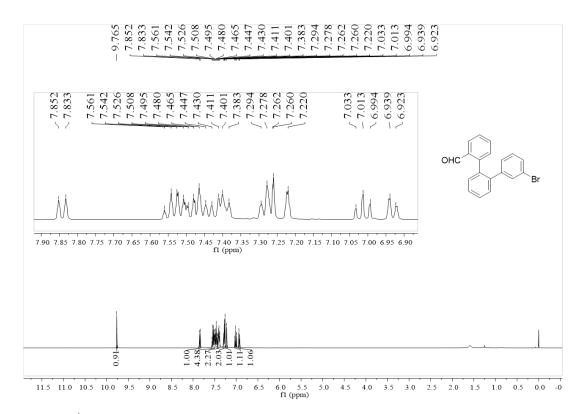


Fig. S68 ¹H NMR spectrum of 29 in CDCl₃

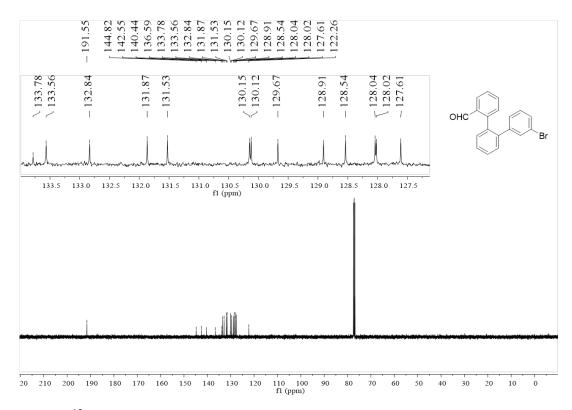


Fig. S69¹³C NMR spectrum of 29 in CDCl₃

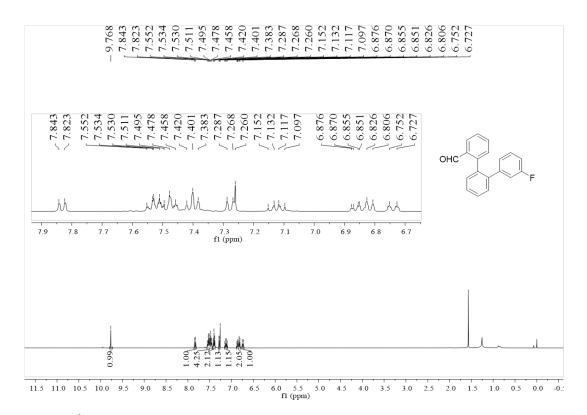
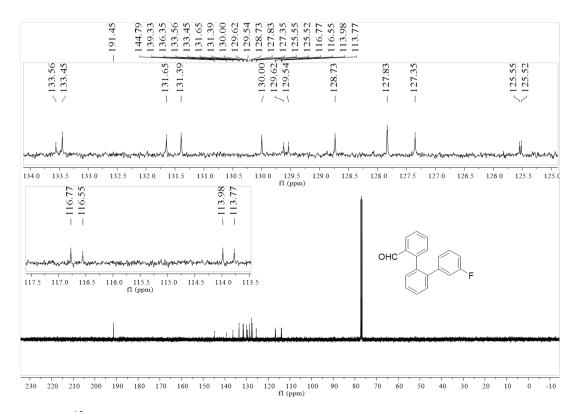



Fig. S70¹H NMR spectrum of 30 in CDCl₃

Fig. S71 ¹³C NMR spectrum of **30** in CDCl₃

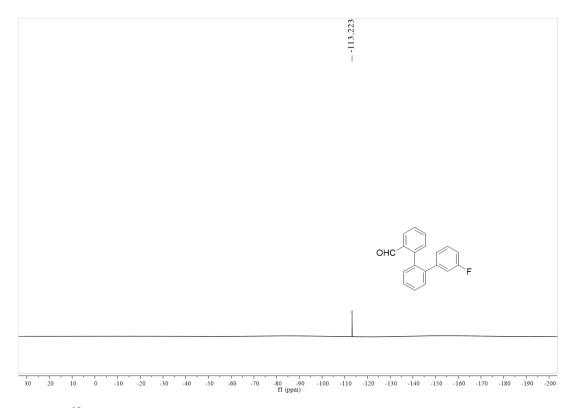


Fig. S72 ¹⁹F NMR spectrum of 30 in CDCl₃

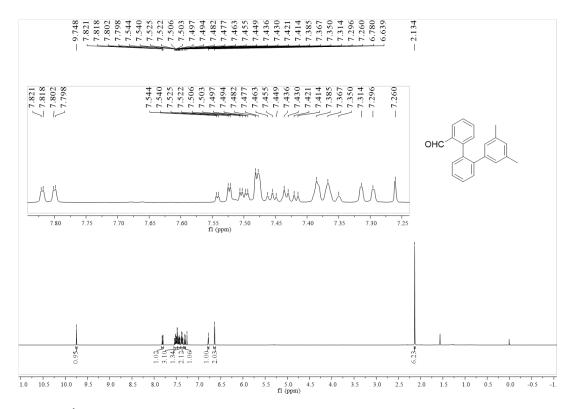
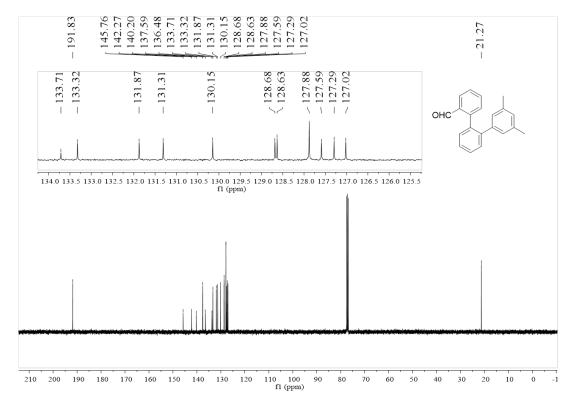



