Electronic supplementary information (ESI): Core-electron contributions to the magnetic response of molecules with heavy elements and their significance in aromaticity assessments

Mesías Orozco-Ic,^{1*} Luis Soriano-Agueda,¹ Dage Sundholm,² Eduard Matito,^{1,*} and Gabriel Merino.^{3,*}

 Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México.

E-mail: mesias.orozco@dipc.org, ematito@dipc.org, gmerino@cinvestav.mx

Figure S1. The *z*-profiles of the total, RVE core, and valence contributions to B^{ind_z} for the E₄²⁻ (E=Al, Ga, In, Tl) clusters computed at the BHandHLYP/x2c-TZVPall-2c level.

Figure S2. The ring-current strength profiles of the RVE core-electron contribution and total (all-electron) dJ^{ind}/dr resulting using a plane that intersects a E-E bond (left) and a E nucleus (right) for the E₄²⁻ (E=Al, Ga, In, Tl) clusters calculated at the BHandHLYP/x2c-TZVPall-2c level. The vertical dotted lines show the *r* values corresponding to the intersection with the atoms. Integrating the area under the red curve of one of the peaks yields to the atomic current strength, which is 18.82, 50.73, 81.62, and 134.03 nA/T for Al, Ga, In and Tl, respectively.

Figure S3. Isolines of the core, valence, and total contributions to B^{ind_z} of Ga4²⁻ and In4²⁻ plotted on (top) and in a slide orthogonal (bottom) to the molecular plane calculated at the BHandHLYP/x2c-TZVPall-2c level.

Figure S4. Plots of the total and the core-electron contribution to J^{ind} maps for Ga4²⁻ and In4²⁻ calculated at the BHandHLYP/x2c-TZVPall-2c level.

Figure S5. The *r*-profiles of the total, RVE core, and valence contributions to B^{ind_z} for the M₁₂²⁻ clusters computed at the BHandHLYP/x2c-TZVPall-2c level. The radial *r* coordinate runs from the cage center (*r*=0), intersects a three-membered face ring, and ends where B^{ind_z} vanishes. The external magnetic field points parallel to the *z* axis (*C*₅ axis).

Figure S6. The ring-current strength profiles of the RVE core-electron contribution and total (all-electron) dJ^{ind}/dr resulting using a plane that intersects the surface of the M₁₂²⁻ clusters

calculated at the BHandHLYP/x2c-TZVPall-2c level. Integrating the area under the curves leads to the ring-currents strengths.

Figure S7. Plots of the total and the core-electron contribution to \mathbf{J}^{ind} (left) and B^{ind_z} (right) maps and for the singlet structure of Hf₃ calculated at the BHandHLYP/x2c-TZVPall-2c level.

Figure S8. Isolines of the total and core-electron contribution to B^{ind_z} for Ta₃O₃⁻, Au₃⁺, and W@Au₁₂ clusters calculated at the BHandHLYP/x2c-TZVPall-2c level. The core-electron isolines are unreliable because the RVE approximation is not well defined in these systems (see main text).

Figure S9. Plots of the total and the core-electron contribution to J^{ind} maps for Ta₃O₃⁻, Au₃⁺, and W@Au₁₂ clusters calculated at the BHandHLYP/x2c-TZVPall-2c level. The core-electron maps are unreliable because the RVE approximation is not well defined in these systems (see main text).

Table S1. Delocalization indices (DI) dissected into its core and valence contribution for icosahedral M_{12}^{2-} clusters computed at the BHandHLYP/x2c-TZVPall-2c level. The reported values correspond to the three equivalent bonds connecting adjacent atoms in the molecule. The valence contribution is estimated by subtracting the core-electron response from the total.

Molecule	Contribution	DI (in the different M-M bonds)			
Ge ₁₂ ²⁻	Total	0.566	0.566	0.566	
	Core	0.018	0.018	0.018	
	Valence	0.548	0.548	0.548	
Sn_{12}^{2-}	Total	0.569	0.569	0.569	
	Core	0.024	0.024	0.024	

	Valence	0.545	0.545	0.545
Pb ₁₂ ²⁻	Total	0.566	0.566	0.566
	Core	0.046	0.046	0.046
	Valence	0.520	0.520	0.520

Table S2. Delocalization indices (DI) dissected into its core and valence contribution for Hf_3 (triplet/singlet), Pt-benzene-Cp, and $SrCs_5^+$ clusters computed at the BHandHLYP/x2c-TZVPall-2c level. The reported values correspond to equivalent bonds connecting adjacent atoms in the molecule. The valence contribution is estimated by subtracting the core-electron response from the total.

