# SUPPORTING INFORMATION

# **Contents of the Supporting Information**

| 1. General equipment                                             | S3  |
|------------------------------------------------------------------|-----|
| 2. Synthesis of ligands and cages                                | S4  |
| 3. X-Ray crystallographic data for C1·NO <sub>3</sub>            |     |
| 4. NMR spectrometric host-guest experiments and cage disassembly |     |
| 5. Spectrophotometric experiments                                |     |
| 6. Rehm–Weller calculations                                      |     |
| 7. Molecular Modelling                                           | S36 |
| 8. Cell viability studies                                        |     |
|                                                                  |     |

# 1. General equipment

**NMR Experiments.** <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were recorded on a Bruker FT-NMR Avance 400 (Ettlingen, Germany) spectrometer at 300K, using TMS as an internal standard or a Bruker Neo500 spectrometer, with a 500 MHz Bruker (11.7 T) standard mouth (54mm) shielded magnet and two radio frequency channels, a magnetic field gradients unit equipped with BBOF Plus ATM.1H/BB/19F direct multinuclear probe (5mm) with field gradients on the z-axis and automatic frequency control, 1H channel, wideband channel (5N to 31P and direct observation of 19F), BBI. 1H/BB/ inverse probe (5mm) with field gradients on the z-axis. Wideband channel frequency interval of 5N to 31P. BCUII, accessory for air temperature control up to -40°C. Liquid nitrogen evaporator for experiments at lower temperatures. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) and referenced to residual solvent. Coupling constants (*J*) are reported in hertz (Hz). Standard abbreviations indicating multiplicity are used as follows: *s* = singlet, *d* = doublet, *t* = triplet, *q* = quartet, *m* = multiplet.

**High resolution Mass Spectrometry**. HR-ESI-MS experiments were performed using a SYNAPT XS high-definition mass spectrometer (Waters Corporation, Manchester, UK) equipped with an electrospray ionization (ESI) source. Capillary voltage was set to 1.5 kV operated in the positive ionization mode and in the resolution mode. Source settings were adjusted to keep intact the molecular cages. Typical values were cone voltage 20–40 V and source offset 4 V; source and desolvation temperatures were set to 110 and 350 °C, respectively. Cone and desolvation gas flows were 150 and 500 (L/h), respectively. Characterisation of molecular cages were performed by MALDI-TOF/TOF mass spectrometry experiments using a TIMS-TOFF Flex (Bruker) in MALDI operation, in reflector positive mode at 1000-5800 m/z rang and a laser intensity of 60 %. The analyses were performed in the mass spectrometry and proteomics facilities of SCSIE University of Valencia.

**Absorption and emission Spectrometric measurements.** Optical extinction spectra were recorded using a JASCO V-650 UV/vis spectrophotometer with a Single monochromator, 1200 lines/mm plane grating, Czerny-Turner mount, Double-beam equipped with a deuterium lamp (190 to 350 nm) and a Halogen lamp (330 to 900 nm), and wavelength range of 190 to 900 nm. Fluorescence spectroscopy was carried out on a JASCO FP- 8300 spectrofluorometer (Hitachi High Technologies) with high resolution of 1.0 nm and a wavelength range of 200 to 750 nm. Titration experiments have been carried out with a Perkin Elmer EnSpire 2300 Multimode Plate Reader equipped with fluorescence (monochromator wavelength range of 230 to 850 nm with an excitation and emission bandwidth of 5 nm), absorbance (monochromator wavelength range of 230 to 1000 nm with monochromator bandwidth of 5 nm) and luminescence detection.

#### 2. Synthesis of ligands and cages



**Figure S1.** Synthesis of molecular cages C1 and C2. Reagents and conditions: (a) Catalytic H<sub>2</sub>SO<sub>4</sub>, methanol, 70 °C, overnight; (b) N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O, methanol/toluene (1:1), 70 °C, 24 h; (c) Nicotinaldehyde, molecular sieves of 3 Å, DMSO, rt, 18 h; (d) Pd(NO<sub>3</sub>)<sub>2</sub> or Pd(CH<sub>3</sub>CN)<sub>4</sub>(BF<sub>4</sub>)<sub>2</sub>, acetonitrile, room temperature, overnight; (e) 4,4'-oxydi(benzohydrazide) (1), molecular sieves of 3 Å, DMSO, room temperature, overnight; (f) NaBArF, DCM, sonication, 30 min; (g) Isovaleraldehyde, catalytic HCl, ethanol, 0 °C to 85 °C, 24 h; (h) i. Hexamethylenetetramine, TFA, 85 °C, 24 h; ii. Aqueous solution of HCl 1M, room temperature, 24 h.

Compounds 1,<sup>[S1]</sup> 2·NO<sub>3</sub>,<sup>[S2]</sup> 2·BF<sub>4</sub>,<sup>[S3]</sup> 3,<sup>[S4]</sup> S3<sup>[S5]</sup> were prepared according to literature procedures.



Synthesis of dimethyl 4,4'-oxydibenzoate (S1): S1 was prepared by a modification of reported synthetic procedures.<sup>[S6,S7,S8]</sup> 4,4'-oxydibenzoic acid (4.0 g, 15,50 mmol) was dissolved in anhydrous methanol (70 mL) under N<sub>2</sub> atmosphere, and 1.0 mL of concentrated H<sub>2</sub>SO<sub>4</sub> was added. The resulting solution was heated at 70 °C over 24 h to obtain abundant white precipitate. The mixture was cooled down, vacuum filtered and washed with cold methanol to obtain S1 as a pure white solid (4.3 g, 96%).

<sup>1</sup>**H** NMR (400 MHz, Acetone-d<sub>6</sub>)  $\delta$  3.88 (6H, *s*, CO<sub>2</sub>C*H*<sub>3</sub>), 7.18 (4H, *d*, *J* = 8.9 Hz, b), 8.07 (4H, *d*, *J* = 8.8 Hz, c).





Synthesis of N'-((*E*)-pyridin-3-ylmethylene)-4-(4-(2-(((*E*)-pyridin-3-ylmethylene)amino)acetylphenoxy)benzohydrazide (S2). To a solution of 1 (50.0 mg, 174.6  $\mu$ mol) in 1.0 mL of DMSO with molecular sieves of 3 Å were added 50  $\mu$ L of nicotinaldehyde (532.6  $\mu$ mol). The resulting solution was stirred at room temperature over 18 h. To the reaction mixture were added 10 mL of ethyl acetate, the resulting precipitate was isolated by centrifugation at 7,000 rpm over 2 minutes and filtered to obtain S2 as a white powder (37,5 mg, 75%).

<sup>1</sup>**H NMR (600 MHz, DMSO-d**<sub>6</sub>) δ 7.23 (2H, *d*, *J* = 8.2 Hz, H-b and H-b'), 7.50 (1H, *dd*, *J* = 4.8, 8.0 Hz H-i), 8.02 (2H, *d*, *J* = 8.3 Hz, H-c and H-c'), 8.16 (1H, *d*, *J* = 7.5 Hz, H-j), 8.52 (1H, *s*, H-k), 8.57-8.80 (1H, *m*, H-h), 8.87 (1H, *s*, H-f), 12.02 (1H, *s*, N*H*).

<sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>) δ 119.3 (C-b and C-b'), 124.5 (C-i), 129.2 (C-g), 130.7 (C-c and C-c'), 134.0 (C-j), 145.3 (C-k)148.7 (C-f), 151.2 (C-e).

**HRMS (ESI)** m/z [M + H]<sup>+</sup> calculated for [C<sub>26</sub>H<sub>21</sub>N<sub>6</sub>O<sub>3</sub>]<sup>+</sup> 465.1670, found 465,1658.



Figure S3. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) of compound S2.



Figure S4. <sup>13</sup>C NMR (126MHz, DMSO- $d_6$ ) of compound S2.



Figure S5. HSQC NMR (500MHz, DMSO-*d*<sub>6</sub>) of compound S2.



Figure S6. COSY NMR (500MHz, DMSO-*d*<sub>6</sub>) of compound S2.



Synthesis of the Pd (II) Molecular Cage with NO<sub>3</sub><sup>-</sup> counterion (C1·NO<sub>3</sub>). 2·NO<sub>3</sub> (100 mg, 151.8  $\mu$ mol) and 1 (86.9 mg, 303.7  $\mu$ mol) were completely dissolved in 30 mL of anhydrous DMSO. The resulting solution was stirred at room temperature for 18 h, and then slowly poured into DCM (70 mL) until the formation of abundant white precipitate. The suspension was centrifuged at 10,000 rpm for 10 minutes,

the supernatant solution was decanted, and the precipitate was dried out to obtain C1·NO<sub>3</sub> pure as a whitegrey solid (162 mg, 52 %).

<sup>1</sup>**H NMR (400 MHz, DMSO-d**<sub>6</sub>) δ 7.19 (2H, *d*, *J* = 8.8 Hz, H-b and H-b'), 7.82 (1H, *dd*, *J* = 8.0, 5.8 Hz, H-i), 7.97 (2H, *d*, *J* = 8.8 Hz, H-c and H-c'), 8.33 (1H, *d*, *J* = 8.8 Hz, H-j), 8.46 (1H, *s*, H-k), 9.39 (1H, *d*, *J* = 6.5, H-h), 9.77 (1H, *m*, H-f), 12.29 (1H, *s*, N*H*).

<sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>) δ 118.8 (C-b and C-b'), 127.4 (C-g), 128.6 (C-a), 130.2 (C-c and C-c'), 133.7 (C-i), 138.5 (C-j), 143.1 (C-k), 149.0 (C-f), 151.3 (C-h), 159.2 (C-d), 162.7 (C-e).

**HRMS (ESI)** m/z [C-1 + NO<sub>3</sub>]<sup>3+</sup> calculated for C<sub>104</sub>H<sub>80</sub>N<sub>28</sub>O<sub>24</sub>Pd<sub>2</sub> 710.14, found 710.84.



**Figure S7**. <sup>1</sup>H NMR (400MHz, DMSO- $d_6$ ) of compound C1·NO<sub>3</sub>.



Figure S8. <sup>13</sup>C NMR (126MHz, DMSO- $d_6$ ) of compound C1·NO<sub>3</sub>.



Figure S9. HSQC NMR (500 MHz, DMSO-*d*<sub>6</sub>) of compound C1·NO<sub>3</sub>.



Figure S10. DOSY NMR (500MHz, DMSO-*d*<sub>6</sub>) of compound C1·NO<sub>3</sub>. D =  $4.90 \cdot 10^{-11} \text{ m}^2 \cdot \text{s}^{-1}$ , R<sub>h</sub> = 22.4 Å.



Figure S11. HRMS (SYNAPT XS high-definition mass spectrometer, Waters). Simulated (top) and measured (bottom) peaks of cage  $[C1 + NO_3]^{3+}$ .



Synthesis of the Pd (II) Molecular Cage with  $BF_4^-$  counterion (C1·BF<sub>4</sub>). 2·BF<sub>4</sub> (100 mg, 141.2 µmol) and 1 (80.9 mg, 282.5 µmol) were completely dissolved in of anhydrous DMSO (8.0 mL). The resulting solution was stirred at room temperature for 18 h, and then slowly poured into DCM (100 mL) until the formation of abundant white precipitate and left to sediment. The supernatant solution was removed, and the precipitate was dried out to obtain C1·BF<sub>4</sub> pure as a white-grey solid (52 mg, 52 %).

<sup>1</sup>**H** NMR (500 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.19 (1H, d, J = 8.7 Hz, H-b and H-b'), 7,78–7.87 (1H, m, H-i), 7.97 (1H, d, J = 8.7 Hz, H-c and H-c'), 8.31 (1H, s, H-d), 8.46 (1H, s, H-k), 9.38 (1H, d, J = 5.6, H-h), 9.78 (1H, s, H-f), 12.27 (1H, s, NH).

# <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>) δ 118.8 (C-b and C-b'), 127.4 (C-g), 128.5 (C-a), 130.2 (C-c and C-c'), 133.7 (C-i), 138.6 (C-j), 143.1 (C-k), 148.9 (C-f), 151.3 (C-h), 159.2 (C-d), 162.7 (C-e).