Fig. S73 ¹H NMR spectrum of 31 in CDCl₃

Fig. S74 13 C NMR spectrum of **31** in CDCl₃

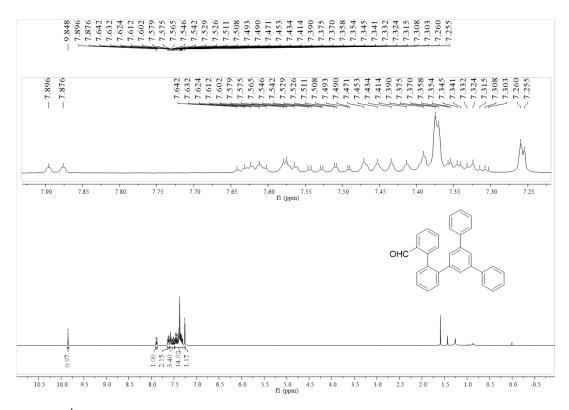


Fig. S75 ¹H NMR spectrum of 32 in CDCl₃

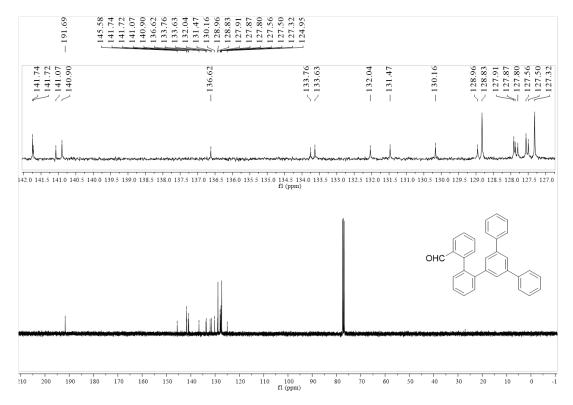


Fig. S76¹³C NMR spectrum of 32 in CDCl₃

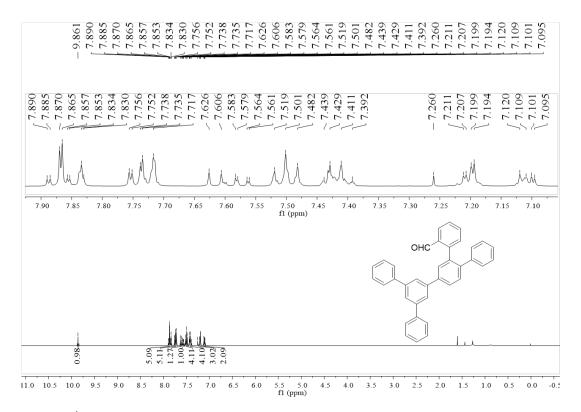


Fig. S77¹H NMR spectrum of 33 in CDCl₃

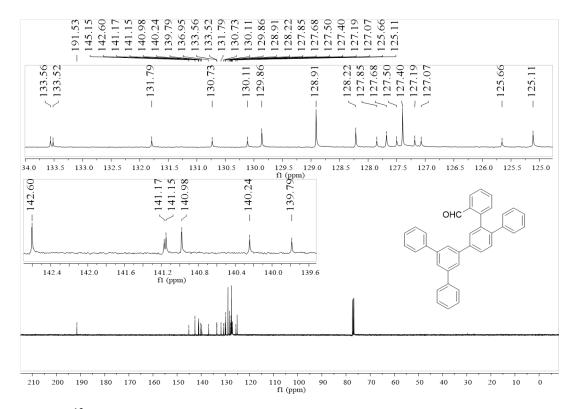


Fig. S78¹³C NMR spectrum of 33 in CDCl₃

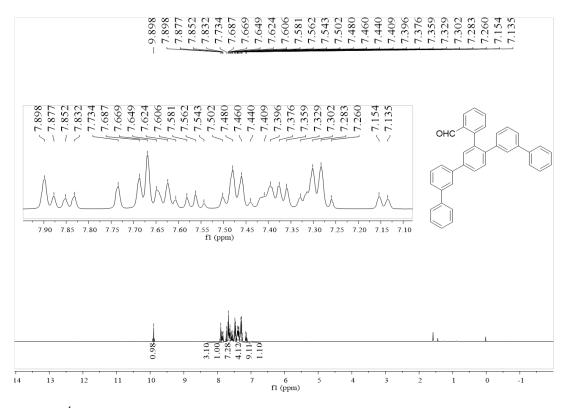


Fig. S79 ¹H NMR spectrum of 34 in CDCl₃

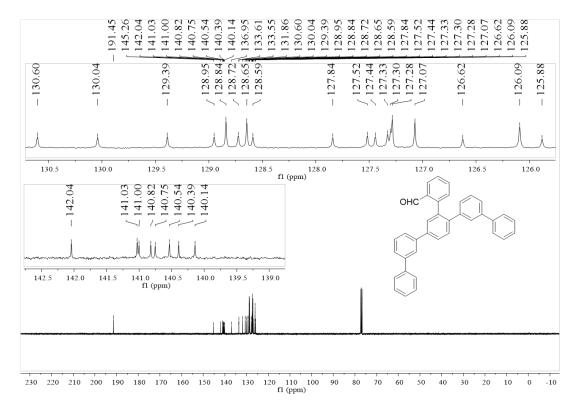


