Supplementary Information

Data-Driven Discovery of Active Phosphine Ligand Space

for Cross-Coupling Reaction

Sicong Ma,^{1,*†} Yanwei Cao,^{2†} Yun-Fei Shi,³ Cheng Shang,³ Lin He^{2,*} and Zhi-Pan Liu^{1,3*}

¹ Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

² State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China

³ Collaborative Innovation Center of Chemistry for Energy Materials (IChem), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China

⁺ These authors contributed equally to this work.

Corresponding Author: scma@mail.sioc.ac.cn; helin@licp.cas.cn; zpliu@fudan.edu.cn

Figure S1. The substitution groups for P-ligand construction and their abbreviation name in MPCD.

Figure S2. The MPCD-based volcano plot analysis for Pd catalyzed cross-coupling reactions with the coupling products as the key reaction species to match with P-ligand.

Figure S3. The MPCD-based volcano plot analysis for Pd catalyzed cross-coupling reactions with the coupling partners as the key reaction species to match with P-ligand.

Figure S4. The product yield of reaction VI catalyzed by different P-ligands.

Figure S5. The product yield of reaction VII catalyzed by different P-ligands.

Figure S6. Scope of the Pd-catalyzed Suzuki-Miyaura coupling reaction between different aryl chloride and *o*-tolylboronic acid.

Figure S7. The ³¹P NMR spectrum of Ph-XPhos during the activation of PhCl.

Figure S8. The V_{bur} Threshold and $\Delta E_{rep,L}$ analysis of reaction activity for reaction VI and VII. The reaction activities larger than 20 % are labeled in the plot.

Experimental standard curves

The standard curves were drawn through mixing biphenyls and dodecane as internal standard with various mass concentrations. m(i): mass of biphenyls, m(s): mass of internal standard (dodecane), A(i): peak area of biphenyls, A(s): peak area of internal standard (dodecane), k: correction factor. After correct the data, the yields of biphenyls in the reaction were calibrated.

$$\frac{m(i)}{m(s)} = k \frac{A(i)}{A(s)}$$
(1)
Yield (%) = $\frac{Yields \ of \ biphenyls}{\text{Theoretical yield}} \times 100\%$
(2)

Figure S9. Standard curves for 2-methyl-4'-(trifluoromethyl)-1,1'-biphenyl and dodecane.

Figure S10. Standard curves for 2-methylbiphenyl and dodecane.

Molecule	ΔE _{rep} (R) (kJ/mol)
СО	-26.1
PhI	-6.8
<i>p-t</i> -Bu-PhBr	2.9
<i>p</i> -Et-PhBr	3.9
PhBr	4.8
<i>p</i> -CF ₃ -PhOTf	5.8
2,6-bi-Me-PhBr	5.8
2,4-bi-Cl-Pyridine	9.6
<i>m</i> -CN-PhCl	17.4
<i>p</i> -CN-PhCl	18.3
p-COOEt-PhCl	19.3
<i>p</i> -CF ₃ -PhCl	20.3
PhCl	25.1
C_2H_2	28.0
C_2H_4	32.8

Table S1. The $\Delta E_{rep}(R)$ values of common molecules.