<sup>19</sup>F NMR (470 MHz, DMSO-d<sub>6</sub>) δ -148.3 (BF<sub>4</sub><sup>-</sup>).



**Figure S12**. <sup>1</sup>H NMR of **C1**·**BF**<sub>4</sub> (500 MHz, DMSO-*d*<sub>6</sub>).





**Figure S14**. <sup>19</sup>F NMR of C1·BF<sub>4</sub> (470 MHz, DMSO-*d*<sub>6</sub>).



Synthesis of the Pd (II) Molecular Cage with BArF<sup>-</sup> counterion (C1·BArF). C1·BF4 (150.0 mg, 66.9 µmol) and NaBArF (281.5 mg, 317.6 mg) were dissolved in DCM (33.5 mL) and sonicated for 30 minutes. The suspension was vacuum filtered, and the filtered solution concentrated under vacuum to obtain a yellowish oil. The residue was redissolved in MeCN (3,4 mL) and water was added (66 mL) to obtain

abundant white precipitate which was vacuum filtered to obtain C1·BF4 (242.7 mg, 71%) as a pure white powder.

<sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.18 (2H, *d*, *J* = 8.7 Hz, H-b and H-b'), 7.54–7.68 (8H, m, H-BArF), 7.72 (4H, *bs*, H-BArF), 7.82 (1H, *m*, H-i), 7.97 (2H, *d*, *J* = 8.7 Hz, H-c and H-c'), 8.31 (1H, *d*, *J* = 8.4 Hz, H-j), 8.46 (1H, *s*, H-k), 9.38 (1H, *d*, *J* = 5.4 Hz, H-h), 9.79 (1H, *s*, H-f), 12.27 (1H, *s*, NH).

<sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>) δ 117.7 (C-BArF), 118.8 (C-b and C-b'), 121.3 (C-BArF), 123.1 (C-BArF), 124.9 (C-g), 128.6 (C-a), 130.2 (C-c and C-c'), 133.7 (C-i), 134.0 (C-BArF), 138.7 (C-j), 143.1 (C-k), 148.8 (C-f), 151.3 (C-h), 159.2 (C-d), 160.4 (C-BArF), 160.8 (C-BArF), 161.1 (C-BArF), 161.4 (C-BArF), 162.6 (C-e).

<sup>19</sup>F NMR (470 MHz, DMSO-d<sub>6</sub>)  $\delta$  -61.6 (BArF<sup>-</sup>).



Figure S15. <sup>1</sup>H NMR of C1·BArF (600 MHz, DMSO-*d*<sub>6</sub>).



Figure S16. <sup>13</sup>C NMR of C1·BArF (150 MHz, DMSO- $d_6$ ).



**Figure S17**. <sup>19</sup>F NMR of **C1**·**BArF** (470 MHz, DMSO-*d*<sub>6</sub>).



Synthesis of the pure organic molecular cage (C2): Cavitand 3 (50.0 mg, 60.66 µmol) and linker 1 (34.7 mg, 121.3 µmol) were dissolved in anhydrous DMSO (10.0 mL) under N2 atmosphere with molecular sieves of 3Å to obtain an orange homogeneous solution. The resulting reaction mixture was stirred at room temperature over 18 h and then the solution was poured into AcOEt (40 mL) to obtain C2 as a yellowish solid that was isolated by centrifugation (10 minutes at 10,000 rpm) (67.1 mg, 82%).

<sup>1</sup>**H NMR (500MHz, DMSO-d<sub>6</sub>)** δ 0.94 (6H, *d*, *J* = 6.5 Hz, CH<sub>3</sub>-*i*Bu), 1.40 (1H, *s*, CH-*i*Bu), 1.95 (2H, *s*, CH<sub>2</sub>-*i*Bu), 4.60 (1H, *s*, H-g), 7.21 (2H, *s*, H-l and H-l'), 7.41 (1H, *s*, H-b), 8.04 (2H, *s*, H-k and H-k'), 8.97 (1H, *s*, H-h), 12.15 (1H, *s*, N*H*).

<sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>) δ 22.7 (*C*H<sub>3</sub>-iBu), 25.1 (*C*H-*i*Bu), 26.0 (C-g), 79.2, 118.4 (C-l and C-l'), 119.3 (C-b), 128.8 (C-m), 129.2 (C-k and C-k'), 129.9 (C-h), 158.3 (C-j), 165.2 (C-i).

**HRMS (ESI)** m/z [M + H]<sup>2+</sup> calculated for C<sub>152</sub>H<sub>154</sub>N<sub>16</sub>O<sub>28</sub> 1,326.06, found 1,326.10.







Figure S20. DOSY NMR (500MHz, DMSO-*d*<sub>6</sub>) of compound C2. D =  $4.44 \cdot 10^{-11} \text{ m}^2 \cdot \text{s}^{-1}$ , R<sub>hydrodynamic</sub> = 24.7 Å.



Figure S21. VT NMR (500MHz, DMSO-*d*<sub>6</sub>) of compound C2.



Figure S22. HR-MS (SYNAPT XS high-definition mass spectrometer, Waters). Simulated (top) and measured (bottom) peaks of cage  $[C2+2H]^{2+}$ .

### 3. X-Ray crystallographic data for C1·NO<sub>3</sub>

Single crystals of C1·NO<sub>3</sub> were grown by vapor diffusion of CH<sub>3</sub>OH to a solution of the cage in DMSO over a week. A suitable crystal was selected and placed on a Bruker D8 Venture Diffractometer. The crystal was kept at 120.0 K during data collection. Using Olex2<sup>[S9]</sup>, the structure was solved with the SHELXS<sup>[S10]</sup> structure solution program using Direct Methods and refined with the SHELXL<sup>[S11]</sup> refinement package using Least Squares minimisation. The structure contains disordered solvent molecules that could not be modeled, the corresponding contribution of disordered solvent molecules was handled by the solvent mask command in Olex2. The structure has 4 nitrate counter anions, only two of them could be located inside the cavity and the other two nitrate anions are presumably placed outside the cavity with a high disorder making it not possible to find them. The two nitrate anions in the cavity could be located, one of them without disorder, and the second one was modeled with a disorder over 3 positions, being only possible to fully find it in one of these 3 disordered positions. A twin law was used to model the enantiomeric disorder, i.e. the cage has a small helicity at the 50-50 ratio. CCDC deposition number 2295536. Crystal Data for C1·NO<sub>3</sub>: monoclinic, space group P2<sub>1</sub> (no. 4), a = 19.6620(13) Å, b =23.7645(17) Å, c = 19.8456(14) Å,  $\beta = 113.508(2)^{\circ}$ , V = 8503.4(10) Å<sup>3</sup>, Z = 4, T = 120.0 K,  $\mu$ (MoK $\alpha$ ) =  $0.315 \text{ mm}^{-1}$ ,  $Dcalc = 0.973 \text{ g/cm}^3$ , 113633 reflections measured ( $4.132^\circ \le 2\Theta \le 50.782^\circ$ ), 31019 unique  $(R_{\text{int}} = 0.0595, R_{\text{sigma}} = 0.0565)$  which were used in all calculations. The final  $R_1$  was 0.0449 (I > 2 $\sigma(I)$ ) and  $wR_2$  was 0.1162 (all data).

 Table S1. Crystal data and structure refinement for C1·NO3.

| CCDC number                          | 2295536                                                                |
|--------------------------------------|------------------------------------------------------------------------|
| Temperature/K                        | 120.0                                                                  |
| Crystal system                       | monoclinic                                                             |
| Space group                          | P21                                                                    |
| a/Å                                  | 19.6620(13)                                                            |
| b/Å                                  | 23.7645(17)                                                            |
| c/Å                                  | 19.8456(14)                                                            |
| a/°                                  | 90                                                                     |
| β/°                                  | 113.508(2)                                                             |
| $\gamma/^{\circ}$                    | 90                                                                     |
| Volume/Å <sup>3</sup>                | 8503.4(10)                                                             |
| Z                                    | 4                                                                      |
| $\rho_{calc}g/cm^3$                  | 0.973                                                                  |
| $\mu/\text{mm}^{-1}$                 | 0.315                                                                  |
| F(000)                               | 2566.0                                                                 |
| Crystal size/mm <sup>3</sup>         | 0.201 	imes 0.164 	imes 0.056                                          |
| Radiation                            | MoKa ( $\lambda = 0.71073$ )                                           |
| $2\Theta$ range for data collection/ | <sup>9</sup> 4.132 to 50.782                                           |
| Index ranges                         | -23 $\leq$ h $\leq$ 23, -28 $\leq$ k $\leq$ 28, -23 $\leq$ l $\leq$ 23 |
| Reflections collected                | 113633                                                                 |
| Independent reflections              | $31019 [R_{int} = 0.0595, R_{sigma} = 0.0565]$                         |
| Data/restraints/parameters           | 31019/346/1522                                                         |
| Goodness-of-fit on F <sup>2</sup>    | 1.037                                                                  |
| Final R indexes [I>=2 $\sigma$ (I)]  | $R_1 = 0.0449, wR_2 = 0.1073$                                          |
| Final R indexes [all data]           | $R_1 = 0.0628, wR_2 = 0.1162$                                          |
| Largest diff. peak/hole / e Å-3      | 0.65/-0.33                                                             |
| Flack parameter                      | 0.487(17)                                                              |



Figure S23. X-Ray crystal structure of cage C1·NO<sub>3</sub>.

# 4. NMR spectrometric host-guest experiments and cage disassembly

NMR titration experiments were carried out on an AVA400 NMR spectrometer equipped with a BBFO<sup>+</sup> room temperature probe featuring two channels: <sup>1</sup>H and  $X/^{19}F$  (optimised).

The titration experiments were performed using a 10 mM solution of DOXO in CD<sub>3</sub>OD and a 500  $\mu$ M solution of C1·BArF in a DCM- $d_2$ /CD<sub>3</sub>OD (9:1) mixture in order to achieve the complete dissolution of the molecular cage and DOXO. The spectra stacked in Figure S24 show chemical shifts after the addition of increasing equivalents of DOXO to a C1·BArF solution. In previous experiments, it was observed that the presence of water promotes precipitation of the cage, which makes C1 not suitable for biological applications. Increasing equivalents of DOXO eventually leads to the disassembly of the molecular cage.



**Figure S24**. Titration experiments of C1·BArF (500 μM) *versus* DOXO (10 mM in CD<sub>3</sub>OD) in a DCM-*d*<sub>2</sub>/CD<sub>3</sub>OD (9:1) mixture (0–2.0 equivalents).

The low solubility of C2 in DMSO- $d_6/D_2O$  mixtures for NMR experiments led to carrying out the titration experiments with DOXO in a DMSO- $d_6/CD_3OD$  (8:2) mixture (Figure S25). The chemical shifts of C2 suggest the encapsulation of DOXO. However, the weak interaction observed is likely associated with the high amount of DMSO- $d_6$  present in the sample.



Figure S25. Titration experiments of C2 (500  $\mu$ M) versus DOXO (10 mM in CD<sub>3</sub>OD) in a DMSO $d_6$ /CD<sub>3</sub>OD (8:2) mixture.

Despite that the changes observed in the chemical shifts in the titrations, they show binding between the host at the guest (Figure S26).

Investigation with the metallo-organic cage was carried out using a CD<sub>2</sub>Cl<sub>2</sub>/CD<sub>3</sub>OD (9:1) solution of C1·BArF, to which DOXO was added in CD<sub>3</sub>OD (Figure S26a). These experiments showed noticeable chemical displacements of the protons  $H_f (\Delta \delta = -0.04 \text{ ppm})$  and  $H_h$  and  $H_j (\Delta \delta = 0.10 \text{ ppm})$  (FigureS26a). The upfield shift of the inward-facing  $H_f$  protons evidences the encapsulation of DOXO inside the cavity. While downfield shift of the outer protons  $H_h$  and  $H_j$  upon DOXO binding are also observed, these could be due to subtle conformational changes (e.g., a twisting of the hydrazone group leading to a change in a N···H<sub>h</sub>–C H-bond) or electronic effect–communication through the ring system.<sup>S12,S13</sup> The lack of chemical shift change in  $H_k$  suggests that the binding mode is different to what is normally observed in Pd<sub>2</sub>L<sub>4</sub> cages, wherein the inward facing *ortho*-pyridyl H atoms create a H-bond donor pocket that that can interact with H-bond acceptor groups.<sup>S12</sup> It should also be noted that increasing amounts of guest (>0.6 eq) produce a decrease of integration of cage signals suggestive of disassembly, possibly by complexation of Pd<sup>2+</sup> by the NH<sub>2</sub> moiety of DOXO. This again highlights the challenges in using metallo-organic cages in bio-medical applications.