Fig. S80¹³C NMR spectrum of 34 in CDCl₃

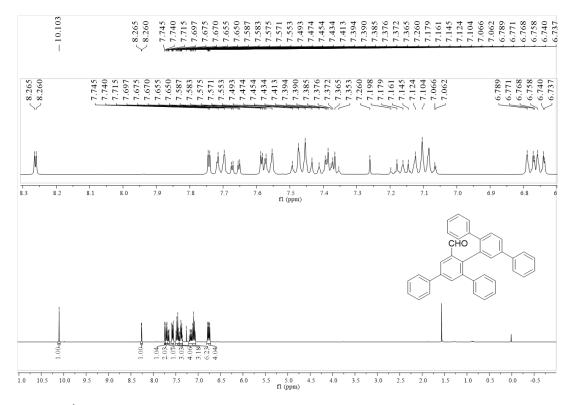


Fig. S81 ¹H NMR spectrum of 35 in CDCl₃

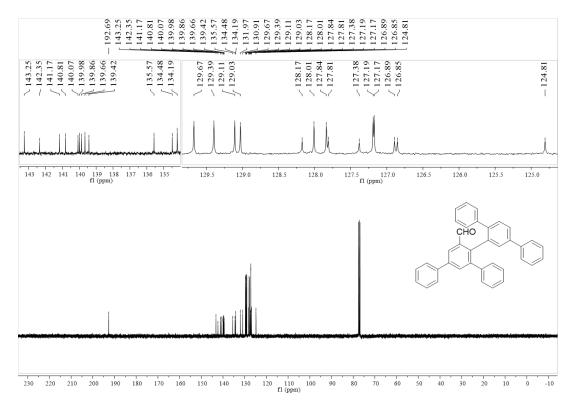


Fig. S82 ¹³C NMR spectrum of 35 in CDCl₃

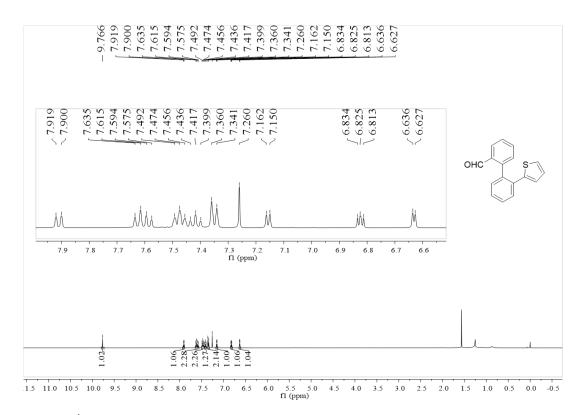


Fig. S83 ¹H NMR spectrum of 36 in CDCl₃

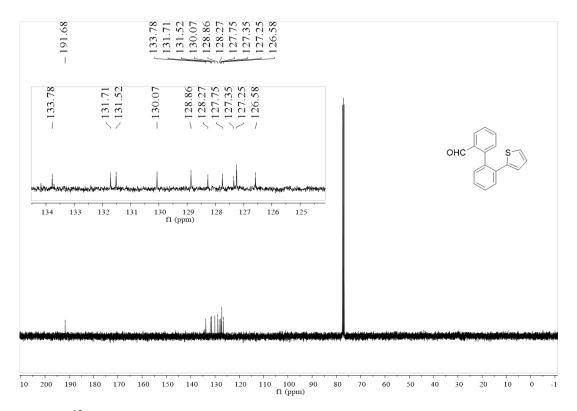


Fig. S84 ¹³C NMR spectrum of 36 in CDCl₃

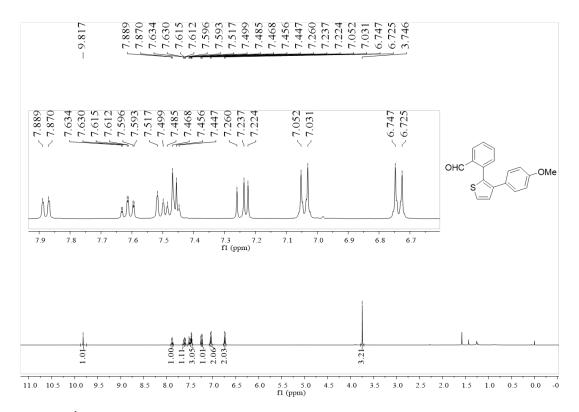


Fig. S85 ¹H NMR spectrum of 37 in CDCl₃

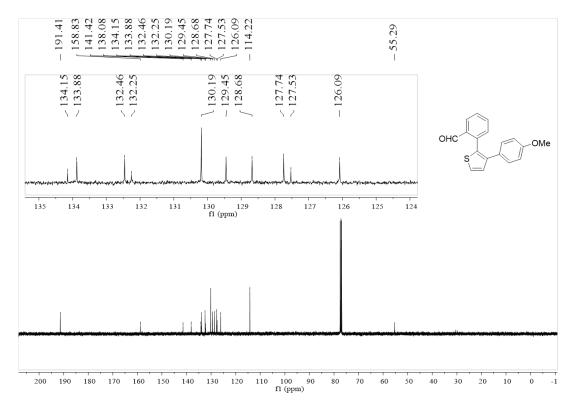