name	G1	G2	G3	ΔE _{rep} (L) (kJ/mol)
Ρ_Cγ_Cγ_Cγ	Су	Су	Су	-28.0
P_n_Bu_n_Bu_n_Bu	n_Bu	n_Bu	n_Bu	-23.2
P_Cy_o_Tol_o_Tol	o_Tol	Су	o_Tol	-18.3
P_Cy_Cy_Et	Et	Су	Су	-16.4
P_t_Bu_t_Bu_TiPrBPh	t_Bu	TiPrBPh	t_Bu	-10.6
P_Cy_Cy_Ph	Ph	Су	Су	-8.7
P_Ph_OMe_OMe	OMe	Ph	OMe	-8.7
P_n_Bu_Adm_Adm	n_Bu	Adm	Adm	-8.7
P_Et_Et_Et	Et	Et	Et	-7.7
P_Cy_Cy_p_Tol	p_Tol	Су	Су	-6.8
P_Cy_Cy_Bn	Bn	Су	Су	-6.8
P_36OMe2TRIPPh_Cy_Cy	360Me2TRIPPh	Су	Су	-5.8
P_Cy_4NMe2Ph_4NMe2Ph	Cy	4NMe2Ph	4NMe2Ph	-5.8
P_Ph_nPr3NH2_nPr3NH2	nPr3NH2	Ph	nPr3NH2	-3.9
P_t_Bu_t_Bu_n_Bu	n_Bu	t_Bu	t_Bu	-3.9
P_Cyp_Cyp_Cyp	Сур	Сур	Сур	-3.9
P_t_Bu_t_Bu_t_Bu	t_Bu	t_Bu	t_Bu	-3.9
P_Adm_Adm_Adm	Adm	Adm	Adm	-2.9
P_iPr_iPr_iPr	iPr	iPr	iPr	-2.9
P_Cy_t_Bu_t_Bu	t_Bu	Су	t_Bu	-1.9
P_Cy_Cy_o_Tol	o_Tol	Су	Су	-1.9
P_iPr_iPr_Ph	Ph	iPr	iPr	-1.9
P_MeOH_MeOH_MeOH	MeOH	MeOH	MeOH	0.0
P_Et_Et_Ph	Et	Ph	Et	1.0
P_Me_t_Bu_t_Bu	Me	t_Bu	t_Bu	1.0
P_Me_Me_Ph	Me	Ph	Me	1.0
P_Cy_Cy_4NMe2Ph	4NMe2Ph	Су	Су	1.9
P_Cy_Cy_25BMePh	Су	25BMePh	Су	1.9
P_Cy_BPh_Cy	BPh	Су	Су	1.9
P_Ph_Ph_OEt	OEt	Ph	Ph	1.9
P_Bn_Bn_Bn	Bn	Bn	Bn	2.9
P_Adm_Adm_oPhNH2	Adm	oPhNH2	Adm	2.9
P_Adm_Bn_Adm	Bn	Adm	Adm	2.9
P_Cy_Ph_Ph	Су	Ph	Ph	2.9
P_Cy_35Bt_BuPh_35Bt_BuPh	Су	35Bt_BuPh	35Bt_BuPh	3.9
P_TiPrBPh_Cy_Cy	TiPrBPh	Су	Су	3.9
P_Ph_m_Tol_m_Tol	Ph	m_Tol	m_Tol	3.9
P_iPr_Ph_Ph	iPr	Ph	Ph	4.8
P_Et_Ph_Ph	Et	Ph	Ph	4.8
P_25BMePh_25BMePh_25BMePh	25BMePh	25BMePh	25BMePh	4.8
P_Cy_Cy_BNap	BNap	Су	Су	4.8
P_BNap_35Bt_BuPh_35Bt_BuPh	BNap	35Bt_BuPh	35Bt_BuPh	4.8

Table S2. The $\Delta E_{rep}(L)$ values of commercially available P-ligands with Pd in MPCD.