For cage **C2**, it was found that DMSO- $d_6$ /CD<sub>3</sub>OD (8:2) was an optimal mixture in terms of cage solubility to probe binding by NMR (Figure S26b). The addition of DOXO revealed upfield changes of the protons inside the cavity H<sub>h</sub> ( $\Delta\delta = -0.020$  ppm), H<sub>k/k'</sub> ( $\Delta\delta = -0.02$  ppm), H<sub>I/l'</sub> ( $\Delta\delta = -0.02$  ppm) and H<sub>g</sub> ( $\Delta\delta = 0.04$ ppm). The upfield shift in three of these signals is consistent with the formation of CH··· $\pi$  interaction between the anthracycline system of DOXO and the inward-facing protons of **C2**. Similar shielding effects have been observed for many different cage systems.<sup>S14,S15,S16</sup>



**Figure S26**. Partial 1H NMR spectra (400 MHz, 25 °C) for the titration of cages C1 and C2 with DOXO. (a) Addition of DOXO (CD<sub>3</sub>OD) to C1·BArF (0.5 mM, CD<sub>2</sub>Cl<sub>2</sub>/CD<sub>3</sub>OD 9:1); (b) Addition of DOXO (CD<sub>3</sub>OD) to C2 (0.5 mM, DMSO- $d_6$ /CD<sub>3</sub>OD 8:2).

Ligand displacement of cage C1 NO<sub>3</sub> was obtained by recording the <sup>1</sup>H NMR spectra of C1 NO<sub>3</sub> in DMSO- $d_6$  (600 µL, 0.5 mM) after the addition of phosphate buffer (1 µL, 150 µM, pH 7.2) over a period of 4 days (Figure S27).



**Figure S27**. <sup>1</sup>H NMR disassembly experiment of cage **C1·NO**<sub>3</sub> in DMSO-*d*<sub>6</sub> (0.5 mM) with phosphate buffer (150 μM, pH 7.2) monitored over time (0–4 days), resulting in 0.2% H<sub>2</sub>O in DMSO-*d*<sub>6</sub>.

#### 5. Spectrophotometric experiments

#### **Experimental details**

All UV-visible and spectrofluorimetric titration experiments were carried out on a Perkin Elmer EnSpire 2300 Multimode Plate Reader. The titration experiments and the Job Plot method were performed at room temperature using a 96-well plate. The titration experiments were carried out by adding increasing equivalents (0-2.3 or 2.8) of 4 mM (C2) or 10 mM (C1) molecular cage stock solutions in DMSO to a 50 µM solution of DOXO in phosphate buffer (without NaCl) at pH 7.1. The measurements were made with maximal volumes of 250 µL and a 50 µM concentration. All experiments were performed with phosphate buffer (without NaCl) at pH 7.1 or milli-Q water with a percentage of DMSO (0-10%). All emission spectra were recorded in a 700-250 nm wavelength range, while excitation spectra were recorded in a 510-700 nm wavelength range for spectrofluorimetric measurements with an excitation wavelength of 470 nm (excitation wavelength for DOXO). The binding stoichiometry between the molecular cage (C1 or C2) with DOXO was determined by Job Plot's Method (or Method of Continuous Variation) by fluorimetry titration experiments. In a 96-well plate, serial molecular cage's (C1 or C2) solutions were placed in phosphate buffer (without NaCl) at pH 7.1 with decreasing concentration, to which an increasing number of equivalents of DOXO were added to have a 0-1.0 molar concentration series of both species with a 0.05 molar fraction range. The titrations were performed in quadruplicate, and the standard error was obtained for each titration point.



Figure S28. Fluorescence emission spectra (H<sub>2</sub>O with 0–10% DMSO and milli-Q water, rt) of the titration of doxorubicin (50 μM) with cage C1 (0 to 2.3 equivalents). Representative titration experiment (left) and variation of the fluorescence as the average with standard error of 4 independent titrations (right). Perkin Elmer EnSpire 2300 Multimode Plate Reader.



Figure S29. (a) Fluorescence emission spectra (H<sub>2</sub>O with 0–10% DMSO and phosphate buffer 100 μM, pH 7.1, rt) of the titration of doxorubicin (50 μM) with cage C2 (0 to 2.8 equivalents). Representative titration experiment (left) and variation of the fluorescence as the average of 4 independent titrations with the corresponding standard error for each titration pount (right). Perkin Elmer EnSpire 2300 Multi-mode Plate Reader.



**Figure S30**. Job plot obtained from the fluorescence emission spectra (H<sub>2</sub>O with 10% DMSO and phosphate buffer 1mM, pH 7.1, rt) of the titration of doxorubicin with cage C-2 (total concentration 50  $\mu$ M). The blue line represents the fitting to the 1:1 Host–Guest binding model.

A host-guest release experiment was carried out on a JASCO FP- 8300 spectrofluorometer with an excitation wavelength of 470 nm and the emission spectra were recorded in the 510–700 nm range. Two 50  $\mu$ M stock solutions of DOXO were prepared with phosphate buffer (without NaCl) at pH 7.2 and 6% of

DMSO (one was used as reference). In one of the solutions, the 1.0 equivalent of C2 was added to completely encapsulate the DOXO inside the cage's cavity. To perform the release experiment, an increasing amount of DMSO was added (6–55%) reducing the hydrophobic effect, as well as producing a dilution of the samples from 50  $\mu$ M to 25  $\mu$ M. The fluorescence spectra were recorded after each addition of DMSO (Figure S31).



Figure S31. Doxorubicin release of cage encapsulated doxorubicin. Experiment conditions: equimolar solution containing cage (50  $\mu$ M) and doxorubicin (50  $\mu$ M) in phosphate buffer (1 mM, pH 7.2) with increasing amounts of DMSO from 6% to 55%. The green dot indicates the release at 2% DMSO as determined in the binding experiments. The blue line indicates the expected release changes by dilution from 50  $\mu$ M to 25  $\mu$ M in a solution containing 2% DMSO.



**Figure S32**. (a) Absorbance spectrum (H<sub>2</sub>O with 5% DMSO and phosphate buffer 100  $\mu$ M, pH 7.1, rt) of cage C1·NO<sub>3</sub> (20  $\mu$ M). (b) Absorbance spectrum (H<sub>2</sub>O with 5% DMSO and phosphate buffer 100  $\mu$ M, pH 7.1, rt) of cage C2 (20  $\mu$ M).



**Figure S33**. Absorbance spectrum (H<sub>2</sub>O with 5% DMSO and phosphate buffer 100  $\mu$ M, pH 7.1, rt) of doxorubicin (50  $\mu$ M).

#### 6. Rehm–Weller calculations

For photo-induced electron transfer between an acceptor and a donor the change in standard Gibbs energy can be approximated as described in the Rehm–Weller equation.<sup>[S17]</sup>

$$\Delta G^{\circ} = N_A \ e \left( \left[ E^{\circ}_{(D^{+}/D)} - E^{\circ}_{(A/A^{-})} \right] - SE \right)$$
 Eq S1

In Eq 1 *e* is the elementary charge, N<sub>A</sub> is the Avogadro constant,  $E^{\circ}_{(D^{+},D)}$  is the standard electrode potential of the donor cation radical resulting from the electron transfer,  $E^{\circ}_{(A/A^{-})}$  is the standard electrode potential of the acceptor and SE is the energy difference between the fundamental electronic state and the first singlet excited state in eV.

The singlet energy excitation of doxorubicin is 2.54 eV,<sup>[S18]</sup> the reduction potential of doxorubicin is -0.45 V vs. Ag/AgCl/KCl (3 M),<sup>[S19]</sup> the oxidation potential of resorcinol is observed over a potential range of 1.00–1.50 V vs. RHE,<sup>[S 20]</sup> reduction potential of tetrakis(pyridine)palladium(II) ([Pd(Py)\_4]^2+) is -1.365 V vs. Fc/Fc<sup>+</sup>,<sup>[S21]</sup> oxidation potential of doxorubicin -0.67 V vs. Ag/AgCl.<sup>[S22]</sup>

For an estimation of the  $\Delta G^{\circ}$  associated to a PET process, the Rehm–Weller equation was used (Eq S1). Calculations were done using values obtained from the literature to the constituent parts of the cages and hence there is some degree of uncertainty in the calculations. Nevertheless, the high exergonicity of the calculated  $\Delta G^{\circ}$  is qualitatively indicative of the feasibility of a PET process.

The obtained  $\Delta G^{\circ}$  values for the photoinduced electron transfer were -120 kJ/mol for the PET from resorcinol to doxorubicin, and -84 kJ/mol for the PET from doxorubicin to tetrakis(pyridine)palladium(II).

# 7. Molecular Modelling

The structure of cage C2 and the supramolecular complex of encapsulated doxorubicin in cage C2 were modelling with the Spartan' 20 software using the MMFF force field and a standard optimization.<sup>[S23]</sup> The geometries and the XYZ coordinates are provided below.



Figure S34. Optimized structure (MMFF, Wavefunction Spartan) of cage C2.

