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1. Synthesis of cobalt hexacyanoferrate NPs 

All the chemicals were commercially available and used without further purification. Cobalt 

hexacyanoferrate nanoparticles were synthesized via a coprecipitation method. In a typical experiment, 

5.0 mmol Co(CH3COO)2·4H2O (AR, Aladdin) was dissolved in 50 mL deionized (DI) water under 

magnetic stirring (HJ-4B, Yidu) (denoted as solution A). Another 5.0 mmol K3Fe(CN)6 (AR, Aladdin) 

and 5.0 g polyvinyl pyrrolidone (PVP, K30, AR, Aladdin) were dissolved in 150 mL DI water to form 

a transparent solution (denoted as solution B). Subsequently, the solution A was dropwise added into 

the solution B. After stirring for 1 h, the suspension was stored at room temperature for 24 h. The 

received dark purple precipitate was collected by centrifugation (12000 rpm for 20 min). Then the 

sample was washed several times with DI water and ethanol, and dried at 80 °C in an oven (DHG-

9050A, Jinghong) for 12 h. 

2. Preparation of the hybrid hydrogel electrolyte 

The hydrogel electrolyte was prepared via in-situ photoinitiated radical polymerization. Typically, 

certain mass of acrylamide (AM, AR, Aladdin), 0.5 g PVA (Mw=13000~23000, 87~89% hydrolyzed, 

AR, Aladdin) and 0.5 mg N,N'-methylenebisacrylamide (MBA, AR, Aladdin) were dissolved in 5.0 

mL 1.0 M Zn(CH3COO)2 (AR, Aladdin) liquid electrolyte to form a mixture solution under magnetic 
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stirring at 85 °C. After cooling down to room temperature, 10.0 μL 2-hydroxy-2-methylpropiophenone 

(HMPP, 97%, AR, Aladdin) was dispersed in the above solution before poured it into a Petri dish. The 

free-radical polymerization was conducted by ultraviolet (UV) irradiation (HY-UV0003, Lightwells) 

for 120 s under ice bath. The sample with a composition of 0.5 g PVA + 0.5 mg MBA + 2.0 g AM was 

used as the optimized hydrogel electrolyte.  

3. Characterizations 

The morphology, structure and composition of the sample were investigated on a scanning electron 

microscopy (SEM, Hitachi S8100, operated at 5 kV), a transmission electron microscopy (TEM, 

Hitachi HT7700) and a high-resolution transmission electron microscopy (HRTEM, FEI TalosF200x), 

and X-ray diffraction (XRD, Rigaku SmartLab) with the Cu Kα of 1.5418 Å, respectively. X-ray 

photoelectron spectroscopy (XPS, Escalab 250Xi) was used to analyze the elemental state. All the 

spectra were calibrated by the binding energy of C1s at 284.8 eV. Brunauer-Emmett-Teller 

measurements (BET, Nova 2000E) was used to determine the surface area and pore distribution. 

Thermogravimetry analysis (TGA, TA5500) was employed to measure the mass of K. The obtained 

hydrogel was immersed in liquid nitrogen then freeze-dried for 48 h for FTIR (INVENIO IR-21) and 

Raman (inVia, Renishaw) tests. The functional groups of the sample were studied by using Fourier 

transform infrared (FT-IR) spectroscopy (INVENIO IR-21) and Raman spectrometry (inVia, 

Renishaw). 

4. Electrochemical property and battery performance tests 

Electrochemical impedance spectroscopy (EIS), linear scan voltammetry (LSV) and cyclic 

voltammetry (CV) were carried out on an electrochemical workstation (CHI-660e, Chenhua). The 

assembled Zn||Zn symmetric and Zn||Cu asymmetric cells were measured on a battery tester (CT-4008, 

Neware). LSV measurement was conducted at a scanning rate of 5 mV s‒1 by using three electrodes 

system where stainless-steel foils (SS, 1 cm2) were respectively used as working and counter electrodes 

and Ag/AgCl (1.0 M KCl) was used as reference electrode. 