Fig. S86¹³C NMR spectrum of **37** in CDCl₃

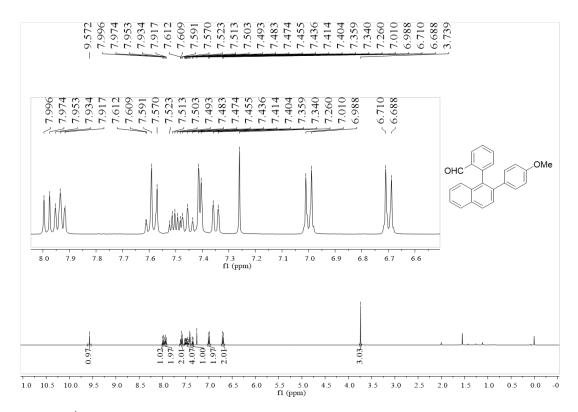


Fig. S87 ¹H NMR spectrum of 38 in CDCl₃

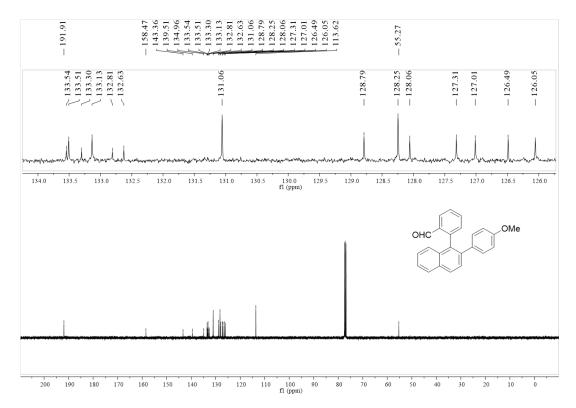


Fig. S88 ¹³C NMR spectrum of 38 in CDCl₃

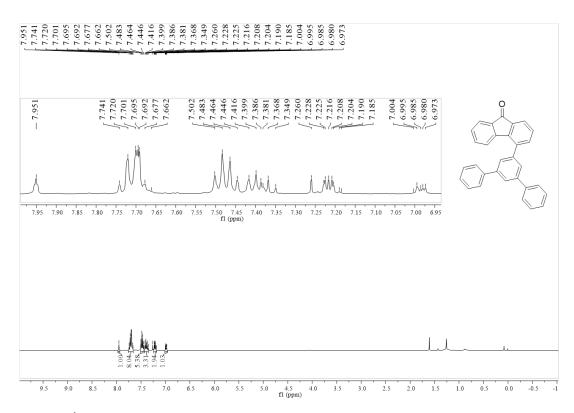


Fig. S89 ¹H NMR spectrum of 39 in CDCl₃

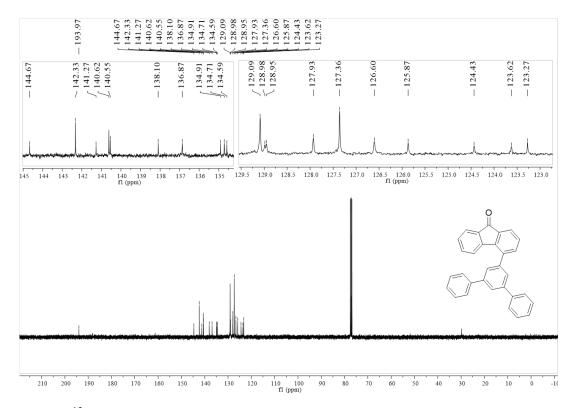


Fig. S90 ¹³C NMR spectrum of **39** in CDCl₃

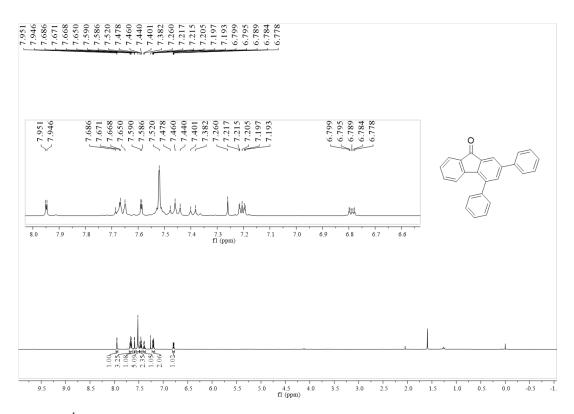


Fig. S91 ¹H NMR spectrum of 40 in CDCl₃

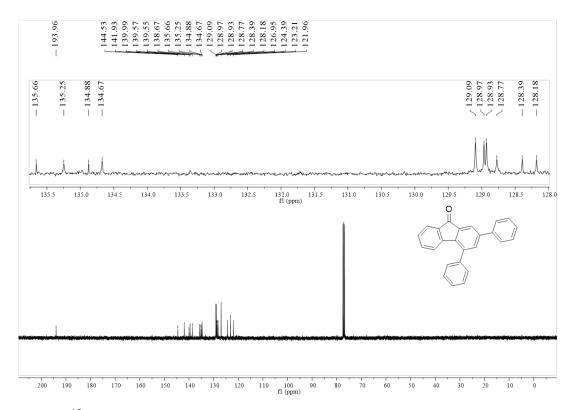


Fig. S92 ¹³C NMR spectrum of 40 in CDCl₃