XYZ Coordinates of cage C2

| ~   |                       |            |           |     |            |           |                       |          |             |            |           |     |            |            |                       |
|-----|-----------------------|------------|-----------|-----|------------|-----------|-----------------------|----------|-------------|------------|-----------|-----|------------|------------|-----------------------|
| С   | -7.500000             | 5.442000   | 6.713000  | С   | 9.728000   | 2.258000  | -5.846000             | С        | -1.889000   | -0.789000  | -7.584000 | N   | 9.346000   | 1.400000   | 3.299000              |
| н   | -6.965000             | 6.344000   | 7.027000  | н   | 9.254000   | 3.009000  | -6.487000             | С        | 0.825000    | -1.363000  | -7.238000 | N   | -1.158000  | 2.663000   | 9.004000              |
| С   | -6 707000             | 4 258000   | 7 283000  | C   | 11 337000  | -2 756000 | -0.877000             | C        | -1 049000   | 0 153000   | -6 984000 | н   | -0 794000  | 3 597000   | 8 850000              |
| č   | 5 285000              | 2.067000   | 8 363000  | ŭ   | 11 358000  | 3 447000  | 0.028000              | č        | 1 375000    | 2 002000   | 8 030000  | N   | 2 484000   | 2 /31000   | 8 823000              |
| Š   | -3.203000             | 2.007000   | 0.00000   |     | 0.770000   | -3.447000 | -0.020000             | 0        | = 1.37 3000 | -2.002000  | =0.033000 |     | -2.404000  | 2.401000   | 0.023000              |
| Ç   | -7.335000             | 3.018000   | 7.518000  | C   | 9.779000   | 2.805000  | -4.419000             | C        | -0.022000   | -2.295000  | -7.855000 | C   | 14.406000  | 1.814000   | -0.818000             |
| С   | -5.334000             | 4.362000   | 7.575000  | С   | 9.876000   | 3.837000  | -1.795000             | С        | 0.304000    | -0.138000  | -6.797000 | н   | 14.189000  | 0.839000   | -0.365000             |
| С   | -4.626000             | 3.281000   | 8.116000  | С   | 8.876000   | 3.797000  | -4.005000             | н        | -1.444000   | 1.109000   | -6.646000 | С   | 15.737000  | 1.679000   | -1.562000             |
| č   | -6 652000             | 1 921000   | 8 083000  | č   | 10 714000  | 2 326000  | -3 478000             | Ĥ        | -2 028000   | -2 727000  | -8 520000 | Ĥ   | 16 536000  | 1 374000   | -0.877000             |
| ŭ   | 0.002000              | 2 002000   | 7 261000  | č   | 10 902000  | 2.020000  | 2 170000              | ü        | 0.271000    | 2.752000   | 0.020000  |     | 16.000000  | 2 620000   | 2 024000              |
|     | -0.304000             | 2.903000   | 7.201000  | č   | 10.003000  | 2.040000  | -2.170000             |          | 0.371000    | -3.233000  | -0.109000 |     | 10.032000  | 2.020000   | -2.024000             |
| C   | -7.527000             | 5.403000   | 5.184000  | C   | 8.923000   | 4.316000  | -2.703000             | н        | 0.922000    | 0.588000   | -6.277000 | н   | 15.669000  | 0.922000   | -2.350000             |
| С   | -7.581000             | 5.355000   | 2.364000  | н   | 11.394000  | 1.532000  | -3.776000             | С        | -3.948000   | -0.095000  | -6.707000 | С   | 14.553000  | 2.835000   | 0.312000              |
| С   | -6.556000             | 6.088000   | 4.439000  | С   | 11.110000  | -1.360000 | -0.281000             | С        | -5.468000   | 0.914000   | -4.589000 | н   | 15.421000  | 2.601000   | 0.938000              |
| С   | -8 508000             | 4 672000   | 4 483000  | С   | 10 731000  | 1 223000  | 0 802000              | С        | -4 793000   | 0 994000   | -6 918000 | н   | 13 679000  | 2 834000   | 0 970000              |
| č   | -8 576000             | 4 657000   | 3.07/000  | č   | 11 52/000  | -0.204000 | -0.975000             | č        | -3.880000   | -0 703000  | -5.450000 | Ĥ   | 1/ 685000  | 3 8/8000   | -0.083000             |
| Š   | -0.370000             | 4.037000   | 2.074000  | č   | 11.324000  | -0.204000 | -0.37 3000            | 0        | -3.000000   | -0.703000  | -3.430000 |     | 14.003000  | 3.040000   | -0.003000             |
| 6   | -0.581000             | 6.071000   | 3.036000  | C C | 10.472000  | -1.185000 | 0.961000              | C        | -4.628000   | -0.191000  | -4.387000 | C C | 13.065000  | -4.402000  | -1.952000             |
| н   | -9.242000             | 4.106000   | 5.050000  | С   | 10.287000  | 0.093000  | 1.505000              | С        | -5.542000   | 1.507000   | -5.857000 | н   | 12.331000  | -4.719000  | -2.702000             |
| С   | -9.690000             | 3.889000   | 2.351000  | С   | 11.370000  | 1.092000  | -0.441000             | н        | -4.856000   | 1.454000   | -7.901000 | С   | 14.441000  | -4.448000  | -2.623000             |
| н   | -9 795000             | 4 365000   | 1 370000  | н   | 11 984000  | -0.313000 | -1 953000             | н        | -3 238000   | -1 564000  | -5 287000 | н   | 15 234000  | -4 158000  | -1 924000             |
| ĉ   | -7 367000             | 0.600000   | 8 373000  | ĉ   | 11 866000  | 2 330000  | _1 101000             | Ĥ        | -1 516000   | -0.646000  | -3 /07000 | Ĥ   | 14 478000  | -3 770000  | -3 /82000             |
| ň   | -1.301000             | 0.000000   | 0.070000  | ň   | 12.001000  | 2.330000  | 0.465000              |          | 6 102000    | 0.040000   | 6.010000  |     | 14.660000  | -5.110000  | -0.402000             |
| н   | -0.805000             | 0.065000   | 9.146000  | н   | 12.021000  | 3.134000  | -0.465000             | н        | -0.183000   | 2.372000   | -6.019000 | н   | 14.662000  | -5.457000  | -2.987000             |
| С   | -9.304000             | 2.425000   | 2.139000  | С   | 13.280000  | 2.1/1000  | -1.820000             | C        | 2.251000    | -1.735000  | -7.026000 | С   | 13.024000  | -5.405000  | -0.798000             |
| С   | -8.605000             | -0.276000  | 1.727000  | н   | 13.274000  | 1.410000  | -2.609000             | С        | -6.258000   | 1.515000   | -3.480000 | н   | 13.686000  | -5.098000  | 0.019000              |
| С   | -8.677000             | 2.021000   | 0.951000  | н   | 13.543000  | 3.114000  | -2.321000             | 0        | 2.553000    | -2.918000  | -6.893000 | н   | 13.342000  | -6.398000  | -1.135000             |
| ĉ   | -9 5/8000             | 1 // 8000  | 3 126000  | Ċ   | 12 7/19000 | -2 952000 | -1 505000             | õ        | -6 50/000   | 2 718000   | -3 /95000 | н   | 12 012000  | -5 51/000  | _0.307000             |
| č   | 0.025000              | 0.096000   | 2 022000  | ŭ   | 12.743000  | 2.552000  | 0.770000              | Ň        | 2 152000    | 0.692000   | 7.002000  |     | 10 622000  | 2 0/1000   | 7 715000              |
| Š   | -9.233000             | 0.000000   | 2.933000  |     | 13.304000  | -2.039000 | -0.770000             | IN       | 3.152000    | -0.062000  | -7.002000 |     | 10.033000  | -2.041000  | -7.715000             |
| C   | -8.332000             | 0.678000   | 0.739000  | н   | 12.886000  | -2.291000 | -2.369000             | н        | 2.868000    | 0.266000   | -7.221000 | н   | 10.311000  | -1.822000  | -7.961000             |
| н   | -9.999000             | 1.756000   | 4.065000  | С   | 10.595000  | -3.033000 | -6.178000             | N        | 4.459000    | -0.933000  | -6.722000 | С   | 12.070000  | -2.993000  | -8.220000             |
| С   | -7.363000             | -0.313000  | 7.140000  | н   | 10.941000  | -4.049000 | -5.942000             | N        | -6.672000   | 0.636000   | -2.492000 | н   | 12.733000  | -2.271000  | -7.731000             |
| Ċ   | -7 405000             | -2 001000  | 4 874000  | н   | 11 335000  | -2 359000 | -5 731000             | н        | -6 530000   | -0.365000  | -2 576000 | н   | 12 123000  | -2 814000  | -9 299000             |
| č   | 9 27/000              | 0.207000   | 6 161000  | Ċ   | 11 122000  | 2.0000000 | 6 514000              | N        | 7 225000    | 1 122000   | 1 405000  |     | 12.120000  | 2.000000   | 0.200000              |
| č   | -0.374000<br>6.353000 | 1.071000   | 6.034000  | ŭ   | 11.123000  | 2.003000  | =0.314000             |          | 1 204000    | 10 660000  | -1.403000 |     | 0 701000   | -3.3330000 | -0.023000             |
| C C | -0.352000             | -1.271000  | 0.934000  |     | 11.712000  | 1.310000  | -5.994000             | 0        | 1.394000    | 10.000000  | -0.906000 |     | 9.721000   | -3.017000  | -0.401000             |
| С   | -6.372000             | -2.115000  | 5.816000  | н   | 10.973000  | 1.698000  | -7.533000             | С        | 2.310000    | 9.780000   | -1.439000 | н   | 9.948000   | -4.855000  | -8.194000             |
| С   | -8.429000             | -1.057000  | 5.038000  | 0   | 7.938000   | 4.218000  | -4.922000             | С        | 4.169000    | 8.063000   | -2.625000 | н   | 9.845000   | -3.712000  | -9.544000             |
| н   | -9.142000             | 0.552000   | 6.279000  | н   | 7.393000   | 4.930000  | -4.500000             | С        | 2.982000    | 8.836000   | -0.658000 | н   | 8.666000   | -3.629000  | -8.242000             |
| Ċ   | -9 560000             | -0.955000  | 1 013000  | 0   | 6 869000   | 2 309000  | -6 / 98000            | č        | 2 58/000    | 9 891000   | -2.802000 | Ċ   | 11 977000  | 3 37/1000  | -6 59/1000            |
| ŭ   | 0.641000              | 1 014000   | 2 401000  | ŭ   | 7 204000   | 2.007000  | E 061000              | č        | 2.504000    | 0.024000   | 2 207000  | ŭ   | 12 10 1000 | 2 726000   | -0.004000<br>5 570000 |
| П   | -9.041000             | -1.914000  | 3.491000  | П   | 7.304000   | 3.007000  | -5.901000             | U U      | 3.303000    | 9.024000   | -3.397000 | П   | 12.194000  | 3.720000   | -0.079000             |
| C   | -10.976000            | -0.795000  | 4.638000  | 0   | 9.870000   | 4.372000  | -0.533000             | C        | 3.900000    | 7.967000   | -1.252000 | C   | 13.320000  | 3.063000   | -7.261000             |
| н   | -11.062000            | 0.158000   | 5.173000  | н   | 10.170000  | 3.698000  | 0.114000              | н        | 2.786000    | 8.761000   | 0.409000  | н   | 13.855000  | 2.280000   | -6./15000             |
| н   | -11.710000            | -0.743000  | 3.822000  | 0   | 10.546000  | 2.499000  | 1.284000              | н        | 2.071000    | 10.637000  | -3.403000 | н   | 13.959000  | 3.953000   | -7.278000             |
| С   | -8.768000             | 0.767000   | 9.030000  | н   | 10.110000  | 2.433000  | 2.171000              | н        | 3.697000    | 9.097000   | -4.466000 | н   | 13,182000  | 2.726000   | -8.294000             |
| Ĥ   | -9 196000             | -0 232000  | 9 196000  | 0   | 10 009000  | -2 252000 | 1 687000              | н        | 4 367000    | 7 205000   | -0 634000 | C   | 11 282000  | 4 509000   | -7 348000             |
| ÷.  | 0.461000              | 1 27/000   | 0 247000  | ŭ   | 0 722000   | 2.232000  | 1.007000              | <u>,</u> | 0.420000    | 10 1200000 | 0.004000  | ŭ   | 11.202000  | F 265000   | 7 460000              |
| П   | -9.401000             | 1.274000   | 0.347000  | П   | 9.733000   | -2.972000 | 1.070000              | Č,       | 0.420000    | 10.120000  | -0.090000 |     | 11.900000  | 5.505000   | -7.409000             |
| C   | -8.900000             | 5.636000   | 7.369000  | 0   | 9.098000   | -4.186000 | 0.045000              | C        | -1.549000   | 9.125000   | 1.619000  | н   | 10.405000  | 4.873000   | -6.805000             |
| н   | -8.773000             | 5.650000   | 8.461000  | н   | 8.286000   | -4.719000 | 0.244000              | С        | 0.177000    | 10.755000  | 1.121000  | н   | 10.961000  | 4.188000   | -8.344000             |
| н   | -9.550000             | 4.779000   | 7.159000  | 0   | 7.004000   | -4.314000 | -4.271000             | С        | -0.336000   | 9.007000   | -0.475000 | С   | -8.768000  | 1.536000   | 10.375000             |
| С   | -11.103000            | 4.094000   | 2.973000  | н   | 6.858000   | -3.660000 | -4.989000             | С        | -1.311000   | 8.499000   | 0.387000  | н   | -8.363000  | 2.542000   | 10.218000             |
| ŭ   | 11 1/3000             | 3 604000   | 3 003000  |     | 6 / 81000  | 2 462000  | 6 164000              | č        | 0 708000    | 10.250000  | 1 085000  |     | 10.206000  | 1 702000   | 10.876000             |
|     | 11.143000             | 5.034000   | 2.072000  | Ň   | 5.401000   | -2.402000 | -0.104000<br>6.426000 | ŭ        | -0.750000   | 11.230000  | 1.000000  | , i | 10.200000  | 2.204000   | 11.070000             |
| П   | -11.204000            | 5.174000   | 3.072000  | П   | 5.500000   | -2.210000 | -0.430000             |          | 0.750000    | 11.030000  | 1.400000  |     | -10.220000 | 2.204000   | 11.004000             |
| U   | -8.403000             | 2.998000   | 0.019000  | C   | 7.959000   | 5.344000  | -2.253000             | н        | -0.162000   | 8.522000   | -1.433000 | н   | -10.673000 | 0.731000   | 11.073000             |
| н   | -7.989000             | 2.564000   | -0.769000 | Н   | 8.052000   | 5.732000  | -1.224000             | н        | -1.845000   | 7.601000   | 0.093000  | н   | -10.816000 | 2.232000   | 10.138000             |
| 0   | -7.551000             | 5.364000   | 0.994000  | С   | 9.592000   | 0.226000  | 2.805000              | н        | -0.970000   | 10.734000  | 2.945000  | С   | -7.926000  | 0.851000   | 11.453000             |
| Ĥ   | -7 915000             | 4 520000   | 0 649000  | Ĥ   | 9 279000   | -0.696000 | 3 326000              | С        | 5 115000    | 7 138000   | -3 306000 | н   | -6 863000  | 0.858000   | 11 197000             |
| ö   | -8 235000             | -1 572000  | 1 / 72000 | č   | 6 876000   | -5 022000 | -1 618000             | č        | -2 555000   | 8 601000   | 2 58/000  | ü   | -8 238000  | -0 189000  | 11 601000             |
| ň   | -0.20000              | - 1.372000 | 0.040000  | ŭ   | 6.005000   | -0.022000 | - 1.0 10000           | č        | -2.000000   | 6.001000   | 2.004000  |     | -0.230000  | 1 272000   | 10,440000             |
| н   | -8.004000             | -2.022000  | 2.313000  | н   | 0.005000   | -5.318000 | -2.328000             | 0        | 4.931000    | 0.043000   | -4.484000 | н   | -8.024000  | 1.372000   | 12.412000             |
| 0   | -7.450000             | -2.790000  | 3.746000  | С   | 5.238000   | U.104000  | -6.685000             | 0        | -2.379000   | 8.760000   | 3.789000  | С   | -9.645000  | 6.925000   | 6.940000              |