P_Ph_Ph_oPhNH2	oPhNH2	Ph	Ph	5.8
P_Ph_mPhNH2_mPhNH2	mPhNH2	Ph	mPhNH2	5.8
P_Cy_Cy_1PhIn	1PhIn	Су	Су	5.8
P_Ph_t_Bu_t_Bu	Ph	t_Bu	t_Bu	5.8
P_t_Bu_t_Bu_22MeNBPh	22MeNBPh	t_Bu	t_Bu	5.8
P_Ph_OEt_OEt	Ph	OEt	OEt	5.8
P_iPr_iPr_1PhPyr	1PhPyr	iPr	iPr	6.8
P_t_Bu_t_Bu_TPhBPyz	TPhBPyz	t_Bu	t_Bu	6.8
P_Me_Ph_Ph	Me	Ph	Ph	6.8
P_o_CHOPh_o_CHOPh_o_CHOPh	o_CHOPh	o_CHOPh	o_CHOPh	6.8
P_t_Bu_t_Bu_4NMe2Ph	4NMe2Ph	t_Bu	t_Bu	6.8
P_Ph_Ph_Et2NH2	Et2NH2	Ph	Ph	6.8
P_pPhOH_pPhOH_pPhOH	pPhOH	pPhOH	pPhOH	6.8
P_35Bt_BuPh_35Bt_BuPh_35Bt_BuPh	35Bt_BuPh	35Bt_BuPh	35Bt_BuPh	7.7
P_pPhNH2_pPhNH2_pPhNH2	pPhNH2	pPhNH2	pPhNH2	7.7
P_o_Tol_o_Tol_o_Tol	o_Tol	o_Tol	o_Tol	7.7
P_p_Tol_p_Tol_o_CHOPh	o_CHOPh	p_Tol	p_Tol	7.7
P_Ph_Ph_OMe	OMe	Ph	Ph	8.7
P_m_OMePh_m_OMePh_m_OMePh	m_OMePh	m_OMePh	m_OMePh	8.7
P_p_Tol_p_Tol_p_Tol	p_Tol	p_Tol	p_Tol	8.7
P_Ph_o_CHOPh_o_CHOPh	o_CHOPh	Ph	o_CHOPh	8.7
P_Ph_Ph_n_Pr	n_Pr	Ph	Ph	8.7
P_4NMe2Ph_4NMe2Ph_4NMe2Ph	4NMe2Ph	4NMe2Ph	4NMe2Ph	9.6
P_Cy_Cy_26B2MeNBPh	Су	26B2MeNBPh	Су	9.6
P_35BMePh_35BMePh_35BMePh	35BMePh	35BMePh	35BMePh	9.6
P_Cy_Cy_Mes	Mes	Су	Су	9.6
P_t_Bu_t_Bu_1PhIn	1PhIn	t_Bu	t_Bu	10.6
P_Ph_Ph_t_Bu	t_Bu	Ph	Ph	10.6
P_35BMePh_35BMePh_o_CHOPh	o_CHOPh	35BMePh	35BMePh	10.6
P_p_OMePh_p_OMePh_p_OMePh	p_OMePh	p_OMePh	p_OMePh	10.6
P_t_Bu_Adm_Adm	t_Bu	Adm	Adm	10.6
P_Ph_BPh_Ph	BPh	Ph	Ph	11.6
P_mPhOH_mPhOH_mPhOH	mPhOH	mPhOH	mPhOH	11.6
P_TPhBPyz_Adm_Adm	TPhBPyz	Adm	Adm	12.5
P_Ph_Ph_Bn	Bn	Ph	Ph	12.5
P_Ph_Ph_mPhNH2	mPhNH2	Ph	Ph	12.5
P_t_Bu_t_Bu_BNap	BNap	t_Bu	t_Bu	12.5
P_Ph_Ph_o_CHOPh	o_CHOPh	Ph	Ph	12.5
P_m_Tol_m_Tol_m_Tol	m_Tol	m_Tol	m_Tol	13.5
P_Cy_Cy_BOMeBPh	Су	BOMeBPh	Су	13.5
P_Ph_Ph_Ph	Ph	Ph	Ph	13.5
P_Ph_Ph_m_CHOPh	m_CHOPh	Ph	Ph	13.5
P_Ph_p_Tol_p_Tol	p_Tol	Ph	p_Tol	13.5
P_Ph_Ph_pPhOH	pPhOH	Ph	Ph	13.5

P_Ph_Ph_pCHOPh	Ph	pCHOPh	Ph	13.5
P_Ph_Ph_nPr3NH2	nPr3NH2	Ph	Ph	14.5
P_o_OMePh_o_OMePh_o_CHOPh	o_CHOPh	o_OMePh	o_OMePh	14.5
P_Ph_Ph_p_Tol	p_Tol	Ph	Ph	14.5
P_t_Bu_t_Bu_BPh	BPh	t_Bu	t_Bu	15.4
P_Ph_Ph_Aly	Aly	Ph	Ph	15.4
P_t_Bu_t_Bu_2MeBPh	2MeBPh	t_Bu	t_Bu	15.4
P_BMeN_BMeN_BMeN	BMeN	BMeN	BMeN	15.4
P_Ph_p_OMePh_p_OMePh	Ph	p_OMePh	p_OMePh	16.4
P_Cy_Cy_2MeBPh	2MeBPh	Су	Су	18.3
P_Ph_Ph_o_Tol	o_Tol	Ph	Ph	18.3
P_Ph_Ph_o_OMePh	o_OMePh	Ph	Ph	18.3
P_t_Bu_t_Bu_BOMeBPh	t_Bu	BOMeBPh	t_Bu	18.3
P_Ph_Ph_4NMe2Ph	4NMe2Ph	Ph	Ph	19.3
P_Ph_Ph_oPhOH	oPhOH	Ph	Ph	20.3
P_Ph_o_OMePh_o_OMePh	Ph	o_OMePh	o_OMePh	20.3
P_22MeNBPh_Ph_Ph	22MeNBPh	Ph	Ph	20.3
P_Mes_Mes_Cyp	Mes	Сур	Mes	24.1
P_Ph_Ph_BOMeBPh	Ph	BOMeBPh	Ph	26.1
P_Ph_Ph_TiPrBPh	TiPrBPh	Ph	Ph	28.0
P_o_OMePh_o_OMePh_o_OMePh	o_OMePh	o_OMePh	o_OMePh	28.0
P_TOMeBPh_Cy_Cy	TOMeBPh	Су	Су	28.9
P_Ph_Ph_2MeBPh	Ph	2MeBPh	Ph	29.9
P_t_Bu_t_Bu_1PhPyr	1PhPyr	t_Bu	t_Bu	29.9
P_Cy_Cy_TPhBPyz	TPhBPyz	Су	Су	29.9
P_t_Bu_t_Bu_36OMe2TRIPPh	360Me2TRIPPh	t_Bu	t_Bu	31.8
P_26BOMePh_26BOMePh_26BOMePh	26BOMePh	26BOMePh	26BOMePh	34.7
P_Mes_Mes_Mes	Mes	Mes	Mes	35.7