Molecule	Contribution	DI (in the different bonds)
Hf ₃	Total	1.860/2.191
	Core	0.059/0.059
	Valence	1.801/2.132
Pt-benzene-Cp	Total	1.454, 1.354 in C-C
		1.287 in Pt-C
	Core	0.000, 0.000 in C-C
		0.000, 0.000 in Pt-C
	Valence	1.454, 1.354 in C-C
		1.287 in Pt-C
Osmapyridinium	Total	1.258, 1.460, 1.304 in C-C
		1.304 in N-C
		1.390 in Os-C
		0.992 in Os-N
	Core	0.000, 0.000, 0.000 in C-C
		0.000 in N-C
		0.001 in Os-C
		0.002 in Os-N
	Valence	1.258, 1.460, 1.304 in C-C
		1.304 in N-C
		1.389 in Os-C
		0.990 in Os-N

Osmapentalene (monocation)	Total	1.4818, 1.2974, 1.3519 in C-C 1.1716, 0.8344 in Os-C
	Core	0.000, 0.000, 0.000, in C-C 0.001, 0.001 in Os-C
	Valence	1.4818, 1.2974, 1.3519 in C-C 1.1706, 0.8334 in Os-C
SrCs5 ⁺	Total	0.000, 0.000, 0.000, in C-C 0.001, 0.001 in Os-C
	Core	0.000 in Cs-Cs 0.000 in Sr-Cs
	Valence	0.104 in Cs-Cs 0.541 in Sr-Cs
Ge9 ⁴⁻	Total	0.6581, 0.7377, 0.2427, 0.7378
	Core	0.0204, 0.0205, 0.0043, 0.0228
	Valence	0.6377,0.7172,0.2384,0.715

Table S3. Delocalization indices and electronic aromaticity indices dissected into its core and valence contribution for Hf_3 (triplet/singlet), Pt-benzene, osmapyridinium, osmapentalene (monocation), $SrCs_5^+$ clusters computed at the BHandHLYP/x2c-TZVPall-2c level. The valence contribution is estimated by subtracting the core-electron response from the total.

Index	Contribution	Hf_3	Pt-	osmapyridinium	osmapentalene	SrCs_5^+
			benzene		(monocation)	
Iring	Total	0.423/0.982	0.027	0.022	0.005	0.000
	Core	0.000/0.000	0.000	0.000	0.000	0.000
	Valence	0.423/0.982	0.027	0.022	0.005	0.000
MCI	Total	0.423/0.982	0.042	0.031	0.002	0.000
	Core	0.000/0.000	0.000	0.000	0.000	0.000
	Valence	0.423/0.982	0.042	0.031	0.002	0.000

Table S4. Delocalization indices and electronic aromaticity indices dissected into its core RVE contribution for Ta₃O₃⁻, Au₃⁺, W@Au₁₂, and K₂[Th(C₈H₈)Cl₂]₃ clusters computed at the BHandHLYP/x2c-TZVPall-2c level. For the case of K₂[Th(C₈H₈)Cl₂]₃, all calculations were done on a BHandHLYP level with an x2c-TZVPall-2c basis for all atoms except for Th, which a Stuttgart-Bonn relativistic effective-core potential and the associated segmented valence basis sets for thorium were used, using the geometry reported in *Angew. Chem. Int. Ed Engl.*, 2022, 61, e202204337, using the Gaussian 16 program. The core-electron maps are unreliable because the RVE approximation is not well defined in these systems (see main text).

Index	Contribution	Ta ₃ O ₃ -	Au ₃ ⁺	W@Au ₁₂	$K_2[Th(C_8H_8)Cl_2]_3$
DI	Total	1.087 in	0.807	0.421, 0.421,	0.271 in Th-Th
		Ta-Ta		0.421 in Au-Au	
		0.978 in		0.559, 0.559 in	
		Ta-O		Au-W	
	Core	0.078 in	0.603	0.447, 0.395,	-
		Ta-Ta		0.446 in Au-Au	
		0.344 in		0.539, 0.583 in	
		Ta-O		Au-W	
Iring	Total	0.000	0.144	-	0.070
	Core	-0.012	-0.026	-	-
MCI	Total	0.001	0.144	-	0.134
	Core	-0.002	-0.026	-	-

Figure S10. Plots of the total J^{ind} map (left) and B^{ind_z} (right) for K₂[Th(C₈H₈)Cl₂]₃, all calculations were done on a BHandHLYP level with an x2c-TZVPall-2c basis for all atoms except for Th, which a Stuttgart-Bonn relativistic effective-core potential and the associated

segmented valence basis sets for thorium were used, using the geometry reported in *Angew*. *Chem. Int. Ed Engl.*, 2022, 61, e202204337, using the Gaussian 16 program.