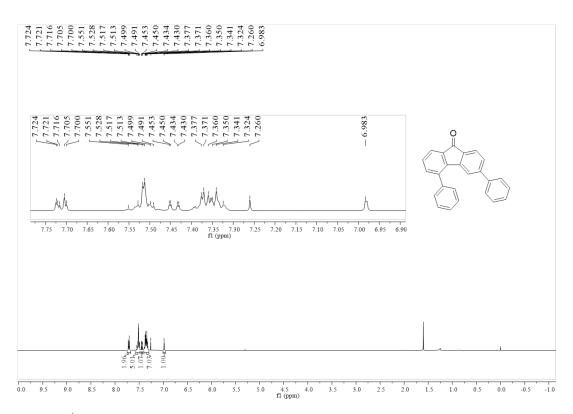


Fig. S93 ¹H NMR spectrum of 41 in CDCl₃

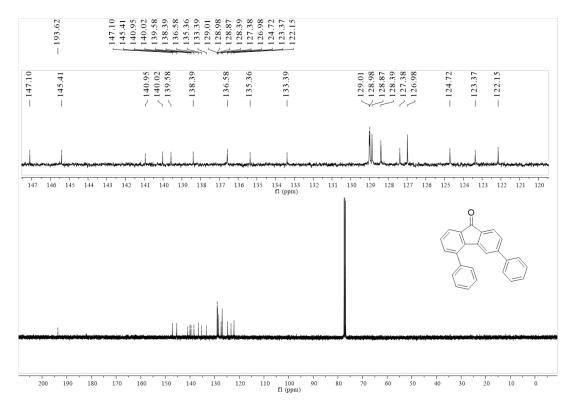


Fig. S94 ¹³C NMR spectrum of 41 in CDCl₃

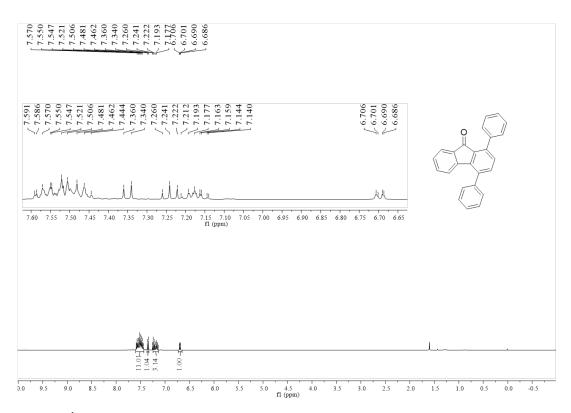


Fig. S95 ¹H NMR spectrum of 42 in CDCl₃

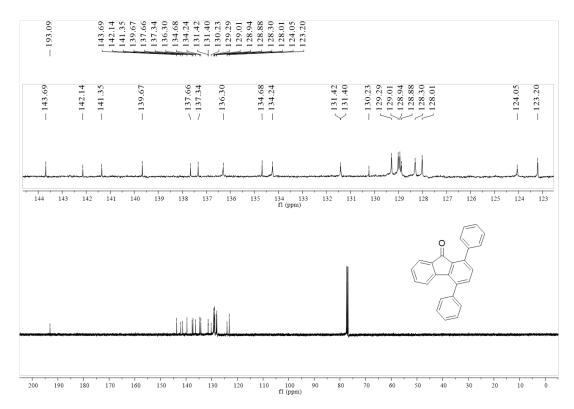


Fig. S96¹³C NMR spectrum of 42 in CDCl₃

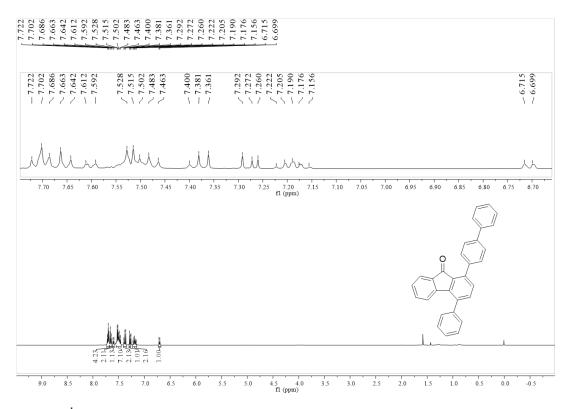


Fig. S97 ¹H NMR spectrum of 43 in CDCl₃

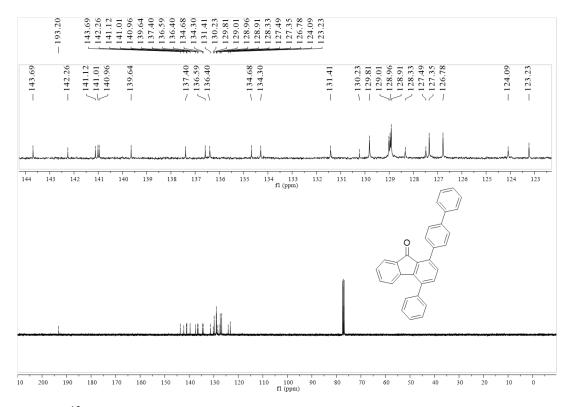


Fig. S98 ¹³C NMR spectrum of 43 in CDCl₃