					$\Delta E_{rep}(L)$	Vbur	Price	Yield
	name	G1	GZ	G3	(kJ/mol)	(%)	(CNY/g)	(%)ª
1	P_p_OMePh_p_OMePh_p_OMePh	p_OMePh	p_OMePh	p_OMePh	10.6	30.4	20	1
2	P_t_Bu_Adm_Adm	t_Bu	Adm	Adm	10.6	39.7		
3	P_Ph_BPh_Ph	BPh	Ph	Ph	11.6	30.8	21	71
4	P_mPhOH_mPhOH_mPhOH	mPhOH	mPhOH	mPhOH	11.6	29.8		
5	P_TPhBPyz_Adm_Adm	TPhBPyz	Adm	Adm	12.5	43.7	1871	98
6	P_Ph_Ph_Bn	Bn	Ph	Ph	12.5	28.5	40	0
7	P_Ph_Ph_mPhNH2	mPhNH2	Ph	Ph	12.5	30.6		
8	P_t_Bu_t_Bu_BNap	BNap	t_Bu	t_Bu	12.5	50.8	1097	64
9	P_m_Tol_m_Tol_m_Tol	m_Tol	m_Tol	m_Tol	13.5	29.8	10	1
10	P_Cy_Cy_BOMeBPh	Су	BOMeBPh	Су	13.5	46.0	24	98
11	P_Ph_Ph_Ph	Ph	Ph	Ph	13.5	30.2		
12	P_Ph_Ph_Ph	Ph	Ph	Ph	13.5	30.2	1	0
13	P_Ph_p_Tol_p_Tol	p_Tol	Ph	p_Tol	13.5	30.0		
14	P_Ph_Ph_pPhOH	pPhOH	Ph	Ph	13.5	30.6	2203	2
15	P_Ph_Ph_pCHOPh	Ph	pCHOPh	Ph	13.5	30.2	1098	0
16	P_Ph_Ph_nPr3NH2	nPr3NH2	Ph	Ph	14.5	33.7	640	0
17	P_Ph_Ph_p_Tol	p_Tol	Ph	Ph	14.5	30.1	10	0
18	P_t_Bu_t_Bu_BPh	BPh	t_Bu	t_Bu	15.4	46.9	30	98
19	P_Ph_Ph_Aly	Aly	Ph	Ph	15.4	28.4	289	0
20	P_t_Bu_t_Bu_2MeBPh	2MeBPh	t_Bu	t_Bu	15.4	50.3	33	5
21	P_BMeN_BMeN_BMeN	BMeN	BMeN	BMeN	15.4	32.6	10	0
22	P_Ph_p_OMePh_p_OMePh	Ph	p_OMePh	p_OMePh	16.4	30.2	103	0
23	P_Cy_Cy_2MeBPh	2MeBPh	Су	Су	18.3	43.0	28	99
24	P_Ph_Ph_o_Tol	o_Tol	Ph	Ph	18.3	30.7	76	10
25	P_Ph_Ph_o_OMePh	o_OMePh	Ph	Ph	18.3	31.4	286	3
26	P_t_Bu_t_Bu_BOMeBPh	t_Bu	BOMeBPh	t_Bu	18.3	51.4		
27	P_Ph_Ph_4NMe2Ph	4NMe2Ph	Ph	Ph	19.3	29.4	20	2
28	P_Ph_Ph_oPhOH	oPhOH	Ph	Ph	20.3	31.9	359	0
29	P_Ph_o_OMePh_o_OMePh	Ph	o_OMePh	o_OMePh	20.3	32.5	123	32
30	P_22MeNBPh_Ph_Ph	22MeNBPh	Ph	Ph	20.3	35.9	35	85
31	P_Mes_Mes_Cyp	Mes	Сур	Mes	24.1	41.4		
32	P_Ph_Ph_BOMeBPh	Ph	BOMeBPh	Ph	26.1	40.3	46	99
33	P_Ph_Ph_TiPrBPh	TiPrBPh	Ph	Ph	28.0	45.2	37	99
34	P_o_OMePh_o_OMePh_o_OMePh	o_OMePh	o_OMePh	o_OMePh	28.0	34.1	21	83
35	P_TOMeBPh_Cy_Cy	TOMeBPh	Су	Су	28.9	40.4	1711	99
36	P_Ph_Ph_2MeBPh	Ph	2MeBPh	Ph	29.9	37.5	53	97
37	P_t_Bu_t_Bu_1PhPyr	1PhPyr	t_Bu	t_Bu	29.9	43.3	1450	99