| Н  | -6.687000 | -3.421000 | 3.780000  | Н | 4.853000  | 1.120000  | -6.882000 | N  | 6.167000  | 6.676000 | -2.530000 | Н | -9.797000  | 6.912000  | 5.854000 |
|----|-----------|-----------|-----------|---|-----------|-----------|-----------|----|-----------|----------|-----------|---|------------|-----------|----------|
| 0  | -5.313000 | -1.418000 | 7.817000  | 0 | 0.604000  | -8.682000 | 2.908000  | н  | 6.331000  | 7.031000 | -1.594000 | С | -11.032000 | 6.959000  | 7.588000 |
| н  | -5.109000 | -0.553000 | 8.235000  | С | 1.766000  | -8.074000 | 2.489000  | N  | 7.022000  | 5.758000 | -3.050000 | н | -10.961000 | 6.992000  | 8.680000 |
| 0  | -4.624000 | 0.970000  | 8.869000  | С | 4.185000  | -6.906000 | 1.715000  | N  | -3.651000 | 7.964000 | 2.022000  | н | -11.614000 | 6.075000  | 7.309000 |
| н  | -3.683000 | 1.229000  | 9.039000  | С | 1.807000  | -7.231000 | 1.374000  | н  | -3.801000 | 7.949000 | 1.020000  | н | -11.592000 | 7.842000  | 7.258000 |
| 0  | -4.638000 | 5.521000  | 7.345000  | С | 2.931000  | -8.360000 | 3.200000  | N  | -4.568000 | 7.382000 | 2.838000  | С | -8.882000  | 8.202000  | 7.295000 |
| Н  | -5.024000 | 5.992000  | 6.575000  | С | 4.137000  | -7.766000 | 2.821000  | 0  | 5.222000  | 2.602000 | 9.768000  | н | -7.952000  | 8.286000  | 6.725000 |
| 0  | -5.578000 | 6.757000  | 5.141000  | С | 3.012000  | -6.635000 | 0.995000  | С  | 5.958000  | 2.561000 | 8.605000  | н | -8.635000  | 8.234000  | 8.361000 |
| Н  | -4.984000 | 7.207000  | 4.488000  | н | 0.903000  | -7.022000 | 0.807000  | С  | 7.523000  | 2.568000 | 6.289000  | н | -9.480000  | 9.090000  | 7.060000 |
| С  | -7.651000 | 0.250000  | -0.503000 | н | 2.898000  | -9.028000 | 4.056000  | С  | 5.833000  | 1.524000 | 7.677000  | С | -12.269000 | 3.469000  | 2.166000 |
| н  | -7.418000 | -0.822000 | -0.627000 | н | 5.041000  | -7.972000 | 3.392000  | С  | 6.882000  | 3.585000 | 8.397000  | н | -12.136000 | 2.382000  | 2.123000 |
| С  | -5.276000 | -3.093000 | 5.636000  | н | 3.006000  | -5.940000 | 0.161000  | С  | 7.655000  | 3.596000 | 7.234000  | С | -13.594000 | 3.733000  | 2.886000 |
| н  | -4.496000 | -3.152000 | 6.415000  | С | -0.499000 | -7.869000 | 3.053000  | С  | 6.603000  | 1.534000 | 6.512000  | н | -13.572000 | 3.332000  | 3.905000 |
| С  | -3.179000 | 3.434000  | 8.385000  | С | -2.806000 | -6.311000 | 3.301000  | н  | 5.128000  | 0.713000 | 7.846000  | н | -14.425000 | 3.253000  | 2.358000 |
| н  | -2.713000 | 4.415000  | 8.187000  | С | -1.699000 | -8.317000 | 2.504000  | н  | 6.989000  | 4.381000 | 9.129000  | н | -13.807000 | 4.806000  | 2.946000 |
| С  | -5.546000 | 6.771000  | 2.244000  | С | -0.450000 | -6.660000 | 3.753000  | н  | 8.359000  | 4.409000 | 7.063000  | С | -12.355000 | 3.990000  | 0.730000 |
| н  | -5.623000 | 6.742000  | 1.143000  | С | -1.599000 | -5.873000 | 3.865000  | н  | 6.446000  | 0.746000 | 5.781000  | н | -11.495000 | 3.670000  | 0.135000 |
| С  | 9.195000  | -2.825000 | -5.527000 | С | -2.849000 | -7.533000 | 2.616000  | С  | 3.865000  | 2.405000 | 9.647000  | н | -12.402000 | 5.084000  | 0.706000 |
| Н  | 8.581000  | -3.570000 | -6.045000 | н | -1.738000 | -9.266000 | 1.974000  | С  | 1.112000  | 1.941000 | 9.506000  | н | -13.248000 | 3.602000  | 0.229000 |
| С  | 9.142000  | -3.193000 | -4.039000 | н | 0.480000  | -6.317000 | 4.200000  | С  | 3.267000  | 1.508000 | 10.532000 | С | -11.395000 | -1.930000 | 5.607000 |
| С  | 9.094000  | -3.886000 | -1.299000 | н | -1.521000 | -4.912000 | 4.365000  | С  | 3.090000  | 3.094000 | 8.710000  | н | -10.709000 | -1.944000 | 6.463000 |
| С  | 10.172000 | -2.797000 | -3.162000 | н | -3.780000 | -7.874000 | 2.166000  | С  | 1.716000  | 2.853000 | 8.628000  | С | -11.367000 | -3.316000 | 4.960000 |
| С  | 8.065000  | -3.921000 | -3.497000 | С | 5.485000  | -6.268000 | 1.370000  | С  | 1.894000  | 1.266000 | 10.453000 | н | -10.347000 | -3.621000 | 4.709000 |
| С  | 8.040000  | -4.273000 | -2.141000 | С | -4.046000 | -5.491000 | 3.367000  | н  | 3.870000  | 0.986000 | 11.270000 | н | -11.967000 | -3.339000 | 4.044000 |
| С  | 10.183000 | -3.157000 | -1.798000 | 0 | 6.308000  | -6.054000 | 2.255000  | н  | 3.549000  | 3.809000 | 8.032000  | н | -11.765000 | -4.073000 | 5.644000 |
| н  | 10.993000 | -2.201000 | -3.550000 | 0 | -4.872000 | -5.569000 | 2.462000  | н  | 1.146000  | 3.360000 | 7.855000  | С | -12.797000 | -1.650000 | 6.156000 |
| С  | 8.590000  | -1.443000 | -5.776000 | N | 5.668000  | -5.966000 | 0.029000  | н  | 1.433000  | 0.549000 | 11.130000 | н | -12.831000 | -0.679000 | 6.661000 |
| С  | 7.471000  | 1.101000  | -6.259000 | н | 5.002000  | -6.257000 | -0.677000 | С  | 8.343000  | 2.637000 | 5.049000  | н | -13.088000 | -2.414000 | 6.884000 |
| С  | 7.233000  | -1.310000 | -6.109000 | N | 6.791000  | -5.304000 | -0.354000 | С  | -0.342000 | 1.629000 | 9.434000  | н | -13.543000 | -1.644000 | 5.354000 |
| С  | 9.364000  | -0.269000 | -5.664000 | N | -4.175000 | -4.685000 | 4.488000  | 0  | 8.683000  | 3.732000 | 4.607000  |   |            |           |          |
| Ċ  | 8.837000  | 1.011000  | -5.930000 | н | -3.515000 | -4.733000 | 5.256000  | Ó  | -0.738000 | 0.511000 | 9.755000  |   |            |           |          |
| С  | 6.673000  | -0.047000 | -6.355000 | N | -5.237000 | -3.843000 | 4.579000  | Ň  | 8.674000  | 1.418000 | 4.479000  |   |            |           |          |
| Ĥ. | 10 406000 | 0 358000  | 5 370000  | 0 | 3 231000  | 0.556000  | 7 788000  | Ц. | 8 457000  | 0.540000 | 1 038000  |   |            |           |          |



Figure S35. Optimized structure (MMFF, Wavefunction Spartan) of doxorubicin⊂C2 complex.