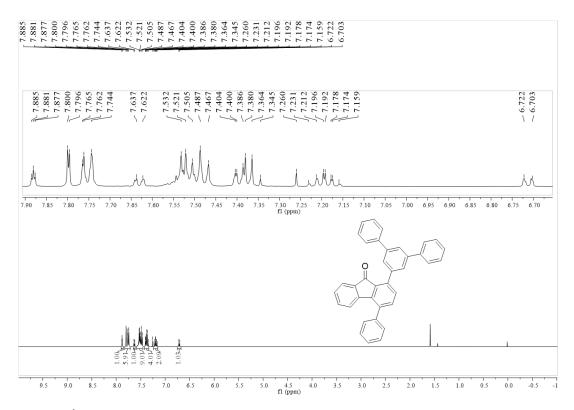


Fig. S99 ¹H NMR spectrum of 44 in CDCl₃

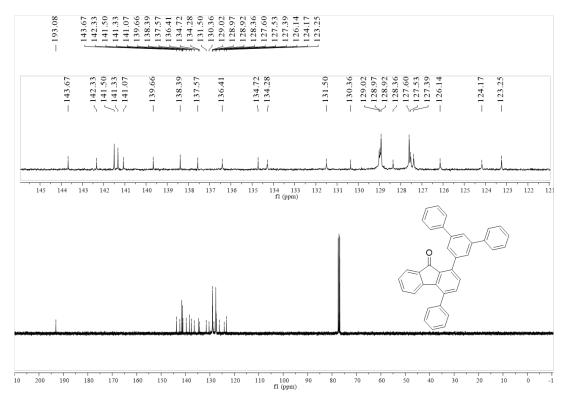


Fig. S100. ¹³C NMR spectrum of 44 in CDCl₃

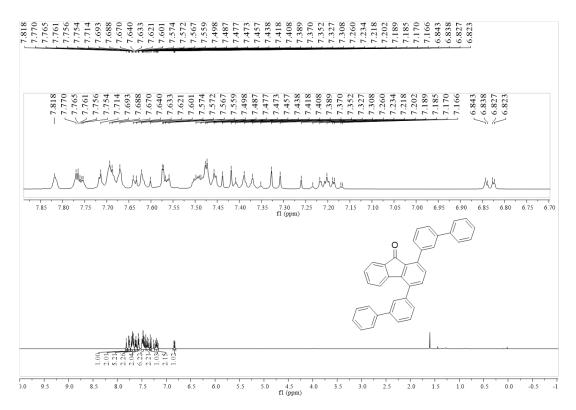


Fig. S101 ¹H NMR spectrum of 45 in CDCl₃

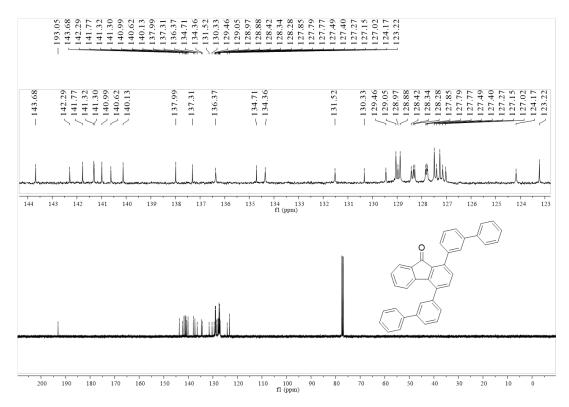


Fig. S102 ¹³C NMR spectrum of 45 in CDCl₃

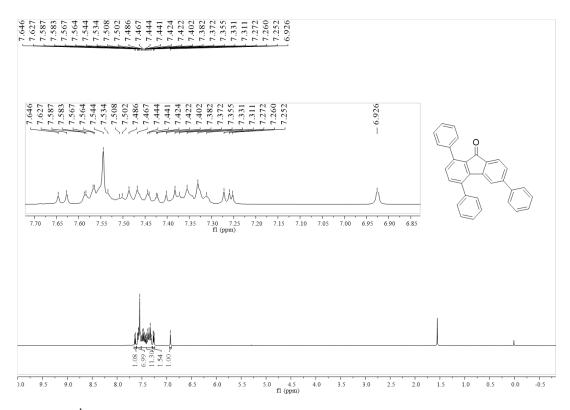


Fig. S103 ¹H NMR spectrum of 46 in CDCl₃

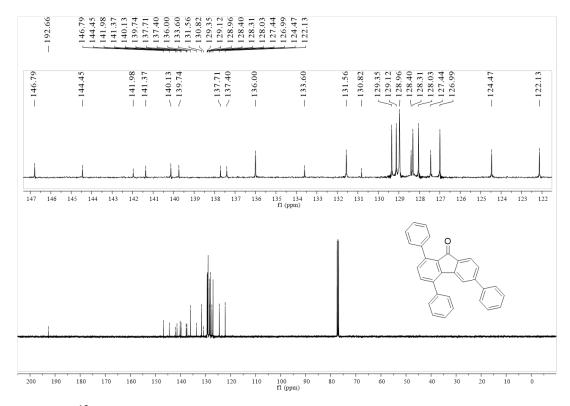


Fig. S104¹³C NMR spectrum of 46 in CDCl₃

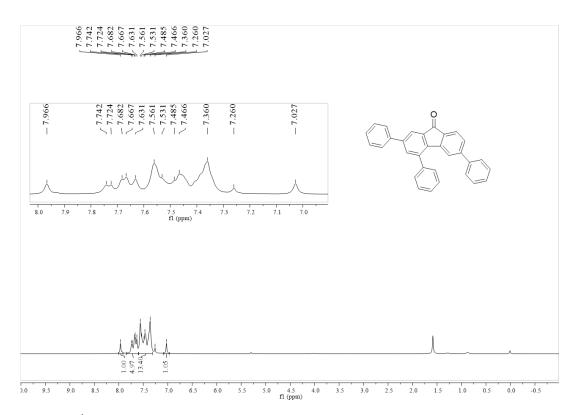