Table S3. The predicted P-ligands for *p*-CF₃-PhCl activation via MPCD-based ALS and their reported catalytic performance in literature for Pd-catalyzed cross-coupling reaction.

^a Reaction **VI** in manuscript.

	Diserved	Temp	Time	Yield	TOF	Price	Def
	P-igano	(°C)	(h)	(%)	(h-1)	(CNY/g)	Ker.
	2-(2-methoxyphenyl)-1-(dicyclohexylphosphino)ferrocene	95	24	83	3.4		1
	P-cyclohexyl-4-hydroxy-2,2,6,6-tetramethylphosphorinane	110	16	85	5.3		2
PhCl	(2-mesityl-1H-inden-3-yl)-dicyclohexylphosphine	100	8	79	6.6		3
	[PdCl2((Ph2PCH2)2NC6H4-2-(CF3))]	80	7	98	14		4
	Our work	100	2	97	16	37	
	[Me2NCH2(Cl)C=C(CH2)2OP(i-Pr)2-кNкСкP]PdCl	130	27	85	6.3		5
p-CF ₃ -PhCl	Adbippyphos	100	1	99	33	1871	6
	Our work	100	1	99	33	37	

Table S4. TOF values for the representative catalytic system in the literature in the Suzuki coupling of *p*-CF₃-PhCl/PhCl and *o*-tolylboronic acid.

		61	C 1	~	$\Delta E_{rep}(L)$	Vbur	Price	Yield
	name	91	92	33	(kJ/mol)	(%)	(CNY/g)	(%)ª
1	P_Ph_p_OMePh_p_OMePh	Ph	p_OMePh	p_OMePh	16.4	30.2	103	0
2	P_Cy_Cy_2MeBPh	2MeBPh	Су	Су	18.3	43.0	28	32
3	P_Ph_Ph_o_Tol	o_Tol	Ph	Ph	18.3	30.7	83	0
4	P_Ph_Ph_o_OMePh	o_OMePh	Ph	Ph	18.3	31.4	286	0
5	P_t_Bu_t_Bu_BOMeBPh	t_Bu	BOMeBPh	t_Bu	18.3	51.4	7190	
6	P_Ph_Ph_4NMe2Ph	4NMe2Ph	Ph	Ph	19.3	29.4	20	0
7	P_Ph_Ph_oPhOH	oPhOH	Ph	Ph	20.3	31.9	359	0
8	P_Ph_o_OMePh_o_OMePh	Ph	o_OMePh	o_OMePh	20.3	32.5	123	1
9	P_22MeNBPh_Ph_Ph	22MeNBPh	Ph	Ph	20.3	35.9	35	26
10	P_Mes_Mes_Cyp	Mes	Сур	Mes	24.1	41.4		
11	P_Ph_Ph_BOMeBPh	Ph	BOMeBPh	Ph	26.1	40.3	46	74
12	P_Ph_Ph_TiPrBPh	TiPrBPh	Ph	Ph	28.0	45.2	37	97
13	P_o_OMePh_o_OMePh_o_OMePh	o_OMePh	o_OMePh	o_OMePh	28.0	34.1	21	24
14	P_TOMeBPh_Cy_Cy	TOMeBPh	Су	Су	28.9	40.4	1711	47
15	P_Ph_Ph_2MeBPh	Ph	2MeBPh	Ph	29.9	37.5	53	21
16	P_t_Bu_t_Bu_1PhPyr	1PhPyr	t_Bu	t_Bu	29.9	43.3	1450	99
17	P_Cy_Cy_TPhBPyz	TPhBPyz	Су	Су	29.9	36.1	1141	95
18	P_t_Bu_t_Bu_36OMe2TRIPPh	360Me2TRIPPh	t_Bu	t_Bu	31.8	44.0	258	7
19	P_26BOMePh_26BOMePh_26BOMePh	26BOMePh	26BOMePh	26BOMePh	34.7	39.0	23	1

Table S5. The predicted P-ligands for PhCl activation via MPCD-based ALS and their reported catalytic performance in literature for Pd-catalyzed cross-coupling reaction.