| С | -4.026000 | 1.576000  | 4.690000  | С | -11.035000 | 3.428000  | 4.242000  | С | 3.968000  | -5.537000 | -4.376000 | н | 3.426000  | -3.758000 | 6.881000  |
|---|-----------|-----------|-----------|---|------------|-----------|-----------|---|-----------|-----------|-----------|---|-----------|-----------|-----------|
| С | -4.630000 | 2.825000  | 4.596000  | н | -10.775000 | 4.018000  | 5.130000  | н | 3.259000  | -5.106000 | -5.104000 | н | 6.599000  | -2.439000 | 9.483000  |
| С | -4.191000 | 3.741000  | 3.640000  | н | -11.559000 | 4.124000  | 3.571000  | С | 5.463000  | 1.378000  | -6.338000 | н | 8.105000  | -2.215000 | 7.527000  |
| С | -3.151000 | 3.412000  | 2.759000  | С | -9.025000  | 1.956000  | 8.710000  | н | 5.545000  | 2.404000  | -5.938000 | н | 4.884000  | -3.483000 | 4.940000  |
| Ó | -2.648000 | 4.287000  | 1.834000  | Ĥ | -9.856000  | 1.288000  | 8.443000  | 0 | -3.902000 | -7.316000 | -1.456000 | С | 2.845000  | -2.660000 | 9.309000  |
| Ċ | -2.550000 | 2.138000  | 2.843000  | н | -9.315000  | 2.948000  | 8.345000  | Ċ | -2.549000 | -7.248000 | -1.701000 | Ċ | 0.225000  | -1.723000 | 9.075000  |
| č | -1.469000 | 1.709000  | 1.916000  | Ċ | -6.812000  | 6.553000  | 9.274000  | č | 0.212000  | -7.194000 | -2.109000 | Č | 1.786000  | -3.460000 | 9.736000  |
| õ | -1.174000 | 2.345000  | 0.909000  | Ĥ | -6.836000  | 6.053000  | 10.253000 | Ċ | -1.965000 | -6.164000 | -2.363000 | C | 2.606000  | -1.380000 | 8.799000  |
| č | -0 706000 | 0 466000  | 2 185000  | Ĥ | -7 731000  | 6 242000  | 8 764000  | Ċ | -1 768000 | -8.324000 | -1 282000 | Ċ | 1 297000  | -0.918000 | 8 664000  |
| č | 0.451000  | 0.152000  | 1.439000  | Ċ | -8.880000  | 8.057000  | 4.857000  | č | -0.386000 | -8,292000 | -1.475000 | Č | 0.475000  | -2.996000 | 9.608000  |
| õ | 0.846000  | 0.961000  | 0.402000  | Ĥ | -9.208000  | 7.313000  | 5.593000  | č | -0.582000 | -6.127000 | -2.552000 | Ĥ | 1.977000  | -4.448000 | 10.146000 |
| č | 1.221000  | -1.001000 | 1.706000  | Ĥ | -8.585000  | 8.940000  | 5.442000  | Ĥ | -2.574000 | -5.332000 | -2.707000 | Ĥ | 3,434000  | -0.749000 | 8.484000  |
| Ċ | 2,495000  | -1.336000 | 0.931000  | 0 | -6.609000  | 7.259000  | 1.471000  | н | -2.228000 | -9.172000 | -0.782000 | н | 1.138000  | 0.054000  | 8,206000  |
| õ | 3.287000  | -0.175000 | 0.639000  | Ĥ | -6.341000  | 7.065000  | 0.536000  | Ĥ | 0.227000  | -9.117000 | -1.118000 | Ĥ | -0.353000 | -3.630000 | 9.919000  |
| Ċ | 3.411000  | -2.254000 | 1,753000  | 0 | -4.901000  | 8.301000  | 3,276000  | н | -0.148000 | -5.238000 | -2.999000 | С | 7.541000  | -2.691000 | 4,945000  |
| Ċ | 2.699000  | -3.542000 | 2.147000  | Ĥ | -5.601000  | 8.009000  | 2.653000  | С | -4.483000 | -6.197000 | -0.901000 | Ċ | -1.190000 | -1.282000 | 8.931000  |
| Ó | 3.584000  | -4.319000 | 2.984000  | 0 | -8.550000  | 2.914000  | 0.846000  | Ċ | -5.763000 | -3.943000 | 0.143000  | Ó | 8.462000  | -1.881000 | 5.021000  |
| Ċ | 2.418000  | -4.390000 | 0.884000  | Ĥ | -8.593000  | 2.103000  | 1.398000  | Ċ | -5.685000 | -5.765000 | -1.458000 | Ó | -2.077000 | -2.120000 | 8.797000  |
| Ó | 1.277000  | -4.565000 | 0.449000  | 0 | -8.494000  | 0.695000  | 2.353000  | Ċ | -3.931000 | -5.526000 | 0.196000  | Ň | 7.296000  | -3.504000 | 3.849000  |
| Ċ | 3.643000  | -4.969000 | 0.169000  | Ĥ | -8.043000  | -0.140000 | 2.065000  | Ċ | -4.562000 | -4.390000 | 0.710000  | н | 6.573000  | -4.215000 | 3.861000  |
| 0 | 3.767000  | -4.495000 | -1.154000 | 0 | -6.627000  | -0.825000 | 6.501000  | С | -6.318000 | -4.631000 | -0.946000 | N | 8.097000  | -3.395000 | 2.758000  |
| Ċ | 1.443000  | -3.219000 | 2.975000  | Ĥ | -6.181000  | -0.420000 | 7.276000  | H | -6.120000 | -6.297000 | -2.300000 | N | -1.398000 | 0.087000  | 8.981000  |
| С | 0.740000  | -1.906000 | 2.679000  | 0 | -5.201000  | 0.334000  | 8.441000  | н | -3.001000 | -5.869000 | 0.643000  | н | -0.649000 | 0.730000  | 9.214000  |
| С | -0.423000 | -1.589000 | 3.412000  | Ĥ | -4.270000  | 0.051000  | 8.632000  | Н | -4.085000 | -3.857000 | 1.527000  | N | -2.654000 | 0.571000  | 8.811000  |
| 0 | -0.812000 | -2.488000 | 4.376000  | 0 | -3.041000  | 4.593000  | 8.895000  | н | -7.246000 | -4.283000 | -1.397000 | С | 9.822000  | -7.666000 | -4.568000 |
|   |           |           |           |   |            |           |           |   |           |           |           |   |           |           |           |