Molecular geometries optimized at the TPSS-D3(BJ)/x2c-TZVPall-2c level incorporating the two-component relativistic treatment and spin-orbit interactions.

Al4 ²⁻			
Al	1.816158513	0.000000000	0.000000000
Al	0.000000000	-1.816158513	0.000000000
Al	0.000000000	1.816158513	0.000000000
Al	-1.816158513	0.000000000	0.000000000
Ga4 ²⁻			
Ga	1.757892914	0.000000000	0.000000000
Ga	0.000000000	-1.757892914	0.000000000
Ga	0.000000000	1.757892914	0.000000000
Ga	-1.757892914	0.000000000	0.000000000
In4 ²⁻			
In	2.015259842	0.000000000	0.000000000
In	0.000000000	-2.015259842	0.000000000
In	0.000000000	2.015259842	0.000000000
In	-2.015259842	0.000000000	0.000000000
Tl₄²-			
TI	2.075944594	0.000000000	0.000000000
TI	0.000000000	-2.075944594	0.000000000
T1	0.000000000	2.075944594	0.000000000
T1	-2.075944594	0.000000000	0.000000000
Ge_{12}^{2-}			
Ge	1.868138500	1.357282100	1.1545/3100
Ge	0.000000000	0.000000000	2.581703900
Ge	-1.868138500	-1.35/282100	-1.154573100
Ge	-2.309146200	0.000000000	1.1545/3100
Ge	1.868138500	-1.35/282100	1.154573100
Ge	-0.713565400	-2.196128500	1.1545/3100
Ge	0.000000000	0.000000000	-2.581703900
Ge	0.712565400	-2.196128500	-1.1545/3100
Ge	0.712565400	2.196128500	-1.1343/3100
Ge	-0./13565400	2.196128500	1.1545/3100
Ge	-1.868138500	1.35/282100	-1.1545/3100
Ge	2.309146200	0.0000000000	-1.1545/3100

Sn_{12}^{2-}			
Sn	0.810998200	2.495995700	-1.312222600
Sn	0.000000000	0.000000000	-2.934219000
Sn	-0.810998200	-2.495995700	1.312222600
Sn	0.810998200	-2.495995700	-1.312222600
Sn	-2.123220800	1.542610200	-1.312222600
Sn	-2.123220800	-1.542610200	-1.312222600
Sn	0.000000000	0.000000000	2.934219000
Sn	-2.624445200	0.000000000	1.312222600
Sn	2.123220800	1.542610200	1.312222600
Sn	2.624445200	0.000000000	-1.312222600
Sn	2.123220800	-1.542610200	1.312222600
Sn	-0.810998200	2.495995700	1.312222600
Pb_{12}^{2-}			
Pb	2.199736000	1.598201800	1.359511600
Pb	0.000000000	0.000000000	3.039960400
Pb	-2.199736000	-1.598201800	-1.359511600
Pb	-2.719023300	0.000000000	1.359511600
Pb	2.199736000	-1.598201800	1.359511600
Pb	-0.840224400	-2.585944800	1.359511600
Pb	0.000000000	0.000000000	-3.039960400
Pb	0.840224400	-2.585944800	-1.359511600
Pb	0.840224400	2.585944800	-1.359511600
Pb	-0.840224400	2.585944800	1.359511600
Pb	-2.199736000	1.598201800	-1.359511600
Pb	2.719023300	0.000000000	-1.359511600
Hf ₃ (tr	iplet)		
Hf	0.771620500	1.336485800	0.000000000
Hf	0.771620500	-1.336485800	0.000000000
Hf	-1.543240900	0.000000000	0.000000000
Hf (sin	glet)		
Hf	0.766281639	1.327084779	0.000000000
Hf	0.766289202	-1.327089118	0.000000000
Hf	-1.532570840	0.000004339	0.000000000
D 1			
Pt-benz		0.000207205	0 710001450
C	2.046962213	0.990207305	0./10981450
C	2.043508388	-0.3/5//5388	1.154210382
C	2.054601133	-1.214995323	0.000000000
C	2.043508388	-0.3/5//5388	-1.154210382
C	2.046962213	0.990207305	-0./10981450
Pt	0.082687451	-0.001625862	0.000000000
H	2.050022614	-2.295899834	0.000000000
H	2.034886010	-0.707249956	2.182675955
H	2.041078839	1.861615431	1.350284596
Н	2.034886010	-0.707249956	-2.182675955