^a Reaction VII in manuscript.

ArCl	Ligand	Temp (°C)	Time (h)	Yield (%)	Ref.
	Ph-XPhos	100	2	40	This work
p-INH ₂ -PIICI	NHC	50	24	89	7
	Ph-XPhos	100	3	90	This work
p-NO ₂ -Prici	N-ligand	85	5.5	68	8
	Ph-XPhos	100	2	50	This work
p-on-prici	polymeric imidazole Pd	100	12	90	9
	Ph-XPhos	100	2	72	This work
<i>p</i> -CH₃O-PhCl	NHC	80	6	99	10
	NHC	80	4	99	11
	Ph-XPhos	100	2	69	This work
p-ch ₃ co-rhc	(t-Bu-Ph-phosphinomethyl)polystyrene		20	86	12
o-CF ₃ -PhCl	Ph-XPhos	100	1	99	This work
	NHC	130	27	71	5
	Ph-XPhos	100	1	99	This work
	Ferrocence-based phosphine	r t	12	00	13
III-CF ₃ -PIICI	(with phenylboronic acid)	1.1.	12	99	
	P[OiPr]₃ (phenylboronic acid)	120	18	88	14

Table S6. The reaction yields for the representative catalytic system in the literature for the Suzuki coupling of ArCl with *o*-tolylboronic acid.

$\Delta E_{ren}(L) \qquad \Delta E_{ren}(L)$				
Name	with PBE functional	with B3LYP functional	E _{diff}	
P_Cyp_35BTRIPPh_35BTRIPPh	1.9	0.0	1.9	
P_35Bt_BuPh_35Bt_BuPh_35BTRIPPh	3.9	1.9	1.9	
P_Cyp_35BMesPh_35BMesPh	0.0	1.9	1.9	
P_TPhBPyz_Adm_Adm	12.5	12.5	0.0	
P_Cy_Cy_35BTRIPPh	-3.9	-1.9	1.9	
P_Cyp_Cyp_35BTRIPPh	-1.9	1.0	2.9	
P_35Bt_BuPh_35Bt_BuPh_35Bt_BuPh	7.7	3.9	3.9	
P_Cy_Cy_TPhBPyz	-40.5	-28.0	12.5	
P_36OMe2TRIPPh_Cy_Cy	-5.8	-7.7	1.9	
P_t_Bu_t_Bu_TPhBPyz	16.4	20.3	3.9	
P_26BOMePh_26BOMePh_26BOMePh	34.7	30.9	3.9	
P_t_Bu_t_Bu_360Me2TRIPPh	17.4	32.8	15.4	
P_Cy_35Bt_BuPh_35Bt_BuPh	-1.9	-1.0	1.0	
P_Ph_35Bt_BuPh_35Bt_BuPh	5.8	6.8	1.0	
P_Cy_Cy_BOiPrBPh	4.8	6.8	1.9	
P_Cyp_35Bt_BuPh_35Bt_BuPh	-1.0	1.0	1.9	
P_TiPrBPh_Cy_Cy	3.9	5.8	1.9	
P_Ph_Ph_TiPrBPh	28.0	19.3	8.7	
P_TOMeBPh_Cy_Cy	28.9	18.3	10.6	
P_n_Bu_35Bt_BuPh_35Bt_BuPh	2.9	3.9	1.0	
P_t_Bu_35Bt_BuPh_35Bt_BuPh	5.8	6.8	1.0	
P_35BPhPyzPh_t_Bu_t_Bu	3.9	6.8	2.9	
P_BOMeBPh_o_Tol_o_Tol	21.2	24.1	2.9	
P_Cy_Cy_26B2MeNBPh	9.6	13.5	3.9	
P_Adm_Adm_Adm	-2.9	1.0	3.9	
P_Cy_Cy_BOMeBPh	13.5	11.6	1.9	
P_Ph_Ph_BOMeBPh	26.1	16.4	9.6	
P_o_OMePh_o_OMePh_26BOMePh	1.0	0.0	1.0	
P_t_Bu_t_Bu_TiPrBPh	14.5	10.6	3.9	
P_t_Bu_t_Bu_BNap	12.5	19.3	6.8	
P_22MeNBPh_Cy_Cy	0.0	-1.0	1.0	
P_Cy_Cy_1PhIn	5.8	3.9	1.9	
P_22MeNBPh_Ph_Ph	20.3	24.1	3.9	
P_Adm_Bn_Adm	2.9	1.9	1.0	
P_Mes_Mes_Mes	35.7	39.6	3.9	
P_Ph_Ph_Trop	5.8	0.0	5.8	
P_p_OMePh_p_OMePh_p_OMePh	10.6	2.9	7.7	
P_o_OMePh_o_OMePh_o_OMePh	28.0	24.1	3.9	
P_Cy_Cy_2OMe1PhPyr	8.7	5.8	2.9	
P_Cy_Cy_2MeBPh	18.3	13.5	4.8	