XYZ Coordinates of cage doxorubicin⊂C2 complex

| С  | -1.139000  | -0.406000 | 3.175000  | н        | -3.086000 | 5.456000              | 8.428000              | С        | 1.694000      | -7.168000   | -2.230000 | н        | 9.148000   | -7.312000 | -5.357000             |
|----|------------|-----------|-----------|----------|-----------|-----------------------|-----------------------|----------|---------------|-------------|-----------|----------|------------|-----------|-----------------------|
| С  | -2.358000  | -0.092000 | 3.943000  | 0        | -3.066000 | 6.869000              | 7.473000              | С        | -6.467000     | -2.730000   | 0.639000  | С        | 11.149000  | -8.039000 | -5.237000             |
| 0  | -2.830000  | -0.943000 | 4.692000  | н        | -2.254000 | 7.217000              | 7.024000              | 0        | 2.384000      | -7.763000   | -1.406000 | н        | 11.871000  | -8.416000 | -4.505000             |
| č  | -2 988000  | 1 234000  | 3 815000  | Ċ        | -7 024000 | 4 938000              | -0 217000             | õ        | -7 132000     | -2 054000   | -0 139000 | Ĥ        | 11 591000  | -7 170000 | -5 736000             |
| č  | 3 381000   | 5.473000  | 1 561000  | ŭ        | 7 265000  | 4.037000              | 0.800000              | Ň        | 2 200000      | 6 / 31000   | 3 286000  | ü        | 10.008000  | 8 815000  | 5 005000              |
| č  | -3.301000  | 0.020000  | 0.772000  |          | -7.203000 | 4.037000              | -0.009000             | IN II    | 2.209000      | -0.431000   | -3.200000 |          | 0.00000    | -0.010000 | -0.990000             |
| Č  | 3.421000   | 0.030000  | -0.773000 | C.       | -6.875000 | -1.229000             | 3.797000              | н        | 1.608000      | -6.033000   | -4.002000 | C .      | 9.200000   | -8.913000 | -3.936000             |
| С  | 3.858000   | 1.468000  | -1.055000 | н        | -6.293000 | -1.927000             | 4.424000              | N        | 3.555000      | -6.263000   | -3.380000 | н        | 9.791000   | -9.262000 | -3.083000             |
| С  | 5.321000   | 1.693000  | -0.681000 | С        | -2.779000 | 1.859000              | 8.883000              | N        | -6.334000     | -2.468000   | 1.995000  | н        | 9.142000   | -9.730000 | -4.664000             |
| Ν  | 5 704000   | 3 064000  | -1 048000 | н        | -1 911000 | 2 514000              | 9 077000              | н        | -5 868000     | -3 117000   | 2 620000  | н        | 8 180000   | -8 720000 | -3 592000             |
| ĉ  | 6 206000   | 0.618000  | -1 351000 | Ċ        | -2 656000 | 8 011000              | 4 842000              | N        | -6 978000     | -1 391000   | 2 515000  | Ċ        | 9 295000   | -2 9/3000 | -8.9/0000             |
| Ň  | 6.211000   | 0.010000  | 0 770000  | ŭ        | 2.000000  | 0.011000              | 2.042000              |          | -0.370000     | -1.001000   | 2.010000  | Ň        | 0.400000   | 1 000000  | 9 704000              |
| 0  | 6.211000   | 0.803000  | -2.772000 | н        | -2.590000 | 8.469000              | 3.840000              | 0        | -2.164000     | 5.143000    | -7.237000 | н        | 9.480000   | -1.888000 | -8.704000             |
| С  | 5.669000   | -0.776000 | -0.971000 | С        | 7.615000  | -3.159000             | -6.936000             | С        | -1.111000     | 4.255000    | -7.208000 | С        | 10.604000  | -3.523000 | -9.484000             |
| 0  | 4.299000   | -0.932000 | -1.353000 | н        | 6.849000  | -3.244000             | -7.714000             | С        | 1.003000      | 2.425000    | -7.292000 | н        | 11.403000  | -3.447000 | -8.739000             |
| С  | 6 448000   | -1 900000 | -1 646000 | С        | 7 159000  | -4 054000             | -5 776000             | С        | -0.093000     | 4 320000    | -6 252000 | н        | 10 930000  | -2 978000 | -10 377000            |
| й  | -4 362000  | 0.872000  | 5 4 50000 | č        | 6 371000  | -5 750000             | -3 660000             | č        | -1.064000     | 3 296000    | -8 219000 | ü        | 10 / 80000 | -1 578000 | -9 755000             |
| ÷. | = 427000   | 2.005000  | 5.400000  | č        | 0.071000  | 4 666000              | 4 940000              | č        | 0.015000      | 2 2750000   | 0.215000  |          | 0.017000   | 2,006000  | 10.022000             |
|    | -5.437000  | 3.095000  | 5.275000  | 0        | 0.090000  | -4.000000             | -4.049000             | Č,       | -0.015000     | 2.375000    | -0.200000 |          | 0.217000   | -3.000000 | -10.023000            |
| н  | -4.676000  | 4.712000  | 3.615000  | C        | 5.806000  | -4.396000             | -5.592000             | C        | 0.955000      | 3.396000    | -6.283000 | н        | 8.576000   | -2.553000 | -10.954000            |
| н  | 0.203000   | 1.702000  | 0.309000  | С        | 5.409000  | -5.239000             | -4.545000             | н        | -0.112000     | 5.079000    | -5.473000 | н        | 7.319000   | -2.456000 | -9.726000             |
| н  | 2.188000   | -1.850000 | 0.011000  | С        | 7.729000  | -5.428000             | -3.806000             | н        | -1.847000     | 3.256000    | -8.972000 | н        | 7.931000   | -4.040000 | -10.239000            |
| н  | 3 769000   | -1 731000 | 2 653000  | Ĥ        | 9 137000  | -4 268000             | -4 947000             | н        | 0.010000      | 1 617000    | -9.036000 | C        | 12 880000  | 0 942000  | -5 397000             |
| ü. | 4 327000   | 2 467000  | 1 100000  | Ċ        | 7 60/000  | 1 605000              | 6 500000              | ü        | 1 703000      | 3 438000    | 5.406000  | ŭ        | 13 083000  | 0.753000  | 4 336000              |
|    | 4.327000   | -2.407000 | 1.130000  | č        | 7.034000  | -1.055000             | -0.300000             |          | 0.705000      | 5.450000    | -3.430000 |          | 13.003000  | 0.755000  | -4.330000             |
| н  | 3.061000   | -5.070000 | 3.327000  | C C      | 7.840000  | 1.017000              | -5.730000             | C C      | -2.785000     | 5.415000    | -6.040000 | C.       | 14.028000  | 0.320000  | -6.198000             |
| н  | 4.560000   | -4.699000 | 0.699000  | С        | 6.583000  | -0.850000             | -6.638000             | С        | -4.071000     | 6.087000    | -3.652000 | н        | 14.989000  | 0.754000  | -5.903000             |
| н  | 3.577000   | -6.060000 | 0.180000  | С        | 8.866000  | -1.156000             | -5.932000             | С        | -3.025000     | 6.755000    | -5.736000 | н        | 13.898000  | 0.487000  | -7.273000             |
| н  | 3.270000   | -5.115000 | -1.727000 | С        | 8.976000  | 0.203000              | -5.571000             | С        | -3.208000     | 4.406000    | -5.170000 | н        | 14.084000  | -0.760000 | -6.025000             |
| H  | 1 732000   | -3 188000 | 1 036000  | č        | 6 648000  | 0.498000              | -6 250000             | č        | -3 837000     | 1 7/1000    | -3 968000 | Ċ        | 12 866000  | 2 456000  | -5 615000             |
| ÷. | 0.710000   | 4 020000  | 2 001000  | ŭ        | 0.721000  | 1 910000              | -0.230000<br>E 704000 | č        | 2 656000      | 7.002000    | 4 526000  | ŭ        | 12.000000  | 2.450000  | -5.015000<br>E 420000 |
|    | 0.719000   | -4.039000 | 2.001000  | П        | 9.721000  | -1.010000             | -0.704000             | <u> </u> | -3.030000     | 7.092000    | -4.550000 |          | 13.030000  | 2.000000  | -0.420000             |
| н  | -1.642000  | -2.166000 | 4.800000  | C        | 10.291000 | 0.766000              | -5.020000             | н        | -2.708000     | 7.535000    | -6.422000 | н        | 12.170000  | 2.952000  | -4.932000             |
| н  | -2.936000  | 5.952000  | 0.684000  | н        | 10.282000 | 1.838000              | -5.244000             | н        | -3.038000     | 3.360000    | -5.413000 | н        | 12.578000  | 2.707000  | -6.642000             |
| н  | -4.423000  | 5.247000  | 1.326000  | С        | 8.776000  | -5.992000             | -2.844000             | н        | -4.104000     | 3.942000    | -3.283000 | С        | 13.507000  | -3.810000 | -1.081000             |
| н  | -3.306000  | 6.170000  | 2.398000  | н        | 8.368000  | -6.890000             | -2.367000             | н        | -3.823000     | 8.139000    | -4.291000 | н        | 12.820000  | -4.664000 | -1.046000             |
| H  | 2 444000   | -0 106000 | -1 252000 | Ċ        | 10 373000 | 0 588000              | -3 502000             | Ċ        | 2 096000      | 1 / 15000   | -7 370000 | Ċ        | 1/ 696000  | _1 219000 | -1 956000             |
| ü. | 3 723000   | 1 660000  | 2 126000  | č        | 10.551000 | 0.271000              | 0.704000              | č        | 1 717000      | 6.400000    | 2 37/000  | ŭ        | 15 436000  | 3 /1/000  | 2 023000              |
|    | 2.021000   | 2.469000  | -2.120000 | č        | 0.070000  | 1 619000              | -0.704000             | č        | 4.717000      | 0.450000    | 7 002000  |          | 14.267000  | -3.414000 | -2.023000             |
|    | 5.221000   | 2.100000  | -0.303000 | č        | 9.970000  | 1.010000              | -2.030000             | v v      | 1.074000      | 0.322000    | -1.003000 |          | 14.307000  | -4.400000 | -2.971000             |
|    | 5.434000   | 1.597000  | 0.407000  | C C      | 10.035000 | -0.013000             | -2.929000             | 0        | -4.401000     | 1.547000    | -1.03/000 |          | 15.195000  | -5.103000 | -1.545000             |
| н  | 5.269000   | 3.739000  | -0.426000 | С        | 10.962000 | -0.787000             | -1.535000             | N        | 3.321000      | 1.814000    | -6.859000 | С        | 13.990000  | -3.530000 | 0.342000              |
| н  | 6.717000   | 3.194000  | -1.004000 | С        | 10.065000 | 1.470000              | -1.245000             | н        | 3.476000      | 2.755000    | -6.515000 | н        | 14.610000  | -2.628000 | 0.382000              |
| н  | 7.238000   | 0.724000  | -1.003000 | н        | 11.109000 | -1.431000             | -3.589000             | N        | 4.358000      | 0.937000    | -6.857000 | н        | 14.586000  | -4.367000 | 0.722000              |
| н  | 6.842000   | 0.170000  | -3.151000 | С        | 9.067000  | -5.006000             | -1.705000             | N        | -5.667000     | 5.609000    | -1.881000 | н        | 13,150000  | -3.400000 | 1.031000              |
| H  | 5 753000   | -0.909000 | 0 114000  | č        | 9 685000  | -3 224000             | 0.395000              | Ĥ        | -5 942000     | 4 780000    | -2 397000 | Ċ        | -8 927000  | 2 027000  | 10 253000             |
| ü  | 6 117000   | 2 970000  | 1 259000  | č        | 10.072000 | 4 024000              | 1 942000              | N        | 6 210000      | E 0E0000    | 0 664000  | ŭ        | 0.021000   | 2 700000  | 10.200000             |
|    | 6.060000   | -2.070000 | -1.200000 | č        | 0.073000  | -4.024000             | -1.042000             | N O      | -0.219000     | 0.000000    | -0.004000 |          | 10.005000  | 2.700000  | 10.000000             |
|    | 0.209000   | -1.926000 | -2.720000 | C C      | 0.343000  | -5.039000             | -0.500000             | 0        | 5.715000      | 9.200000    | 3.375000  | U.       | -10.225000 | 2.007000  | 10.623000             |
| н  | 7.522000   | -1.801000 | -1.466000 | C        | 8.651000  | -4.161000             | 0.547000              | C        | 6.289000      | 8.358000    | 2.515000  | H        | -10.163000 | 2.707000  | 11.911000             |
| С  | -5.554000  | 6.057000  | 8.501000  | С        | 10.416000 | -3.141000             | -0.800000             | С        | 7.504000      | 6.613000    | 0.696000  | н        | -11.083000 | 1.967000  | 10.589000             |
| н  | -4.729000  | 6.420000  | 9.123000  | н        | 10.608000 | -3.949000             | -2.784000             | С        | 6.376000      | 6.993000    | 2.808000  | н        | -10.421000 | 3.603000  | 10.410000             |
| С  | -5.428000  | 4.528000  | 8.472000  | С        | 11.523000 | -2.098000             | -0.964000             | Ċ        | 6.836000      | 8.859000    | 1.335000  | С        | -8.649000  | 0.667000  | 10.895000             |
| č  | -5 250000  | 1 710000  | 8 / 71000 | Ĥ        | 11 917000 | -1.857000             | 0.029000              | ċ        | 7 / 32000     | 7 987000    | 0 / 21000 | Ĥ        | -7 653000  | 0 298000  | 10,635000             |
| č  | -5.250000  | 2 710000  | 0.4710000 |          | 10 707000 | 2 600000              | 1 702000              | č        | 6.071000      | 6 110000    | 1 90 4000 |          | 0.205000   | 0.230000  | 10.000000             |
| Š  | -0.000000  | 3.7 10000 | 0.223000  | C .      | 12.707000 | -2.000000             | -1.723000             | L.       | 0.971000      | 0.110000    | 1.094000  |          | -9.365000  | -0.060000 | 10.576000             |
| Ç  | -4.194000  | 3.885000  | 8.683000  | н        | 12.542000 | -2.862000             | -2.758000             | н        | 5.972000      | 6.602000    | 3.738000  | н        | -8.689000  | 0.737000  | 11.987000             |
| С  | -4.103000  | 2.488000  | 8.687000  | н        | 13.501000 | -1.767000             | -1.793000             | н        | 6.783000      | 9.922000    | 1.115000  | С        | -6.885000  | 8.081000  | 9.502000              |
| С  | -6.497000  | 2.311000  | 8.244000  | С        | 10.059000 | -6.528000             | -3.547000             | н        | 7.831000      | 8.379000    | -0.513000 | н        | -6.884000  | 8.594000  | 8.532000              |
| Ĥ. | -7 509000  | 4 196000  | 8 012000  | Ĥ        | 10 753000 | -6 890000             | -2 775000             | н        | 6 972000      | 5 057000    | 2 123000  | С        | -8 201000  | 8 433000  | 10 201000             |
| ĉ  | 5 307000   | 6 648000  | 7 000000  | ü        | 10.588000 | 5 718000              | 1 062000              | <br>C    | 1 185000      | 8 03/000    | 3 800000  | ŭ        | 8 20/000   | 0.516000  | 10.335000             |
| č  | -5.557000  | 7,762000  | 1.033000  |          | 0.000000  | -3.7 10000            | 7.640000              | č        | 9.90000       | 0.334000    | 5.033000  |          | =0.234000  | 7.00000   | 11 100000             |
| Š  | -5.109000  | 7.703000  | 4.520000  |          | 0.093000  | -3.095000             | -7.049000             | Č,       | 2.023000      | 0.323000    | 5.075000  |          | -0.200000  | 7.902000  | 11.100000             |
| C  | -4.139000  | 7.056000  | 6.631000  | н        | 8.732000  | -4.754000             | -7.898000             | Ç        | 4.319000      | 9.084000    | 5.275000  | н        | -9.059000  | 8.098000  | 9.607000              |
| С  | -6.499000  | 6.784000  | 6.232000  | н        | 9.753000  | -3.683000             | -6.968000             | С        | 3.419000      | 8.510000    | 3.100000  | С        | -5./10000  | 8.617000  | 10.322000             |
| С  | -6.389000  | 7.369000  | 4.953000  | С        | 11.547000 | 0.263000              | -5.791000             | С        | 2.190000      | 8.192000    | 3.687000  | н        | -4.767000  | 8.529000  | 9.776000              |
| С  | -3.989000  | 7.612000  | 5.350000  | н        | 11.672000 | -0.820000             | -5.669000             | С        | 3.093000      | 8.765000    | 5.863000  | н        | -5.609000  | 8.078000  | 11.270000             |
| Ĥ  | -7 470000  | 6 435000  | 6.570000  | Ĥ        | 11 379000 | 0 420000              | -6.866000             | Ĥ        | 5 144000      | 9 431000    | 5 891000  | Ĥ        | -5 848000  | 9 679000  | 10 551000             |
| ĉ  | 7 634000   | 7 5/0000  | 4 073000  |          | 0.450000  | 2 756000              | 3 218000              | ü        | 3 540000      | 8 / 1 / 000 | 2 02/000  | Ċ        | 10 102000  | 8 /31000  | 3 08/000              |
| ň  | 7 41 4000  | 0.200000  | 2.405000  | Ň        | 0.00000   | 2.750000              | -3.210000             |          | 1 204000      | 7.014000    | 2.024000  | ŭ        | 10.102000  | 7 544000  | 2.304000              |
|    | -7.414000  | 0.300000  | 3.405000  |          | 9.223000  | 3.390000              | -2.502000             |          | 1.394000      | 7.014000    | 3.053000  | п        | -10.430000 | 7.544000  | 3.433000              |
| С  | -7.740000  | 1.455000  | 7.988000  | 0        | 7.866000  | 2.346000              | -5.398000             | н        | 2.973000      | 8.860000    | 6.941000  | С        | -11.259000 | 8.872000  | 4.886000              |
| н  | -7.581000  | 0.467000  | 8.433000  | н        | 8.417000  | 2.477000              | -4.596000             | С        | 8.094000      | 5.719000    | -0.339000 | н        | -10.998000 | 9.769000  | 5.457000              |
| С  | -7.889000  | 6.303000  | 3.224000  | 0        | 10.599000 | 0.172000              | 0.662000              | С        | 0.749000      | 7.964000    | 5.752000  | н        | -11.524000 | 8.081000  | 5.595000              |
| С  | -8.362000  | 4,007000  | 1.651000  | Ĥ        | 10,479000 | -0.765000             | 0.932000              | Ó        | 8,081000      | 6.067000    | -1.516000 | н        | -12,152000 | 9,097000  | 4,291000              |
| č  | -7 375000  | 6 207000  | 1 923000  | 0        | 10 011000 | -2 333000             | 1 394000              | õ        | 0 778000      | 7 536000    | 6 903000  | Ċ        | -9 796000  | 9 533000  | 2 969000              |
| č  | 8 622000   | 5 210000  | 3 726000  | ŭ        | 0.450000  | 2 530000              | 2 185000              | N        | 8 632000      | 1 523000    | 0.117000  | ŭ        | 0.003000   | 0 180000  | 2 204000              |
| č  | -0.022000  | 0.210000  | 3.120000  |          | 3.400000  | -2.009000             | 2.100000              | IN L     | 0.032000      | 4.023000    | 1.11/000  |          | -9.093000  | 3.103000  | 2.204000              |
| č  | -0.099000  | 4.005000  | 2.949000  |          | 1.314000  | -0.924000             | -0.302000             | Н        | 0.109000      | 4.342000    | 1.100000  | H        | -9.308000  | 10.415000 | 3.43/000              |
| C  | -7.610000  | 5.069000  | 1.135000  | н        | 0.894000  | -0.143000             | -1.162000             | N        | 9.055000      | 3.610000    | -0.795000 | н        | -10.707000 | 9.844000  | 2.446000              |
| н  | -8.994000  | 5.255000  | 4.746000  | 0        | 6.030000  | -6.567000             | -2.606000             | N        | -0.410000     | 8.162000    | 5.016000  | С        | -12.029000 | 2.324000  | 4.677000              |
| С  | -7.933000  | 1.221000  | 6.484000  | н        | 5.055000  | -6.727000             | -2.653000             | н        | -0.395000     | 8.612000    | 4.107000  | н        | -11.537000 | 1.654000  | 5.391000              |
| С  | -8.305000  | 0.836000  | 3.710000  | 0        | 4.832000  | -3.924000             | -6.432000             | N        | -1.600000     | 7.802000    | 5.564000  | С        | -12.535000 | 1.481000  | 3.506000              |
| С  | -8.671000  | 2,137000  | 5,705000  | Ĥ        | 5.069000  | -3.016000             | -6.726000             | 0        | 4,118000      | -3,174000   | 9,426000  | Ĥ        | -11,732000 | 0.875000  | 3.074000              |
| č  | -7 366000  | 0 112000  | 5 828000  | 0        | 5 429000  | -1 403000             | -7 148000             | č        | 4 914000      | -3 090000   | 8 305000  | Ĥ        | -12 954000 | 2 110000  | 2 714000              |
| č  | 7 530000   | 0.078000  | 1 151000  | ŭ        | 1 753000  | 0.682000              | 7 221000              | č        | 6 61/000      | 2 860000    | 6.008000  | ü        | 13 316000  | 0.787000  | 3 835000              |
| č  | -1.008000  | 1.046000  | 4.401000  |          | 4.700000  | -0.002000<br>0 E20000 | -1.221000             | č        | 4 4 4 0 0 0 0 | -2.000000   | 7 020000  |          | 12 210000  | 0.101000  | 5.030000              |
| U. | -0.901000  | 1.940000  | 4.328000  | <u>с</u> | 9.013000  | 2.538000              | -0.325000             | C C      | 4.449000      | -3.419000   | 1.029000  | <u>د</u> | -13.219000 | 2.903000  | 0.400000              |
| н  | -9.088000  | 3.018000  | 6.183000  | Н        | 9.747000  | 2.38/000              | 0.760000              | C        | 6.234000      | -2.679000   | 8.488000  | н        | -12.883000 | 3.540000  | 6.268000              |
| С  | -9.753000  | 2.923000  | 3.517000  | С        | 7.846000  | -4.216000             | 1.787000              | С        | 7.081000      | -2.555000   | 7.384000  | н        | -13.914000 | 2.197000  | 5.759000              |
| н  | -10 162000 | 2 384000  | 2 656000  | н        | 7 035000  | -4 962000             | 1 854000              | С        | 5 291000      | -3 284000   | 5 925000  | н        | -13 772000 | 3 637000  | 4 736000              |