Η	2.041078839	1.861615431	-1.350284596
С	-1.308744108	1.353323407	0.000000000
С	-1.313400745	-1.353419872	0.000000000
С	-2.685475263	1.231320147	0.000000000
С	-2.689452567	-1.225120213	0.000000000
Č	-3.356143116	0.004320846	0.000000000
Н	-0.926531363	2 378958836	0.000000000
Н	-3 286818371	2 140297627	0.000000000
Н	-4 444409585	0.006134346	0.000000000
Ц	3 20/1562851	2 121660082	0.000000000
11 11	-3.294302631	-2.131009982	0.000000000
п	-0.937030989	-2.381277784	0.000000000
Osm	apyridinium		
Os	0.037645000	0.033988500	0.000000000
Р	-0.804015100	0.002636900	2.158517300
Cl	-1.689182400	1.805486100	0.000000000
Cl	-1.430954200	-2.049921300	0.000000000
N	1.471668800	-1.304902600	0.000000000
Н	1 136908200	-2 275695900	0.000000000
р	-0.804015100	0.002636900	-2 158517300
ſ	2 761623400	1 291783200	0.000000000
C	2.701025400	1 176010200	0.000000000
C	2.791933900	-1.170019200	0.000000000
C	1 250046600	1.452065000	0.000000000
	1.550040000	1.433063000	0.000000000
П	1.02431/400	2.302001300	0.000000000
H	-0.641304500	1.152/28900	2.95511/500
H	-2.190048600	-0.174925000	2.19/085300
H	-0.3/4399500	-0.996589900	3.059499200
Н	-0.641304500	1.152728900	-2.955117500
Н	-0.374399500	-0.996589900	-3.059499200
Η	-2.190048600	-0.174925000	-2.197085300
Η	3.380880700	2.189824000	0.000000000
Η	4.515584900	0.074166000	0.000000000
Н	3.387036400	-2.086760100	0.000000000
Ocm	anantalana (catio	(n + 1)	
Osin		0 00000658	0.00000121
DS	-0.220040000	0.0000000038	-0.000000151
r C	-0.19423/030	-0.0034/3339	2.5/1259985
C	0.3960491/4	-1.869511322	0.058/005/9
C	1.695801612	-2.313828651	0.097713051
С	2.58/61/165	-1.231949493	0.058983390
Н	3.670487050	-1.335630159	0.073175433
С	1.930712038	0.000006378	0.000000672
С	2.587618511	1.231922114	-0.058979513
Η	3.670489524	1.335624436	-0.073171415
Cl	-2.553650757	-0.000000153	-0.000001549
Η	-1.323404971	-0.509595603	3.041110939
Η	0.841618687	-0.742903063	2.968543577

Η

С

-0.037331721

0.396021406

1.240195634

1.869501298

3.009086862

-0.058698818

С	1.695828065	2.313860078	-0.097712872
Н	-0.489502899	2.518731806	-0.047402694
Р	-0.194254064	0.003472816	-2.371240141
Н	-0.037325299	-1.240199065	-3.009085402
Н	-1.323401147	0.509590263	-3.041113700
Н	0.841622191	0.742901047	-2.968542910
Н	1.982986863	-3.359753705	0.143547411
Н	1.982987413	3.359734609	-0.143544148
Н	-0.489513320	-2.518737330	0.047402307
SrCs ₅	;+		
Cs	1.464917700	4.508553200	0.000000000
Cs	1.464917700	-4.508553200	0.000000000
Cs	-3.835204400	2.786439100	0.000000000
Cs	-3.835204400	-2.786439100	0.000000000
Cs	4.740573400	0.000000000	0.000000000
Sr	0.000000000	0.000000000	0.000000000
Ge94-			
Ge	1.580424500	0.000000000	-1.528060800
Ge	1.580424500	1.323339400	0.764030300
Ge	1.580424500	-1.323339400	0.764030300
Ge	-1.580424500	0.000000000	-1.528060800
Ge	-1.580424500	-1.323339400	0.764030300
Ge	-1.580424500	1.323339400	0.764030300
Ge	0.000000000	-2.040468200	-1.178064800
Ge	0.000000000	2.040468200	-1.178064800
Ge	0.000000000	0.000000000	2.356129600

Bi4⁴⁺

Bi	0.000000000	1.550121800	0.000000000
Bi	3.051391600	0.000000000	0.000000000
Bi	0.000000000	-1.550121800	0.000000000
Bi	-3.051391600	0.000000000	0.000000000