Table S7. The calculated $\Delta E_{rep}(L)$ results by using PBE functional in VASP and B3LYP functional in Gaussion 09 packages and their absolute energy differences ($|E_{diff}|$). The unit of energy is kJ/mol.

P_t_Bu_r5_r5	13.5	11.6	1.9
P_n_Bu_Adm_Adm	-8.7	-6.8	1.9
P_t_Bu_Adm_Adm	10.6	16.4	5.8
P_Cy_p_OMePh_p_OMePh	3.9	4.8	1.0
P_t_Bu_t_Bu_NapPyz	29.9	32.8	2.9
P_PrO2Me_PrO2Me_PrO2Me	-7.7	-10.6	2.9
P_OPh_OPh_OPh	5.8	1.9	3.9
P_t_Bu_t_Bu_22MeNBPh	5.8	11.6	5.8
P_3OMe6Me2TRIPPh_t_Bu_t_Bu	9.6	13.5	3.9
P_Cy_Cy_1PhPyr	-6.8	7.7	14.5
P_t_Bu_t_Bu_1PhIn	10.6	12.5	1.9
P_Mes_Mes_Cyp	24.1	21.2	2.9
P_Cyp_p_OMePh_p_OMePh	-1.0	0.0	1.0
P_t_Bu_t_Bu_2OMe1PhPyr	6.8	10.6	3.9
P_Cy_Cy_4NMe2Ph	1.9	-6.8	8.7
P_BEtN_OBn_OBn	1.0	2.9	1.9
P_Cy_Cy_Mes	12.5	20.3	7.7
P_t_Bu_t_Bu_2MeBPh	15.4	20.3	4.8
P_Cyp_35BMePh_35BMePh	0.0	1.0	1.0
P_p_Tol_p_Tol_p_Tol	8.7	5.8	2.9
P_m_Tol_m_Tol	13.5	5.8	7.7
P_o_Tol_o_Tol_o_Tol	7.7	14.5	6.8
P_Bn_Bn_Bn	2.9	5.8	2.9
P_t_Bu_t_Bu_BPh	15.4	13.5	1.9
P_Cy_o_Tol_o_Tol	-18.3	-10.6	7.7
P_t_Bu_t_Bu_1PhPyr	29.9	32.8	2.9
P_Cy_Cy_o_Tol	1.9	5.8	3.9
P_Mes_Cyp_Cyp	11.6	21.2	9.6
P_Ph_Ph_p_Tol	14.5	8.7	5.8
P_Ph_Ph_o_Tol	4.8	5.8	1.0
P_Ph_Ph_Bn	2.9	4.8	1.9
P_Cy_Cy_Cy	-28.0	-24.1	3.9
P_t_Bu_t_Bu_Adm	-1.9	1.9	3.9
P_Cy_Cy_Ph	-1.9	-1.0	1.0
P_iPr_BPh_iPr	-2.9	-1.9	1.0
P_Cy_Ph_Ph	2.9	2.9	0.0
P_Ph_Ph_Ph	13.5	7.7	5.8
P_Ph_Ph_Cyp	11.6	5.8	5.8
P_BEtN_BEtN_BEtN	-1.9	0.0	1.9
P_Cy_Cy_t_Bu	-4.8	-3.9	1.0
P_t_Bu_OtBu_OtBu	-5.8	-1.0	4.8
P_Ph_Cyp_Cyp	0.0	-1.0	1.0
P_Ph_Ph_t_Bu	10.6	4.8	5.8
P_Ph_Ph_OEt	1.9	-5.8	7.7