Fig. S105¹H NMR spectrum of 47 in CDCl₃

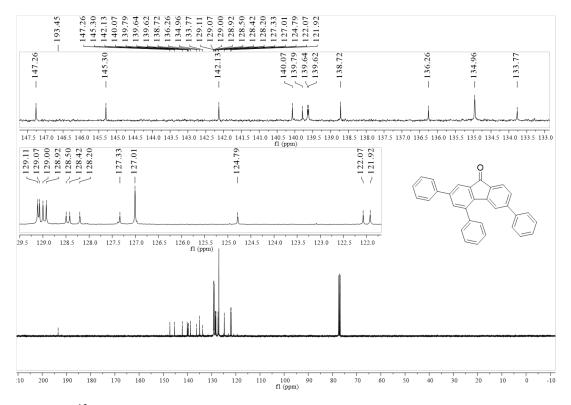


Fig. S106¹³C NMR spectrum of 47 in CDCl₃

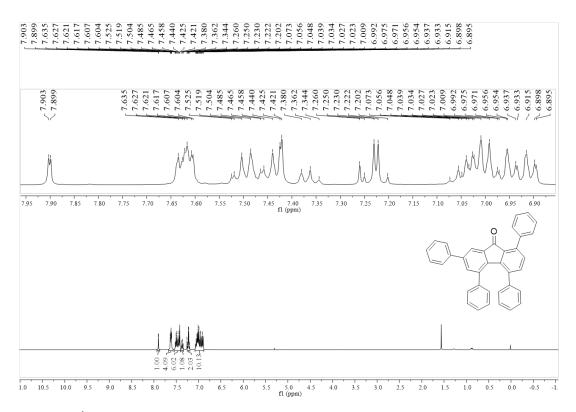


Fig. S107 ¹H NMR spectrum of 48 in CDCl₃

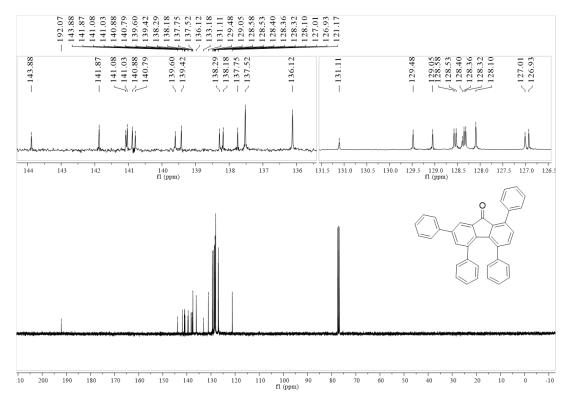


Fig. S108 ¹³C NMR spectrum of 48 in CDCl₃

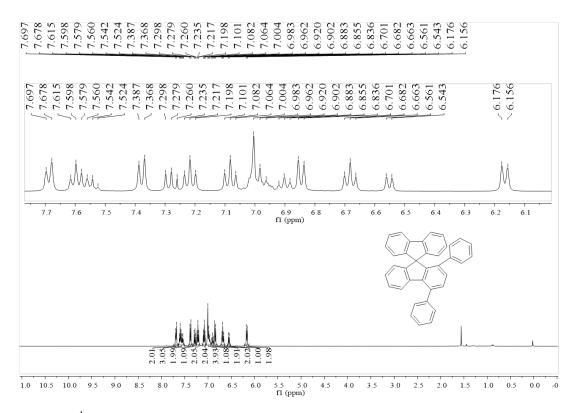


Fig. S109¹H NMR spectrum of 1,4-dp-SBF in CDCl₃

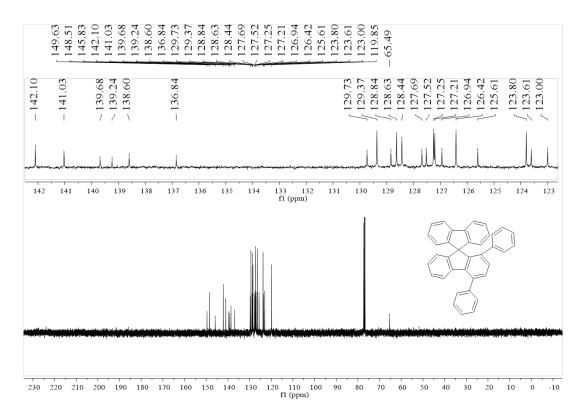


Fig. S110¹³C NMR spectrum of 1,4-dp-SBF in CDCl₃

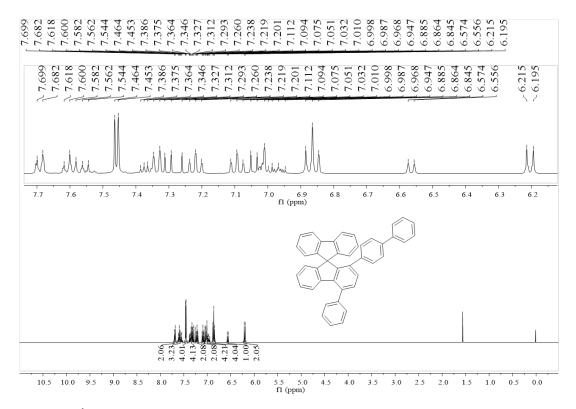