The ionic conductivity of the electrolyte was evaluated in a stainless-steel (SS)||electrolyte||SS 

symmetric cell. All the tests were carried out on the electrochemical station by A.C. impedance method 

with a frequency range from 1.0 to 105 Hz. The data was calculated based on the equation1,2: 

σ =
L

R ∗ A 
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where σ stands for the ionic conductivity, S cm‒1, R is the resistance (Ω), A is the contact area of the 

electrolyte (here it is 1.0 cm2), and L (cm) is the distance between SS foils, respectively. 

The stability of the electrolyte was also investigated by Zn||Zn symmetric batteries, in which two 

metallic Zn foils (≈10 μm) were used as cathode and anode. The cell was tested under different current 

densities and areal capacities. The Coulombic efficiency (CE) was performed using Cu foil (≈10 μm) 

and Zn foils as cathode and anode, respectively. The cutoff voltage of Zn||Cu half-batteries during 

charging were set to 1.0 V. 

For the battery assembly, cobalt hexacyanoferrate NPs, carbon black (EL, Aladdin) and 

poly(vinylidene fluoride) (PVDF, AR, Aladdin) were mixed with a mass ratio of 9:0.5:0.5 and 

dispersed in N-methyl-2-pyrrolidone (NMP, EL, Aladdin) solvent under magnetic stirring. The formed 

slurry was dropped on a carbon cloth (CC, CeTech, WOS1002) and dried at 80 °C in a vacuum oven 

(DZF-6020, Jinghong). The mass loading of active material was controlled to be 5.0~7.8 mg cm‒2. As 

a comparison, the slurry was also casted on graphite paper (Guanzhi, Shandong) and dried under the 

same condition. The obtained cathode electrode with a mass loading of 0.9~2.3 mg cm‒2 was cut into 

a circle disc with a diameter of 12.0 mm. 

The electroplating solution was prepared by dissolving 10.0 g anhydrous Zn(CH3COO)2 (AR, 

Aladdin) in a mixture solution of 30.0 mL DI water and 20.0 mL dimethyl sulfoxide (DMSO, AR, 

Aladdin). Then the Zn/CC electrode was prepared by using amperometric i-t method at ‒1.8 V for 45 

min. The mass loading of Zn on carbon cloth was 9.7~12.4 mg cm‒2.  

The quasi-solid-state pouch cell was assembled by using cobalt hexacyanoferrate NPs/CC (2.5 × 

2.5 cm2), Zn/CC (2.5 × 2.5 cm2) and hybrid hydrogel (2.6 × 2.6× 0.4 cm3) as cathode material, anode 

material and electrolyte, respectively. The sandwiched-like battery was sealed with aluminum 

laminated film (ALF) on a vacuum sealing machine (MSK-140, Kejing). As comparisons, pure PAM 

hydrogel electrolyte was parepared by polymerizing 2.5 g AM in liquid electrolyte. The quasi-solid-

state AZIB with pure PAM hydrogel electrolyte was assembled via same process. Besides, the CR2032 

coin cell battery with liquid electrolyte soaked glass fibers as electrolyte was also assembled.  

The capacitive and diffusion-controlled behavior was evaluated in terms of the equation: i=avb and 

log(i) = blog(v) + log(a), where i (mA) and v (mV s‒1) stand for the current and scanning rate, while a 

and b present the changeable parameters, respectively3,4. The pseudocapacitive contribution ratios at 

various sweep rates were estimated according to the equation: i(V) = k1v + k2v1/2, where k1v and k2v1/2 
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stand for non-Faradaic (capacitive behavior) and Faradaic (diffusion-controlled process) process5. The 

values of k1 and k2 were calculated by transforming the equation to i(V)/v1/2 = k1v1/2+ k2 and plotted by 

i(V)/v1/2 versus v1/2. 

 Galvanostatic intermittent titration technique (GITT) measurements were conducted at 100 mA 

g‒1 on a battery tester (CT-4008, Neware).  

 

 

   
Figure S1. TEM images of the as-received cobalt hexacyanoferrate. 