The cavity volume of the cages was determined from the corresponding cage structureds using the CageCavityCalc Python script,<sup>[S24]</sup> obtaining 1350 Å<sup>3</sup> for cage C1, and 1500 Å<sup>3</sup> for cage C2. The the volume of DOXO (498 Å<sup>3</sup>) was determined with the Wavefunciton Spartan software.



**Figure S36**. Cavity volume of the cages **C1** (left) and **C2** (right) determined from the corresponding cage structureds using a the CageCavityCalc Python script based on the rolling prove algorithm.

# 8. Cell viability studies

#### Cell culture

Murine 4T1 triple-negative breast cancer cells and human melanoma SK-Mel-103 cells were obtained from ATCC and cultured in DMEM medium (Sigma), supplemented with 10% FBS (Sigma). Cells were incubated in an atmosphere of 5% CO<sub>2</sub> at 37 °C.

#### Cell viability/Cytotoxicity assays

Both cell lines (4T1 and SK-Mel-103) were plated in 96-well plates at a density of 2500 cells per well. After 24 hours, cells were treated with different concentrations of both organic and metalorganic molecular cages (50  $\mu$ M, 25  $\mu$ M, 12.5  $\mu$ M, 6.25  $\mu$ M, 3.125  $\mu$ M, 1.5625  $\mu$ M and 0.78125  $\mu$ M). After 48 h of treatment cell proliferation reagent WST-1 (Sigma Aldrich) was added to cells according to manufacturer's instructions. After 1 h of incubation, absorbance at 595 nm was measured in a PerkinElmer Wallac 1420 Victor2 spectrophotometer.

For the assays with the components of the organic cage, SK-Mel-103 cells were plated in 96-well plates at a density of 2500 cells per well. After 24 hours, cells were treated with 50  $\mu$ M of calixarene, with 100  $\mu$ M of linker and with both components together. After 48 h of treatment, viability was measured using the WST-1 method.

#### Drug-encapsulation in vitro assay

Cells were plated in 96-well plates at a density of 5000 cells/well. 24 h later they were treated either with free doxorubicin at concentrations 5  $\mu$ M, 2.5  $\mu$ M and 1.25  $\mu$ M or with the complex organic cage-doxorubicin, prepared at a fixed concentration of 25  $\mu$ M of organic cage and different concentrations of doxorubicin (5, 2.5 and 1.25  $\mu$ M), resulting in a 95 %, 96 % and 96 % of encapsulation of the drug, respectively. After 24 h of treatment, WST-1 was added to the cells according to manufacturer's instructions and absorbance at 595 nm was measured in Wallac 1420 Victor2 spectrophotometer.

For the assays with the components of the organic cage, SK-Mel-103 cells were plated in 96-well plates at a density of 5000 cells/well. 24 h later they were treated with 50  $\mu$ M of calixarene, 100  $\mu$ M of ligand and different concentrations of doxorubicin (5, 2.5 and 1.25  $\mu$ M). After 24 h of treatment, viability was measured using the WST-1 method.

#### Internalization of the organic cage-doxorubicin complex

SK-Mel-103 cells were cultured in 6-well plates at 350,000 cells/well for 24 h. Then, cells were incubated with the nuclei marker Hoechst 33342 at a concentration of 1  $\mu$ g/mL for 30 min. For the time-lapse experiment, the cell membrane marker Wheat Germ Agglutinin, Alexa Fluor<sup>TM</sup> 647 Conjugate (Invitrogen, W32466) was added at a concentration of 1  $\mu$ g/mL 10 minutes before starting imaging. After the incubation with markers, cells were washed with PBS (Merck, D8537) and treated either with the organic-cage complex, formed previously with a mix of 25  $\mu$ M of organic cage and 5  $\mu$ M of doxorubicin (95 % of encapsulation). Similarly, the cells were treated with free doxorubicin as a control. A time-lapse up to 10

minutes since treatment was performed for every condition in a confocal Leica TCS SP8 HyVolution II microscope, equipped with CO<sub>2</sub> and temperature control and a resonant scanner for live-cells studies.



Figure S37. Control cell viability experiments measured by WST-1. Data represented as mean±SEM (n=3). (a) Toxicity assay with cage components: 100 μM Ligand 1, 50 μM Calixarene 3, and 100 μM Ligand 1 + 50 μM Calixarene 3. (b) Treatment with 50 μM Calixarene 3, 100 μM Ligand 1 and increasing concentrations of DOXO.



Figure S38. Time-lapse confocal images of SK-Mel-103 cells incubated with Hoechst (blue nuclei marker), WGA (green membrane marker) and treated with free DOXO (fluorescent red) at 5  $\mu$ M up to 10 min. Scale bar represents 20  $\mu$ m.

#### References

**S1** L. Zhao, Y. Liu, C. He, J. Wang, C. Duan, *Dalton Trans.* **2014**, *43*, 335–343. (DOI: <u>https://doi.org/10.1039/C3DT51900G</u>)

**S2** S. Bandi, D. K. Chand, *Chem. Eur. J.* **2016**, *22*, 10330–10335. (DOI: https://doi.org/10.1002/chem.201602039)

**S3** W. D. J. Tremlett, T. Söhnel, J. D. Crowley, L. J. Wright, C. G. Hartinger, *Inorg. Chem.* **2023**, *62(8)*, 3616–3628. (DOI: <u>https://doi.org/10.1021/acs.inorgchem.2c04399</u>)

**S4** M. Grajda, M. Wierzbicki, P. Cmoch, A. Szumna, *J. Org. Chem.* **2013**, *78*(22), 11597–11601. (DOI: <u>https://doi.org/10.1021/jo4019182</u>)

**S5** L. Abis, E. Dalcanale, A. Du Vosel, S. Spera, *J. Org. Chem.* **1988**, *53*(23), 5475–5479. (DOI: <u>https://doi.org/10.1021/jo00258a015</u>)

**S6** V. S. Yashchenko, A. A. Pap, G. V. Kalechits, A. V. Makey, V. K. Ol'khovik, *Chem. Heterocycl. Comp.* **2015**, *50*, 1471–1477. (DOI: <u>https://doi.org/10.1007/s10593-014-1612-2</u>)

**S7** L. Zhang, H. Yi, J. Wanga, A. Lei, *Green Chem.* **2016**, *18*, 5122–5126. (DOI: <u>https://doi.org/10.1039/C6GC01880G</u>)

S8 N. Tada, Y. Ikebata, T. Nobuta, S. Hirashima, T. Miura, A. Itoh, *Photochem. Photobiol. Sci.* 2012, *11*, 616–619. (DOI: <u>https://doi.org/10.1039/c2pp05387j</u>)

**S9** O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, 42, 339–341. (DOI: <u>https://doi.org/10.1107/S0021889808042726</u>)

**S10** G. M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112–122. (DOI: <u>https://doi.org/10.1107/S0108767307043930</u>)

S11 G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8. (DOI: https://doi.org/10.1107/S2053229614024218)

**S12** D. P. August, G. S. Nichol, P. J. Lusby, *Angew. Chem. Int. Ed.* **2016**, *55*, 15022–15026. (DOI: <u>https://doi.org/10.1002/anie.201608229</u>)

**S13** J. S. Mugridge, R. G. Bergman, K. N. Raymond, *J. Am. Chem. Soc.* **2011**, *133*, 11205–11212. (DOI: <u>https://doi.org/10.1021/ja202254x</u>)

**S14** G. Montà-González, F. Sancenón, R. Martínez-Máñez, V. Martí-Centelles. *Chem. Rev.* **2022**, *122*, 13636–13708. (DOI: <u>https://doi.org/10.1021/acs.chemrev.2c00198</u>)

**S15** J. K. Klosterman, Y. Yamauchi, M. Fujita, *Chem. Soc. Rev.* **2009**, 38, 1714–1725. (DOI: <u>https://doi.org/10.1039/B901261N</u>)

**S16** N. Kishida, Y. Tanaka, M. Yoshizawa. *Chem. Eur. J.* **2022**, *28* (69), e202202075. (DOI: <u>https://doi.org/10.1002/chem.202202075</u>)

**S17** D. Rehm, A. Weller, *Chemie Z. Phys. Chem.* **1970**, *69*, 183-200. (DOI: https://doi.org/10.1524/zpch.1970.69.3\_4.183)

**S18** G. Greco, L. Ulfo, E. Turrini, A. Marconi, P. E. Costantini, T. D. Marforio, E. J. Mattioli, M. Di Giosia, A. Danielli, C. Fimognari, M. Calvaresi, *Cells*, **2023**, *12*, 392. (DOI: <u>https://doi.org/10.3390/cells12030392</u>)

**S19** J. Vacek, L. Havran, M. Fojta. *Collect. Czech. Chem. Commun.* **2009**, *74*, 1727-1738. (DOI: <u>https://doi.org/10.1135/cccc2009512</u>)

S20 T. Mikolajczyk, B. Pierozynski, L. Smoczynski, W. Wiczkowski, *Molecules*, 2018, 23, 1293. (DOI: <u>https://doi.org/10.3390/molecules23061293</u>)

S21 S. Chen, K. Li, F. Zhao, L. Zhang, M. Pan, Y.-Z. Fan, J. Guo, J. Shi, C.-Y. Su, *Nat. Commun.* 2016, 7, 13169. (DOI: <u>https://doi.org/10.1038/ncomms13169</u>)
S22 M. Ehsani, J. Soleymani, P. Mohammadalizadeh, M. Hasanzadeh, A. Jouyban, M. Khoubnasabjafari, Y. Vaez-Gharamaleki. *Microchem. J.* 2021, *165*, 106101. (DOI: <u>https://doi.org/10.1016/j.microc.2021.106101</u>)

**S23** Deppmeier, B. J.; Driessen, A. J.; Hehre, T. S.; Hehre, W. J.; Johnson, J. A.; Klunzinger, P. E.; Leonard, J. M.; Pham, I. N.; Pietro, W. J.; Jianguo, Y. Spartan '20, version 1.0.0 (Mar 8th 2021), Wave-function Inc., 2011.

S24 V. Martí-Centelles, T. K. Piskorz, F.Duarte, *ChemRxiv* 2024. (DOI: <u>https://doi.org/10.26434/che-mrxiv-2024-fmlx0</u>)