Fig. S111 ¹H NMR spectrum of 1-pbp-4-p-SBF in CDCl₃

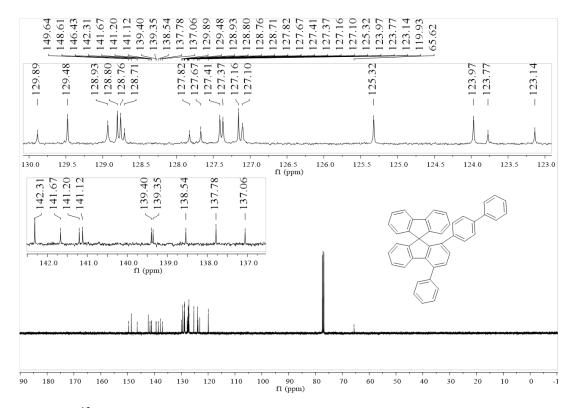


Fig. S112 ¹³C NMR spectrum of 1-pbp-4-p-SBF in CDCl₃

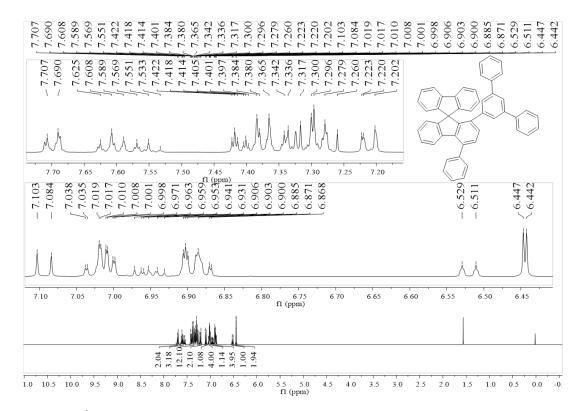


Fig. S113 ¹H NMR spectrum of 1-mtp-4-p-SBF in CDCl₃

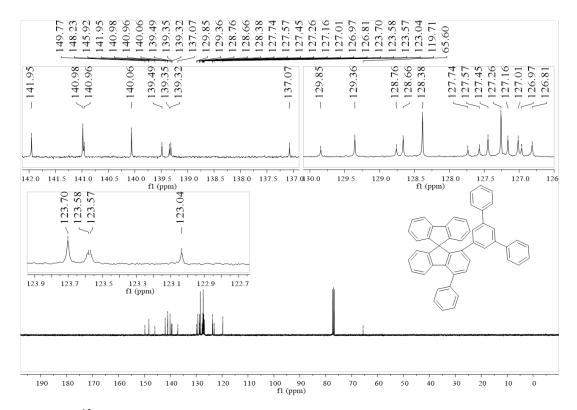


Fig. S114¹³C NMR spectrum of 1-mtp-4-p-SBF in CDCl₃

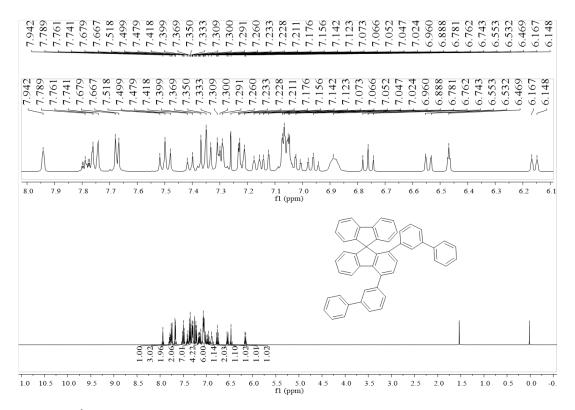


Fig. S115 ¹H NMR spectrum of 1,4-d(mbp)-SBF in CDCl₃

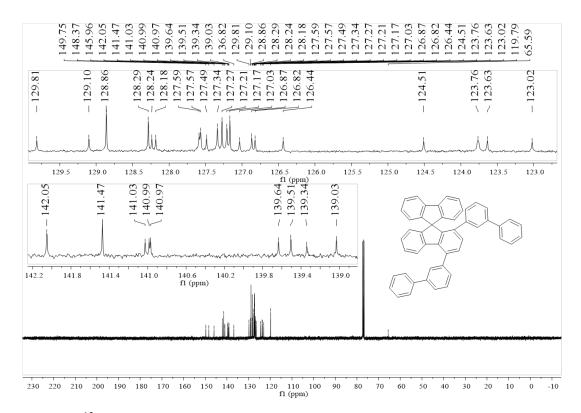


Fig. S116¹³C NMR spectrum of 1,4-d(mbp)-SBF in CDCl₃