 

 

 

Figure S2. N2 adsorption/desorption isotherms of the cobalt hexacyanoferrate NPs. The inset shows 
the pore size distribution. 
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Figure S3. EDS spectrum of the cobalt hexacyanoferrate NPs. 

 
 

  
Figure S4. (a) TGA curve of the cobalt hexacyanoferrate and (b) XRD pattern of the sample after 

TGA test. The weight loss of 23.76% was mainly ascribed to the evaporation of water and the weight 
decrease of 27.51% was attributed to the C, N removal and oxidation under higher temperature. 
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Figure S5. (a) XPS survey of the cobalt hexacyanoferrate and the corresponding high-resolution 

XPS spectra of (b) C 1s, (c) Co 2p, (d) Fe 2p and (e) N1s. 
 
 

 
Figure S6. Optical photographs of (a) hybrid hydrogels with different mass ratios of PVA:AM 

monomer in 5.0 mL liquid electrolyte: (i) 0 + 0 g, (ii) 0.5 + 0 g, (iii) 0.5 + 0.5 g, (iv) 0.5 + 1.0 g, (v) 
0.5 + 1.5 g, (vi) 0.5 + 2.0 g, (vii) 0.5 + 2.5 g, (viii) 0.5 + 3.0 g. (b) The corresponding stretching 

performance of the hydrogel with the initial size of 1.0 cm × 1.0 cm × 0.2 cm. 
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Figure S7. SEM images of freeze-dried hydrogel with 0.5 g PVA + 3.0 g AM in 5.0 mL 1.0 M 

Zn(CH3COO)2 liquid electrolyte. 
 
 
 

   

 
Figure S8. Nyquist plot of (a) liquid electrolyte and (b) hybrid hydrogel electrolyte. (c) Ionic 

conductivity. 
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Figure S9. Self-healing performance of the as-received hybrid hydrogel electrolyte upon cutting into 

several pieces. 
 
 
 

 
Figure S10. FI-IR spectra of commercial PAM and PVA and the hybrid hydrogel electrolyte. 
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Figure S11. Polarization of liquid electrolyte in Zn||Cu asymmetric cell at 1.0 mA cm‒2 and 1.0 mAh 

cm‒2. 
 
 

 
Figure S12. Operando observation of Zn deposition with (a) liquid and (b) hybrid hydrogel 

electrolytes under a current density of 75 mA cm‒2. 
 
 

 
Figure S13. Plot of logarithm of peak current and scanning rate from the CV curve of the AZIB. 
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Figure S14. (a) CV curves at various scan rates of the AZIB with liquid electrolyte. (b) The 
corresponding logarithm of peak current and scanning rate and (c) calculated capacitive and 

diffusion-controlled contribution ratio. 
 
 

 
Figure S15. Rate performance of the battery at various current densities. 
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Figure S16. GITT profiles of the battery with hydrogel and liquid electrolytes. (a) Potential-time 
curves during the GITT measurements. (b) Illustration of dEs, dEt and iR drop of the battery with 

hydrogel electrolyte. (c) Reaction resistance of the battery under various potentials. 
 
 
 

   
Figure S17. (a) Raman and (b) ATR-FTIR spectra of PVDF and the cobalt hexacyanoferrate. 
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Figure S18. EDS spectra of the cobalt hexacyanoferrate NPs/CC with (a) hybrid hydrogel electrolyte 

and (b) liquid electrolyte after 300 cycles at 1.0 A g-1. 
 
 

 

Figure S19. Battery open circuit voltage with hydrogel electrolyte after four cutting/healing cycles. 
 
 

  

 
Figure S20. Flexibility and self-healing performance of the quasi-solid-state AZIBs with pure PAM 
hydrogel electrolyte. (a) Cycling performance and (b) GCD curves upon bending after 15 cycles. (c) 

Capacity retention of the battery after self-healing from cut into 2, 3 and 4 pieces. 
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Figure S21. Flexibility of the quasi-solid-state AZIB. Upon (a) and after (b) twisting. Before (c) and 
after (d) compression in an autoclave. 
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