Р_Сур_Сур_Сур	-3.9	-1.0	2.9
P_t_Bu_t_Bu_Bn	1.0	2.9	1.9
P_iPr_Ph_Ph	4.8	3.9	1.0
P_Prol_Prol_Prol	3.9	11.6	7.7
P_Ph_Ph_Aly	1.0	1.9	1.0
P_Cy_t_Bu_t_Bu	-1.9	0.0	1.9
P_Ph_t_Bu_t_Bu	5.8	2.9	2.9
P_Me_BPh_Me	4.8	5.8	1.0
P_EtCN_EtCN_EtCN	-6.8	-2.9	3.9
P_n_Bu_n_Bu_n_Bu	-23.2	-24.1	1.0
P_i_Bu_i_Bu_i_Bu	-1.0	8.7	9.6
P_t_Bu_t_Bu_n_Bu	-3.9	-2.9	1.0
P_t_Bu_t_Bu_t_Bu	-3.9	0.0	3.9
P_OEt_OEt_OEt	-10.6	-23.2	12.5
P_iPr_t_Bu_t_Bu	-17.4	-14.5	2.9
P_BMeN_BMeN_BMeN	15.4	16.4	1.0
P_n_Pr_n_Pr_n_Pr	-2.9	-1.9	1.0
P_iPr_iPr_iPr	-2.9	-1.9	1.0
P_Me_t_Bu_t_Bu	1.0	1.0	0.0
P_Aly_Aly_Aly	-5.8	-3.9	1.9
P_Et_Et	-7.7	-6.8	1.0
P_Me_Me	0.0	0.0	0.0
Mean absolute error			3.7

References

1. Baillie, C., Zhang, L.X. & Xiao, J.L. Ferrocenyl monophosphine ligands: Synthesis and applications in the Suzuki-Miyaura coupling of aryl chlorides. *J. Org. Chem.* **69**, 7779-7782 (2004).

2. Ullah, E., McNulty, J. & Robertson, A. A novel P,O-type phosphorinane ligand for the Suzuki-Miyaura cross-coupling of aryl chlorides. *Tetrahedron Lett.* **50**, 5599-5601 (2009).

3. Mao, S.L. *et al.* A highly active catalytic system for Suzuki-Miyaura cross-coupling reactions of aryl and heteroaryl chlorides in water. *Org. Biomol. Chem.* **10**, 9410-9417 (2012).

4. Keles, M. & Yilmaz, M.K. Synthesis, characterization and catalytic activity of new aminomethyldiphosphine-Pd(II) complexes for Suzuki cross-coupling reaction. *Appl. Org. Chem.* **28**, 91-94 (2014).

5. Rosa, G.R., Ebeling, G., Dupont, J. & Monteiro, A.L. A superior non-symmetrical NCP pincer type palladacycle catalyst precursor for the coupling of aryl boronic acids with aryl chlorides. *Synthesis*, 2894-2897 (2003).

6. Newman-Stonebraker, S.H. *et al.* Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis. *Science* **374**, 301-308 (2021).

7. Song, C. et al. Palladium catalyzed Suzuki-Miyaura coupling with aryl chlorides using a bulky phenanthryl

-heterocyclic carbene ligand. Tetrahedron 61, 7438-7446 (2005).

8. Song, J.Y. *et al.* Efficient symmetrical bidentate dioxime ligand-accelerated homogeneous palladiumcatalyzed Suzuki-Miyaura coupling reactions of aryl chlorides. *New J. Chem.* **41**, 372-376 (2017).

9. Yamada, Y.M.A., Sarkar, S.M. & Uozumi, Y. Self-Assembled Poly(imidazole-palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels. *J. Am. Chem. Soc.* **134**, 3190-3198 (2012).

10. Wang, T. *et al.* Synthesis and characterization of trinuclear N-heterocyclic carbene-palladium(II) complexes and their applications in the Suzuki-Miyaura cross-coupling reaction. *RSC Adv.* **6**, 100690-100695 (2016).

11. Wang, T., Xu, K., Wang, W.L., Zhang, A.A. & Liu, L.T. Dinuclear NHC-palladium(II) complexes: synthesis, characterization and application to Suzuki-Miyaura cross-coupling reactions. *Transit. Met. Chem.* **43**, 347-353 (2018).

12. Schweizer, S., Becht, J.M. & Le Drian, C. Highly efficient reusable polymer-supported Pd catalysts of general use for the Suzuki reaction. *Tetrahedron* **66**, 765-772 (2010).

13. Yu, S.B. *et al.* Ferrocence-based phosphine-triazine ligands for highly efficient Suzuki-Miyaura cross-coupling reaction of aryl chlorides. *Tetrahedron Lett.* **49**, 1253-1256 (2008).

14. Zapf, A. & Beller, M. Palladium/phosphite catalyst systems for efficient cross coupling of aryl bromides and chlorides with phenylboronic acid. *Chem. - Eur. J.* **6**, 1830-1833 (2000).